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F r o m  T h e  E d i t o r

In our June 2000 issue we wrote: “Two protocols used in the Internet 
are so important that they deserve special attention: the Internet Proto-
col (IP) from which this journal takes its name, and the Transmission 
Control Protocol (TCP). IP is fundamental to Internet addressing and 
routing, while TCP provides a reliable transport service that is used 
by most Internet applications, including interactive Telnet, file transfer, 
electronic mail, and Web page access via HTTP. Because of the criti-
cal importance of TCP to the operation of the Internet, it has received 
much attention in the research community over the years. As a result, 
numerous improvements to implementations of TCP have been devel-
oped and deployed.” We return to TCP in this issue with a look at 
its performance at gigabit speeds. Geoff Huston describes numerous 
research proposals related to TCP and discusses lessons learned by op-
erators and researchers involved with this protocol.

My first encounter with the Internet (then called the ARPANET) took 
place in 1976 when I visited the Norwegian Defence Research Estab-
lishment (NDRE) at Kjeller, about 20 kilometers from Oslo, Norway. 
At NDRE, one of the researchers, named Pål, showed me a teletype ter-
minal that was connected through the ARPANET to a host computer 
at SRI International in Menlo Park, California. After a few minutes, the 
teletype started printing messages from someone called “Geoff” on the 
other end of the line. Pål typed back, passing on questions from myself 
about the weather in California and so on. I later learned that the host 
computer was a PDP-10 model KA10 running the TENEX operating 
system. TENEX could “link” two terminals together so that anything 
typed on one terminal would appear on the other, and conversely. This 
primitive “chat” system is the forerunner of today’s Instant Messaging 
(IM) environment. David Strom gives an overview of the current state 
of IM solutions in our second article.

The article “Working with IP Addresses” in our last issue sparked sev-
eral comments, some of which are included in our Letters to the Editor 
section. A few readers also noticed some errors in the article, so we 
have included the corrections in this issue. We very much appreciate 
your feedback. Please send your comments to: ipj@cisco.com

—Ole J. Jacobsen, Editor and Publisher  
ole@cisco.com
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Gigabit TCP
by Geoff Huston, APNIC

I   n looking back over some 30 years of experience with the Inter-
net, the critical component of the Internet Protocol Suite that has 
been the foundation of its success as the technology of choice for 

the global communications system is the Internet Protocol (IP) itself, 
working an overlay protocol that can span almost any form of commu-
nications media. But I would also like to nominate another contender 
for a critical role within IP, namely the reliable transport protocol that 
sits on top of IP, the Transmission Control Protocol (TCP), and its 
evolution over time. In support of this nomination is the fact that the 
end-to-end rate-adaptive control algorithm that was adopted by TCP 
represented a truly radical shift from the reliable gateway-to-gateway 
virtual circuit flow control systems used by other protocols of similar 
vintage. It is also interesting to note that TCP is not designed to oper-
ate at any particular speed, but it attempts to operate at a speed that 
uses its fair share of all available network capacity along the network 
path. The fundamental property of the TCP flow control algorithm is 
that it attempts to be maximally efficient while also attempting to be 
maximally fair.

Previous articles on this topic, “TCP Performance”[12] and “The Fu-
ture for TCP”[13] looked at the design assumptions behind TCP and 
its performance characteristics. The essential characteristic of TCP is 
that it attempts to establish a dynamic equilibrium with other concur-
rent sessions and opportunistically use all available network capacity. 
It achieves this by constantly altering its flow characteristics, continu-
ally probing the network to see if higher speeds are supportable, while 
also being prepared to immediately decrease the current sending rate in 
the face of received signals of network congestion.

In a world where network infrastructure capacity and complexity 
are related to network cost and delivered data is related to network 
revenue, TCP fits in well. The minimal assumptions that TCP makes 
about the capability of network components permit networks to be 
constructed using simple transmission capabilities and simple switch-
ing systems. “Simple” often is synonymous with cheap and scalable, 
and there is no exception here. TCP also attempts to maximize data 
delivery through adaptive end-to-end flow rate control and careful 
management of retransmission events. In other words, TCP is an en-
abler for cheaper networking for both the provider and consumer. For 
the consumer the offer of fast cheap communications has been a big 
motivation in the increase in demand for Internet-based services, and 
this—more than any other factor—has been the major enabling factor 
for the increased use of the Internet itself. “Cheap” is often enough in 
this world, and TCP certainly helps to make data communications ef-
ficient and therefore cheap.
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Although TCP is highly effective in many networking environments, 
that does not mean it is highly effective in every environment. For 
example:

• In those wireless environments where there is significant wireless 
noise, TCP may confuse the outcome of radio-based signal corruption 
and the corresponding packet drop with the outcome of network 
congestion, and consequently the TCP session may back off its send-
ing rate too early and back off for too long. 

• TCP also backs off too early when the network routers have in-
sufficient buffer space. This effect is more subtle, but it is related to 
the coarseness of the TCP algorithm and the consequent burstiness 
of TCP packet sequences. These bursts, which occur at up to twice 
the bottleneck capacity rate, are smoothed out by network buffers. 
Buffer exhaustion in the interior of the network causes packet 
drop, which causes the generation of a loss signal to the active TCP 
session, which, in turn, either halves its sending rate or—in the 
worst case—resets the session state and restarts with a single packet 
exchange. Particularly in wide-area networks, where the end-to-end 
delay-bandwidth product becomes a significant factor, TCP uses the 
network buffers to sustain a steady-state throughput that matches 
the available network capacity. Where the interior buffers are under-
configured in memory it is not possible to even out the TCP bursts 
to continuously flow through the constrained point at the available 
data rate. 

• TCP also asks its end hosts to have local capacity equal to the 
available network capacity on the forward and reverse paths. The 
reason is that TCP does not discard data until the remote end has 
reliably acknowledged it, so the sending host has to retain a copy of 
the data for the time it takes to send the data plus the time for the 
remote end to send the matching acknowledgement. 

Even accounting for these limitations, it is true to say that TCP works 
amazingly well in most environments. Nevertheless, one area is prov-
ing to be quite a fundamental challenge to TCP as we know it, and that 
is the domain of wide-area, very-high-speed data transfer.

Very-High-Speed TCP
End host computers, even laptop computers these days, are typically 
equipped with Gigabit Ethernet interfaces, and have gigabytes of 
memory and internal data channels that can move gigabits of data 
per second between memory and the network interface. Current IP 
networks are constructed using multigigabit circuits and high-capacity 
switches and routers (assuming there is still a quantitative difference 
between these two forms of packet switching equipment). If the end 
hosts and the network both can support gigabit transmissions then 
a TCP session should be able to operate end to end at gigabits per 
second, and achieve the same efficiency at gigabit speeds as it does 
today at megabit speeds—right? 

Well, no, not exactly!
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This conclusion is not obvious, particularly when the TCP Land Speed 
Record is now at some 7Gbps across a distance that spans 30,000 km 
of network. What is going on?

Let’s return to the basics of TCP to understand some of the variables 
with very-high-speed TCP. TCP operates in one of two states, that of 
slow start and congestion avoidance. 

• Slow start mode is the initial mode of operation of TCP in any 
session, as well as its “reset” mode. In this mode, TCP sends two 
packets in response to each ACK packet that advances the sender’s 
window. In approximate terms (delayed ACKs notwithstanding), 
this mode allows TCP to double its sending rate in each successive 
lossless round-trip-time (RTT) interval. The rate increase is expo-
nential, effectively doubling each RTT interval, and the rate increase 
is bursty, effectively sending data into the network at twice the 
bottleneck capacity during this phase.

Sending data into the network at twice the bottleneck data speed 
is possible because of the “ACK clocking” property of TCP. Dis-
regarding the complications of the TCP delayed ACK mechanism 
for a second, a TCP receiver generates a new ACK packet each time 
a packet arrives at the receiver. The sending rate of the ACKs is, in 
effect, the same as the receiving rate for the data packets. Assuming 
a one-way data transfer, so that ACK packets in the reverse direction 
are of minimal size, and assuming minimal jitter on the reverse path 
from the receiver back to the sender, the arrival rate of ACKs at the 
sender is comparable to the arrival rate of data packets at the receiver. 
In other words, the return ACK rate is comparable to the bottleneck 
capacity of the forward network path from sender to receiver. 
Sending two packets per received ACK is effectively sending packets 
into the network at twice the bottleneck capacity. At the bottleneck 
point the switching unit receives twice the amount of data than it 
can transmit to the output device over a period that corresponds 
to the delay-bandwidth product of the bottleneck link. Hence the 
comment that TCP is a bursty protocol, particularly at startup. For 
this reason TCP tends to operate more effectively across network 
switching elements that are generously endowed with memory, or 
have for each output port a buffer capacity roughly equal to the 
delay-bandwidth product of the link that is attached to that port.

• In the other operating mode, that of congestion avoidance, TCP 
sends an additional segment of data for each loss-free round-trip 
time interval. This increase is additive rather than exponential, 
increasing the sender’s speed at the constant rate of one segment per 
RTT interval.

Gigabit TCP: continued
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TCP undertakes a state transition upon the detection of packet loss. 
Small-scale packet loss (of the order of 1 or 2 packets per loss event) 
causes TCP to halve its sending rate and enter congestion avoidance 
mode, irrespective of whether it was in this mode already. Repetition 
of this cycle gives the classic sawtooth pattern of TCP behavior, and 
the related derivation of TCP performance as a function of packet loss 
rate. Longer sustained packet loss events cause TCP to stop using the 
current session parameters, recommence the congestion control session 
using the restart window size, and enter the slow start control mode 
once again. (See Figure 1).

Figure 1: TCP Behavior

Time

Queue Saturation Point

Onset of queuing as
rate exceeds available
capacity

Duplicate ACKs received. Halve cwnd to recover. 

Congestion Avoidance
(Rate increases by a fixed
amount each RTT Interval)

Slow Start
(Rate doubles

each RTT
Interval)

Re
la

tiv
e 

Th
ro

ug
hp

ut
 R

at
e 

(%
) 160

140
120
100

80
60
40
20
0

But what happens when two systems are at opposite sides of a conti-
nent with a high-speed path between them? How long does it take for 
a single TCP session to get up to a data transfer rate of 10 Gbps? Can 
a single session operate at a sustained rate of 10 Gbps?

Let’s look at a situation such as the network path from Brisbane, on the 
eastern side of the Australian continent, to Perth on the western side. 
The cable path is essentially along the southern coast of the continent, 
so the RTT delay is 70 ms, implying that there are 14.3 round-trip in-
tervals per second. Let’s also assume that the packet size being used is 
1500 octets, or 12,000 bits, and the TCP initial window size is a single 
packet. And let’s also assume that the bottleneck capacity of the host-
to-host path between Brisbane and Perth is 10 Gbps.

In a simple slow start model the sending speed doubles every 70 ms, 
so after 17 RTT intervals where the sending rate has doubled for each 
interval, or after some 1.2 seconds have elapsed, the transfer speed 
reaches 11.2 Gbps (assuming a theoretical host with sufficiently 
fast hardware components, sufficiently fast internal data paths, and 
adequate memory). At this stage let’s assume that the sending rate 
exceeded the buffer capacity at the bottleneck point in the network 
path. Packet drop will occur, because the critical point buffers in the 
network path are now saturated.
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At the point of reception of an ACK sequence that signals packet 
loss, the TCP sender’s congestion window will halve, as will the TCP 
sending rate, and TCP will switch to congestion avoidance mode. In 
congestion avoidance mode the rate increase is 1 segment per RTT, 
equivalent to sending an additional 12 kilobits per RTT, or, given the 
session parameters as specified previously, equivalent to a rate increase 
of 171 kbps each RTT. So how long will it take TCP to recover and get 
back to a sending rate of 10 Gbps?

If this were a T1 circuit where the available path bandwidth is 1.544 
Mbps, and congestion loss occurred at a sending rate of 2 Mbps (higher 
than the bottleneck transmission capacity due to the effect of queuing 
buffers within the network), then TCP would rate halve to 1 Mbps 
and then use congestion avoidance to increase the sending rate back 
to 2 Mbps. Within the selected parameters of a 70-ms RTT and 1500-
byte segment size, this process involves using congestion avoidance to 
inflate the congestion window from 6 segments to 12. This process 
takes 0.42 seconds. So as long as the network can operate without 
packet loss for the session over an order of 1-second intervals, then 
TCP can comfortably operate at maximal speed in a megabit-per-
second network. 

What about our 10-Gbps connection? The first estimate is the amount 
of usable buffer space in the switching elements. Assuming a total of 
256 MB of usable queue space on the network path prior to the onset 
of queue saturation, the TCP session operating in congestion avoidance 
mode will experience packet loss some 590 RTT intervals after reaching 
the peak transmission speed of 10 Gbps, or some further 41 seconds, 
at which point the TCP sending rate in congestion avoidance mode is 
10.1 Gbps. For all practical purposes the TCP congestion avoidance 
mode causes the sawtooth oscillation of this ideal TCP session between 
5.0 Gbps and 10.1 Gbps. A single iteration of this sawtooth cycle takes 
2062 seconds, or 34 minutes and 22 seconds. The implication here is 
that the network has to be stable in terms of no packet loss along the 
path for time scales of the order of tens of minutes (or some billions of 
packets), and corresponding transmission bit error rates that are less 
than 10–14. It also implies massive data sets to be transferred, because 
the amount of data passed in just one TCP congestion avoidance cycle is 
1.95 terabytes (1.95 x 1012 bytes). It is also the case that the TCP session 
cannot make full use of the available network bandwidth, because the 
average data transfer rate is 7.55 Gbps under these conditions, not 10 
Gbps. (See Figure 2).

Gigabit TCP: continued
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Figure 2: TCP Behavior at  
High Speed
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Clearly something is unexpected with this scenario, because it certainly 
looks like it is a difficult and lengthy task to fill a long-haul, high-
capacity cable with data, and TCP is not behaving as expected. Although 
experimenting with the boundaries of TCP is in itself an interesting 
area of research, some practical problems here could well benefit from 
this type of high-speed transport.

A commonly quoted example, and certainly one of the more impressive 
ones is the Large Hadron Collider at CERN:

“The CERN Particle Physics lab in Geneva, Switzerland, successfully 
transmitted a data stream averaging 600Mbytes per second for 10 
days to seven countries in Europe and the US. It was a crucial test 
of the computing infrastructure for the Large Hadron Collider being 
built at CERN. The LHC will be the most data intensive physics 
instrument ever built, generating 1500 Megabytes every second for a 
decade or more.”

—New Scientist, 30 April 2005

TCP and the Land Speed Record
The TCP Land Speed Record was originally an informal effort to 
achieve record-breaking TCP transfer speeds across IP networks. The 
late 1980s and early 1990s saw some noted milestones, particularly 
with Van Jacobson’s efforts in achieving sustained 10-Mbps and 45-
Mbps TCP transfer speeds.

This activity has been incorporated into the Internet2 program, with 
the introduction of some formal rules about what constitutes a TCP 
Land Speed effort. In particular, the rules now have times, distances, 
and TCP constraints, and they call for the use of operational networks. 
Updates to the record have been posted frequently in recent years, and 
as of May 2006 the IPv4 single stream record is a TCP session operating 
at 7.21 Gbps for 30 minutes over 30,000 km of fibre path.
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It is certainly possible to have TCP perform for sustained intervals at 
very high speed, as the land speed records for TCP show, but some-
thing else is happening here, and a set of preconditions need to be met 
before attempting to set a new record:

• First, it is good—indeed essential—to have the network path all to 
yourself. Any form of packet drop is a major problem here, so the 
best way to ensure no packets are lost is to keep the network path all 
to yourself.

• Secondly, it is good—indeed essential—to have a fixed latency. If the 
objective of the exercise is to reach a steady-state data transmission, 
then any change in latency, particularly a reduction in latency, has 
the risk of a period of oversending, which in turn has a risk of packet 
loss. So keep the network as stable as possible. 

• Thirdly, it is good—indeed essential—to have extremely low bit 
error rates from the underlying transmission media. Data corruption 
causes checksum failure, which causes packet drop.

• Lastly, it is essential to know in advance both the round-trip latency 
and the available bandwidth.

You can then multiply these two numbers together (RTT and band-
width), divide by the packet size, round down, and be sure to configure 
the sending TCP session to have precisely this buffer size, and the re-
ceiver to have a slightly larger size. And then start up the session. 

The intention here is for TCP to use slow start to the point where the 
sender runs out of buffer space, at which point it will continue to sit at 
this buffer speed for as long as the sender, receiver and network path 
all remain in a stable state. For the example configuration of a 10-Gbps 
system with 70 ms RTT, setting a buffer limit of 116,000 packets will 
cause the TCP session to operate at 9.94 Gbps. As long as the latency 
remains steady (no jitter), with no bit errors, and as long as there is no 
other cross traffic, in theory this sending rate can be sustained indefi-
nitely, with a steady stream of data packets being matched by a steady 
stream of ACK packets. 

Of course, this situation is artificially constrained. The real concerns 
here with the protocol are in the manner in which it shares a network 
path with other concurrent sessions as well as its ability to fill the avail-
able network capacity. In other words, what would be good to see 
is a high-speed, high-volume version of TCP that could coexist on a 
network with all other forms of traffic, and, perhaps more ambitiously, 
that this high-speed form of TCP could share the network fairly with 
other traffic sessions while at the same time making maximal use of 
the network. The problem with TCP in its current incarnation is that it 
takes way too long in its additive increase mode (congestion avoidance) 
to recover its sustainable operating speed when operating at high speed 
across transcontinental-size network paths. If we want very-high-speed 
TCP to be effective and efficient, then we need to look at changes to 
TCP for high-speed operation.

Gigabit TCP: continued
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High-Speed TCP
There are two basic approaches to high-speed TCP: parallelism of 
existing TCP, or changes to TCP to allow faster acceleration rates in a 
single TCP stream.

Using parallel TCP streams as a means of increasing TCP performance 
is an approach that has existed for some time. The original HTTP 
specification, for example, allowed the use of parallel TCP sessions to 
download each component of a Webpage (although HTTP 1.1 revert-
ed to a  sequential download model because the overheads of session 
startup appeared to exceed the benefits of parallel TCP sessions in this 
case). Another approach to high-speed file transfer through parallelism 
is that of GRID FTP. The basic approach is to split up the communica-
tions payload into numerous discrete components, and send each of 
these components simultaneously. Each component of the transfer can 
be between the same two endpoints (such as GRID FTP), or can be 
spread across multiple endpoints (as with BitTorrent).

But for parallel TCP to operate correctly, we need to have already as-
sembled all the data (or at a minimum know where all the data com-
ponents are located). Where the data is being generated in real time 
(such as observatories or particle colliders) in massive quantities, there 
may be no choice but to treat the data set as a serial stream and use a 
high-speed transport protocol to dispatch it. In this case the task is to 
adjust the basic control algorithms for TCP to allow it to operate at 
high speed, but also to operate “fairly” on a mixed-traffic high-speed 
network.

Parallel TCP
Using parallelism as a key to higher speed is a common computing 
technique, and lies behind many supercomputer architectures. The 
same can apply to data transfer, where a data set is divided into numer-
ous smaller chunks, and each component chunk is transmitted using its 
own TCP session. The underlying expectation here is that when using 
some number, N, of parallel TCP sessions, a single packet drop event 
will most probably cause the fastest of the N sessions to rate halve, be-
cause the fastest session will have more packets in flight in the network, 
and is therefore the most likely session to be impacted by a packet drop 
event. This session will then use congestion avoidance rate increase to 
recover, implying that the response to a single packet drop is reduction 
of the sending rate by at most 1/(2N). For example, using five parallel 
TCP sessions, the response to a single packet drop event is to reduce 
the total sending rate by 1/(2 × 5), or 1/10, as compared to the response 
from a single TCP session, where a single packet drop event would 
reduce the sending rate by ½.

A simulated version of five parallel sessions in a 10 Gbps session is 
shown in Figure 3.
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Figure 3: Parallel TCP Simulation: 
Single vs Parallel Streams 12
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The essential characteristic of the aggregate flow is that under lossless 
conditions the data flow of N parallel sessions increases at a rate N 
times faster than a single session in congestion avoidance mode. 
Also the response to an isolated loss event is that of rate halving of 
a single flow, so that the total flow rate under ideal conditions is 
between R and R × (2N – 1)/2N, or a long-term average throughput of  
R × (4N – 1)/4N. For N = 100 our theoretical 10-Gbps connection 
could now operate at 9.9 Gbps. 

Of course practice is different from theory, and a considerable amount 
of work has looked at the performance of parallel TCP under vari-
ous conditions, in terms of both maximizing throughput and choosing 
the most efficient number of parallel active streams to use. Part of the 
problem is that although simple simulations, such as that used to gen-
erate Figure 4, tend to evenly distribute each of the parallel sessions to 
maximize the throughput, there is the more practical potential that the 
individual sessions self-synchronize. Because the parallel sessions have 
a similar range of window sizes, it is possible that at a given point in 
time a similar number of packets will be in the network path from each 
stream. If the packet drop event is a multiple packet drop event, such 
as a tail-drop queue, then it is entirely feasible that numerous paral-
lel streams will experience packet loss simultaneously, and there is the 
consequential potential for the streams to fall into synchronization.

The two extremes, evenly distributed and tightly synchronized multiple 
streams, are indicated in Figure 4 The average throughput of parallel 
synchronized streams is the same as a single stream over extended peri-
ods in this simulation, and both are certainly far worse than an evenly 
distributed set of parallel streams. 

Gigabit TCP: continued
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Figure 4: Comparison of Parallel TCP: 
Synchronized and Distributed 
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One way to address this problem is to reunite these parallel streams 
into a single controlled stream that exhibits the same characteristics as 
evenly spread parallel streams. This approach, MulTCP, is considered 
in the next section.

If all this analysis of parallel TCP streams sounds a little academic and 
unrelated to networking today, it is useful to note that many Inter-
net Service Providers (ISPs) currently see BitTorrent traffic as their 
highest-volume application. BitTorrent is a peer-to-peer protocol that 
undertakes transfer of datasets using a highly parallel transfer tech-
nique. Under BitTorrent the original dataset is split into blocks, each of 
which can be downloaded in parallel. The subtle twist here is that the 
individual sessions do not have the same source points, and the host 
may take feeds from many different sources simultaneously, as well 
as offering itself as a feed point for the already downloaded blocks. 
This behavior exploits the peer-to-peer nature of these networks to a 
very high extent, potentially not only exploiting parallel TCP sessions 
for speed gains, but also exploiting diverse network paths and diverse 
data sources to avoid single path congestion. Considering its effective-
ness in terms of maximizing transfer speeds for high-volume datasets 
and its relative success in truly exploiting the potential of peer-to-peer 
networks—and of course the dramatic acceptance of BitTorrent and 
its extensive use—BitTorrent probably merits closer examination, but 
perhaps that is for another time and an article of its own.

Very High Speed Serial TCP
The other general form of approach is to reexamine the current TCP 
control algorithm to see if there are parameter or algorithm changes 
that could allow TCP to undertake a better form of rate adaptation 
to these high-capacity, long-delay network paths. The aim here is to 
achieve a good congestion response algorithm that does not amplify 
transient congestion conditions into sustained disaster areas, while at 
the same time being able to support high-speed data transfers, thereby 
making effective use of all available network capacity.
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We also want TCP to behave sensibly in the face of other TCP sessions, 
so that it can share the network with other TCP sessions fairly.

MulTCP
The first of these approaches is MulTCP[1], which is a single TCP 
stream that behaves in a manner equivalent to N parallel TCP sessions, 
where the virtual sessions are evenly distributed in order to achieve the 
optimal outcome in terms of throughput. The essential changes to TCP 
are in congestion avoidance mode and the reaction of packet loss. In 
congestion avoidance mode MulTCP increases its congestion window 
by N segments per RTT, rather than the default of a single segment. 
Upon packet loss, MulTCP reduces its window by W/(2N), rather than 
the default of W/2. MulTCP uses a slightly different version of slow 
start, increasing its window by 3 segments per received ACK, rather 
than the default value of 2. 

MulTCP represents a simple change to TCP that does not depart radi-
cally from the TCP congestion control algorithm. Of course when 
choosing an optimal value for N, some understanding of the network 
characteristics would help. If the value for N is too high, the MulTCP 
session has a tendency to claim an unfair amount of network capacity, 
but if the value is too low, it does not necessarily take full advantage 
of available network capacity. Figure 5 shows MulTCP compared to 
a simulation of an equivalent number of parallel TCP streams and a 
single TCP stream (N = 5 in this particular simulation).

Figure 5: MulTCP

12

10

8

6

4

2

0

Time (Hours)

MulTCP Simulation (N=5)

0.0 0.2 0.4 0.6 0.8 1.0

MulTCP

Single TCP StreamRa
te

 (G
bp

s)

Good as this is, there is the lingering impression that we can do better. 
It would be better not to have to configure the number of virtual paral-
lel sessions; it would be better to support fair outcomes when compet-
ing with other concurrent TCP sessions over a range of bandwidths; 
and it would be better to have a wide range of scaling properties.

Gigabit TCP: continued
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There is no shortage of options here for fine-tuning various aspects 
of TCP to meet some of these preferences, ranging from adaptations 
applied to the TCP rate control equation to approaches that view the 
loading onto the network as a power spectrum problem.

HighSpeed TCP
Another approach, described in [2], “HighSpeed TCP for Large Con-
gestion Windows” looks at this from the perspective of the TCP rate 
equations, developed by Sally Floyd at ICIR.

When TCP operates in congestion avoidance mode at an average speed 
of W packets per RTT, then the number of packets per RTT varies 
between (2/3)W and (4/3)W. Each cycle takes (2/3)W RTT intervals, 
and the number of packets per cycle is therefore (2/3)W2 packets. This 
result implies that the rate can be sustained at W packets per RTT as 
long as the packet loss rate is 1 packet loss per cycle, or a loss rate, ρ, 
where ρ = 1/((2/3)W2). Solving this equation for W gives the average 
packet rate per RTT of W = √(1.5)/√(ρ). The general rate function for 
TCP, R, is therefore: R = (MSS/RTT) × (√(1.5)/√(ρ)), where MSS is the 
TCP packet size.

Taking this same rate equation approach, what happens for N multiple 
streams? The ideal answer is that the parallel streams operate N times 
faster at the same loss rate, or, as a rate equation the number of packets 
per RTT, WN, can be expressed as WN = N((√(1.5)/√(ρ)), and each TCP 
cycle is compressed to an interval of (2/3) (WN

2/N2).

But perhaps the desired response is not to shift the TCP rate response by 
a fixed factor of N—as is the intent with MulTCP—but to adaptively 
increase the sending rate through increasing values of N as the loss rate 
falls. The proposition made by HighSpeed TCP is to use a TCP response 
function that preserves the fixed relationship between the logarithm of 
the sending rate and the logarithm of the packet loss rate, but alters the 
slope of the function, such that TCP increases its congestion avoidance 
increment as the packet loss rate falls. This relationship is shown in 
Figure 6 where the log of the sending rate is compared to the log of the 
packet loss rate. MulTCP preserves the same relationship between the 
log of the sending rate and the log of the packet loss rate, but alters the 
offset, whereas changing the value of the exponent of the packet loss 
rate causes a different slope in the rate equation.
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Figure 6: TCP Response Functions
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One way to look at the HighSpeed TCP proposal is that it operates 
in the same fashion as a turbocharger on an engine; the faster the 
engine is running, the higher the turbo-charged boost to the normal 
performance of the engine. Below a certain threshold value the TCP 
congestion avoidance function is unaltered, but when the packet loss 
rate falls below a certain threshold value then the higher speed conges-
tion avoidance algorithm is invoked. The higher-speed rate equation 
proposed by HighSpeed TCP is based on achieving a transfer rate of 
10 Gbps over a 100-ms latency path with a packet loss rate of 1 in 
10 million packets. Working backward from these parameters gives 
us a rate equation for W, the number of packets per RTT interval of 
W = 0.12/ρ0.835, approximately equivalent to a MulTCP session where 
the number of parallel sessions, N, is raised as the TCP rate increases. 

This result can be translated into two critical parameters for a modified 
TCP: the number of segments to be added to the current window size for 
each lossless RTT time interval, and the number of segments to reduce 
the window size in response to a packet loss event. Conventional TCP 
uses values of 1 and (½)W, respectively. The HighSpeed TCP approach 
increases the congestion window by 1 segment for TCP transfer rates 
up to 10 Mbps, but then uses an increase of some 6 segments per RTT 
for 100 Mbps, 26 segments at 1 Gbps and 70 segments at 10 Gbps. 
In other words the faster the TCP rate that has already been achieved, 
then the greater the rate acceleration. Highspeed TCP also advocates a 
smaller multiplicative decrease in response to a single packet drop, so 
that at 10 Mbps the multiplier would be ½, at 100 Mbps the multiplier 
is 1/3, at 1 Gbps it is 1/5, and at 10 Gbps it is set to 1/10.

What does this process look like? Figure 7 shows a HighSpeed TCP 
simulation. What is not easy to discern is that during congestion avoid-
ance HighSpeed TCP opens its sending window in increments of 53 
through 64 segments each RTT interval, making the rate curve slightly 
upward during this window expansion phase.

Gigabit TCP: continued
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HighSpeed TCP manages to recover from the initial rate halving from 
slow start in about 30 seconds, and operates at an 8-second cycle, as 
compared to the 38-minute cycle of a single TCP stream, or a 10-stream 
MulTCP session that operates at a 21-second cycle.

Figure 7: HighSpeed TCP 
Simulation
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One other aspect of this work concerns the so-called slow start algo-
rithm, which at these speeds is not really slow at all. The final RTT in-
terval in our scenario has TCP attempting to send an additional 50 MB 
of data in just 70 ms, meaning an additional 33,333 packets are pushed 
into the network queues. Unless the network path is completely idle at 
this point, it is likely that hundreds—if not thousands—of these pack-
ets will be dropped in this step, pushing TCP back into a restart cycle. 
HighSpeed TCP has proposed a limited slow start to accompany High-
Speed TCP that limits the inflation of the sending window to a fixed 
upper rate per RTT to avoid this problem of slow start overwhelming 
the network and causing the TCP session to continually restart. Other 
changes for HighSpeed TCP are to extend the limit of three duplicate 
ACKs before retransmitting to a higher value, and a smoother recovery 
when a retransmitted packet is itself dropped.

Scalable TCP
Of course HighSpeed TCP is not the only offering in the high-per-
formance TCP stakes.

Scalable TCP[3], developed by Tom Kelly at Cambridge University, at-
tempts to break the relationship between TCP window management 
and the RTT time interval. It does this by noting that in “convention-
al” TCP, the response to each ACK in congestion avoidance mode is 
to inflate the sender’s congestion window size (cwnd) by (1/cwnd), 
thereby ensuring that the window is inflated by 1 segment each RTT 
interval. Similarly the window halving on packet loss can be expressed 
as a reduction in size by (cwnd/2). Scalable TCP replaces the additive 
function of the window size by the constant value a.
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The multiplicative decrease is expressed as a fraction b, which is ap-
plied to the current congestion window size. 

In Scalable TCP, for each ACK the congestion window is inflated by 
the constant value a, and upon packet loss the window is reduced by 
the fraction b. The relative performance of Scalable TCP as compared 
to conventional TCP and MulTCP is shown in Figure 8. 

The essential characteristic of Scalable TCP is the use of a multiplica-
tive increase in the congestion window, rather than a linear increase, 
effectively creating a higher frequency of oscillation of the TCP session, 
probing upward at a higher rate and more frequently than HighSpeed 
TCP or MulTCP. The frequency of oscillation of Scalable TCP is inde-
pendent of the RTT interval, and the frequency can be expressed as f 
= log(1 – b) / log(1 + a). In this respect, longer networks paths exhibit 
similar behavior to shorter paths at the bottleneck point. Scalable TCP 
also has a linear relationship between the log of the packet loss rate and 
the log of the sending rate, with a greater slope of HighSpeed TCP.

Figure 8: Scalable TCP
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BIC and CUBIC
The common concern here is that TCP underperforms in those areas of 
application where there is a high bandwidth-delay product. The com-
mon problem observed here is that the additive window inflation al-
gorithm used by TCP can be very inefficient in long-delay, high-speed 
environments. As can be seen in Figure 10, the ACK response for TCP 
is a congestion window inflation operation where the amount of infla-
tion of the window is a function of the current window size and some 
additional scaling factor.

Binary Increase Congestion Control (BIC)[4] takes a different view, by 
assuming that TCP is actively searching for a packet sending rate that 
is on the threshold of triggering packet loss, and uses a binary chop 
search algorithm to achieve this efficiently.

Gigabit TCP: continued
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When BIC performs a window reduction in response to packet drop, 
it remembers the previous maximum window size, as well as the cur-
rent window setting. With each lossless RTT interval BIC attempts to 
inflate the congestion window by one half of the difference between the 
current window size and the previous maximum window size. In this 
way BIC quickly attempts to recover from the previous window reduc-
tion, and, as BIC approaches the old maximum value, it slows down its 
window inflation rate, halving its rate of window inflation each RTT. 
This process is not quite as drastic as it may sound, because BIC also 
uses a maximum inflation constant to limit the amount of rate change 
in any single RTT interval. The resultant behaviour is a hybrid of a lin-
ear and a non-linear response, where the initial window inflation after 
a window reduction is a linear increase, but as the window approaches 
the previous point where packet loss occurred the rate of window in-
crease slows down. BIC uses the complementary approach to window 
inflation when the current window size passes the previous loss point. 
Initially further window inflation is small, and the size of the window 
inflation value doubles for each RTT, up to a limit value, beyond which 
the window inflation is once more linear.

BIC can be too aggressive in low RTT networks and in slower speed 
situations, leading to a refinement of BIC, namely CUBIC[5]. CUBIC 
uses a third-order polynomial function to govern the window infla-
tion algorithm, rather than the exponential function used by BIC. The 
cubic function is a function of the elapsed time since the previous win-
dow reduction, rather than the implicit use by BIC of an RTT counter, 
so that CUBIC can produce fairer outcomes in a situation of multiple 
flows with different RTTs. CUBIC also limits the window adjustment 
in any single RTT interval to a maximum value, so the initial window 
adjustments after a reduction are linear. Here the new window size, W, 
is calculated as W = C(t – K)3 + Wmax, where C is a constant scaling 
factor, t is the elapsed time since the last window reduction event, Wmax 
is the size of the window prior to the most recent reduction and K is 
a calculated value: K = (Wmax β / C)1/3. This function is more stable 
when the window size approaches the previous window size Wmax. The 
use of a time interval rather than an RTT counter in the window size 
adjustment is intended to make CUBIC more sensitive to concurrent 
TCP sessions, particularly in short RTT environments. 

Figure 9 shows the relative adjustments for BIC and CUBIC, using a 
single time base. The essential difference between the two algorithms is 
evident in that the CUBIC algorithm attempts to reduce the amount of 
change in the window size when near the value where packet drop was 
previously encountered.
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Figure 9: Window Adjustment 
for BIC and CUBIC
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Westwood
The “steady state” mode of TCP operation is one that is characterized 
by the “sawtooth” pattern of rate oscillation. The additive increase 
is the means of exploring for viable sending rates while not causing 
transient congestion events by accelerating the sending rate too quick-
ly. The multiplicative decrease is the means by which TCP reacts to a 
packet loss event that is interpreted as being symptomatic of network 
congestion along the sending path. 

BIC and CUBIC concentrate on the rate increase function, attempting 
to provide for greater stability for TCP sessions as they converge to a 
long-term available sending rate. The other perspective is to examine 
the multiplicative decrease function, to see if there is further informa-
tion that a TCP session can use to modify this rate decrease function.

The approach taken by Westwood[6], and a subsequent refinement, 
Westwood+[7], is to concentrate on the halving by TCP of its congestion 
window in response to packet loss (as signaled by three duplicate ACK 
packets). The conventional TCP algorithm of halving the congestion 
window can be refined by the observation that the stream of return 
ACK packets actually provides an indication of the current bottleneck 
capacity of the network path, as well as an ongoing refinement of the 
minimum RTT of the network path. The Westwood algorithm main-
tains a bandwidth estimate by tracking the TCP acknowledgement 
value and the inter-arrival time between ACK packets in order to esti-
mate the current network path bottleneck bandwidth. This technique 
is similar to the “Packet Pair” approach, and that used in the TCP 
Vegas. In the case of the Westwood approach the bandwidth estimate is 
based on the receiving ACK rate, and is used to set the congestion win-
dow, rather than the TCP send window. The Westwood sender keeps 
track of the minimum RTT interval, as well as a bandwidth estimate 
based on the return ACK stream. In response to a packet loss event, 
Westwood does not halve the congestion window, but instead sets it to 
the bandwidth estimate times the minimum RTT value.

Gigabit TCP: continued
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If the current RTT equals the minimum RTT, implying that there are 
no queue delays over the entire network path, then the sending rate is 
set to the bandwidth of the network path. If the current RTT is greater 
than the minimum RTT, the sending rate is set to a value that is lower 
than the bandwidth estimate, and allows for additive increase to once 
again probe for the threshold sending rate when packet loss occurs. 

The major concern here is the potential variation in inter-ACK tim-
ing, and although Westwood uses every available data and ACK pair-
ing to refine the current bandwidth estimate, the approach also uses a 
low pass filter to ensure that the bandwidth estimate remains relatively 
stable over time. The practical result here is that the receiver may be 
performing some form of ACK distortion, such as a delayed ACK re-
sponse, and the network path contains jitter components in both the 
forward and reverse direction, so that ACK sequences can arrive back 
at the sender with a high variance of inter-ACK arrival times. West-
wood+ further refines this technique to account for a false high reading 
of the bandwidth estimate due to ACK compression, using a minimum 
measurement interval of the greater of the RTT or 50 ms.

The intention here is to ensure that TCP does not over-correct when 
it reduces its congestion window, so that the problems relating to the 
slow inflation rate of the window are less critical for overall TCP per-
formance. The critical part of this work lies in the filtering technique 
that takes a noisy sequence of measurement samples and applies an 
anti-aliasing filter followed by a low-pass discrete-time filter to the data 
stream in order to generate a reasonably accurate available bandwidth 
estimate. This estimate is coupled with the minimum RTT measure-
ment to provide a lower bound for the TCP congestion window setting 
following detection of packet loss and subsequent fast retransmit re-
pair of the data stream. If the packet loss is caused by network conges-
tion the new setting will be lower than the threshold bandwidth (lower 
by the ratio RTTmin / RTTcurrent), so that the new sending rate will also 
allow the queued backlog of traffic along the path to clear. If the packet 
loss is caused by media corruption, the RTT value will be closer to the 
minimum RTT value, in which case the TCP session-rate backoff is 
smaller, allowing for a faster recovery of the previous data rate.

Although this approach has direct application in environments where 
the probability of bit-level corruption is intermittently high, such as of-
ten encountered with wireless systems, it also has some application to 
the long-delay, high-speed TCP environment. The rate backoff of TCP 
Westwood is one that is based on the RTTmin / RTTcurrent ratio, rather 
than rate halving in conventional TCP, or a constant ratio, such as used 
in MulTCP, allowing the TCP session to oscillate its sending rate closer 
to the achievable bandwidth rather than performing a relatively high-
impact rate backoff in response to every packet loss event.
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H-TCP
The observation made by the proponents of H-TCP[9] is that better 
TCP outcomes on high-speed networks is achieved by modifying 
TCP behavior to make the time interval between congestion events 
smaller. The signal that TCP has taken up its available bandwidth is a 
congestion event, and by increasing the frequency of these events TCP 
will track this resource metric with greater accuracy. To achieve this 
tracking, the H-TCP proponents argue that both the window increase 
and decrease functions may be altered, but in deciding whether to alter 
these functions, and in what way, they argue that a critical factor lies 
in the level of sensitivity to other concurrent network flows, and the 
ability to converge to stable resource allocations to various concurrent 
flows. 

“While such modifications might appear straightforward, it has been 
shown that they often negatively impact the behaviour of networks of 
TCP flows. High-speed TCP and BIC-TCP can exhibit extremely slow 
convergence following network disturbances such as the start-up of 
new flows; Scalable-TCP is a multiplicative-increase multiplicative-
decrease strategy and as such it is known that it may fail to converge 
to fairness in drop-tail networks.”

Work-in-progress: draft-leith-tcp-htcp-01.txt

H-TCP argues for minimal changes to the window control functions, 
observing that in terms of fairness a flow with a large congestion window 
should, in absolute terms, reduce the size of their window by a larger 
amount that smaller-sized flows, as a means of readily establishing a 
dynamic equilibrium between established TCP flows and new flows 
entering the same network path.

H-TCP proposes a timer-based response function to window inflation, 
where for an initial period, the existing value of one segment per 
RTT is maintained, but after this period the inflation function is a 
function of the time since the last congestion event, using an order-2 
polynomial function where the window increment in each RTT interval, 
α = (½T2 + 10T + 1), where T is the elapsed time since the last packet 
loss event. This equation is further modified by the current window 
reduction factor β where α’ = 2 × (1 – β) × α. 

The window reduction multiplicative factor, β, is based on the variance 
of the RTT interval , and β is set to RTTmin / RTTmax for the previous 
congestion interval, unless the RTT has a variance of more than 20 
percent, in which case the value of ½ is used. 

H-TCP appears to represent a further step along the evolutionary path 
for TCP, taking the adaptive window inflation function of HighSpeed 
TCP, using an elapsed timer as a control parameter as was done in 
Scalable TCP, and using the RTT ratio as the basis for the moderation 
of the window reduction value from Westwood.

Gigabit TCP: continued
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FAST
FAST[10] is another approach to high-speed TCP. FAST is probably best 
viewed in context in terms of the per packet response of the various 
high speed TCP approaches, as indicated in the following Control and 
Response table:

Type Control Method Trigger Response

TCP AIMD(1,0.5) ACK response 
Loss response

W = W + 1/W 
W = W –  W × 0.5

MulTCP AIMD(N,1/2N) ACK response 
Loss response

W = W + N/W 
W = W –  W × 1/2N

HighSpeed TCP AIMD(a(w), b(w)) ACK response 
Loss response

W = W + a(W)/W 
W = W –  W × b(W)

Scalable TCP MIMD(1/100, 1/8) ACK response 
Loss response

W = W + 1/100 
W = W –  W × 1/8

FAST RTT Variation RTT W = W × (base RTT/RTT) + α 

All these approaches share a common structure of window adjustment, 
where the sender’s window is adjusted according to a control function 
and a flow gain. TCP, MulTCP, HighSpeed TCP, Scalable TCP, BIC, 
CUBIC, Westwood, and H-TCP all operate according to a congestion 
measure that is based on ACK clocking and a packet loss trigger. What 
is happening in these models is that a bottleneck point on the network 
path has reached a level of saturation such that the bottleneck queue 
is full and packet loss is occurring. It is noted that the build up of the 
queue prior to packet loss would have caused a deterioration of the 
RTT. 

This fact leads to the observation made by FAST, that another form 
of congestion signalling is one that is based on RTT variance, or 
cumulative queuing delay variance. FAST is based on this latter form 
of congestion signalling. 

FAST attempts to stabilize the packet flow at a rate that also stabilizes 
queue delay, by basing its window adjustment, and therefore its 
sending rate, such that the RTT interval is stabilized. The window 
response function is based on adjusting the window size by the 
proportionate amount that the current RTT varies from the average 
RTT measurement. If the current RTT is lower than the average, 
then window size is increased, and if the current RTT is higher then 
window size is decreased. The amount of window adjustment is based 
on the proportionate difference between the two values, leading to the 
observation that FAST exponentially converges to a base RTT flow 
state. By comparison, conventional TCP has no converged state, but 
instead oscillates between the rate at which packet loss occurs and 
some lower rate (Figure 10).
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Figure 10: TCP Response Function 
vs. FAST
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FAST maintains an exponential weighted average RTT measurement 
and adjusts its window in proportion to the amount by which the 
current RTT measurement differs from the weighted average RTT 
measurement. It is harder to provide a graph of a simulation of FAST as 
compared to the other TCP methods, and the more instructive material 
has been gathered from various experiments using FAST. 

XCP — End-to-End and Network Signalling
It is possible to also call in the assistance of the routers on the path 
and call on them to mark packets with signaling information relating 
to current congestion levels. This approach was first explored with 
the concept of ECN, or Explicit Congestion Notification, and has 
been generalized into a transport flow control protocol, called XCP,[11] 

where feedback relating to network load is based on explicit signals 
provided by routers relating to their relative sustainable load levels. 
Interestingly this digresses from the original design approach of TCP, 
where the TCP signaling is set up as effectively a heartbeat signal being 
exchanged by the end systems, and the TCP flow control process is 
based upon interpretation of the distortions of this heartbeat signal by 
the network. 

XCP appears to be leading into a design approach where the network 
switching elements play an active role in end-to-end flow control, by 
effectively signalling to the end systems the current available capacity 
along the network path. This setup allows the end systems to respond 
rapidly to available capacity by increasing the packet rate to the point 
where the routers along the path signal that no further capacity is 
available, or to back off the sending rate when the routers along the 
path signal transient congestion conditions. 

Whether such an approach of using explicit router-to-end host signals 
leads to more efficient very high-speed transport protocols remains to 
be determined, however.

Gigabit TCP: continued
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Where Next?
The basic question here is whether we have reached some form of 
fundamental limitation of the TCP window-based congestion control 
protocol, or whether it is a case that the window-based control system 
remains robust at these speeds and distances, but that the manner of 
control signalling will evolve to adapt to an ever-widening range of 
speed extremes in this environment. 

Rate-based pacing, as used in FAST can certainly help with the problem 
of the problem of guessing what are “safe” window inflation and 
reduction increments, and it is an open question as to whether it is even 
necessary to use a window inflation and deflation algorithm or whether 
it would be more effective to head in other directions, such as rate 
control, RTT stability control or adding additional network-generated 
information into the high-speed control loop. Explicit router-based 
signaling, such as described in XCP, allows for quite precise controls 
over the TCP session, although what is lost there is the adaptive ability 
to deploy the control system over any existing IP network.

However, across all these approaches, the basic TCP objectives remain 
the same: what we want is a transport protocol that can use the 
available network capacity as efficiently as possible—and as quickly as 
possible—minimizing the number of retransmissions and maximizing 
the effective data throughput.

We also want a protocol that can adapt to other users of the network, 
and attempt to fairly balance its use with competing claims for network 
resources.

The various approaches that have been studied to date all represent 
engineering compromises in one form or another. In attempting 
to optimize the instantaneous transfer rate the congestion control 
algorithm may not be responsive to other concurrent transport sessions 
along the same path. Or in attempting to optimize fairness with other 
concurrent sessions, the control algorithm may be unresponsive to 
available network path capacity. The control algorithm may be very 
unresponsive to dynamic changes in the RTT that may occur during 
the session because of routing changes in the network path. Which 
particular metrics of TCP performance are critical in a heterogeneous 
networking environment is a topic where we have yet to see a clear 
consensus emerging from the various research efforts. 

However, we have learned a few things  about TCP that form part 
of this consideration of where to take TCP in this very-high-speed 
world:

• The first lesson is that TCP has been so effective in terms of overall 
network efficiency and mutual fairness because everyone uses much 
the same form of TCP, with very similar response characteristics. If 
we all elected to use radically different control functions in each of 
our TCP implementations then it appears likely that we would have 
a poorly performing chaotic network subject to extended conditions 
of complete overload and inefficient network use. 
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• The second lesson is that a transport protocol does not need to 
solve media level or application problems. The most general form 
of transport protocol should not rely on characteristics of specific 
media, but should use specific responses from the lower layers of the 
protocol stack in order to function correctly as a transport system.

• The third lesson from TCP is that a transport protocol can become 
remarkably persistent and be used in contexts that were simply not 
considered in the original protocol design, so any design should be 
careful to allow generous margins of use conditions.

• The final lesson is one of fair robustness under competition. Does the 
protocol negotiate a fair share of the underlying network resource 
in the face of competing resource claims from concurrent transport 
flows?

Of all these lessons, the first appears to be the most valuable and 
probably the most difficult to put into practice. The Internet works as 
well as it does today largely because we all use the much same transport 
control protocol. If we want to consider some changes to this control 
protocol to support higher-speed flows over extended latency, then it 
would be perhaps reasonable to see if there is a single control structure 
and a single protocol that we can all use. 

So deciding on a single approach for high-speed flows in the high-
speed Internet is perhaps the most critical part of this entire agenda 
of activity. It is one thing to have a collection of differently controlled 
packet flows each operating at megabits-per-second flow rates on a 
multi-gigabit network, but it is quite a frightening prospect to have all 
kinds of different forms of flows each operating at gigabits per second 
on the same multigigabit network. If we cannot make some progress in 
reaching a common view of a single high-speed TCP control algorithm 
then it may indeed be the case that none of these approaches will operate 
efficiently in a highly diverse high-speed network environment.
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Further Reading 
There is a wealth of reading on this topic, and here any decent search 
engine can assist. However if you are interested in this topic and want 
a starting reference that describes it in a very careful and structured 
manner, then I can recommend the following two sources as a good 
way to start exploring this topic to gain an overview of the current 
state of the art in this area:
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• “HighSpeed TCP for Large Congestion Windows,” S. Floyd, RFC 
3649, December 2003.

 Floyd’s treatment of this topic is precise, encompassing, and 
wonderfully presented. If only all RFCs were of this quality.

• Proceedings of the Workshops on Protocols for Fast Long-Distance 
Networks.

 These workshops have been held in:

2003: http://datatag.web.cern.ch/datatag/pfldnet2003/

2004: http://www-didc.lbl.gov/PFLDnet2004/program.htm

2005: http://www.ens-lyon.fr/LIP/RESO/pfldnet2005/

References
 [1] “Differentiated End-to-End Internet Services Using a Weighted 

Proportional Fair Sharing TCP,” J. Crowroft and P. Oechcslin, 
ACM SIGCOMM Computer Communication Review, Volume 
28, No. 3, pp. 53–69, July 1998.

 [2] “HighSpeed TCP for Large Congestion Windows,” S. Floyd, RFC 
3649, December 2003.

 [3] “Scalable TCP: Improving Performance in High-Speed Wide 
Area Networks,” T. Kelly, ACM SIGCOMM Computer Commu-
nication Review, Volume 33, No. 2, pp. 83–91, April 2003.

 [4] “Binary Increase Congestion Control (BIC) for Fast Long-Dis-
tance Networks,” L. Xu, K. Harfoush, and I. Rhee, Proceedings 
of IEEE INFOCOMM 2004, March 2004.

 [5] “CUBIC: A New TCP-Friendly High-Speed TCP Variant,” I. 
Rhee, L. Xu,

  http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
cubic-paper.pdf, February 2005.

 [6] “TCP Westwood: Congestion Window Control Using Bandwidth 
Estimation,” M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. 
Casetti, and S. Mascolo, Proceedings of IEEE Globecom 2001, 
Volume 3, pp. 1698–1702, November 2001. 

 [7] “Linux 2.4 Implementation of Westwood+ TCP with Rate- 
Halving: A Performance Evaluation over the Internet,” A. 
Dell’Aera, L. A. Greco, and S. Mascolo, Tech. Rep. No. 08/03/S, 
Politecnico di Bari, http://deecal03.poliba.it/mascolo/
tcp%20westwood/Tech_Rep_08_03_S.pdf

 [8] “End-to-end Internet packet dynamics,” V. Paxson, Proceedings 
of ACM SIGCOMM 97, pp. 139–152, 1997.

 



The Internet Protocol Journal
26

[9]  “H-TCP: TCP Congestion Control for High Bandwidth-Delay 
Product Paths,” D. Leith, R. Shorten, Work in Progress, June 
2005. Internet Draft: draft-leith-tcp-htcp-00.txt

 [10] “FAST TCP: Motivation, Architecture, Algorithms, Perfor-
mance,” C. Jin, X. Wei, and S. H. Low, Proceedings of IEEE 
INFOCOM 2004, March 2004. 

 [11] “Congestion Control for High Bandwidth-Delay Product 
Networks,” D. Katabi, M. Handley, and C. Rohrs, ACM 
SIGCOMM Computer Communication Review, Volume 32, 
No. 4, pp. 89–102, October 2002.

 [12] “TCP Performance,” Geoff Huston, The Internet Protocol 
Journal, Volume 3, No. 2, June 2000.

 [13] “The Future for TCP,” Geoff Huston, The Internet Protocol 
Journal, Volume 3, No. 3, September 2000.

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University. 
He has been closely involved with the development of the Internet for almost two 
decades, particularly within Australia, where he was responsible for the initial build of 
the Internet within the Australian academic and research sector, and has served time 
with Telstra, where he was the Chief Scientist in the company’s Internet area. Geoff 
is currently the Internet Research Scientist at the Asia Pacific Network Information 
Centre (APNIC). He has been a member of the Internet Architecture Board, and 
currently co-chairs three Working Groups in the IETF. He is author of several Internet-
related books. E-mail: gih@apnic.net

Gigabit TCP: continued



The Internet Protocol Journal
27

How Instant Messaging Is Transforming the Enterprise Network
by David Strom

I  nstant Messaging (IM) has come of age and is close to becoming 
one of those protocols that offers something for everyone. Once 
the province of chatty teens looking to replace phone conversations 

with electronic ones, IM is now a corporate mainstay and part of a 
new breed of applications that are built around “presence detection,” 
the ability to determine when someone—or something—is online and 
available to communicate.

Indeed, IM is rapidly spreading across the corporate world and 
becoming an able replacement for overflowing voicemail and e-mail 
inboxes that are clogged with spam and buried in irrelevant and non-
time-sensitive postings. If you must get through to a busy corporate 
executive, IM is becoming the fastest and most effective method of 
communicating. Move over CrackBerry. 

IM offers several benefits today, having taken some lessons learned 
by other Internet protocols of the past. First, it has a solid user and 
developer base. Second, it has a relatively simple building-block 
structure like the best of Internet protocols, with well-defined clients 
and servers. Third, interoperability efforts are beginning to pay off 
among the leading independent and private IM systems. Fourth, 
open-source rules are making inroads in all the right places. Fifth, 
Microsoft is a friend (for once) of IM and helping matters—rather 
than playing its usual monopolist role in this space, the company is 
actually encouraging future developments and interoperability. Finally, 
a new collection of advanced applications is taking hold that will take 
advantage of the existing Internet and IM infrastructure and create 
some very sophisticated IM applications. 

Let’s examine more closely where IM originated, where it is going, 
and what the specific implications are for each of these developments 
and for networking professionals. As a warning, this article by its very 
nature takes some positions on products and vendors. These opinions 
are solely those of the author, and they represent nothing wider or 
more inclusive.

User Base
The IM servers are operated by either public network or private entities. 
The major difference between the two is that the public systems operate 
across the Internet and can be accessed by any users who download 
the appropriate client software and create their own identity. Message 
traffic is usually transmitted in plaintext and without any encryption 
whatsoever.
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The private IM systems are usually maintained by a corporate IT 
department and operate behind firewalls; they offer message encryption, 
message retention, and archiving; prepopulated buddy lists that are 
integrated into the corporate authentication and directory servers; 
and better security and privacy that are specific to a particular set of 
corporate users. These private systems are not available to the public and 
are designed strictly for employee communications or communications 
among particular trading partners of the corporation

The four most popular public IM systems are currently all in corporate 
hands: Microsoft, Yahoo, eBay/Skype, and AOL. Actually, we should 
make that five systems because AOL owns two separate networks, 
AOL Instant Messenger (AIM) and I seek you (ICQ). Introduced 
in November 1996, ICQ was actually the first general-purpose IM 
system combining presence or a list of contacts with the ability to send 
messages. Other popular systems include the open-source Jabber and 
Tencent QQ, the latter very popular in China. Estimates vary widely as 
to the total number of nonduplicated users—because many people have 
multiple accounts and use multiple systems—but it is safe to say that 
more than 150 million users are active across all these systems at any 
moment. The most recent estimates of active users are as follows:[1]

IM System Estimate of Active Users

AIM 53 million active users

ICQ 15 million active users

Skype 10 million active users

MSN Messenger 29 million active users

Yahoo Messenger 21 million active users

Jabber 13.5 million enterprise users

Tencent QQ 10 million active users

Why IM Is So Popular for Businesses
But these numbers are more about individuals using IM. They hide the 
real story over the past several years, the rise of IM as a solid enterprise 
communications tool. Corporate IM usage has skyrocked the last 
several years, and one survey has found IM users in more than 50 
percent of American corporations[2]. As mentioned earlier, there are 
public and private IM systems. The vast majority of the private IM 
systems are for institutional use for communications inside a company 
or among several suppliers, customers, and other trading partners. 

The largest players in the private IM space are Microsoft Office Live 
Communications Server and IBM/Lotus’ Sametime, although Jabber 
Corporation (not to be confused with the Jabber Software Foundation) 
is also gaining a strong following. We will discuss more about the role 
of open source in a moment, but first let’s examine the reasons why IM 
has become so popular among so many business users.

Instant Messaging: continued
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First, workers have become more mobile and more difficult to track 
down. As secretarial support disappears and voicemail becomes more 
the norm, you want to know when people are actually at their desk—
or laptop—these days. Staffs are more far-flung, and the global village 
becomes a lot smaller when you use IM to “talk” to someone halfway 
across the planet and get an immediate response. Finding someone who 
is available requires more than just making a phone call or exchang-
ing e-mail messages. IM automatically tells you who is available—and 
who is not—at any given hour of the day.

Second, e-mail is no longer the productivity tool it once was because 
pipes are clogged with spam, viruses, and phishing attacks. Getting a 
quick response—that is, within minutes—through e-mail now seems so 
quaint, so “last year.”

Third, IM enables better collaboration and a tighter sense of commu-
nity. With IM, you can educate an entire team, give the team feedback 
in real time, develop relationships, and cement the team together. It is a 
nice antidote and countermeasure to connect all these home-based and 
remote workers.

Fourth, the next generation of IM is not just about text chats; it also 
offers solid integration with voice and video. Voice and video calling is 
now part of Microsoft, Yahoo, Apple, and AOL IM software as well 
as part of the Skype network, which pioneered the feature. These au-
dio and video extensions are becoming more popular with the private 
Lotus and Microsoft systems as well.

Finally, the real-time features of IM and its ability to track someone 
down no matter where they are located are attractive to customers, 
partners, and suppliers that need a guaranteed method of communica-
tion. IM is becoming the critical technology ingredient for corporations 
that are looking for faster response times, tying their customers closer 
together, and enabling teleworkers to communicate across the globe.

Components
Following are some definitions and explanations for those unfamiliar 
with the world of IM. Every IM network is composed of clients, servers, 
and protocols to connect them.

Each IM client has three major pieces:

• A buddy list or roster of friends with whom you wish to com-
municate—The list is organized by groups that you specify, such 
as “friends,” “work colleagues,” “family,” and so forth. The list 
indicates who is online, who is available to talk to, and who is 
offline or blocked by the user from communicating. Users organize 
their buddies in different ways and have complete control over the 
categories, naming conventions, and the like.
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• A separate window that shows the text chats in process—Users type 
in this window and view the responses of their correspondents.

• Any additional features for video and audio chats and for file transfers 
between users

The last item bears some further discussion. All major IM products are 
moving beyond their roots of simple text chats toward more integrated 
and sophisticated communications, including real-time voice and video 
calls. Indeed, the mixture of Voice over IP (VoIP) and IM is a potent 
and popular one, accounting for the rapid uptake in Skype’s adoption 
around the world. To use Skype as an example (although Yahoo has 
begun offering similar phone calling features in its IM client, and the 
others are soon to follow), users can make phone calls to the land-line 
phone numbers for a few pennies per minute—even calls to numbers in 
other countries. This is part of its attraction, along with voice mailboxes 
that are attached to a particular IM username.

The IM server maintains the directory of user accounts and keeps track 
of who is online, and in most cases routes messages among users. The 
major difference between an IM server and a Simple Mail Transfer 
Protocol (SMTP) e-mail server is that the IM server operates in real 
time, sending messages back and forth between two users as they finish 
typing a line of text. The servers also pass information in real time as to 
the availability of various users in the directory, when they come online 
and change their “status” message.

Users can typically set their availability in one of many different 
modes:

• Online and ready to receive messages

• Away from the computer, in which case correspondents receive a 
message saying so (or whatever the user wishes to be displayed)

• Unavailable or offline

• Blocked from anyone’s view for privacy reasons

This status message can be changed at the user’s discretion and is one 
of the main attractions for teens and other hypercommunicators. You 
can actually track what people are doing (or at least, saying that they 
are doing), by monitoring their status messages. (I am at the beach, I 
am taking a nap, I am at lunch, I am having coffee, and so forth.) For 
my teenaged daughter, this is one way she documents her life and one 
way that her friends can keep track of her—having a cell phone is not 
enough! There are numerous third-party add-ins to enhance your away 
message with clever graphics, hyperlinks to various Websites, and other 
effluvia as well.

The combination of instant access and persistent status indicator is at 
the core of why IM is such a powerful application. In a single window 
on your computer, you have a list of all your correspondents and can 
quickly determine who is online and who is not.

Instant Messaging: continued
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The blocking ability for some systems works universally, meaning that 
your presence is cloaked for everyone, as well as for specific users that 
you do not wish to communicate with or know your particular status, 
such as ex-spouses or ex-colleagues.  

In most IM networks, you can be signed on from only one computer at 
any given moment. If you attempt to sign on from a second machine, 
you get an error message or your first computer is automatically logged 
out of the system. This is one way for the network to keep track of 
where you are located, because you can be in only one place at any 
given time.

Each server uses the TCP/IP Internet infrastructure and communicates 
with its clients over an assigned port number across the Internet. These 
ports can be blocked or proxied to different numbers, depending on 
the network administrator’s policies toward IM traffic. Typical port 
numbers follow:

IM System Port Numbers

ICQ 4000

AIM 5190–3

XMPP 5222–3

MSNP (Microsoft) 1863

YMSG (Yahoo) 5050

Skype 80, 443, and others

Notice an interesting thing about Skype’s protocol: there is no single 
assigned port number. Users can set one of the ports in its configuration 
settings, but Skype uses a series of ports to communicate.[3] This setup 
suggests several concerns, which we address next. 

The Dark Side
Although these are all compelling reasons for the rise of IM across 
the corporate network, all is not constructive with IM. This section 
discusses problems specifically germane to Skype and problems with 
all IM products in general.

When the Skype client is installed on a computer, it picks a random port 
to communicate with other Skype computers, using what is believed 
to be a form of Request for Comments (RFC) 3489[4]. This process 
is similar to many network-based games and peer-to-peer file-sharing 
products—no surprise because the developers of Skype worked on the 
Kazaa music file-sharing software. Because of its programming model, 
Skype is adept at traversing Network Address Translation (NAT) 
routers and can usually find a communications path to the outside 
world. Skype also encrypts all its message traffic, and this fact coupled 
with random port usage and its peer-to-peer programming model 
makes it look very similar to some malicious code that is unleashed 
across your network.



The Internet Protocol Journal
32

This is part of its charm and its challenge: network administrators who 
want to block Skype usage usually have a very difficult time figuring 
out how to do so[5], and may have to resort to third-party blocking 
products or clever configurations. One of the papers listed in [3] shows 
a way to block Skype using the popular open-source Squid caching 
proxy: not only do you have to prevent outbound User Datagram 
Protocol (UDP) connections over port 443, but you also must prevent 
connections to numeric IP addresses. 

Although Skype has its own problems because of the way it is designed, 
there are several significant drawbacks to widespread adoption and 
deployment of any IM application. IM is not immune to infections, 
and just as its popularity is on the increase, so are ways to send 
malicious payloads and attacks too. What makes matters worse with 
IM versus say, e-mail, is its very instant nature: an infection can easily 
spread across a network in a matter of seconds, given that users are 
logged in, have long lists of users, and tend to think that any message 
coming from their respondents is more trusted than the average e-mail. 
In addition, Internet chat has long been a mechanism for controlling 
large-scale bot-nets of zombie computers, whose owners are unaware 
of such usage. Numerous virus authors have used exploits in Internet 
Relay Chat, for example, to control their villains across the Internet. 

To avoid these problems, many corporations have either designed their 
own or are using one of several commercial IM protection products 
to screen incoming messages for particular patterns and methods of 
attack. The IM protection products work just like antivirus products 
work with e-mail messages: they download pattern files on a regular 
basis from a central server, and perform deep packet inspection across 
a perimeter to determine what is malicious and what is not.

Interoperability
Each public IM system is an island unto itself: users on one cannot 
easily communicate with users of another, unless one of two things 
happens:

• A user runs one of the multisystem client programs that allows them 
to sign in to multiple systems concurrently. Still, using these types of 
products means that just the user can communicate with his or her 
“buddies” across systems. Many mostly free products that enable 
this are available[6].

• A private IM operator can combine more than one protocol inside 
the IM server application. This approach means that clients need not 
know or care about other IM protocols, such as using Microsoft’s 
Live Communications Server 2005[7].

Instant Messaging: continued
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But variables are changing on the interoperability scene to make life 
better for IM users. First, efforts are under way among the major 
operators to form better relationships with each other:  

In October 2005, Yahoo and Microsoft announced plans to introduce 
interoperability between MSN and Yahoo Messenger by mid-2006, us-
ing Session Initiation Protocols (SIPs). In December 2005, AOL and 
Google announced a strategic partnership deal where Google Talk us-
ers can talk with AIM and ICQ users provided they have an identity 
at AOL.

Second, both Microsoft and Apple have made efforts to include multi-
protocol IM clients as part of their desktop operating systems. Apple’s 
iChat in its latest Mac OS 10.4 Tiger, as an example, now supports 
AIM, Google Talk, and Jabber. Microsoft has announced plans to sup-
port other networks in its next release of Windows Vista, expected 
later this year. 

Finally, the private IM systems of Microsoft and Lotus both support 
multiple IM protocols, and are widening their support for others, mak-
ing them more useful for corporations.

Still, with all this activity, the IM interoperability scene is pretty poor: 
think where e-mail was in the early 1990s with custom-crafted gate-
ways and the like so that an MCIMail user could send messages to a 
CompuServe user. 

Setting up two systems to talk to each other is neither simple nor ob-
vious, and each pair of systems must be done separately. So to add 
Google Talk to Trillian, a user would need to provide the server host 
name (talk.google.com) and port number (5222). (By the way, 
GoogleTalk has the most helpful instructions on how to set up a variety 
of third-party applications to connect to its servers.)

But that is not all—even if a user follows these instructions to set up 
cross-system connections, most systems can exchange only plaintext 
messages. Video and voice chats between disparate systems are not 
generally supported, although Apple’s iChat has done the best job so 
far in this arena. And even if users take the multiple-client approach, 
the structure of their buddy lists is not always maintained and some-
times is presented in a single group of buddies, rather than separated 
into the groups that were specified when initially setting up the IM 
account.

The other concern for cross-systems interoperability is a lack of sup-
port for privacy or online status. All of the IM systems have the ability 
to create blacklists, or lists of users that cannot view your online status. 
These blacklists are not necessarily preserved when running the mul-
tiple client systems.
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The Rise of Open Source
There is hope on the interoperability scene, however, and that hope 
is spelled open source. The Jabber group of programmers is growing, 
and the community is aggressively establishing a more pluralistic IM 
society. These steps revolve around software using the protocol called 
the Extensible Messaging and Presence Protocol (XMPP), the IETF’s 
formalization of the core protocols created by the Jabber open-source 
community in 1999, and contained in four RFCs[8, 9, 10, and 11].

Jeremie Miller developed the original Jabber server in 1998. Now 
the project has reached critical mass. Notable is the wide number of 
different server and client formulations that support XMPP. Jabber.
com sells a commercial license, along with a combination of General 
Public License (GPL)-based licensed servers and other commercial 
versions. The project has supported the efforts of dozens of client 
implementations[12]. Last year, support reached a new milestone 
with Google Talk and more recently the Gizmo Project using these 
protocols.

Numerous efforts are under way with these clients to extend basic IM 
functions into new areas, including providing more sophisticated and 
secure communications, the ability to have multiple identities presented 
(david@strom.com for work colleagues, dstrom@gmail.com for 
personal communications) from the same IM client, and support for 
more interoperable communications between Jabber and private IM 
systems.

At the heart of XMPP is the Extensible Markup Language (XML) 
constructs and basic protocols. The core “transport” layer for XMPP 
is an XML streaming protocol that makes it possible to exchange 
fragments of XML between any two network endpoints. Authentication 
and channel encryption happen at the XML streaming layer using 
other IETF-standard protocols for Simple Authentication and Security 
Layer[13] and Transport Layer Security[14].

Servers can connect to each other for interdomain communications, 
using the form of address for each user as <user@domain>—similar to 
SMTP e-mail, and in many cases, the IM address is the same as one’s 
Internet e-mail address to simplify things.

What is notable about using XMPP is that RFC 3921 also makes it 
possible to separate the messaging and presence functions if desired 
(although most deployments offer both). This feature is helpful when 
building applications-to-applications messaging that does not involve 
users typing text messages to each other, such as a server sending a 
network operator an alert when it detects a problem.

The Jabber Software Foundation develops extensions to XMPP through 
a standards process centered on Jabber Enhancement Proposals 
(JEPs), similar to the RFC process[15]. Currently, more than 30 active 
proposals have been developed, extending IM into bookmarks, delayed 
messaging, and other areas.

Instant Messaging: continued
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What Microsoft Is Doing
Microsoft is heavily involved in the IM scene in three important areas. 
The company operates one of the larger public IM networks, it includes 
an IM client as part of its Windows operating system, and it sells a pri-
vate IM server that has some powerful interoperability features called 
Live Communications Server (LCS). What does this mean for the IM 
community? All good things. Microsoft’s MSN and Skype are the more 
popular IM services outside of North America, and having Skype now 
a part of eBay is making Microsoft add competitive features such as 
voice and video chats to its public IM service. Microsoft has actually 
led the way on IM interoperability with LCS, a fact that can only moti-
vate its competitors to include more pluralist IM offerings of their own. 
Finally, building in more support for IM in future versions of Windows 
will help popularize these applications even further.

It was not always this way. Earlier versions of Windows included some-
thing called Windows Messenger that was woefully underfeatured and 
had many bugs. But like so many early Microsoft efforts, technology 
has improved over time, and now the built-in software that comes with 
Windows is actually quite competitive with the public IM clients from 
AOL, Yahoo, and Skype.

Certainly, having Microsoft on one side and open-source efforts on the 
other is a nice way to encourage development and innovation in the IM 
arena, and we should expect more here in the future.

Building IM Applications
For most of this article we have addressed the one-to-one aspect of IM. 
However, IM is evolving into a much more important role, and that is 
one-to-many communications, and communications between applica-
tions instead of actual people. Many vendors have begun selling prod-
ucts in this space, and it is more interesting for several reasons:

First, IM is replacing other means for applications communications. It 
used to be the case that many network management applications used 
the Simple Network Management Protocol (SNMP) or SMTP proto-
cols to send out their alerts. Now, many applications are using IM mes-
sages and taking advantage of the real-time nature of the protocol.

Second, the origins of IM go back to group chat sessions, so group col-
laboration tools make sense for new IM applications.

Third, even the closed public IM vendors have begun to open their pro-
gramming interfaces, making it is easier for corporations to build new 
and sophisticated applications that are presence-aware, in some cases 
between two computer programs to communicate their status. AOL 
this year is one such example of opening its IM application program-
ming interface (API) kimono, and of course Jabber has always been an 
open system that has helped lead more of these innovations.
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One illustration is with the automotive giant Reynolds and Reynolds, 
which is using Jabber servers to monitor its own software status at the 
numerous automotive dealerships around the world. The IT department 
at Reynolds can quickly see if the company’s software is down and take 
steps to get it working again.

Accredited Home Lenders is using IM to provide its loan brokers a 
secure and reliable means of communicating in real time with loan 
specialists to resolve problems with loan applications. And Ecreation 
built a virtual disk jockey for a Dutch radio station that also broadcasts 
over the Internet, allowing the station to take requests from listeners 
around the world through Microsoft’s IM network.

Even traders have embraced IM. NetEnergy has been using IM for 
the past three years, and now negotiates trades between buyers and 
sellers of oil contracts using IM, decreasing errors and enabling faster 
communications.

Finally, IM figures prominently helping deaf and hard-of-hearing users 
communicate. In the era before IM, deaf users required a telephone 
relay operator to type the message to them and speak to the hearing 
callers. Go America has built a gateway to IM for its i711.com Website, 
so that deaf users can send messages directly to the operator. 

Summary
We have tried to paint a comprehensive a picture of what IM is and 
where it is going. Certainly, the amount of messaging traffic using 
the various IM protocols is impressive, and will continue to grow as 
these new applications are created and as more people discover the 
advantages of using IM. In several instances IM has replaced voicemail 
for most internal communications, particularly at high-tech companies 
and places where real-time communications is important. Although IM 
is not without its problems, there are ways to protect networks from 
infection and abuse. 

For Further Reading
 [1] Nielsen//NetRatings, August 2005 study. 

 [2] Osterman Research survey: 
http://www.ostermanresearch.com/results/
surveyresults_0905.htm

 [3] More details about the underlying Skype protocols, mech- 
anisms for blocking its use, and other helpful tips and 
tricks for network administrators can be found at this page 
maintained by Salman A. Baset:

  http://www1.cs.columbia.edu/~salman/skype/index.html

 [4]  J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN—
Simple Traversal of User Datagram Protocol (UDP) Through 
Network Address Translators (NATs),” RFC 3489, March 
2003.

Instant Messaging: continued



The Internet Protocol Journal
37

 [5] A dissection of the Skype protocol along with suggestions 
about how to block its use can be found in this paper by P. 
Biondi and F. Desclaux: “Silver Needle in the Skype.”  
http://www.blackhat.com/presentations/bh-europe-
06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

 [6] Adium and iChat for the Mac, Gaim for Windows and Linux, 
Trillian Pro for Windows, WebMessenger for Windows Mobile/
Palm, and others.

 [7] Microsoft’s Live Communications Server 2005 includes its Public 
IM connector for an additional charge. Lotus’ Sametime has had 
AIM connectivity for several years, and will support other IM 
networks later this year.

 [8] P. Saint-Andre, ed., “Extensible Messaging and Presence Protocol 
(XMPP): Core,” RFC 3920, October 2004.

 [9] P. Saint-Andre, ed., “Extensible Messaging and Presence Protocol 
(XMPP): Instant Messaging and Presence,” RFC 3921, October 
2004.

 [10] P. Saint-Andre, “Mapping the Extensible Messaging and Presence 
Protocol (XMPP) to Common Presence and Instant Messaging 
(CPIM),” RFC 3922, October 2004.

 [11] P. Saint-Andre, “End-to-End Signing and Object Encryption for 
the Extensible Messaging and Presence Protocol (XMPP),” RFC 
3923, October 2004.

 [12] A list of software clients that support Jabber protocols can be 
found at:

  http://www.jabber.org/software/clients.shtml

 [13] J. Myers, “Simple Authentication and Security Layer (SASL),” 
RFC 2222, October 1997.

 [14] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 
2246, January 1999.

 [15] Jabber Enhancement proposals are listed at: 
http://www.jabber.org/jeps/

DAVID STROM has been writing about Internet protocols and applications for nearly 
20 years. Founding editor-in-chief for Network Computing magazine, he was most 
recently the editor-in-chief for tomshardware.com and related Websites. Strom has 
written two books on Internet e-mail (with the doyenne of POP, Marshall T. Rose) and 
home networking and thousands of magazine articles for most of the leading trade 
magazines in the IT, computing, and networking fields. He can be reached by e-mail at 
david@strom.com, or by IM: davidstrom (AIM and Skype) or dstrom (Yahoo, 
Google Talk, and MSN). 



The Internet Protocol Journal
38

Letters to the Editor

Dear Editor,

In Russ White’s “Working with IP Addresses” article (IPJ Volume 9, 
Number 1), he presents an example subnetting problem (“The Hardest 
Subnetting Problem”) together with a worked solution. While useful 
as a reinforcement exercise for the rest of the article, care should be 
exercised before using the steps in the solution “as-is” in a real-world 
network configuration.

The main problem is that by packing subnets tightly together as shown, 
growth is restricted in order to guarantee that no address space is 
wasted. Worse, growth of host numbers on all but the smallest subnet 
requires renumbering of the subnet or all the smaller subnets allocated 
after it.

For example, the /26 subnet with 58 hosts will not accommodate more 
than another four hosts, less than 10-percent growth, without being 
renumbered.

Since renumbering a network is a nontrivial task even with the tools at 
our disposal, it is desirable to make it as infrequent as possible.[1]

Allowing for growth will likely but not necessarily waste some address 
space, but it is preferable to frequent renumbering. It turns out that this 
example has alternative arrangements of subnets that would permit 
growth of some subnets without the need to renumber and would 
lessen the amount of renumbering when it is required.

Using realistic estimates of future hosts rather than current numbers is 
a simple measure to decrease the frequency of renumbering required. 
This would also make it obvious that the entire allocation is close to 
exhaustion and can be exhausted by the need to accommodate as little 
as six hosts on two subnets that are near full capacity.

Constraints on the supply of IPv4 address space limits how much growth 
can be accommodated and requires taking a shorter-term rather than 
longer-term view of growth. For private RFC 1918[2] IP allocations 
(such as the one used in the example), this applies in only very large 
organisations, allowing a long-term view to be accommodated. 

Unfortunately, the future is hard to predict with any degree of accuracy. 
In most cases needs for subnet allocation become gradually known over 
time rather than all at once. The consequences of incorrect estimation 
can be minimised by using an allocation scheme that allows for as much 
growth as possible in existing subnets while leaving as much room as 
possible for future allocations.
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This scenario can be achieved by distributing the subnets evenly, weight-
ed by size, across the available address space. The larger the subnet, the 
more room that needs to be left between it and other large networks. 
This is particularly important for subnets that are near to capacity. At 
least the sum of the sizes of neighbouring networks should be allowed. 
Space close to a network should be reserved for it to grow into, and 
the remaining space between can be allocated to smaller networks in a 
recursive fashion. Any allocations in the areas of likely growth should 
be reclaimable, and preferably these networks should be sparsely pop-
ulated in order to limit the impact of renumbering on these networks. 
Working with a diagram of the address space, for example, a linear 
graph or a binary tree of the address space is a helpful aid.

A more systematic way of distributing the subnets evenly is to use mir-
ror-image (MI) counting for allocating subnet numbers. This process is 
described in RFC 1219[3], but note that some aspects of subnet address-
ing have altered since this RFC was written (see RFC 1878[4]), so the 
description of mirror-image counting there and procedure text exclude 
subnet numbers that are now valid.

Using mirror-image counting is like normal counting starting from 
zero, except that the binary digits of the number are reversed. These 
numbers can be allocated as subnet numbers, starting from the most 
significant bit. Contrary to the example in RFC 1219, leading zeros 
(including the solitary zero in zero itself) should always be removed 
before the number is reversed.

Simplifying greatly, new subnets are allocated by incrementing the sub-
net number until a number is reached where a subnet of the required 
size can be accommodated or the subnet prefix becomes so long no 
subnets of the required size remain. If the prefix matches a common 
but shorter prefix, the subnet may be able to be allocated if we can 
lengthen the mask of the matching subnet prefix, freeing space from a 
previous allocation by reducing its maximum possible size. If the lon-
gest mask is always used when allocating subnets it is sufficient to just 
to skip matching prefixes. Note that the null prefix is common with all 
subsequent prefixes until its subnet mask is made smaller, extending 
the prefix.

The mask chosen is preferably the longest for the required subnet 
size—but can be as short as the length of the subnet prefix, because it 
can be adjusted later: made shorter if the subnetwork grows beyond its 
mask (if no later allocation has been made) or longer if a subnet shar-
ing its prefix is allocated or increases size. The host number ignoring 
the subnet part must be allocated from 1.

As the number is incremented it grows from right to left, progressively 
enumerating subnets in smaller sizes. Since subnet numbers grow from 
right to left and host numbers from left to right, collision is delayed 
between the two. Allocating subnets in descending order of size is pref-
erable in this procedure because it tends to reduce fragmentation of the 
address space.
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The following table shows an example allocation using the sorted 
number of hosts in the example:

MI 
Number

Subnet 
Prefix

Network 
Size

Network 
Number

Prefix Last Host 
Number

Max Host 
Number

(null) 00 64 0 /26 58 62

1 10 64 128 /26 177 190

01 010 32 64 /27 93 94

11 1100 16 192 /28 206 206

001 matches subnet prefix 00

101 matches subnet prefix 10

011 01100 8 96 /29 99 102

Note that the /28 and the /29 can grow simply by changing their 
netmask. A better allocation is possible if the third and fourth hosts in 
the sorted list are interchanged. In this case the three smallest networks 
would be able to grow without renumbering. Shortening a netmask is 
a much simpler operation than renumbering.

Of course in the real world, needs for subnet allocation do not 
conveniently arrive sorted in ascending order. If it happened that one of 
the two largest subnets was the fifth requiring allocation, fragmentation 
of the address space would require renumbering one of the three 
smallest networks to recover an address block of the necessary size.

Another point that may be worth mentioning is that most modern 
hosts and routers allow for multiple subnets to share the same physical 
subnet, allowing two smaller subnets to cover a range of addresses that 
would otherwise receive a single larger allocation. For example, a 40-
host subnet can be allocated a /27 and a /28 rather than a /26.

—Andrew Friedman, Sydney, Australia 
rbnsw-ipj@yahoo.com.au

Ed: Readers may wish to also peruse RFC 3531[5].

 [1] P. Ferguson and H. Berkowitz, “Network Renumbering Over-
view: Why Would I Want It and What Is It Anyway?” RFC 2071, 
January 1997.

 [2] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and 
E. Lear, “Address Allocation for Private Internets,” RFC 1918, 
February 1996.

 [3] P. F. Tsuchiya, “On the Assignment of Subnet Numbers,” 
RFC 1219, April 1991.

 [4] T. Pummill and B. Manning, “Variable Length Subnet Table for 
IPv4,” RFC 1878, December 1995.

 [5] M. Blanchet, “A Flexible Method for Managing the Assignment 
of Bits of an IPv6 Address Block,”RFC 3531, April 2003.
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The author responds:

Andrew is correct in stating that it is often better to try to account for 
future growth when assigning address space. There are many viable 
ways to allow for growth when allocating address spaces; hopefully, 
this topic will be covered more fully in a future article. I used the 
method in the article to illustrate how to employ the technique for 
working with IP addresses, rather than as an absolute best practice for 
allocating addresses. 

—Russ White, Cisco Systems 
riw@cisco.com

Dear Editor,

Russ White’s article titled “Working with IP Addresses” was a nice 
refresher on how complicated working with IPv4 addresses has become. 
It should remind us all how we have gotten used to dealing with the 
operational expense of IPv4 address scarcity. The story about putting a 
frog in a pot of cold water comes to mind.

In any case, at the end of the article in the section titled “Working 
with IPv6 Addresses,” I think the author tries too hard to fit the IPv6 
address structure into the model for IPv4. Actually, it is a lot simpler.

The IPv6 address structure and textual representation was designed to 
avoid most of the complexities encountered in IPv4. The big differences 
follow:

• Addresses are represented in groups of hexadecimal digits instead of 
decimal digits. Hexadecimal avoids the need to convert the decimal 
digits to octal to find subnet boundaries. In hexadecimal there are 
four bits per character. This makes it easy to find the subnet boundary 
in an address; in many cases it is at a character boundary.

• Subnet prefix lengths are listed directly in decimal. There are no 
decimal subnet masks. This eliminates the need to convert decimal 
addresses to octets, convert the subnet masks to octets, apply the 
mask, and convert the result back to decimal—or to use the table 
and division methods described in the article.

The combination of these changes makes it much easier to work with 
IPv6 addresses. They are, of course, longer. The length has a few 
advantages besides a much larger Internet.

A byproduct of the larger address space is that most of the common 
subnet boundaries fall on hexadecimal digit boundaries; for example, 
using the example address in the article:

2002:FF10:9876:DD0A:9090:4896:AC56:0E01
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The most common subnet boundary is 64 bits. The address and prefix 
is represented as:

2002:FF10:9876:DD0A:9090:4896:AC56:0E01/64

The subnet itself then follows:

2002:FF10:9876:DD0A::/64

The current common prefix allocated to a site is a /48. The site prefix 
is then:

2002:FF10:9876::/48

The current default allocation to an ISP is a /32. The ISP prefix is 
then:

2002:FF10::/32

These common prefix lengths can be derived directly without any need 
for decimal-to-octal conversions, table lookups, divisions, etc.

One of the other benefits of the larger addresses and a byproduct of 
IPv6 autoconfiguration is that the low-order 64 bits of an IPv6 address 
are reserved for the host address (called Interface Identifier in IPv6 
terminology). This means that “The Hardest Subnetting Problem” 
described in the article is avoided completely. You can have as many 
hosts on a specific segment as you want in IPv6. There is no need to 
do this kind of calculation. This makes an initial network design trivial 
and, more importantly, makes later changes very easy. There is no need 
to redesign a subnet architecture because a few hosts need to be added 
to a subnet.

—Bob Hinden, Nokia 
bob.hinden@nokia.com

The author responds:

Bob brings up many interesting points about IPv6, and the use of the 
IPv6 address space. While most IPv6 address spaces have prefix lengths 
that break on even octet boundaries today, we can’t always count on 
this, for all time, so it is always good to have techniques to work with 
situations where the prefix length is not on an octet boundary when 
they do occur. As for the last problem, it is true that in all cases the 
subnet is the set of octets excluding the last 64 bits. But if we move 
the problem up one level, and ask: “What is the most efficient way to 
allocate out an existing /48 so customer A can get 10 subnets, customer 
B can get 20 subnets, etc. ?” we can see the same problem could occur 
at the next higher level.

—Russ White, Cisco Systems 
riw@cisco.com

Letters: continued
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Corrections

A    few of our eagle-eyed readers have pointed us to some errors in 
IPJ, Volume 9, Number 1. The text below Figure 6 on page 29 
and continuing at the top of page 30 should read as follows:

The figure shows four hosts with the addresses 10.1.0.1, 10.1.0.2, 
10.1.0.3, and 10.1.0.4. Router A advertises 10.1.0.0/24, meaning: 
“Any host within the address range 10.1.0.0 through 10.1.0.255 is 
reachable through me.” Note that not all the hosts within this range 
exist, and that is okay—if a host within that range of addresses is 
reachable, it is reachable through Router A. In IP, the address that A 
is advertising is called a network address, and you can conveniently 
think of it as an address for the wire to which the hosts and router are 
attached, rather than a specific device.

For many people, the confusing part comes next. Router B is adver-
tising 10.1.1.0/24, which is another network address. Router C 
can combine—or aggregate—these two advertisements into a single 
advertisement. Although we have just removed the correspondence 
between the wire and the network address, we have not changed the 
fundamental meaning of the advertisement itself. In other words, Router 
C is saying: “Any host within the range of addresses from 10.1.0.0 
through 10.1.1.255 is reachable through me.” There is no wire with 
this address space, but devices beyond Router C do not know this, so 
it does not matter.

Also, Figure 8 on page 32 is reproduced here in its corrected form:

Figure 8: Subnet Chart

00000000/.0
26
58

Within each box:
Last Octet Binary/Last Octet Decimal
Prefix Length
Number of Hosts Required

11000000/.192
26

01000000/.64
26
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10.1.1.0/24

10000000/.128
26

10100000/.160
27

10000000/.128
27
29

10100000/.160
28
14

10110000/.176
28

10110000/.176
29
3

10111000/.184
29
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Book Review

Wireless Networking Wireless Networking in the Developing World: A practical guide to 
planning and building low-cost telecommunications infrastructure, 
by Rob Flickenger et al., ISBN 1-4116-7837-0, 234 pages, Limehouse 
Book Sprint Team, January 2006. http://wndw.net

To quote from the book’s Website:

“This book was created by a team of individuals who each, in their 
own field, are actively participating in the ever-expanding Internet 
by pushing its reach farther than ever before. Over a period of a few 
months, we have produced a complete book that documents our 
efforts to build wireless networks in the developing world.”

Even though I don’t live and work in what is commonly regarded as 
part of the developing world, I found this to be a unique and informa-
tive book, as its practical descriptions of wireless networking have ap-
plication in many environments.

Given the widespread availability of the raw materials of computers, 
open-source software, Wi-Fi equipment, various pieces of recycled 
kitchenware, scrap metal, and plastic, and a wealth of online informa-
tion resources, it is possible to construct inexpensive high-speed wire-
less network systems almost anywhere these days. However, perhaps 
the most visible missing component of the overall picture, but also the 
most valuable, is a practical path through this wealth of information 
on how to construct wireless networks, and a path that is based on the 
recent experiences of others who have constructed cost-effective and 
practical wireless networks in communities in the developing world. 
This book sets out to meet that goal.

Organization
The book starts with a description of radio physics covering the basics 
of the topic. It builds upon this a description of the typical radio design 
trade-offs between information capacity and radio penetration, and 
describes the commonly encountered factors of absorption, reflection, 
diffraction, and interference. I found the practical approach to Fresnel 
zone calculation and the description of the relationship between dis-
tance and antenna height so well done that I was tempted to embark 
on the design of a neighborhood Wi-Fi straightaway!

The chapter on network design is somewhat of a hybrid section, cover-
ing a mix of physical layout of a wireless network and TCP/IP consid-
erations. There were the usual summaries of IP address structure and 
an introduction to routing.
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Study of the deployment of the Optimized Link State Routing (OLSR) 
protocol is, however, more detailed. This is a link state routing protocol 
that is open-source, supportable by Linux-based access points, and 
accommodates link quality metrics into the routing protocol metric. 
I found the consideration of the link budget in this section a useful 
practical description of the considerations that are unique to the 
wireless world, and the worked examples are excellent, together with 
some useful references to online tools. This chapter is relatively dense, 
and many topics are covered in a relatively short space. I suspect that 
an interested reader would want to drill down further before feeling 
confident enough to manage a service network, but some carefully 
chosen references to further reading are there, so that the reader can 
follow up this introductory material with more specialized references.

The section on antennas and transmission lines was also well-struc-
tured. I had heard of using cylindrical cans as Wi-Fi antennas, but 
knew little of the detail of how to actually do it. This book not only ex-
plains their design, but provides a step-by-step illustrated guide to their 
construction. It also provides a good description of what is involved in 
outdoor installation of wireless equipment. The consideration of com-
mercial solutions as compared to the do-it-yourself approach was care-
fully presented, as was the section devoted to security considerations.

Aside from the technical considerations, the book also has some very 
interesting case studies of wireless networking projects, and was care-
ful to include both success and failure stories. The issues in the develop-
ing world about combining technical capability with practical business 
solutions for communities that can be financially self-sustaining are 
indeed challenging, as the case studies show. They provide not only 
useful information about related experiences in setting up such net-
work services, but also show how such projects can be assessed in a 
constructive manner.

Thoughtfully Written
Having spent some time working in this area myself as part of the ISOC 
Developing Countries Workshop training team, I have developed an 
appreciation of what constitutes truly useful and valuable training 
material, and this book is perhaps the best example I’ve seen yet. It 
is practical, helpful, technically accurate, and relatively complete in 
terms of coverage of material. Where the book does not dive into 
fine detail it provides useful references for further reading. The book 
is thoughtfully written in a simple non-nonsense style and does not 
hide behind technical jargon. Above all, it is material that can instill 
confidence that these networks can readily be built and operated by 
people like you and me.
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I certainly would not call myself an expert after reading this book, but 
the next time a radio technician arrives in the office and starts talking 
about radiation patterns, front-to-back ratios, and the relative merits 
of omnis and yagis, at least I’ll have an idea of what he is talking about. 
Even better, I might even be able to show him my own modest efforts 
in do-it-yourself Wi-Fi networking by then!

Rectangular plot of a Yagi Radiation 
Pattern from Chapter 4 of the book

Publishing Model
This is not a conventional technical book in the sense that it does 
not come with a conventional technical book price tag. The book 
is published in a manner as to be readily available in the developing 
world, so an online publication model has been used here. The PDF 
is freely available under a Creative Commons Attribution-Share- 
Alike 2.5 license at http://wndw.net, and they have managed to 
squeeze all 254 pages into an impressively small 1.92-MB file. You can 
find related resources and ways that you can assist in this project at 
http://wndw.net.

—Geoff Huston, APNIC 
gih@apnic.net

________________________

Read Any Good Books Lately?
Then why not share your thoughts with the readers of IPJ? We accept 
reviews of new titles, as well as some of the “networking classics.” In 
some cases, we may be able to get a publisher to send you a book for 
review if you don’t have access to it. Contact us at ipj@cisco.com for 
more information.

Book Review: continued
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Fragments
Internet Governance
The World Summit on the Information Society (WSIS) was held in 
two phases. The first phase took place in Geneva in December 2003, 
and the second phase took place in Tunis in November 2005. The so-
called “WSIS Outcome Documents” are now available at:

http://www.itu.int/wsis/promotional/outcome.pdf

The follow-on to WSIS is called the Internet Governance Forum (IGF). 
The forum will hold its first meeting in Athens, Greece October 30th to 
November 2nd, 2006. For more information visit:

http://www.intgovforum.org/

The Internet Society (ISOC) played an active part in the WSIS process. 
You will find background information here:

http://www.isoc.org/isoc/conferences/wsis/index.shtml

DNS Root Name Servers Explained
Daniel Karrenberg of RIPE NCC has written two “Member Briefings” 
on the subject of DNS root servers that can be found on the ISOC 
Website:

http://www.isoc.org/briefings/019/ 
http://www.isoc.org/briefings/020/

Internationalized Domain Names
Internationalized Domain Names (IDNs) are, according to the ICANN 
Website, “...domain names represented by local language characters. 
Such domain names could contain letters or characters from non-ASCII 
scripts (for example, Arabic or Chinese). Many efforts are ongoing in 
the Internet community to make domain names available in character 
sets other than ASCII.” ICANN has established an information area on 
its Website with links to more information about IDNs. See:

http://icann.org/topics/idn/

The ISP Column
Geoff Huston is well known to readers of this journal. He also hosts 
The ISP Column that can be found here:

http://www.isoc.org/pubs/isp/index.shtml

This publication is distributed on an “as-is” basis, without warranty of any kind either express or 
implied, including but not limited to the implied warranties of merchantability, fitness for a particu-
lar purpose, or non-infringement. This publication could contain technical inaccuracies or typo-
graphical errors. Later issues may modify or update information provided in this issue. Neither the 
publisher nor any contributor shall have any liability to any person for any loss or damage caused 
directly or indirectly by the information contained herein.
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