
December 2006 Volume 9, Number 4

You can download IPJ 
back issues and find 

subscription information at: 
www.cisco.com/ipj

A Quarterly Technical Publication for 
Internet and Intranet Professionals

In This Issue

From the Editor ...................... 1

SYN Flooding Attacks ............ 2

XML Networking ................ 17

Letters to the Editor .............. 33

Book Review ........................ 37

Fragments ............................. 40

Call for Papers ...................... 43

F r o m  T h e  E d i t o r

Internet security and stability are topics we keep returning to in this 
journal. So far we have mainly focused on technologies that protect 
systems from unauthorized access and ensure that data in transit over 
wired or wireless networks cannot be intercepted. We have discussed 
security-enhanced versions of many of the Internet core protocols, 
including the Border Gateway Protocol (BGP), Simple Network 
Management Protocol (SNMP), and the Domain Name System 
(DNS). You can find all these articles by visiting our Website and re-
ferring to our index files. All back issues continue to be available in 
both HTML and PDF formats. In this issue, Wesley Eddy explains a 
vulnerability in the Transmission Control Protocol (TCP) in which a 
sender can overwhelm a receiver by sending a large number of SYN 
protocol exchanges. This form of Denial of Service attack, known as 
SYN Flooding, was first reported in 1996, and researchers have devel-
oped several solutions to combat the problem.

Speaking of Internet stability, at 12:26 GMT on December 26, 2006, 
an earthquake of magnitude 6.7 struck off Taiwan’s southern coast. 
Six submarine cables were damaged, resulting in widespread disrup-
tion of Internet service in parts of Asia. We hope to bring you more 
details and analysis of this event in a future issue of IPJ. The topic will 
also be discussed at the next Asia Pacific Regional Internet Conference 
on Operational Technologies (APRICOT), which will take place in 
Bali, Indonesia, February 21 through March 2, 2007. For details see:
http://www.apricot2007.net

The design and operation of systems that use Internet protocols for 
communication in conjunction with advanced applications—such as 
an e-commerce system—require the use of a certain amount of “mid-
dleware.” This software, largely hidden from the end user, has been 
the subject of a great deal of development and standardization work 
for several decades. An important component of today’s Web systems 
is the Extensible Markup Language (XML). Silvano Da Ros explains 
how XML networking can be used as a critical building block for net-
work application interoperability.

—Ole J. Jacobsen, Editor and Publisher  
ole@cisco.com



The Internet Protocol Journal
2

Defenses Against TCP SYN Flooding Attacks
by Wesley M. Eddy, Verizon Federal Network Systems

T his article discusses a specific Denial of Service (DoS) attack 
known as TCP SYN Flooding. The attack exploits an imple-
mentation characteristic of the Transmission Control Protocol 

(TCP), and can be used to make server processes incapable of answer-
ing a legitimate client application’s requests for new TCP connec-
tions. Any service that binds to and listens on a TCP socket is poten-
tially vulnerable to TCP SYN flooding attacks. Because this includes 
popular server applications for e-mail, Web, and file storage services, 
understanding and knowing how to protect against these attacks is a 
critical part of practical network engineering.

The attack has been well-known for a decade, and variations of it are 
still seen. Although effective techniques exist to combat SYN flood-
ing, no single standard remedy for TCP implementations has emerged. 
Varied solutions can be found among current operating systems and 
equipment, with differing implications for both the applications and 
networks under defense. This article describes the attack and why it 
works, and follows with an overview and assessment of the current 
tactics that are used in both end hosts and network devices to combat 
SYN flooding attacks.

Basic Vulnerability
The SYN flooding attack became well-known in 1996, when the 
magazines 2600 and Phrack published descriptions of the attack 
along with source code to perform it[1]. This information was quick-
ly used in attacks on an Internet service provider’s (ISP’s) mail and 
Telnet servers, causing outages that were widely publicized in The 
Washington Post and The Wall Street Journal (among other venues). 
CERT quickly released an advisory on the attack technique[2].

Figure 1: Normal TCP 3-Way 
Handshake 

connect( )

Success code
returned by

connect( )

Initiator Listener

TCB transitions to
ESTABLISHED state

TCB initialized to
SYN-RECEIVED state

listen( )

(Data packets exchanged)

ACK

SYN-ACK

SYN



The Internet Protocol Journal
3

The basis of the SYN flooding attack lies in the design of the 3-way 
handshake that begins a TCP connection. In this handshake, the third 
packet verifies the initiator’s ability to receive packets at the IP ad-
dress it used as the source in its initial request, or its return reach-
ability. Figure 1 shows the sequence of packets exchanged at the be-
ginning of a normal TCP connection (refer to RFC 793 for a detailed 
description of this process).

The Transmission Control Block (TCB) is a transport protocol data 
structure (actually a set of structures in many operations systems) that 
holds all the information about a connection. The memory footprint 
of a single TCB depends on what TCP options and other features an 
implementation provides and has enabled for a connection. Usually, 
each TCB exceeds at least 280 bytes, and in some operating systems 
currently takes more than 1300 bytes. The TCP SYN-RECEIVED state 
is used to indicate that the connection is only half open, and that the 
legitimacy of the request is still in question. The important aspect to 
note is that the TCB is allocated based on reception of the SYN pack-
et—before the connection is fully established or the initiator’s return 
reachability has been verified.

This situation leads to a clear potential DoS attack where incom-
ing SYNs cause the allocation of so many TCBs that a host’s ker-
nel memory is exhausted. In order to avoid this memory exhaustion, 
operating systems generally associate a “backlog” parameter with a 
listening socket that sets a cap on the number of TCBs simultaneous-
ly in the SYN-RECEIVED state. Although this action protects a host’s 
available memory resource from attack, the backlog itself represents 
another (smaller) resource vulnerable to attack. With no room left 
in the backlog, it is impossible to service new connection requests 
until some TCBs can be reaped or otherwise removed from the SYN-
RECEIVED state.

Depleting the backlog is the goal of the TCP SYN flooding attack, 
which attempts to send enough SYN segments to fill the entire back-
log. The attacker uses source IP addresses in the SYNs that are not 
likely to trigger any response that would free the TCBs from the SYN-
RECEIVED state. Because TCP attempts to be reliable, the target host 
keeps its TCBs stuck in SYN-RECEIVED for a relatively long time be-
fore giving up on the half connection and reaping them. In the mean-
time, service is denied to the application process on the listener for 
legitimate new TCP connection initiation requests. Figure 2 presents 
a simplification of the sequence of events involved in a TCP SYN 
flooding attack.



The Internet Protocol Journal
4

Figure 2: Attack Demonstration: 
Enough illegitimate TCBs are in 
SYN-RECEIVED that a legitimate 
connection cannot be initiated.

connect( ) SYN

SYN

Attack begins,
numerous SYNs sent

Legitimate
Initiator

SYN-ACKs

Attack SYNs

Attacker Listener

Full backlog of TCBs
initialized to SYN-RECEIVED
state, and SYN-ACKs sent
to various bogus destinations

No room under backlog
for new TCBs to be put
into SYN-RECEIVED,
so incoming SYNs
are ignored

listen( )

Give up,
connect( ) fails

. . .

. . .

Attack Methods
The scenario pictured in Figure 2 is a simplification of how SYN 
flooding attacks are carried out in the real world, and is intended 
only to give an understanding of the basic idea behind these types of 
attacks. Figure 3 presents some variations that have been observed 
on the Internet.

Figure 3: Some Variants of the Basic Attack

Attacker

Listener

SYNs
and

SYN-ACKs

Attacker

Listener

Spoofing AttackDirect Attack

Spoofed
Address

Spoofed
Address

Spoofed
SYNs

SYN-ACKsSYN-ACKs

Attacker

Listener

Distributed Direct Attack

Commands

SYNs
and

SYN-ACKs

SYNs
and

SYN-ACKs

Drone Drone

SYN Flooding Attacks: continued



The Internet Protocol Journal
5

Direct Attack
If attackers rapidly send SYN segments without spoofing their IP 
source address, we call this a direct attack. This method of attack is 
very easy to perform because it does not involve directly injecting or 
spoofing packets below the user level of the attacker’s operating sys-
tem. It can be performed by simply using many TCP connect() calls, 
for instance. To be effective, however, attackers must prevent their op-
erating system from responding to the SYN-ACKS in any way, because 
any ACKs, RSTs, or Internet Control Message Protocol (ICMP) mes-
sages will allow the listener to move the TCB out of SYN-RECEIVED. 
This scenario can be accomplished through firewall rules that either 
filter outgoing packets to the listener (allowing only SYNs out), or 
filter incoming packets so that any SYN-ACKS are discarded before 
reaching the local TCP processing code.

When detected, this type of attack is very easy to defend against, 
because a simple firewall rule to block packets with the attacker’s 
source IP address is all that is needed. This defense behavior can be 
automated, and such functions are available in off-the-shelf reactive 
firewalls.

Spoofing-Based Attacks
Another form of SYN flooding attacks uses IP address spoofing, which 
might be considered more complex than the method used in a direct 
attack, in that instead of merely manipulating local firewall rules, the 
attacker also needs to be able to form and inject raw IP packets with 
valid IP and TCP headers. Today, popular libraries exist to aid with 
raw packet formation and injection, so attacks based on spoofing are 
actually fairly easy.

For spoofing attacks, a primary consideration is address selection. If 
the attack is to succeed, the machines at the spoofed source addresses 
must not respond to the SYN-ACKS that are sent to them in any way. A 
very simple attacker might spoof only a single source address that it 
knows will not respond to the SYN-ACKS, either because no machine 
physically exists at the address presently, or because of some other 
property of the address or network configuration. Another option is 
to spoof many different source addresses, under the assumption that 
some percentage of the spoofed addresses will be unrespondent to the 
SYN-ACKS. This option is accomplished either by cycling through a list 
of source addresses that are known to be desirable for the purpose, or 
by generating addresses inside a subnet with similar properties.

If only a single source address is repetitively spoofed, this address 
is easy for the listener to detect and filter. In most cases a larger list 
of source addresses is used to make defense more difficult. In this 
case, the best defense is to block the spoofed packets as close to their 
source as possible.



The Internet Protocol Journal
6

Assuming the attacker is based in a “stub” location in the network 
(rather than within a transit Autonomous System (AS), for instance), 
restrictive network ingress filtering[7] by stub ISPs and egress filtering 
within the attacker’s network will shut down spoofing attacks—if 
these mechanisms can be deployed in the right places. Because these 
ingress/egress filtering defenses may interfere with some legitimate 
traffic, such as the Mobile IP triangle routing mode of operation, 
they might be seen as undesirable, and are not universally deployed. 
IP Security (IPsec) also provides an excellent defense against spoofed 
packets, but this protocol generally cannot be required because its 
deployment is currently limited. Because it is usually impossible for 
the listener to ask the initiator’s ISPs to perform address filtering or 
to ask the initiator to use IPsec, defending against spoofing attacks 
that use multiple addresses requires more complex solutions that are 
discussed later in this article.

Distributed Attacks
The real limitation of single-attacker spoofing-based attacks is that 
if the packets can somehow be traced back to their true source, the 
attacker can be easily shut down. Although the tracing process typi-
cally involves some amount of time and coordination between ISPs, 
it is not impossible. A distributed version of the SYN flooding attack, 
in which the attacker takes advantage of numerous drone machines 
throughout the Internet, is much more difficult to stop. In the case 
shown in Figure 3, the drones use direct attacks, but to increase the 
effectiveness even further, each drone could use a spoofing attack and 
multiple spoofed addresses.

Currently, distributed attacks are feasible because there are several 
“botnets” or “drone armies” of thousands of compromised machines 
that are used by criminals for DoS attacks. Because drone machines 
are constantly added or removed from the armies and can change 
their IP addresses or connectivity, it is quite challenging to block these 
attacks.

Attack Parameters
Regardless of the method of attack, SYN flooding can be tuned to 
use fewer packets than a brute-force DoS attack that simply clogs 
the target network by sending a high volume of packets. This tun-
ing is accomplished with some knowledge of the listener’s operating 
system, such as the size of the backlog that is used, and how long it 
keeps TCBs in SYN-RECEIVED before timing out and reaping them. 
For instance, the attacker can minimally send a quick flight of some 
number of SYNs exactly equal to the backlog, and repeat this process 
periodically as TCBs are reclaimed in order to keep a listener unavail-
able perpetually.

SYN Flooding Attacks: continued



The Internet Protocol Journal
7

Default backlogs of 1024 are configured on some recent operating 
systems, but many machines on the Internet are configured with back-
logs of 128 or fewer. A common threshold for retransmission of the 
SYN-ACK is 5, with the timeout between successive attempts doubled, 
and an initial timeout of 3 seconds, yielding 189 seconds between the 
time when the first SYN-ACK is sent and the time when the TCB can 
be reclaimed.

Assuming a backlog of 128 and that an attacker generates 40-byte 
SYN segments (with a 20-byte TCP header plus a 20-byte IP header), 
the attacker has to send only 5.12 kilobytes (at the IP layer) in order 
to fill the backlog. Repeated every 189 seconds, this process gives an 
average data rate of only 27 bytes per second (easily achievable even 
over dialup links). This data rate is in stark contrast to DoS attacks 
that rely on sending many megabits per second of attack traffic. Even 
if a backlog of 2048 is used, the required data rate is only 433 bytes 
per second, so it is clear that the ease of attack scales along with in-
creases to the backlog—and more sophisticated defenses are needed.

Lessons Learned
The protocol flaw in TCP that makes SYN flooding effective is that 
for the small cost of sending a packet, an initiator causes a relatively 
greater expense to the listener by forcing the listener to reserve state 
in a TCB. An excellent technique for designing protocols that are 
robust to this type of attack is to make the listener side operate state-
lessly[3] until the initiator can demonstrate its legitimacy. This prin-
ciple has been used in more recent transport protocols, such as the 
Stream Control Transmission Protocol (SCTP)[4], which has a 4-way 
handshake, with listener TCB state being created only after the initia-
tor echoes back some “cookie” bytes sent to it by the listener. This 
echo proves to some extent that the initiator side is at the address it 
appears to be (that is, it has return reachability) and is not attempting 
a SYN flooding style of attack.

Outside of transport protocols and TCBs, security protocols also 
commonly use this defense technique. For instance, the Internet Key 
Exchange Version 2 (IKEv2)[5] component of IPsec does not create 
state for a new Security Association until it can verify that initiators 
are capable of responding to packets sent to the address they claims 
to be using. There are other security protocols in which the listener 
sends out “puzzles” in response to initiation attempts and grants ser-
vices or state only when puzzle solutions are returned[6]. This tactic 
not only verifies the addresses of initiators but also implies a compu-
tational burden that causes them to further demonstrate their genuine 
willingness to communicate productively.



The Internet Protocol Journal
8

Countermeasures
During the initial Panix attack, random spoofed source addresses 
were being used, but it was noted that the attack TCP SYNs all used 
the same source port number. A filter that denied incoming packets 
from this port was temporarily effective, but easy for the attacker to 
adapt to, and the attack segments began using random ports. Panix 
was able to isolate which of its ingress routers the attack was coming 
from and null-route packets destined for its servers coming through 
that router, but this solution was obviously a heavy-handed one, and 
seems to have also been overcome when the attacker started send-
ing packets that were routed through a different upstream provider. 
Panix had mixed success in getting its providers to assist in tracing 
and blocking the attack, and the networking community was spurred 
into devising other solutions.

Two broad classes of solutions to SYN flooding attacks have evolved, 
corresponding to where the defenses are implemented. The first class 
of solutions involves hardening the end-host TCP implementation it-
self, including altering the algorithms and data structures used for 
connection lookup and establishment, as well as some solutions that 
diverge from the TCP state machine behavior during connection es-
tablishment, as described in RFC 793.

The second class involves hardening the network, either to lessen the 
likelihood of the attack preconditions (an army of controlled hosts 
or the propagation of IP packets with spoofed source addresses), or 
to insert middleboxes that can isolate servers on the networks behind 
them from illegitimate SYNs.

End-Host Countermeasures
Increasing TCP Backlog: Because the basic attack mechanism relies 
on overflowing a host’s backlog of connecting sockets, an obvious 
end host-based solution is to simply increase the backlog, as is al-
ready done for very popular server applications. In at least some pop-
ular TCP implementations, this solution is known to be a poor one 
because of the use of linear list traversal in the functions that attempt 
to free state associated with stale connection attempts. Increasing the 
backlog is typically possible through altering the listen() call of an 
application and setting an operating system kernel parameter named 
SOMAXCONN, which sets an upper bound on the size of the back-
log that an application can request. This step by itself should not be 
seriously considered as a means to defend against SYN flooding at-
tacks—even in operating systems that can efficiently support large 
backlogs—because an attacker who can generate attack segments 
will most likely be able to scale to larger orders than the backlog sup-
portable by a host.

SYN Flooding Attacks: continued



The Internet Protocol Journal
9

Reducing the SYN-RECEIVED Timer: Another simple end host-based 
mechanism is to put a tighter limit on the amount of time between 
when a TCB enters the SYN-RECEIVED state and when it may be 
reaped for not advancing. The obvious disadvantage to this mecha-
nism is that in cases of aggressive attacks that impose some amount 
of congestion loss in either the SYN-ACK or handshake-completing 
ACK packets, legitimate connection TCBs may be reaped as hosts are 
in the process of retransmitting these segments. Furthermore, there is 
only a linear relationship between the reduction that an administra-
tor makes in the SYN-RECEIVED timer and the corresponding increase 
in packet rate that the adversary must make in order to continue at-
tacking the server. Other alternative end-host solutions make it much 
more difficult for an attack to remain viable. For these reasons, a re-
duction in the SYN-RECEIVED timer is not an advisable defense against 
SYN flooding attacks.

Figure 4: Connection Establishment 
with SYN Cookies

Normal Data Exchange

ACK, returns
cookie

SYN-ACK plus
cookie

SYN

Initiator Listener

TCB is recovered from
acknowledged Sequence
Number in ACK segment

TCB is encoded into
Sequence Number and
destroyed

SYN Caches: Two end-host defenses, called SYN caches and SYN 
cookies (described later), operate by reducing the amount of state al-
located initially for a TCB generated by a received SYN, and putting 
off instantiating the full state[8]. In a host that uses a SYN cache, a 
hash table with a limited amount of space in each hash bucket is used 
to store a subset of the data that would normally go into an allocated 
TCB. If and when a handshake completing ACK is received, this data 
can be moved into a full TCB; otherwise the oldest bucket at a par-
ticular hash value can be reaped when needed. In Lemon’s FreeBSD 
example[8], the SYN cache entry for a half connection is 160 bytes, 
versus 736 bytes for a full TCB, and 15359 entries in the SYN cache 
are supported.

The SYN cache data structure is robust to attackers attempting to 
overflow its buckets because it uses the initiator’s local port number 
and some secret bits in the hash value. Because stacks are a more ef-
fective data structure to search than a simple linked list, stacks that 
use a SYN cache can have improved speed, even when not under at-
tack. Under Lemon’s tests, during an active attack a host using a SYN 
cache was able to establish legitimate connections with only about a 
15-percent increase in latency.



The Internet Protocol Journal
10

SYN Cookies: In contrast to the SYN cache approach, the SYN cook-
ies technique causes absolutely zero state to be generated by a received 
SYN. Instead, the most basic data comprising the connection state is 
compressed into the bits of the sequence number used in the SYN-ACK. 
Since for a legitimate connection, an ACK segment will be received 
that echoes this sequence number (actually the sequence number plus 
one), the basic TCB data can be regenerated and a full TCB can safely 
be instantiated by decompressing the Acknowledgement field. This 
decompression can be effective even under heavy attack because there 
is no storage load whatsoever on the listener, only a computational 
load to encode data into the SYN-ACK sequence numbers. The down-
side is that not all TCB data can fit into the 32-bit Sequence Number 
field, so some TCP options required for high performance might be 
disabled. Another problem is that SYN-ACKs are not retransmitted 
(because retransmission would require state), altering the TCP syn-
chronization procedures from RFC 793.

Recent work by Andre Oppermann uses the TCP Timestamp option 
in conjunction with the Sequence Number field to encode more state 
information and preserve the use of high-performance options such as 
TCP Window Scaling, and TCP Selective Acknowledgment Options 
(SACK), and can also be used to preserve TCP-Message Digest 5 
(MD5) support with SYN cookies. This option is a step forward, 
in that it removes the major negative effect of previous SYN cookie 
implementations that disabled these features.

Figure 5: Process for Generation and 
Validation of TCP SYN Cookies.

Pool of Local
Secrets

Generated SYN Cookie

Current Index Into
Secret Pool: B

Connection
Info Structure

SYN Sequence
Number

Truncated Hash Bits Encoded MSS Bound Local Secret Index

MD5 Hash Function
Approximation

Concatenated Bits

Advertised
MSS

Local Secret Z

Local Secret B
Local Secret A

. . .

The exact format of TCP SYN cookies is not an interoperability is-
sue, because they are only locally interpreted, and the format and 
procedures for generation and validation can vary slightly among 
implementations. Figure 5 depicts the general process of SYN cookie 
generation and validation used by multiple implementations.

SYN Flooding Attacks: continued



The Internet Protocol Journal
11

To compute the SYN-ACK sequence number (that is, the TCP cookie) 
when using TCP cookies, a host first concatenates some local secret 
bits, a data structure that contains the IP addresses and TCP ports, 
the initial SYN sequence number, and some index data identifying the 
secret bits. An MD5 digest is computed over all these bytes, and some 
bits are truncated from the hash value to be placed in the SYN-ACK 
sequence number. Because the sequence number is about a fourth the 
size of the full hash value, this truncation is necessary, but generally 
at least 3 bytes worth of the hash bits are used, meaning that there 
should still be close to a 224 effort required to guess a valid cookie 
without knowing the local secret bits. In addition to the hash output, 
some of the cookie bits indicate a lower bound on the Maximum 
Segment Size (MSS) that the SYN contained, and the index bits iden-
tifying the local secret used within the hash.

To validate a SYN cookie, first the acknowledgement number in an 
incoming ACK segment is decremented by 1 to retrieve the gener-
ated SYN cookie. The valid value for the set of truncated hash bits is 
computed based on the IP address pair, TCP port numbers, segment 
sequence number minus one, and the value from the secret pool cor-
responding to the index bits inside the cookie. If these computed hash 
bits match those within the ACK segment, then a TCB is initialized 
and the connection proceeds. The encoded MSS bound is used to set 
a reasonable-sized MSS that is no larger than what was originally ad-
vertised. This MSS is usually implemented as three bits whose code 
points correspond to eight “commonly advertised” MSS values based 
on typical link Maximum Transmission Units (MTUs) and header 
overheads.

Hybrid Approaches: A hybrid approach combines two or more of 
the single defense techniques described previously. For instance, some 
end-host operating systems implement both a large backlog and SYN 
cookies, but enable SYN cookies only when the amount of the back-
log that is occupied exceeds some threshold, allowing them to nor-
mally operate without the disadvantages of SYN cookies, but also al-
lowing them to fail over to the SYN-cookie behavior and be strongly 
protected when an attack occurs.

Network-Based Countermeasures
Filtering: The most basic network-level defense is application of the 
filtering techniques described in RFC 2827[7]. Using ingress filtering, 
an ISP refuses to further route packets coming from an end site with 
IP source addresses that do not belong to that end site. Ingress fil-
tering would be highly effective at preventing SYN flooding attacks 
that rely on spoofed IP packets. However, it is not currently reliable 
because ingress filtering policies are not universally deployed. Ingress 
filtering is also wholly ineffective against SYN flooding attacks that 
use a distributed army of controlled hosts that each directly attack. 
Ingress filtering is also a mechanism that an end site wishing to de-
fend itself most often has no control over, because it has no influence 
upon the policies employed by ISPs around the world.



The Internet Protocol Journal
12

Firewalls and Proxies: A firewall or proxy machine inside the net-
work can buffer end hosts from SYN flooding attacks through two 
methods, by either spoofing SYN-ACKs to the initiators or spoofing 
ACKs to the listener[9].

Figure 6 shows the basic operation of a firewall/proxy that spoofs 
SYN-ACKs to the initiator. If the initiator is legitimate, the firewall/
proxy sees an ACK and then sets up a connection between itself and 
the listener, spoofing the initiator’s address. The firewall/proxy splits 
the end-to-end connection into two connections to and from itself. 
This splitting works as a defense against SYN flooding attacks, be-
cause the listener never sees SYNs from an attacker. As long as the 
firewall/proxy implements some TCP-based defense mechanism such 
as SYN cookies or a SYN cache, it can protect all the servers on the 
network behind it from SYN flooding attacks.

Figure 6: Packet Exchanges through a SYN-ACK spoofing Firewall/Proxy.

Spoofed
SYN-ACKs

Attack SYNs

(No SYN segments ever seen by Listener)

ACK

SYN

SYN-ACK

(Data packets exchanged,
with Sequence Numbers translated by Proxy)

Non-Attack Behavior Attack Behavior

Initiator Firewall/Proxy Listener Firewall/Proxy ListenerInitiator

Spoofed ACK

Spoofed SYN 

Spoofed
SYN-ACK

Figure 7 illustrates the packet exchanges through a firewall/proxy 
that spoofs ACKs to the listener in response to observed SYN-ACKs. 
This spoofing prevents the listeners TCBs from staying in the SYN-
RECEIVED state, and thus maintains free space in the backlog. The 
firewall/proxy then waits for some time, and if a legitimate ACK from 
the initiator is not observed, then it can signal the listener to free 
the TCB using a spoofed TCP RST segment. For legitimate connec-
tions, packet flow can continue, with no interference from the fire-
wall/proxy. This solution is more desirable than the mode of opera-
tion in Figure 5, where the firewall/proxy spoofs SYN-ACKs, because 
it does not require the firewall/proxy to actively participate in legiti-
mate connections after they are established. 

SYN Flooding Attacks: continued



The Internet Protocol Journal
13

Figure 7: Packet Exchanges through an ACK-spoofing Firewall/Proxy.

SYN-ACK

SYN

(Data packets exchanged,
without intervention by Proxy)

(Proxy prevents TCBs from staying
in SYN-RECEIVED at the Listener)

Non-Attack Behavior

Initiator Firewall/Proxy Listener

ACK

Spoofed ACK
SYN-ACK

SYN

Non-Attack Behavior

Initiator Firewall/Proxy Listener

Spoofed ACK

Spoofed RST

Active Monitor: An active monitor is a device that can observe and 
inject traffic to the listener, but is not necessarily within the routing 
path itself, like a firewall is. One type of active monitor acts like the 
ACK-spoofing firewall/proxy of Figure 6, with the added capability 
of spoofing RSTs immediately if it sees SYNs from source addresses 
that it knows to be used by attackers[9]. Active monitors are useful 
because they may be cheaper or easier to deploy than firewall-based 
or filtering solutions, and can still protect entire networks of listeners 
without requiring every listener’s operating system to implement an 
end-host solution.

Defenses in Practice
Both end-host and network-based solutions to the SYN flooding at-
tack have merits. Both types of defense are frequently employed, and 
they generally do not interfere when used in combination. Because 
SYN flooding targets end hosts rather than attempting to exhaust the 
network capacity, it seems logical that all end hosts should implement 
defenses, and that network-based techniques are an optional second 
line of defense that a site can employ.

End-host mechanisms are present in current versions of most com-
mon operating systems. Some implement SYN caches, others use 
SYN cookies after a threshold of backlog usage is crossed, and still 
others adapt the SYN-RECEIVED timer and number of retransmission 
attempts for SYN-ACKs. 



The Internet Protocol Journal
14

Because some techniques are known to be ineffective (increasing back-
logs and reducing the SYN-RECEIVED timer), these techniques should 
definitely not be relied upon. Based on experimentation and analysis 
(and the author’s opinion), SYN caches seem like the best end-host 
mechanism available.

This choice is motivated by the facts that they are capable of with-
standing heavy attacks, they are free from the negative effects of SYN 
cookies, and they do not need any heuristics for threshold setting as 
in many hybrid approaches.

Among network-based solutions, there does not seem to be any 
strong argument for SYN-ACK spoofing firewall/proxies. Because 
these spoofing proxies split the TCP connection, they may disable 
some high-performance or other TCP options, and there seems to be 
little advantage to this approach over ACK-spoofing firewall/prox-
ies. Active monitors should be used when a firewall/proxy solution is 
administratively impossible or too expensive to deploy. Ingress and 
egress filtering is frequently done today (but not ubiquitous), and is a 
commonly accepted practice as part of being a good neighbor on the 
Internet. Because filtering does not cope with distributed networks of 
drones that use direct attacks, it needs to be supplemented with other 
mechanisms, and must not be relied upon by an end host.

Related Attacks
In addition to SYN flooding, several other attacks on TCP connec-
tions are possible by spoofing the IP source address and connection 
parameters for in-progress TCP connections[10]. If an attacker can 
guess the two IP addresses, TCP port numbers, and a valid sequence 
number within the window, then a connection can be disrupted either 
through resetting it or injecting corrupt data. In addition to spoofed 
TCP segments, spoofed ICMP datagrams have the capability to ter-
minate victim TCP connections.

Both these other attacks and SYN floods target a victim’s TCP ap-
plication and can potentially deny service to the victim using an at-
tack rate less than that of brute-force packet flooding. However, SYN 
flooding and other TCP spoofing attacks have significant differences. 
SYN flooding denies service to new connections, without affecting 
in-progress connections, whereas other spoofing attacks disrupt in-
progress connections, but do not prevent new connections from start-
ing. SYN flooding attacks can be defended against by altering only 
the initial handshaking procedure, whereas other spoofing attacks 
require additional per-segment checks throughout the lifetime of a 
connection. The commonality between SYN flooding and other TCP 
spoofing attacks is that they are predicated on an attacker’s ability to 
send IP packets with spoofed source addresses, and a similar defense 
against these attacks would be to remove this capability through more 
universal deployment of address filtering or IPsec.

SYN Flooding Attacks: continued



The Internet Protocol Journal
15

Conclusion
At the time of this writing, the TCP SYN flooding vulnerability has 
been well-known for a decade. This article discussed several solutions 
aimed at making these attacks ineffective, some of which are readily 
available in commercial off-the-shelf products or free software, but 
no solution has been standardized as a part of TCP or middlebox 
function at the IETF level. The IETF’s TCP Maintenance and Minor 
Extensions (TCPM) working group is in the process of producing 
an informational document that explains the positive and negative 
aspects of each of the common mitigation techniques[10], and readers 
are encouraged to consult this document for further information.

In this author’s opinion, some variant of the SYN cache technique 
should be a mandatory feature to look for in a server operating sys-
tem, and the variant can be deployed in combination with other net-
work-based methods (address-based filtering, ACK-spoofing fire-
walls, IPsec, etc.) in appropriate situations. It is encouraging to see 
that protocol designers have learned a lesson from the SYN flooding 
vulnerability in TCP and have made more recent protocols inherently 
robust to such attacks.

Acknowledgements
Several individual participants in the IETF’s TCPM working group 
have contributed bits of data found in the group’s informational doc-
ument on SYN flooding[11], some of which is replicated in spirit here.

References
 [1] daemon9, route, and infinity, “Project Neptune,” Phrack 

Magazine, Volume 7, Issue 48, File 13 of 18, July 1996.

 [2] CERT, “CERT Advisory CA-1996-21 TCP SYN Flooding and 
IP Spoofing Attacks,” September 1996.

 [3] Aura, T. and P. Nikander, “Stateless Connections,” Proceedings 
of the First International Conference on Information and 
Communication Security, 1997.

 [4] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, 
H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson, 
“Stream Control Transmission Protocol,” RFC 2960, October 
2000.

 [5]  Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” RFC 
4306, December 2005.

 [6] Aura, T., Nikander, P., and J. Leiwo, “DOS-resistant 
Authentication with Client Puzzles,” Lecture Notes in Computer 
Science, Volume 2133, revised from the 8th International 
Workshop on Security Protocols, 2000.

 



The Internet Protocol Journal
16

 [7] Ferguson, P. and D. Senie, “Network Ingress Filtering: Defeating 
Denial of Service Attacks which employ IP Source Address 
Spoofing,” BCP 38, RFC 2827, May 2000.

 [8] Lemon, J., “Resisting SYN Flood DoS Attacks with a SYN 
Cache,” BSDCON 2002, February 2002.

 [9] Schuba, C., Krsul, I., Kuhn, M., Spafford, E., Sundaram, A., 
and D. Zamboni, “Analysis of a Denial of Service Attack on 
TCP,” Proceedings of the 1997 IEEE Symposium on Security 
and Privacy, 1997.

 [10] Touch, J., “Defending TCP Against Spoofing Attacks,” Internet-
Draft (work in progress), draft-ietf-tcpm-tcp-antispoof-
05, October 2006.

 [11] Eddy, W., “TCP SYN Flooding Attacks and Common 
Mitigations,” Internet-Draft (work in progress), draft-ietf-
tcpm-syn-flood-00, July 2006.

WESLEY M. EDDY works for Verizon Federal Network Systems as an onsite con-
tractor at NASA’s Glenn Research Center, where he performs research, analysis, and 
development of network protocols and architectures for use in space exploration and 
aeronautical communications. E-mail: weddy@grc.nasa.gov

SYN Flooding Attacks: continued



The Internet Protocol Journal
17

Boosting the SOA with XML Networking
by Silvano Da Ros

I n the 1990s, the widespread adoption of object-oriented program-
ming (OOP) and advancing network technologies fostered the 
development of distributed object technologies, including Object 

Management Group’s (OMG’s) Common Object Request Broker 
Architecture (CORBA) and Microsoft’s Distributed Common Object 
Model (DCOM). Both CORBA and DCOM follow the OOP con-
sumer-producer service model, where applications locally instantiate 
any number of objects and execute methods for the objects to obtain 
a service. However, with distributed object technologies, a local ap-
plication can request a service from a remote application by instanti-
ating a remote object and executing the methods of the object using 
Remote Procedure Call (RPC) over the network. The local applica-
tion executes the methods of the remote object as if the object were 
an inherent part of the local application.

To push toward a simpler consumer-producer service model than dis-
tributed objects, the Service-Oriented Architecture (SOA) was creat-
ed as a worldwide standards-based application interoperability initia-
tive[1]. SOA differs from distributed object technologies, because you 
no longer deal with object instantiation and method invocation to 
provide services between your applications[2]. Instead, you can create 
Extensible Markup Language (XML)-based standard Web services to 
exchange XML documents between your applications using Internet-
based application layer protocols, such as Hyper Text Transfer Proto-
col (HTTP) and the Simple Mail Transfer Protocol (SMTP). 

This is where XML networking comes into the picture. This article 
shows how to use SOA at the network edge, in conjunction with XML 
within the network, to help with the work required for enabling in-
teroperability between your applications. The problem with SOA on 
its own is that to scale applications, hardware and software upgrades 
are required on the servers where your business logic resides. Because 
application integration using XML is CPU-intensive, it benefits from 
XML hardware built specifically for XML computations. However, 
the applications servers that run your business logic are effectively 
independent of the underlying XML processing. Therefore, to acceler-
ate the SOA at the network level transparently to the application, 
XML networking technologies can be used. XML networking can 
provide SOA acceleration using a special middleware-enabled net-
work layer, which this article explains. This special network layer 
also provides additional benefits to your applications that SOA alone 
cannot provide at the edge, such as dynamic message routing and 
transformation.

To help in the understanding of SOA acceleration with XML network-
ing, the following section discusses SOA and its constituent technolo-
gies. Further sections explore the specifics of XML and XML-based 
network processing.



The Internet Protocol Journal
18

A Brief History of SOA
Traditionally, hand-coding proprietary interfaces were required to 
interoperate between your applications, as Figure 1 illustrates. This 
task is a trivial one if you have only a few applications, but if you 
have numerous disparate applications, all requiring interfaces into 
one another, the result is a complex, many-to-many web of connec-
tions between them. In the 1980s, Electronic Data Interchange (EDI) 
was developed to standardize the message formats that trading part-
ners use to exchange text-based transaction data residing on main-
frames, making it an early predecessor to SOA.

Figure 1: The Proprietary 
Messaging Layer 

Traditional Intermediary
Network Stack

Transport
TCP/UDP Security

Hand-coded
Interfaces

Hand-coded
Interfaces

Business
Logic

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Proprietary Messaging Layer

App.
2 ... N

A

P

S

T

N

D

P

Business
Logic

App. 1

A

P

S

T

N

D

P

Network
IP Routing, QoS

Physical

Data Link

In the mid-1990s, standard middleware (or integration brokers) be-
came available, such as CORBA and DCOM mentioned previous-
ly, to integrate advanced client-server applications. Figure 2 shows 
how integration brokers allow you to perform the translations be-
tween end systems over a standard messaging layer without creat-
ing application-specific interfaces between each system. During the 
same time, numerous software vendors, such as IBM WebSphere and 
TIBCO, also developed standard messaging layer protocols, which 
required adding vendor-specific adapters within the common integ-
ration brokers. Additionally, with newer application development 
environments being adopted, such as Java 2 Sun Enterprise Edition 
(J2EE) and Microsoft .NET, even more programming complexity is 
required when considering application interoperability without us-
ing the SOA. Fortunately, these new platforms currently support the 
SOA, allowing an application developed in one platform to tap into 
the data supplied by an application developed in the other.

XML Networking: continued



The Internet Protocol Journal
19

Figure 2: The Standard 
Messaging Layer 

Business
Logic

App.
2 ... N

A

P

S

T

N

D

P

Middleware

Business
Logic

App. 1

A

P

S

T

N

D

P

MIddleware

Broker

A

P

S

T

N

D

P

Middleware

Figures 1 and 2 illustrate how the proprietary and standard messag-
ing layers sit above the network stack—at best, a traditional network 
device can operate only up to and including the transport layer. For 
example, by tracking TCP connection state information, a firewall 
device allows you to configure security services for your applications. 
Some firewalls can inspect the context of the application, but only to 
ensure the application behavior is RFC-compliant and not perform-
ing some sort of malicious activity. Additionally, at the next layer 
down the stack, you can configure Layer 3 Quality of Service (QoS) 
functions, such as IP Precedence, Differentiated Services (DiffServ), 
traffic shaping, and resource reservation, to ensure delivery of traffic 
to your critical applications. Although the network layers can pro-
vide these intelligent network services to your applications, they do 
not add any value toward accelerating your SOA.

Notice how the middleware portion in the proprietary messaging lay-
er in Figure 1 takes up a larger portion of the application stack than 
the standard messaging layer from Figure 2. This situation occurs 
because the list of available messages that your standard messaging 
layer applications support is now much smaller—the broker takes 
care of the interfacing complexity on behalf of your applications. A 
reduced number of messages requires that you maintain much less 
middleware programming code on your applications than if every 
application in your network had to account for the messages of every 
other application. 



The Internet Protocol Journal
20

Optimizing the SOA 
Now that you understand SOA, you can better understand where 
XML networking fits into the scheme of things. Figure 3 illustrates 
how network equipment vendors can add specialized “application-
aware” intelligence into Layers 5 through 7 of the OSI model. 

You can start by contrasting XML networking with traditional con-
tent networking technologies[3]. As you can see in Figure 3, by incor-
porating content networking services into the network, such as Server 
Load Balancing (SLB), caching, and Secure Sockets Layer (SSL) ac-
celeration, network vendors give you the ability to transparently ac-
celerate your applications without the need of application hardware 
upgrades. However, by residing only within the OSI model, content 
networking services and protocols provide a “network-oriented” way 
to accelerate your applications. In order to achieve full application 
awareness, you must look not only into the application headers, but 
also into the application payload. Although the content networking 
protocols can inspect into the packet payload, they are meant for pro-
viding network layer services but not application integration services. 
For example, Network-Based Application Recognition (NBAR) al-
lows you to mark the IP DiffServ field in packets containing high-pri-
ority application traffic by first detecting the behavior of the applica-
tion. However, like the network layers, the content networking layers 
cannot fulfill SOA acceleration requirements either. 

In contrast, XML networking provides integration services by in-
specting the full context of the application transaction and adding 
XML standards-based intelligence on top of the TCP/IP stack. An 
XML-enabled network provides you greater control, flexibility, and 
efficiency for integrating your applications than integration brokers. 
Figure 3 shows how you can inspect the XML-based “Web services” 
layer to accelerate your applications developed within an SOA model 
without the need of an integration broker.

The most popular Web services protocol is Simple Object Access 
Protocol (SOAP)[4]. With SOAP, your applications can request servic-
es from one another with XML-based requests and receive responses 
as data formatted with XML. Because SOAP uses XML, its Web ser-
vices are self-descriptive and very simple to use. 

You define your SOAP Web services with the XML-based Web 
Services Description Language (WSDL)[5]. The WSDL binds the 
SOAP messages to the Web services layer, as discussed later in this 
article. You can then transport your SOAP messages over standard 
application layer protocols, such as HTTP and HTTPS, between your 
client-server applications.

XML Networking: continued



The Internet Protocol Journal
21

Figure 3: The Web Services Layer 

Business
Logic

App. 1

A

P

S

T

N

D

P

Web
Service

Business
Logic

App.
2 ... N

A

P

S

T

N

D

P

Web
Service

Web
Service

Web Services Layer
(XML, WSDL, SOAP)

Application Optimized
Device Stack

    Application Layer
(HTTP, HTTPS)

Presentation
6

Session
5

Transport
4

Network
3

Data Link
2

Physical
1

XML Networking
Message Verification (XSD),

Transformation (XSLT), Security
(XML Encryption), Routing
(XPATH, Load Balancing),
Caching and Compression

Tr
ad

iti
on

al
 N

et
w

or
k

La
ye

rs

Co
nt

en
t N

et
w

or
ki

ng
La

ye
rs

Similar to content networking technologies, XML networking can 
transparently add value to your applications within the network. 
When the XML network device receives the standard XML docu-
ment from the Web services layer, you can configure the device to 
perform application-oriented services on the document. But because 
XML networking operates at the middleware layer and uses standard 
documents to integrate your applications, it provides you with fully 
standard functions using languages for:

• Message Verification: You can develop World Wide Web Consor-
tium (W3C) XML Schema Definitions (XSDs) that your XML net-
work can use to verify the syntax of your XML documents[6].

• XML Translation: Using XML Stylesheet Language Transform-
ations (XSLT), you can translate XML documents to other non-
XML formats, and conversely, directly within your network[7].

• Context-Based Routing: Use XML Path (XPATH) to route mes-
sages based on data stored within XML documents[8]. A popular 
example is to route stock exchange quotes to a desired location 
when the value of the stock drops below a certain threshold.

• High Availability: Messages containing specific content can be load 
balanced across numerous identical origin servers.



The Internet Protocol Journal
22

• Data Security: You can accelerate XML encryption computations 
using either hardware or software XML-accelerated devices. 

• Compression and Caching: You can cache frequently requested 
XML documents and compress XML documents to reduce network 
bandwidth. Like XML encryption, XML caching and compression 
can be performed using either hardware or software XML-acceler-
ated devices.

• Application-Layer Request Translation: You can use XML net-
working to convert non-Web service requests into standard Web 
service requests. As with integration brokers, vendor-specific adapt-
ers are required to translate between WebSphere MQ, TIBCO, and 
SOA Web services. For example, Figure 4 shows how you can use 
network-level XML intelligence to translate between Websphere or 
TIBCO messages and Web services layer XML-based messages.

Figure 4: Intelligent Protocol 
Switching

Business
Logic

Middle-
Ware

Business
Logic

Web
Service

Web
Service

WS,
TIBCO

XML Intelligence

Web Services Layer
(XML, WSDL, SOAP)

Standard Messaging Layer
(Websphere, TIBCO)

Introducing XML Service Languages 
Now that you have a general understanding of both SOA and XML 
networking, you can examine the specific XML technologies used for 
application interoperability, including:

• XML is used to format application data for storage and transmis-
sion.

• XSLT is used to translate between one XML format to another.

• XSD is used to describe, control, and verify an XML document 
format. 

• XPath is a way to address items in an XML document hierarchy.

• SOAP is a messaging protocol used to encode information in Web  
service request and response messages before sending them over a  
network.

XML has its roots in the late 1960s from the Generalized Markup 
Language (GML), which was used to organize IBM’s mainframe- 
based legal documents into a searchable form. The Standard Gen-
eralized Markup Language (SGML) was officially standardized in 
1986 as an ISO international norm (ISO 8879). Since then, XML has 
become the predominant markup language for describing content. 
XML differs from HTML because it is not concerned with present-
ing or formatting content; instead, XML is used for describing the 
data using tags and attributes that you define yourself. Figure 5 is a 
sample XML document that organizes a police department’s traffic 
ticket information.

XML Networking: continued



The Internet Protocol Journal
23

Figure 5: A Traffic Ticket XML 
Example <?xml version="1.0"?>

<dept-tickets> 
  <dept-chief>Greg Sanguinetti”/>
  <dept-id>12389289/>
  <ticket id="034567910" code="301">
    <offender>
      <name>John Smith</name>
      <license-number>10003887</license-number>
      <plate-number>9AER9876</plate-number>
    </offender>
    <offence-date>09/30/2005</offence-date>
    <location>
      <state>CA</state>
      <city>SJ</city>
      <intersection>West Tasman Dr.-Great America Pkwy.</intersection>
    </location>
    <officer>
      <officer-name>Paul Greene</officer-name>
      <officer-badge>7652323</officer-badge>
      <cruiser-plate-number>6TYX0923</cruiser-plate-number>
    </officer>
    <description>Failure to stop at red light</description>
    <fine>100</fine>
  </ticket>
  <ticket id="..." code="...">
  ...
  </ticket>
  <ticket id="..." code="...">
  ...
  </ticket>
</dept-tickets>

The XML in Figure 5 identifies the group of tickets for a police de-
partment by the department ID and the department chief’s name. 
This example gives the data for a single traffic ticket as defined by the 
“ticket” element (or tag); however, you could include as many tickets 
as you want within the element “dept-tickets.” The “ticket” element 
has two self-explanatory attributes (in dark blue), called “id” and 
“code,” referring to the identification number for the individual tick-
et and the offense code, respectively. The sub-elements of the “ticket” 
element are also self-explanatory: “offender,” “offence-date,” “loca-
tion,” “officer,” “description” and “fine.”

In order to build a well-formed XML document, you must embrace 
the data for each element within its respective open and close tags 
(for example, <ticket>...</ticket>, or <ticket>.../>), properly nest all 
elements, and make sure all element names are in the proper case. You 
must also specify the XML version with the “<?xml version="1.0"?>” 
tag at the beginning of the XML document. HTML is less rigid than 
XML because it is case-insensitive and most Web browsers will allow 
you to leave out the close tags of an element. Because XML is very 
strict about following the correct syntax (that is, by making sure the 
XML is well-formed), XML processors are much easier to develop 
than traditional HTML Web browsers.



The Internet Protocol Journal
24

To verify that your documents are valid XML, you can check them 
against XSD files, which define the XML elements and their sequence, 
as discussed later in this article.

Transforming XML Using XSLT
You can use XSLT to translate one XML-based language into another. 
For example, you can translate standard XML into HTML. To trans-
late the XML from Figure 5 into HTML for online viewing, you can 
use the XSLT file in Figure 6.

Figure 6: XSLT Translation – From 
XML to HTML <?xml version="1.0"?>

<xslt:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xslt:template match="/">
    <html>
      <body> 
        <br><b>Chief: </b><xslt:value-of select="dept-tickets/dept-chief"/></br>
        <br><b>Department No: </b><xslt:value-of select="dept-tickets/dept-id"/>
        </br>
        <table border="5">
          <!-- Output the HTML table headings -->
          <th>Ticket Number</th>
          <th>Offender's Name</th>
          <th>License Number</th>
          <th>State of Offense</th>
          <th>Officer's Name</th>
          <!-- Output the HTML table data -->
          <xslt:for-each select="dept-tickets/ticket">
            <tr>
              <td align="center"><xslt:value-of select="@id"/></td>
              <td align=“left"><xslt:value-of select="offender/name"/></td>
              <td align="center"><xslt:value-of select="offender/license-number"/></td>
              <td align="center"><xslt:value-of select="location/state"/> </td>
              <td align=“left"><xslt:value-of select="officer/officer-name"/></td>
              <td align=“right">$<xslt:value-of select="fine"/></td>
            </tr>
          </xslt:for-each>
        </table> 
      </body>
    </html>
  </xslt:template>
</xslt:stylesheet>

You must use a namespace to differentiate elements among the XML-
based languages that you use in your XML document. As Figure 6 
illustrates, the namespace is the string “xslt:”, which prefixes all of the 
XSLT elements. The particular application that parses the document 
(whether it is your XML device or a standalone XSLT parser[9]) will 
know what to do with the specific elements based on the prefix. For 
example, an XSLT parser will look for the specific Universal Resource 
Indicator (URI) string constant that the W3C assigned to XSLT (that 
is, http://www.w3.org/1999/XSL/Transform) and perform the 
intended actions based on the elements in the document.

XML Networking: continued



The Internet Protocol Journal
25

XML parsers do not use the URI of the namespace to retrieve a 
schema for the namespace—it is simply a unique identifier within the 
document. According to W3C, the definition of a namespace simply 
defines a two-part naming system (for example, “xslt:for-each”) and 
nothing else. After you define the namespace, the XML parser will 
understand the elements used within the document, such as “for-each” 
and “value-of” specified in Figure 6. For XSD documents, you must 
use a different namespace URI (that is, http://www.w3.org/2001/
XMLSchema), as the next section discusses.

When you configure an XSLT parser or XML networking device to 
apply XSLT to an XML document, the parser starts at the top of the 
XSLT document by matching the root XML element within the source 
XML file. For example, the <xslt:template match="/"> element in 
Figure 6 matches the “dept-tickets” root element from the XML file 
in Figure 5. The XSLT parser then creates the destination XML docu-
ment (that is, a well-formed HTML file, in this example) and outputs 
the <html> and <body> tags to the new document. The XSLT parser 
then outputs the HTML table headers and loops through the XML 
document “ticket” elements, outputting selected items within the col-
umns of the HTML table. The resulting HTML is given in Figure 7 
for three sample tickets.

Figure 7: Resulting HTML Table – 
Source View

<html>
  <body>
    <br><b>Chief: </b>Greg Sanguinetti<br><b>Department No: </b>12389289
    <table border="5">
      <th>Ticket Number</th><th>Offender's Name</th>
      <th>License Plate</th><th>State of Offense</th>
      <th>Officer's Name</th><th>Fine Amount</th>      
      <tr>
        <td>034567910</td><td>John Smith</td><td>10003887</td>
        <td>CA</td><td>Paul Greene</td><td>100</td>
      </tr>
      <tr>
        <td>042562930</td><td>Gerald Rehnquist</td><td>11023342</td>
        <td>CA</td><td>Joel Patterson</td><td>200</td>
      </tr>
      <tr>
        <td>182736493</td><td>Jenny Barker</td><td>47281938</td>
        <td>CA</td><td>Emily Jones</td><td>120</td>
      </tr>
    </table>
  </body>
</html>



The Internet Protocol Journal
26

Figure 8 illustrates the resultant HTML table that clients would see 
within a Web browser after the XSLT translation takes place.

Figure 8: Resulting HTML Table – 
Browser View

Emily Jones
Joel Patterson
Paul Greene
Officer's Name

120
200
100
Fine Amount

182736493
042562930
034567910
Ticket Number

Jenny Barker
Gerald Rehnquist
John Smith
Offender's Name

CA
CA
CA
State of Offense

47281938
11023342
10003887
License Plate

Verifying XML Using XSD
Because you can customize the structure and tags within an XML 
document, you should verify its syntax using XSDs. The XSD file in 
Figure 9 verifies the XML document given previously in Figure 5.

Figure 9: XSD File for Validating 
Traffic Ticket XML <?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
  <xsd:element name="dept-tickets">
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name="dept-chief"/>
        <xsd:element name="dept-id"/>
        <xsd:element name="ticket" maxOccurs="unbounded">
          <xsd:complexType>
            <xsd:sequence>
              <xsd:element name="offender">
                <xsd:complexType>
                  <xsd:sequence>
                    <xsd:element name="name"/>
                    <xsd:element name="license-number"/>
                    <xsd:element name="plate-number"/>
                  </xsd:sequence>
                </xsd:complexType>
              </xsd:element>
              <xsd:element name="offence-date"/>
              <xsd:element name="location">
                …
              </xsd:element>
              <xsd:element name="officer">
                …
              </xsd:element>
              <xsd:element name="description"/>
              <xsd:element name="fine"/>
            </xsd:sequence>
            <xsd:attribute name="id"/>
            <xsd:attribute name="code"/>
          </xsd:complexType>
        </xsd:element>  
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>
</xsd:schema>

XML Networking: continued



The Internet Protocol Journal
27

You must define an XSD namespace with the URI “http://www.
w3.org/2001/XMLSchema” and prefix all the XSD elements that you 
use in the XSD file, such as “element,” “complex-type,” and “attri-
bute,” with this namespace. At the top of your XSD file, you must 
specify the root XML element; the remaining elements within your 
XML document can be defined within the root element. Using the 
“complex-type” XSD element, you can specify elements that contain 
child elements (in contrast, “simple-type” indicates that the element 
does not contain any child elements). In this example, the “dept-tick-
ets” element may contain a sequence of one or more child elements 
(as represented by the <xsd:sequence> element), including “dept-
chief,” “dept-id,” and any number of element “ticket.”

Routing Messages Using XPATH
XPATH was developed primarily to be used with XSLT to transform 
the XML tags within an XML document based on the path of the 
data. Previously, in Figure 6, you saw how to select the entire list of 
tickets using the XSLT “select” attribute:

 xsl:value-of select=”dept-tickets/ticket”

However, within an XML network, you can also use XPATH to search 
within an XML document to route XML messages based on the val-
ues of the document data. For example, a state government may need 
the headquarters police department to route unpaid tickets that are 
within a tolerable threshold amount to the motor vehicle department 
for processing—there, the driver’s license can be suspended until the 
ticket is paid. However, those unpaid tickets that exceed a maximum 
threshold amount must be routed to the court service government 
department for processing. The court may decide to press further 
charges, depending on the driver’s previous driving record. Addition-
ally, severe infractions, such as drunken or reckless driving, must be 
routed automatically to the court, regardless of whether the ticket is 
paid or not. The XPATH expression “dept-tickets/ticket” given previ-
ously returns the entire list of traffic tickets. Alternatively, if you want 
only the unpaid tickets with a fine value of greater than $100, you 
could use the XPATH expression:

 dept-tickets/ticket[@paid=’no’ and fine>100]

The XPATH symbol “@” here indicates that an attribute is being se-
lected, and not an element. To select tickets with codes 309 and 310 
(that is, fictitious codes for severe infractions), you can use the fol-
lowing XPATH expression:

 dept-tickets/ticket[@code=309 or @code=310]



The Internet Protocol Journal
28

Using SOAP Web Services
SOAP provides a standard way to send transaction information over 
TCP/IP application protocols, such as HTTP. For example, you could 
create a SOAP request-response operation over HTTP for exchang-
ing traffic ticket information between two applications. As Figure 10 
illustrates, the requesting client application sends a “getFineRequest” 
message to the server, which in turn responds with the appropriate 
fine amount within a “getFineResponse” message.

Figure 10: A Sample SOAP 
Request-Response Operation

Client Request :
POST /getticketfine HTTP/1.1
Host: www.example.com
Content-Type: application/soap+xml; 
 
<?xml version="1.0"?>
<soap:envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:body>
   <tn:getFineRequest xmlns:tn="http://example.com/getticketfine">
      <tn:ticket-id>034567910</tn:ticket-id>
   </tn:getFineRequest >
  </soap:body>
</soap:envelope>

Server Response:
HTTP/1.1 200 OK
Content-Type: application/soap+xml; 

<?xml version="1.0"?>
<soap:envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:body>
   <tf:getFineResponse xmlns:tf="http://example.com/getticketfine">
      <tf:fine>100</tf:fine>
   </tf:getFineResponse>
  </soap:body>
</soap:envelope>

You encapsulate each SOAP message within the “Envelope” SOAP 
element. Within Envelope, you need to prefix the SOAP elements 
with the SOAP namespace, called “soap:” in this example, which 
you define as an attribute within Envelope. The “encodingStyle” at-
tribute of the Envelope element defines the data types in the SOAP 
document. You must also define a custom namespace (that is, “tf,” 
which stands for “ticket-fine”), with which you prefix all the applica-
tion-specific elements. 

To define the structure of the SOAP Web service running within your 
applications, you can use WSDL, which you develop so that your cli-
ents know the exact specification of the services that they can request, 
the types of responses they should expect to receive, and the pro-
tocols (for example, SOAP or HTTP) with which they should send 
messages.

XML Networking: continued



The Internet Protocol Journal
29

For example, you can publish the WSDL to your clients, who may 
not be aware of the messages available within your Web services lay-
er. The clients can retrieve the WSDL file and send the appropriate 
SOAP messages to the SOAP Web service running on your applica-
tion. To publish the WSDL file to your clients, you can use a publicly 
available Universal Description, Discovery and Integration (UDDI) 
registry, such as XMethods[10], or you could create your own UDDI 
registry[11].

WSDL uses XSD to define your SOAP application data types. For ex-
ample, for one application to request a fine amount (of XSD type xs:
integer) for a given ticket ID (of XSD type xs:string) from your SOAP 
Web service called “ticketFineService,” you could use the WSDL in 
Figure 11.

Figure 11: WSDL for SOAP Request-
Response Operation <?xml version="1.0"?>

<definitions name=“TicketInfo" 
  targetNamespace="http://example.com/ticketinfo.wsdl“
  xmlns:tns="http://example.com/ticketinfo.wsdl“
  xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/“ 
  xmlns="http://schemas.xmlsoap.org/wsdl/"> 

  <message name="getFineRequest">
    <part name="ticket-id" type="xs:string"/>
  </message>
  
  <message name="getFineResponse">
    <part name="value"  type="xs:integer"/>
  </message>
  
  <porttype name="ticketFine">
    <operation name="getTicketFine">
      <input message=“tns:getFineRequest"/>
      <output message="tns:getFineResponse"/>
    </operation>
  </porttype>
  
  <binding name="ticketBinding" type="ticketFine">
    <soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
    <operation name="getTicketFine">
      <soap:operation soapAction="getTicketFine"/>
      <input>
        <soap:body use="encoded"/>
      </input>
      <output>
        <soap:body use="encoded"/>
      </output>
    </operation>
  </binding>

  <service name="ticketFineService">
    <documentation>WSDL File for ticketFineService</documentation>
    <port name="ticketFine" binding="ticketBinding">
      <soap:address location="http://example.com/getticketfine"/>
   </port>
  </service> 
</definitions>



The Internet Protocol Journal
30

You start your WSDL file by declaring all the required namespaces. 
In order for the WSDL file to refer to element names that are defined 
within the same file (for example, “tns:getFineRequest” within the 
“porttype” element), you must use the “targetNamespace” element 
to define a custom URI that your custom namespace uses (that is, 
“tns,” meaning “this name space”). 

You define the WSDL namespace for SOAP-specific elements with 
xmlns: soap=http://schemas.xmlsoap.org/wsdl/soap. For WSDL-only 
elements, you can use the default namespace xmlns= http://schemas.
xmlsoap.org/wsdl/. Note that elements within the file that do not 
have a prefix use the default namespace.

After you create the namespaces for the WSDL file, you can then 
create the two messages for the transaction, “getFineRequest” and 
“getFineResponse,” using WSDL “message” elements. WSDL ports 
create the request-response transaction flow using the “operation” 
element, by specifying which message is the request (input) and which 
is the response (output). After you define the transaction, you must 
bind it to SOAP with WSDL using the WSDL “binding” element. 
Additionally, to set the transport to HTTP, you must use the “bind-
ing” SOAP-specific element. You then link the operation you created 
previously within the WSDL “port-type” element to SOAP using the 
“operation” subelement within the parent “binding” element. 

If you set the “use” element to “encoding,” you do not need to use 
an XSD “type” attribute for defining SOAP data types in your SOAP 
messages. However, you must specify the “encodingStyle” URI to 
http://www.w3.org/2001/12/soap-encoding, as you learned 
previously in Figure 10. Otherwise, if you set “use” to “literal,” then 
you would need to use the type="xsd:string" attribute in Figure 10 
within the “tn:ticket-id” element when sending a request.

To define the SOAP Web service, you must use the WSDL “service” 
element. The SOAP element “address” within this element is the lo-
cation where SOAP clients can send the “getTicketFine” requests, as 
Figure 10 illustrates.

Hardware vs. Software XML Acceleration
To help you understand the difference between hardware and soft-
ware XML acceleration, Figure 12 illustrates a typical multilevel 
computer architecture[12]. The highest level is where you would typi-
cally program your applications. When you compile your applica-
tion, the compiler would typically “assemble” your various objects 
into assembly language prior to generating the machine-level code. 
This machine code is what is normally stored in an “.exe” file, which 
only your operating system can understand. When you execute the 
“.exe” at run time, the operating system converts the machine-level 
code into microcode, which the digital logic level within the CPU 
hardware can execute directly.

XML Networking: continued



The Internet Protocol Journal
31

Figure 12: A Multilevel Computer 
Architecture

Run-Time

Compile-Time
Assembly Language

Level

Problem-Oriented Language
(C, C++, Java) Level

Operating System
“Machine” Level

Micro-Architectural
“Micro-code” Level

Digital Logic
“ASIC or CPU” Level

 

Examples of software-based network applications in the past that 
have transitioned to hardware acceleration include IP routing, en-
cryption, firewalling, caching, and load balancing. XML networking 
is also a recent candidate for hardware acceleration; it is available by 
XML vendors that use XML Application-Specific Integrated Circuits 
(ASICs) or Field Programmable Gate Arrays (FPGAs) in their pro-
ducts[13]. By programming the digital logic layer with the necessary 
circuits to perform intensive XML computations such as XSLT 
transformation, XML encryption, and XML schema validation, you 
can drastically increase the performance of the hardware platform.

However, some vendors have also found clever ways of accelerating 
XML computations on general-purpose hardware. Accelerating XML 
in software requires bypassing the additional machine-level step at 
run time. By “compiling” XML-based language instructions directly 
into microcode at the micro-architectural level, you can introduce 
XML computations to the underlying hardware directly at run time. 
That is, executing XML microcode at the digital logic level bypasses 
additional processing at the operating system “machine” level.

Summary
When a technology matures as a software agent running within an 
application, the need often arises to move the agent’s functions to the 
network. Indeed, this was the case with numerous software-based 
technologies of the past, such as IP routing, encryption, stateful fire-
wall filtration, and server load balancing. 

To facilitate the interoperability of diverse applications, SOA was de-
veloped as a prescription to complexity problems faced by commonly 
used distributed-object technologies. As SOA matures, the need to 
introduce XML-based functions to the network will grow. In order to 
streamline the responsibilities of an SOA-based application, you can 
transition your XML technologies, such as XML translation, valid-
ation, and security, from within the application to an XML-enabled 
network.



The Internet Protocol Journal
32

For Further Reading
 [1] Hao He, “What Is Service-Oriented Architecture?” O’Reilly, 

September 30, 2003,
  http://webservices.xml.com/pub/a/ws/2003/09/30/soa.html

 [2] Werner Vogels, “Web Services Are Not Distributed Objects,” 
Computing in Science and Engineering, November-December 
2003, http://computer.org/internet/

 [3] Christophe Deleuze, “Content Networks,” The Internet Proto-
col Journal, Volume 7, Number 2, June 2004.

 [4] “SOAP Version 1.2 Part 0: Primer,” W3C Recommendation, 24 
June 2003,

  http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

 [5] “Web Services Description Language (WSDL) Version 2.0 Part 
0: Primer,” W3C Working Draft, 3 August 2005,

  http://www.w3.org/TR/2005/WD-wsdl20-primer-20050803/

 [6] “XML Schema Part 0: Primer Second Edition,” W3C Recom-
mendation, 28 October 2004,

  http://www.w3.org/TR/xmlschema-0/

 [7] “XSL Transformations (XSLT), Version 2.0,” W3C Recom-
mendation, 16 November 1999,

  http://www.w3.org/TR/xslt

 [8] “XML Path Language (XPath) Version 1,” W3C Recommen-
dation, 16 November 1999, http://www.w3.org/TR/xpath

 [9] www.xmlspy.com 

 [10] www.xmethods.net 

 [11] www.uddi.org 

 [12] Andrew S. Tanenbaum, Structured Computer Organization, 
(5th edition), ISBN 978-0131485211, Prentice Hall, 2005.

 [13] Michael John Sebastian Smith, Application-Specific Integrated 
Circuits, ISBN 978-0201500226, Addison-Wesley, June 1997.

SILVANO DA ROS currently works as a networking consultant in Toronto and has 
worked previously as a Systems Engineer for Cisco Systems. He is the author of 
Content Networking Fundamentals, published by Cisco Press. He holds a Bachelor 
of Computer Science and a Masters of Engineering (in Internetworking) from 
Dalhousie University. E-mail: sdaros@sympatico.ca

XML Networking: continued



The Internet Protocol Journal
33

Letters to the Editor

Time to Live
As I read the very fine article entitled “IPv6 Internals” (IPJ Volume 9, 
No. 3, September 2006), I was prompted to review the history of the 
Time to Live (TTL) as discussed in section 5.3.1 of RFC 1812. Being 
gray of head, little facts from other eras come quickly to mind. The 
Xerox Network Systems (XNS) Internet Transport on which Novell 
Netware was based required that no router ever store a packet in 
queue longer than 6 seconds. Requirements of RFC 791 were also 
softened in RFC 1812; rather than requiring the TTL to be decre-
mented at least once and additionally once per second in queue, that 
document requires that the TTL be treated as a hop count and—re-
luctantly—reduces the treatment of TTL as a measure of time to a 
suggestion.

The reason for the change is the increasing implementation of high-
er-speed lines. A 1,500-byte datagram occupies 12,000 bits (and 
an asynchronous line sends those as 15,000 bits), which at any line 
speed below 19.2 kbps approximates or exceeds 1 second per data-
gram. Any time there are several datagrams in queue, the last mes-
sage in the queue is likely to sit for many seconds, a situation that in 
turn can affect the behavior of TCP and other transports. However, 
56-kbps lines became common in the 1980s, and T1 and T3 lines be-
came common in the 1990s. Today, hotels generally offer Ethernet to 
the room; we have reports of edge networks connected to the Internet 
at 2.5 Gbps, and residential broadband in Japan and Europe at 26 
Mbps per household. At 56 kbps, a standing queue of five messages 
is required to insert a 1-second delay, and at T1 it requires a queue 
depth of more than 100 messages. At higher speeds, the issue be-
comes less important.

That is not to say that multisecond queues are now irrelevant. 
Although few networks are being built today by concatenating asyn-
chronous links, in developing countries—and on occasion even in ho-
tels here in Santa Barbara, California—people still use dialup lines. 
In Uganda, some networks that run over the instant messaging ca-
pacity of GSM [Global System for Mobile Communications], which 
is to say using 9,600-bps datagrams, have been installed under the 
supervision of Daniel Stern and UConnect.org (www.uconnect.org). 
Much of the world still measures round-trip times (RTTs) in seconds, 
and bit rates in tens of kbps.

The TCP research community, one member of which recently asked 
me whether it was necessary to test TCP capabilities below 2 Mbps, 
and the IETF community in general would do well to remember that 
the ubiquity of high bandwidth in Europe, North America, Australia, 
and Eastern Asia in no sense implies that it is available throughout 
the world, or that satellite communications and other long-delay 
pipelines can now be ignored.

—Fred Baker, Cisco Systems 
fred@cisco.com



The Internet Protocol Journal
34

The author responds:

Although to the casual observer the evolution of the Internet seems 
one of continuously increasing speed and capacity, reality is slightly 
different. The original ARPANET used 50-kbps modems in the late 
1960s. In the next three decennia or so, the maximum bandwidth of 
a single link increased by a factor 200,000 to 10 Gbps. Interestingly 
enough, the minimum speed used for Internet connections went down 
to a little under 10 kbps, so where once the ARPANET had a uniform 
link speed throughout the network, the difference between the slow-
est and the fastest links is now six orders of magnitude. The speed dif-
ference between a snail and a supersonic fighter jet is only five orders 
of magnitude. Amazingly, the core protocols of the Internet—IP and 
TCP—can work across this full speed or bandwidth gamut, although 
changes were made to TCP to handle both extremes better, most no-
tably in RFCs 1144 and 1323.

Even though I don’t think keeping track of the time that packets 
are stored in buffers, as suggested in the original IPv4 specification, 
makes much sense even in slow parts of the network, Fred makes a 
good point: many Internet users still have to deal with speeds at the 
low end of the range; some of us only occasionally when connecting 
through a cellular network, others on a more regular basis. Even in 
Europe and the United States many millions of Internet users connect 
through dialup. For someone who is used to having always-on mul-
timegabit connectivity, going back to 56 kbps or worse, 9,600 bps 
can be a bizarre experience. Many of today’s Websites are so large 
that they take minutes to load at this speed. Connecting to my mail 
server using the Internet Mail Access Protocol (IMAP) takes 15 min-
utes. And one of my favorite relatively new applications, podcasting, 
becomes completely unusable: downloading a 50-minute audio pro-
gram takes hours at modem speeds.

And that’s all IPv4. It is possible to transport IPv6 packets over the 
Point-to-Point Protocol (PPP) that is used for almost all low-speed 
connections, but in practice this isn’t workable because there are 
no provisions for receiving a dynamic address from an ISP [Internet 
Service Provider]. With IPv4, Van Jacobson did important work to 
optimize TCP/IP for low-speed links (RFC 1144). By reducing the 
Maximum Transmission Unit (MTU) of the slow link and compress-
ing the IP and TCP headers, it was possible to achieve good interac-
tive response times by avoiding the situation where a small packet 
gets stuck between a large packet that may take a second or more to 
transmit over a slow link while at the same time reducing the header 
overhead. Although the IETF has later done work on IPv6 header 
compression, it doesn’t look like anyone has bothered to implement 
these techniques, and the minimum MTU of 1,280 bytes creates sig-
nificant head-of-line blocking when IPv6 is used over slow links.

Letters to the Editor: continued



The Internet Protocol Journal
35

Another example where low bandwidth considerations are ignored 
is the widespread practice of enabling RFC 1323 TCP high-per-
formance extensions for all TCP sessions. RFC 1323 includes two 
mechanisms: a window scale factor that allows much larger win-
dows in order to attain maximum performance over high-bandwidth 
links with a long delay, and a timestamp option in the TCP header 
that allows for much more precise round-trip time estimations. With 
these options enabled, every TCP segment includes 8 extra bytes with 
timestamp information. In addition to increasing overhead, the time-
stamp option introduces an unpredictable value into the TCP header 
that makes it impossible to use header compression, thereby negating 
the usefulness of RFC 1144. To add insult to injury, almost no ap-
plications allocate enough buffer space to actually use the RFC 1323 
mechanisms.

Moral of the story for protocol designers and implementers: spend 
some time thinking about how your protocol works over slow links. 
You never know when you’ll find yourself behind just such a link.

—Iljitsch van Beijnum
iljitsch@muada.com

Gigabit TCP and MTU Size
I appreciated Geoff Huston’s thorough description about the cur-
rent obstacles and research involving Gigabit TCP (IPJ, Volume 9, 
No. 3, June 2006). I have already shown the article to many of my 
colleagues. It appears that Geoff did not address one of the solu-
tions, which is to increase the networkwide Maximum Transmission 
Unit (MTU). In theory that would allow the existing TCP conges-
tion control to handle higher-speed connectivity. Perhaps he did not 
address the issue because it is infeasible to increase the MTU setting 
Internetwide, especially with 10-Gigabit Ethernet interfaces sporting 
a default MTU setting of 1,500 bytes. On the other hand, projects 
that own their own backbone infrastructure may find increasing the 
default MTU a feasible approach.

For more information about raising the MTU, please see: 
http://www.psc.edu/~mathis/MTU/

—Todd Hansen, UCSD/SDSC 
tshansen@hpwren.ucsd.edu

The author responds:

Yes, it’s true that increasing the size of the packet makes sound sense 
when the available bandwidth has increased. If the bandwidth in-
creases by one order of magnitude and the packet size is increased 
by the same amount, then it is theoretically possible to effectively 
increase the throughput of the system without changing the packet 
processing load.



The Internet Protocol Journal
36

Effectively, if you regard the protocol interaction as a time sequence, 
then a coupling of increased bandwidth and comparably increased 
packet size preserves the time sequence interaction. Of course, as 
bandwidth on the network has increased we have not seen a compa-
rable increase in MTU sizes, and today’s networks exhibit a wide va-
riety of MTUs and the importance of Path MTU Discovery, and co-
herent transmission of related MTU ICMP [Internet Control Message 
Protocol] messages becomes more critical as a consequence. Although 
the article concentrated on modifications to the TCP control algo-
rithm, there is no doubting the importance of high-speed TCP send-
ers and receivers using large TCP buffers to maximize the payload 
throughput potential.

—Geoff Huston, APNIC 
gih@apnic.net

________________________

Drop us a Line!
We welcome any suggestions, comments or questions youmay have 
regarding anything you read in this journal. Send us an e-mail to 
ipj@cisco.com. Also, don’t forget to let us know if your delivery ad-
dress changes. You can use the online subscription system to change 
your own information by supplying your Subscription ID and e-mail  
address. The system will then send you an e-mail with a “magic” 
URL which will allow you to update your database record. If you 
don’t have your Subscription ID or encounter any difficulties, just 
send us the updated information via e-mail.

—Ole J. Jacobsen, Editor and Publisher  
ole@cisco.com

Letters to the Editor: continued



The Internet Protocol Journal
37

Book Review

Internet Measurement Internet Measurement: Infrastructure, Traffic & Applications, by 
Mark Crovella, Balachander Krishnamurthy, ISBN 0-470-01461-X, 
Wiley, 2006.

This book is a comprehensive reference guide to about 900 journal, 
conference, and workshop papers, and RFCs on the important and 
rapidly advancing field of Internet measurement. Interest in this grow-
ing field arises for three major reasons: commercial, social, and tech-
nical. Readers need nothing more than a keen interest in a methodical 
study of the subject matter from either a practical or research per-
spective to glean something from this book.

Organization
The book is centered on three architectural pillars relevant to mea-
surement: infrastructure, traffic, and applications. Within each of 
these pillars, the topics are organized into four sections: properties, 
challenges, tools, and state-of-the-art. In the properties section, the 
authors review metrics that are important to measure in each area. In 
the challenges section, they discuss various difficulties and limitations 
that arise when trying to measure the metrics. The tools section cov-
ers some of the popular methods and products used to measure these 
metrics and work around the challenges mentioned previously. The 
intent is not to provide “user guides” for these tools. The state-of-
the-art section presents the latest measurement results about covered 
properties and metrics, noting that they are subject to relatively fast 
obsolescence because of the rapidly evolving Internet.

The first three chapters provide background material. The first chap-
ter provides an obligatory introduction to the Internet architecture, 
including how the “end-to-end” principle has been used for nearly 20 
years to guide many design decisions in the Internet. The second chap-
ter provides the analytic background necessary to study the Internet 
and cast its measurements in quantitative terms. The third chapter 
examines the nuts and bolts of Internet measurement, addressing the 
practical topics to consider in designing and implementing them, in-
cluding the role of time and its sources. 

The second part of this book also consists of three chapters, which 
cover the three pillars in depth. The first chapter defines metrics of in-
terest for measuring the Internet and describes some of the barriers to 
their measurement, in particular “middleboxes,” Network Address 
Translators (NATs), firewalls, and proxies that deviate from the end-
to-end architecture principle, may block User Datagram Protocol 
(UDP) or Internet Control Message Protocol (ICMP) packets, or hin-
der visibility to endpoint IP addresses. The authors next explore vari-
ous tools and methods for active and passive measurement, estima-
tion, and inference of these metrics.



The Internet Protocol Journal
38

Readers may wonder why two important metrics are left out—rout-
er reliability and high availability—where Open Shortest Path First 
(OSPF) and the Border Gateway Protocol (BGP) “Graceful Restart” 
would be of interest. 

The next chapter focuses on traffic properties that are important to 
understand, measure, and model. The authors examine the challeng-
es in capturing, processing, storing, and managing large volumes of 
packets and flows, as well as those related to their statistical charac-
terization. Readers engaged in data modeling and performance anal-
ysis will benefit from this chapter. The last chapter in this part of 
the book examines some popular applications: The Domain Name 
System (DNS), Web, and Peer-to-Peer (P2P). The authors discuss the 
shifts in application mix from the 1980s, when FTP was dominant, 
to the 1990s, when the Hypertext Transfer Protocol (HTTP) became 
dominant, to today, when by most accounts P2P is the dominant 
Internet protocol. Next, there is a thorough coverage of the what 
(properties), why (justification), and how to (tools) facets of measure-
ment of the three popular applications, as well as some coverage of 
online games and streaming media. 

The third part of the book covers material that spans multiple ar-
eas. Its first chapter deals with anonymization of collected measure-
ment data, which arises because of the need for data sharing, while 
preserving identity-related, personal-sensitive, or business-sensi-
tive information for applications previously examined. The second 
chapter provides a short—but important—coverage of the key areas 
where Internet measurement has played a role in security enforce-
ment. Various attack types and tools to combat them are discussed. 
The third chapter examines numerous low-level monitoring tools for 
high-speed traffic capture, as well as an insightful look at the soft-
ware architecture of two toolsets, dss and Gigascope, reflecting the 
experience of one of the authors at AT&T Labs with them. It also 
reviews some large-scale measurement platforms at the Cooperative 
Association for Internet Data Analysis (CAIDA), the Réseaux IP 
Européens (RIPE) community, and the High Energy Physics (HEP) 
community. The book concludes with a recap of trends, concerns, 
and emerging questions in Internet measurement. 

Synopsis
The authors have blended their academic research and practical ex-
perience in Internet measurement and traffic modeling to provide the 
reader with a structured view to these vast subjects. I would have liked 
to see a more extensive coverage of Voice over IP (VoIP) and its as-
sociated performance measurement protocols, RTP Control Protocol 
(RTCP), RTCP Extended Report (XR), and RAQMON, given the 
gradual but inevitable shift of voice traffic from the Public Switched 
Telephone Network (PSTN) to the Internet with Session Initiation 
Protocol (SIP) peering.

Book Review: continued



The Internet Protocol Journal
39

Most probably, this book had already been published when the 
Federal Communications Committee (FCC) issued an order in May 
2006 for all VoIP service providers to demonstrate compliance with 
the Communications Assistance for Law Enforcement Act (CALEA) 
wiretapping requirement within a year. This directive represents a 
notable departure from data anonymization principles covered in the 
book.

Overall, I consider this book an excellent reference source for diverse 
research and practical articles published in the field of Internet mea-
surement. I highly recommend it to network planners, engineers, and 
managers responsible for instrumentation, traffic modeling, or per-
formance analysis.

 —Reza Fardid, Covad Communications 
rfardid@covad.com

________________________

Read Any Good Books Lately?
Then why not share your thoughts with the readers of IPJ? We accept 
reviews of new titles, as well as some of the “networking classics.” In 
some cases, we may be able to get a publisher to send you a book for 
review if you don’t have access to it. Contact us at ipj@cisco.com 
for more information.



The Internet Protocol Journal
40

Fragments

Bob Braden and Joyce K. Reynolds receive the 2006 Postel Service Award
Bob Braden and Joyce K. Reynolds are this year’s recipients of the 
Internet Society’s prestigious Jonathan B. Postel Service Award. The 
award was presented “For their stewardship of the RFC (Request for 
Comments) series that enabled countless others to contribute to the 
development of the Internet.” The presentation was made by Internet 
pioneer Steve Crocker (a member of this year’s Postel award commit-
tee and author of the very first RFC) during the 67th meeting of the 
Internet Engineering Task Force (IETF) in San Diego, California.

The award is named after Dr. Jonathan B. Postel to commemorate 
his extraordinary stewardship exercised over the course of a thirty 
year career in networking. Between 1971 and 1998, Postel man-
aged, nurtured and transformed the RFC series of notes created by 
Steve Crocker in 1969. Postel was a founding member of the Internet 
Architecture Board and the first individual member of the Internet 
Society, where he also served as a trustee.

“It is a pleasure and an honor for the Internet Society to recognize 
the contribution of Bob and Joyce to the evolution of the Internet,” 
said Crocker. “Since its humble beginnings, the RFC series has devel-
oped into a set of documents widely acknowledged and respected as 
a cornerstone of the Internet standards process. Bob and Joyce have 
participated in this evolution for a very long time and have been pri-
marily responsible for ensuring the quality and consistency of the 
RFCs since Jon’s death in 1998.”

Joyce K. Reynolds worked closely with Postel, and together with 
Bob Braden she has been co-leader of the RFC Editor function at 
the University of Southern California’s Information Sciences Institute 
(ISI) since 1998. In this role she performed the final quality control 
function on most RFC publications. Reynolds has also been a member 
of the IETF since 1988, and she organized and led the User Services 
area of the IETF from 1988 to 1998. In her User Services role, she 
was an international keynote speaker and panelist in over 90 confer-
ences around the world, spreading the word on the Internet.

Bob Braden, who has more than 50 years of experience in the com-
puting field, joined the networking research group at ISI in 1986. 
Since then, he has been supported by NSF for research concerning 
NSFnet and the DETER security testbed, and by DARPA for proto-
col research. Braden came to ISI from UCLA, where he had technical 
responsibility for attaching the first supercomputer (IBM 360/91) to 
the ARPAnet, beginning in 1970. Braden was active in the ARPAnet 
Network Working Group, contributing to the design of the FTP pro-
tocol in particular. He also edited the Host Requirements RFCs and 
co-chaired the RSVP working group.



The Internet Protocol Journal
41

The Jonathan B. Postel Service Award was established by the Internet 
Society (ISOC) to honor those who, like Postel, have made outstand-
ing contributions in service to the data communications community. 
The award is focused on sustained and substantial technical contri-
butions, service to the community, and leadership. With respect to 
leadership, the nominating committee places particular emphasis on 
candidates who have supported and enabled others in addition to 
their own specific actions.

Previous recipients of the Postel Award include Jon himself (posthu-
mously and accepted by his mother), Scott Bradner, Daniel Karrenberg, 
Stephen Wolff, Peter Kirstein, Phill Gross and Jun Murai. The award 
consists of an engraved crystal globe and $20,000.

ISOC (http://www.isoc.org) is a not-for-profit membership orga-
nization founded in 1992 to provide leadership in Internet related 
standards, education, and policy. With offices in Washington, DC, 
and Geneva, Switzerland, it is dedicated to ensuring the open develop-
ment, evolution and use of the Internet for the benefit of people 
throughout the world. ISOC is the organizational home of the IETF 
and other Internet-related bodies who together play a critical role in 
ensuring that the Internet develops in a stable and open manner. For 
over 14 years ISOC has run international network training programs 
for developing countries and these have played a vital role in setting 
up the Internet connections and networks in virtually every country 
connecting to the Internet during this time.

First Internet Governance Forum Meeting Concludes
The inaugural meeting of the Internet Governance Forum (IGF) took 
place in Athens, Greece from October 30 – November 2, 2006. For 
more information see: http://www.intgovforum.org

The Government of Brazil will host the next IGF meeting. It will take 
place in Rio de Janeiro November 12 – 15, 2007.

ARIN to Provide 4-Byte AS Numbers
On August 30, 2006, the American Registry for Internet Numbers 
(ARIN) Board of Trustees, based on the recommendation of the 
Advisory Council and noting that the Internet Resource Policy 
Evaluation Process had been followed, adopted the following policy 
proposal: “2005-9: 4-Byte AS Number.”

Per the implementation schedule contained in the policy (Number 
Resource Policy Manual [NRPM] Section 5.1), commencing January 
1, 2007, ARIN will process applications that specifically request 32-
bit AS Numbers.

For more information see: http://www.arin.net/registration

[Ed. See also: “Exploring Autonomous System Numbers,” by Geoff 
Huston in The Internet Protocol Journal, Volume 9, No. 1, March 
2006.]



The Internet Protocol Journal
42

Celebrating the 25th Anniversary of the TCP/IP Internet Standards
Two of the core protocols that define how data is transported over 
the  Internet are now 25 years old. The Internet Protocol (IP) and the 
Transmission Control Protocol (TCP), together known as “TCP/IP,” 
were formally  standardized in September 1981 by the publication of 
RFC 791 and RFC 793.

Vint Cerf and Robert Kahn are widely credited with the design of 
TCP/IP, and many others involved in the ARPANET project made 
significant contributions. The core of the documents was RFC 675, 
published in December 1974 by Cerf together with co-authors Carl 
Sunshine and Yogen Dalal. The subsequent sequence of documents 
leading up to RFC 791 and 793 benefited from the participation of 
many people including Dave Clark, Jon Postel, Bob Braden, Ray 
Tomlinson, Bill Plummer, and Jim Mathis, as well as other unnamed 
contributors to the definition and implementation of what became 
the Internet’s core protocols.

“We can’t yet say that the Internet is mature,” says Brian Carpenter, 
chair of the IETF, “but it’s a great tribute to its pioneers that the two 
most basic specifications that were published a quarter of a century 
ago are still largely valid today. I hope the IP version 6 standard will 
do as well.”

The Request For Comments (RFC) series, which was launched in 
1969 by Steve Crocker at UCLA (and edited for many years by the 
late Jon Postel), continues today as the public archive of the Internet’s 
fundamental technology. Since 1977 it has been hosted by The 
University of Southern California’s Information Sciences Institute 
(ISI). ARPA support ended in 1998, at which time ISOC took over 
providing funding for the publication of Internet standards. More 
recently, ISOC extended its support to include other areas critical to 
the open development of Internet standards.

See also:

http://www.ietf.org/rfc/rfc0791.txt

http://www.ietf.org/rfc/rfc0793.txt

http://www.isoc.org/standards/tcpip25years

http://www.isoc.org/internet/history/brief.shtml

Fragments: continued



The Internet Protocol Journal
43

Call for Papers

The Internet Protocol Journal (IPJ) is published quarterly by Cisco 
Systems. The journal is not intended to promote any specific products 
or services, but rather is intended to serve as an informational and 
educational resource for engineering professionals involved in the 
design, development, and operation of public and private internets 
and intranets. The journal carries tutorial articles (“What is...?”), as 
well as implementation/operation articles (“How to...”). It provides 
readers with technology and standardization updates for all levels of 
the protocol stack and serves as a forum for discussion of all aspects 
of internetworking. 

Topics include, but are not limited to: 

• Access and infrastructure technologies such as: ISDN, Gigabit 
Ethernet, SONET, ATM, xDSL, cable, fiber optics, satellite,                  
wireless, and dial systems 

• Transport and interconnection functions such as: switching, rout-
ing, tunneling, protocol transition, multicast, and performance 

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls, 
trouble-shooting, and mapping 

• Value-added systems and services such as: Virtual Private Net-
works, resource location, caching, client/server systems, distribut-
ed systems, network computing, and Quality of Service 

• Application and end-user issues such as: e-mail, Web author-
ing, server technologies and systems, electronic commerce, and                  
application management 

• Legal, policy, and regulatory topics such as: copyright, content 
control, content liability, settlement charges, “modem tax,” and 
trademark disputes in the context of internetworking 

In addition to feature-length articles, IPJ will contain standardization 
updates, overviews of leading and bleeding-edge technologies, book 
reviews, announcements, opinion columns, and letters to the Editor. 

Cisco will pay a stipend of US$1000 for published, feature-length 
articles. Author guidelines are available from Ole Jacobsen, the  
Editor and Publisher of IPJ, reachable via e-mail at ole@cisco.com

This publication is distributed on an “as-is” basis, without warranty of any kind either express 
or implied, including but not limited to the implied warranties of merchantability, fitness for a 
particular purpose, or non-infringement. This publication could contain technical inaccuracies 
or typographical errors. Later issues may modify or update information provided in this issue. 
Neither the publisher nor any contributor shall have any liability to any person for any loss or 
damage caused directly or indirectly by the information contained herein.



The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist 
Google Inc, USA

Dr. Jon Crowcroft, Marconi Professor of Communications Systems 
University of Cambridge, England

David Farber 
Distinguished Career Professor of Computer Science and Public Policy 
Carnegie Mellon University, USA

Peter Löthberg, Network Architect 
Stupi AB, Sweden

Dr. Jun Murai, General Chair Person, WIDE Project 
Vice-President, Keio University 
Professor, Faculty of Environmental Information 
Keio University, Japan

Dr. Deepinder Sidhu, Professor, Computer Science & 
Electrical Engineering, University of Maryland, Baltimore County 
Director, Maryland Center for Telecommunications Research, USA

Pindar Wong, Chairman and President 
Verifi Limited, Hong Kong

The Internet Protocol Journal is
published quarterly by the
Chief Technology Office,
Cisco Systems, Inc.
www.cisco.com
Tel: +1 408 526-4000
E-mail: ipj@cisco.com

Copyright © 2006 Cisco Systems, Inc.
All rights reserved. Cisco, the Cisco 
logo, and Cisco Systems are 
trademarks or registered trademarks 
of Cisco Systems, Inc. and/or its 
affiliates in the United States and 
certain other countries. All other 
trademarks mentioned in this document 
or Website are the property of their 
respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal, Cisco Systems
170 West Tasman Drive, M/S SJ-7/3
San Jose, CA 95134-1706
USA

ADDRESS SERVICE REQUESTED

PRSRT STD
U.S. Postage

PAID
PERMIT No. 5187

SAN JOSE, CA


