
June 2006 Volume 9, Number 2

You can download IPJ
back issues and find

subscription information at:
www.cisco.com/ipj

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

Gigabit TCP 2

Instant Messaging 27

Letters to the Editor 38

Corrections 43

Book Review 44

Fragments 47

F r o m T h e E d i t o r

In our June 2000 issue we wrote: “Two protocols used in the Internet
are so important that they deserve special attention: the Internet Proto-
col (IP) from which this journal takes its name, and the Transmission
Control Protocol (TCP). IP is fundamental to Internet addressing and
routing, while TCP provides a reliable transport service that is used
by most Internet applications, including interactive Telnet, file transfer,
electronic mail, and Web page access via HTTP. Because of the criti-
cal importance of TCP to the operation of the Internet, it has received
much attention in the research community over the years. As a result,
numerous improvements to implementations of TCP have been devel-
oped and deployed.” We return to TCP in this issue with a look at
its performance at gigabit speeds. Geoff Huston describes numerous
research proposals related to TCP and discusses lessons learned by op-
erators and researchers involved with this protocol.

My first encounter with the Internet (then called the ARPANET) took
place in 1976 when I visited the Norwegian Defence Research Estab-
lishment (NDRE) at Kjeller, about 20 kilometers from Oslo, Norway.
At NDRE, one of the researchers, named Pål, showed me a teletype ter-
minal that was connected through the ARPANET to a host computer
at SRI International in Menlo Park, California. After a few minutes, the
teletype started printing messages from someone called “Geoff” on the
other end of the line. Pål typed back, passing on questions from myself
about the weather in California and so on. I later learned that the host
computer was a PDP-10 model KA10 running the TENEX operating
system. TENEX could “link” two terminals together so that anything
typed on one terminal would appear on the other, and conversely. This
primitive “chat” system is the forerunner of today’s Instant Messaging
(IM) environment. David Strom gives an overview of the current state
of IM solutions in our second article.

The article “Working with IP Addresses” in our last issue sparked sev-
eral comments, some of which are included in our Letters to the Editor
section. A few readers also noticed some errors in the article, so we
have included the corrections in this issue. We very much appreciate
your feedback. Please send your comments to: ipj@cisco.com

—Ole J. Jacobsen, Editor and Publisher
ole@cisco.com

The Internet Protocol Journal
2

Gigabit TCP
by Geoff Huston, APNIC

I n looking back over some 30 years of experience with the Inter-
net, the critical component of the Internet Protocol Suite that has
been the foundation of its success as the technology of choice for

the global communications system is the Internet Protocol (IP) itself,
working an overlay protocol that can span almost any form of commu-
nications media. But I would also like to nominate another contender
for a critical role within IP, namely the reliable transport protocol that
sits on top of IP, the Transmission Control Protocol (TCP), and its
evolution over time. In support of this nomination is the fact that the
end-to-end rate-adaptive control algorithm that was adopted by TCP
represented a truly radical shift from the reliable gateway-to-gateway
virtual circuit flow control systems used by other protocols of similar
vintage. It is also interesting to note that TCP is not designed to oper-
ate at any particular speed, but it attempts to operate at a speed that
uses its fair share of all available network capacity along the network
path. The fundamental property of the TCP flow control algorithm is
that it attempts to be maximally efficient while also attempting to be
maximally fair.

Previous articles on this topic, “TCP Performance”[12] and “The Fu-
ture for TCP”[13] looked at the design assumptions behind TCP and
its performance characteristics. The essential characteristic of TCP is
that it attempts to establish a dynamic equilibrium with other concur-
rent sessions and opportunistically use all available network capacity.
It achieves this by constantly altering its flow characteristics, continu-
ally probing the network to see if higher speeds are supportable, while
also being prepared to immediately decrease the current sending rate in
the face of received signals of network congestion.

In a world where network infrastructure capacity and complexity
are related to network cost and delivered data is related to network
revenue, TCP fits in well. The minimal assumptions that TCP makes
about the capability of network components permit networks to be
constructed using simple transmission capabilities and simple switch-
ing systems. “Simple” often is synonymous with cheap and scalable,
and there is no exception here. TCP also attempts to maximize data
delivery through adaptive end-to-end flow rate control and careful
management of retransmission events. In other words, TCP is an en-
abler for cheaper networking for both the provider and consumer. For
the consumer the offer of fast cheap communications has been a big
motivation in the increase in demand for Internet-based services, and
this—more than any other factor—has been the major enabling factor
for the increased use of the Internet itself. “Cheap” is often enough in
this world, and TCP certainly helps to make data communications ef-
ficient and therefore cheap.

The Internet Protocol Journal
3

Although TCP is highly effective in many networking environments,
that does not mean it is highly effective in every environment. For
example:

• In those wireless environments where there is significant wireless
noise, TCP may confuse the outcome of radio-based signal corruption
and the corresponding packet drop with the outcome of network
congestion, and consequently the TCP session may back off its send-
ing rate too early and back off for too long.

• TCP also backs off too early when the network routers have in-
sufficient buffer space. This effect is more subtle, but it is related to
the coarseness of the TCP algorithm and the consequent burstiness
of TCP packet sequences. These bursts, which occur at up to twice
the bottleneck capacity rate, are smoothed out by network buffers.
Buffer exhaustion in the interior of the network causes packet
drop, which causes the generation of a loss signal to the active TCP
session, which, in turn, either halves its sending rate or—in the
worst case—resets the session state and restarts with a single packet
exchange. Particularly in wide-area networks, where the end-to-end
delay-bandwidth product becomes a significant factor, TCP uses the
network buffers to sustain a steady-state throughput that matches
the available network capacity. Where the interior buffers are under-
configured in memory it is not possible to even out the TCP bursts
to continuously flow through the constrained point at the available
data rate.

• TCP also asks its end hosts to have local capacity equal to the
available network capacity on the forward and reverse paths. The
reason is that TCP does not discard data until the remote end has
reliably acknowledged it, so the sending host has to retain a copy of
the data for the time it takes to send the data plus the time for the
remote end to send the matching acknowledgement.

Even accounting for these limitations, it is true to say that TCP works
amazingly well in most environments. Nevertheless, one area is prov-
ing to be quite a fundamental challenge to TCP as we know it, and that
is the domain of wide-area, very-high-speed data transfer.

Very-High-Speed TCP
End host computers, even laptop computers these days, are typically
equipped with Gigabit Ethernet interfaces, and have gigabytes of
memory and internal data channels that can move gigabits of data
per second between memory and the network interface. Current IP
networks are constructed using multigigabit circuits and high-capacity
switches and routers (assuming there is still a quantitative difference
between these two forms of packet switching equipment). If the end
hosts and the network both can support gigabit transmissions then
a TCP session should be able to operate end to end at gigabits per
second, and achieve the same efficiency at gigabit speeds as it does
today at megabit speeds—right?

Well, no, not exactly!

The Internet Protocol Journal
4

This conclusion is not obvious, particularly when the TCP Land Speed
Record is now at some 7Gbps across a distance that spans 30,000 km
of network. What is going on?

Let’s return to the basics of TCP to understand some of the variables
with very-high-speed TCP. TCP operates in one of two states, that of
slow start and congestion avoidance.

• Slow start mode is the initial mode of operation of TCP in any
session, as well as its “reset” mode. In this mode, TCP sends two
packets in response to each ACK packet that advances the sender’s
window. In approximate terms (delayed ACKs notwithstanding),
this mode allows TCP to double its sending rate in each successive
lossless round-trip-time (RTT) interval. The rate increase is expo-
nential, effectively doubling each RTT interval, and the rate increase
is bursty, effectively sending data into the network at twice the
bottleneck capacity during this phase.

Sending data into the network at twice the bottleneck data speed
is possible because of the “ACK clocking” property of TCP. Dis-
regarding the complications of the TCP delayed ACK mechanism
for a second, a TCP receiver generates a new ACK packet each time
a packet arrives at the receiver. The sending rate of the ACKs is, in
effect, the same as the receiving rate for the data packets. Assuming
a one-way data transfer, so that ACK packets in the reverse direction
are of minimal size, and assuming minimal jitter on the reverse path
from the receiver back to the sender, the arrival rate of ACKs at the
sender is comparable to the arrival rate of data packets at the receiver.
In other words, the return ACK rate is comparable to the bottleneck
capacity of the forward network path from sender to receiver.
Sending two packets per received ACK is effectively sending packets
into the network at twice the bottleneck capacity. At the bottleneck
point the switching unit receives twice the amount of data than it
can transmit to the output device over a period that corresponds
to the delay-bandwidth product of the bottleneck link. Hence the
comment that TCP is a bursty protocol, particularly at startup. For
this reason TCP tends to operate more effectively across network
switching elements that are generously endowed with memory, or
have for each output port a buffer capacity roughly equal to the
delay-bandwidth product of the link that is attached to that port.

• In the other operating mode, that of congestion avoidance, TCP
sends an additional segment of data for each loss-free round-trip
time interval. This increase is additive rather than exponential,
increasing the sender’s speed at the constant rate of one segment per
RTT interval.

Gigabit TCP: continued

The Internet Protocol Journal
5

TCP undertakes a state transition upon the detection of packet loss.
Small-scale packet loss (of the order of 1 or 2 packets per loss event)
causes TCP to halve its sending rate and enter congestion avoidance
mode, irrespective of whether it was in this mode already. Repetition
of this cycle gives the classic sawtooth pattern of TCP behavior, and
the related derivation of TCP performance as a function of packet loss
rate. Longer sustained packet loss events cause TCP to stop using the
current session parameters, recommence the congestion control session
using the restart window size, and enter the slow start control mode
once again. (See Figure 1).

Figure 1: TCP Behavior

Time

Queue Saturation Point

Onset of queuing as
rate exceeds available
capacity

Duplicate ACKs received. Halve cwnd to recover.

Congestion Avoidance
(Rate increases by a fixed
amount each RTT Interval)

Slow Start
(Rate doubles

each RTT
Interval)

Re
la

tiv
e

Th
ro

ug
hp

ut
 R

at
e

(%
) 160

140
120
100

80
60
40
20
0

But what happens when two systems are at opposite sides of a conti-
nent with a high-speed path between them? How long does it take for
a single TCP session to get up to a data transfer rate of 10 Gbps? Can
a single session operate at a sustained rate of 10 Gbps?

Let’s look at a situation such as the network path from Brisbane, on the
eastern side of the Australian continent, to Perth on the western side.
The cable path is essentially along the southern coast of the continent,
so the RTT delay is 70 ms, implying that there are 14.3 round-trip in-
tervals per second. Let’s also assume that the packet size being used is
1500 octets, or 12,000 bits, and the TCP initial window size is a single
packet. And let’s also assume that the bottleneck capacity of the host-
to-host path between Brisbane and Perth is 10 Gbps.

In a simple slow start model the sending speed doubles every 70 ms,
so after 17 RTT intervals where the sending rate has doubled for each
interval, or after some 1.2 seconds have elapsed, the transfer speed
reaches 11.2 Gbps (assuming a theoretical host with sufficiently
fast hardware components, sufficiently fast internal data paths, and
adequate memory). At this stage let’s assume that the sending rate
exceeded the buffer capacity at the bottleneck point in the network
path. Packet drop will occur, because the critical point buffers in the
network path are now saturated.

The Internet Protocol Journal
6

At the point of reception of an ACK sequence that signals packet
loss, the TCP sender’s congestion window will halve, as will the TCP
sending rate, and TCP will switch to congestion avoidance mode. In
congestion avoidance mode the rate increase is 1 segment per RTT,
equivalent to sending an additional 12 kilobits per RTT, or, given the
session parameters as specified previously, equivalent to a rate increase
of 171 kbps each RTT. So how long will it take TCP to recover and get
back to a sending rate of 10 Gbps?

If this were a T1 circuit where the available path bandwidth is 1.544
Mbps, and congestion loss occurred at a sending rate of 2 Mbps (higher
than the bottleneck transmission capacity due to the effect of queuing
buffers within the network), then TCP would rate halve to 1 Mbps
and then use congestion avoidance to increase the sending rate back
to 2 Mbps. Within the selected parameters of a 70-ms RTT and 1500-
byte segment size, this process involves using congestion avoidance to
inflate the congestion window from 6 segments to 12. This process
takes 0.42 seconds. So as long as the network can operate without
packet loss for the session over an order of 1-second intervals, then
TCP can comfortably operate at maximal speed in a megabit-per-
second network.

What about our 10-Gbps connection? The first estimate is the amount
of usable buffer space in the switching elements. Assuming a total of
256 MB of usable queue space on the network path prior to the onset
of queue saturation, the TCP session operating in congestion avoidance
mode will experience packet loss some 590 RTT intervals after reaching
the peak transmission speed of 10 Gbps, or some further 41 seconds,
at which point the TCP sending rate in congestion avoidance mode is
10.1 Gbps. For all practical purposes the TCP congestion avoidance
mode causes the sawtooth oscillation of this ideal TCP session between
5.0 Gbps and 10.1 Gbps. A single iteration of this sawtooth cycle takes
2062 seconds, or 34 minutes and 22 seconds. The implication here is
that the network has to be stable in terms of no packet loss along the
path for time scales of the order of tens of minutes (or some billions of
packets), and corresponding transmission bit error rates that are less
than 10–14. It also implies massive data sets to be transferred, because
the amount of data passed in just one TCP congestion avoidance cycle is
1.95 terabytes (1.95 x 1012 bytes). It is also the case that the TCP session
cannot make full use of the available network bandwidth, because the
average data transfer rate is 7.55 Gbps under these conditions, not 10
Gbps. (See Figure 2).

Gigabit TCP: continued

The Internet Protocol Journal
7

Figure 2: TCP Behavior at
High Speed

12

10

8

6

4

2

0

Congestion Avoidance Cycle
(34 minutes)

Time (Hours)

TCP Congestion Performance (RTT 70ms, 1500 MSS, 10Gbps, 256Mb queue)

Ra
te

 (G
bp

s)
0.0 0.5 1.0 1.5 2.0

Slow Start
(1.2s)

Clearly something is unexpected with this scenario, because it certainly
looks like it is a difficult and lengthy task to fill a long-haul, high-
capacity cable with data, and TCP is not behaving as expected. Although
experimenting with the boundaries of TCP is in itself an interesting
area of research, some practical problems here could well benefit from
this type of high-speed transport.

A commonly quoted example, and certainly one of the more impressive
ones is the Large Hadron Collider at CERN:

“The CERN Particle Physics lab in Geneva, Switzerland, successfully
transmitted a data stream averaging 600Mbytes per second for 10
days to seven countries in Europe and the US. It was a crucial test
of the computing infrastructure for the Large Hadron Collider being
built at CERN. The LHC will be the most data intensive physics
instrument ever built, generating 1500 Megabytes every second for a
decade or more.”

—New Scientist, 30 April 2005

TCP and the Land Speed Record
The TCP Land Speed Record was originally an informal effort to
achieve record-breaking TCP transfer speeds across IP networks. The
late 1980s and early 1990s saw some noted milestones, particularly
with Van Jacobson’s efforts in achieving sustained 10-Mbps and 45-
Mbps TCP transfer speeds.

This activity has been incorporated into the Internet2 program, with
the introduction of some formal rules about what constitutes a TCP
Land Speed effort. In particular, the rules now have times, distances,
and TCP constraints, and they call for the use of operational networks.
Updates to the record have been posted frequently in recent years, and
as of May 2006 the IPv4 single stream record is a TCP session operating
at 7.21 Gbps for 30 minutes over 30,000 km of fibre path.

The Internet Protocol Journal
8

It is certainly possible to have TCP perform for sustained intervals at
very high speed, as the land speed records for TCP show, but some-
thing else is happening here, and a set of preconditions need to be met
before attempting to set a new record:

• First, it is good—indeed essential—to have the network path all to
yourself. Any form of packet drop is a major problem here, so the
best way to ensure no packets are lost is to keep the network path all
to yourself.

• Secondly, it is good—indeed essential—to have a fixed latency. If the
objective of the exercise is to reach a steady-state data transmission,
then any change in latency, particularly a reduction in latency, has
the risk of a period of oversending, which in turn has a risk of packet
loss. So keep the network as stable as possible.

• Thirdly, it is good—indeed essential—to have extremely low bit
error rates from the underlying transmission media. Data corruption
causes checksum failure, which causes packet drop.

• Lastly, it is essential to know in advance both the round-trip latency
and the available bandwidth.

You can then multiply these two numbers together (RTT and band-
width), divide by the packet size, round down, and be sure to configure
the sending TCP session to have precisely this buffer size, and the re-
ceiver to have a slightly larger size. And then start up the session.

The intention here is for TCP to use slow start to the point where the
sender runs out of buffer space, at which point it will continue to sit at
this buffer speed for as long as the sender, receiver and network path
all remain in a stable state. For the example configuration of a 10-Gbps
system with 70 ms RTT, setting a buffer limit of 116,000 packets will
cause the TCP session to operate at 9.94 Gbps. As long as the latency
remains steady (no jitter), with no bit errors, and as long as there is no
other cross traffic, in theory this sending rate can be sustained indefi-
nitely, with a steady stream of data packets being matched by a steady
stream of ACK packets.

Of course, this situation is artificially constrained. The real concerns
here with the protocol are in the manner in which it shares a network
path with other concurrent sessions as well as its ability to fill the avail-
able network capacity. In other words, what would be good to see
is a high-speed, high-volume version of TCP that could coexist on a
network with all other forms of traffic, and, perhaps more ambitiously,
that this high-speed form of TCP could share the network fairly with
other traffic sessions while at the same time making maximal use of
the network. The problem with TCP in its current incarnation is that it
takes way too long in its additive increase mode (congestion avoidance)
to recover its sustainable operating speed when operating at high speed
across transcontinental-size network paths. If we want very-high-speed
TCP to be effective and efficient, then we need to look at changes to
TCP for high-speed operation.

Gigabit TCP: continued

The Internet Protocol Journal
9

High-Speed TCP
There are two basic approaches to high-speed TCP: parallelism of
existing TCP, or changes to TCP to allow faster acceleration rates in a
single TCP stream.

Using parallel TCP streams as a means of increasing TCP performance
is an approach that has existed for some time. The original HTTP
specification, for example, allowed the use of parallel TCP sessions to
download each component of a Webpage (although HTTP 1.1 revert-
ed to a sequential download model because the overheads of session
startup appeared to exceed the benefits of parallel TCP sessions in this
case). Another approach to high-speed file transfer through parallelism
is that of GRID FTP. The basic approach is to split up the communica-
tions payload into numerous discrete components, and send each of
these components simultaneously. Each component of the transfer can
be between the same two endpoints (such as GRID FTP), or can be
spread across multiple endpoints (as with BitTorrent).

But for parallel TCP to operate correctly, we need to have already as-
sembled all the data (or at a minimum know where all the data com-
ponents are located). Where the data is being generated in real time
(such as observatories or particle colliders) in massive quantities, there
may be no choice but to treat the data set as a serial stream and use a
high-speed transport protocol to dispatch it. In this case the task is to
adjust the basic control algorithms for TCP to allow it to operate at
high speed, but also to operate “fairly” on a mixed-traffic high-speed
network.

Parallel TCP
Using parallelism as a key to higher speed is a common computing
technique, and lies behind many supercomputer architectures. The
same can apply to data transfer, where a data set is divided into numer-
ous smaller chunks, and each component chunk is transmitted using its
own TCP session. The underlying expectation here is that when using
some number, N, of parallel TCP sessions, a single packet drop event
will most probably cause the fastest of the N sessions to rate halve, be-
cause the fastest session will have more packets in flight in the network,
and is therefore the most likely session to be impacted by a packet drop
event. This session will then use congestion avoidance rate increase to
recover, implying that the response to a single packet drop is reduction
of the sending rate by at most 1/(2N). For example, using five parallel
TCP sessions, the response to a single packet drop event is to reduce
the total sending rate by 1/(2 × 5), or 1/10, as compared to the response
from a single TCP session, where a single packet drop event would
reduce the sending rate by ½.

A simulated version of five parallel sessions in a 10 Gbps session is
shown in Figure 3.

The Internet Protocol Journal
10

Figure 3: Parallel TCP Simulation:
Single vs Parallel Streams 12

10

8

6

4

2

0

Time (Hours)
Ra

te
 (G

bp
s)

0.0 0.5 1.0 1.5 2.0

Individual Streams

Single Stream

Sum of Parallel Streams

The essential characteristic of the aggregate flow is that under lossless
conditions the data flow of N parallel sessions increases at a rate N
times faster than a single session in congestion avoidance mode.
Also the response to an isolated loss event is that of rate halving of
a single flow, so that the total flow rate under ideal conditions is
between R and R × (2N – 1)/2N, or a long-term average throughput of
R × (4N – 1)/4N. For N = 100 our theoretical 10-Gbps connection
could now operate at 9.9 Gbps.

Of course practice is different from theory, and a considerable amount
of work has looked at the performance of parallel TCP under vari-
ous conditions, in terms of both maximizing throughput and choosing
the most efficient number of parallel active streams to use. Part of the
problem is that although simple simulations, such as that used to gen-
erate Figure 4, tend to evenly distribute each of the parallel sessions to
maximize the throughput, there is the more practical potential that the
individual sessions self-synchronize. Because the parallel sessions have
a similar range of window sizes, it is possible that at a given point in
time a similar number of packets will be in the network path from each
stream. If the packet drop event is a multiple packet drop event, such
as a tail-drop queue, then it is entirely feasible that numerous paral-
lel streams will experience packet loss simultaneously, and there is the
consequential potential for the streams to fall into synchronization.

The two extremes, evenly distributed and tightly synchronized multiple
streams, are indicated in Figure 4 The average throughput of parallel
synchronized streams is the same as a single stream over extended peri-
ods in this simulation, and both are certainly far worse than an evenly
distributed set of parallel streams.

Gigabit TCP: continued

The Internet Protocol Journal
11

Figure 4: Comparison of Parallel TCP:
Synchronized and Distributed

Streams
12

10

8

6

4

2

0

Time (Hours)
0.0 0.2 0.4 0.6 0.8 1.0

Sum of Distributed Parallel Streams

Sum of Synchronized
Parallel Streams

Single Stream

Ra
te

 (G
bp

s)

One way to address this problem is to reunite these parallel streams
into a single controlled stream that exhibits the same characteristics as
evenly spread parallel streams. This approach, MulTCP, is considered
in the next section.

If all this analysis of parallel TCP streams sounds a little academic and
unrelated to networking today, it is useful to note that many Inter-
net Service Providers (ISPs) currently see BitTorrent traffic as their
highest-volume application. BitTorrent is a peer-to-peer protocol that
undertakes transfer of datasets using a highly parallel transfer tech-
nique. Under BitTorrent the original dataset is split into blocks, each of
which can be downloaded in parallel. The subtle twist here is that the
individual sessions do not have the same source points, and the host
may take feeds from many different sources simultaneously, as well
as offering itself as a feed point for the already downloaded blocks.
This behavior exploits the peer-to-peer nature of these networks to a
very high extent, potentially not only exploiting parallel TCP sessions
for speed gains, but also exploiting diverse network paths and diverse
data sources to avoid single path congestion. Considering its effective-
ness in terms of maximizing transfer speeds for high-volume datasets
and its relative success in truly exploiting the potential of peer-to-peer
networks—and of course the dramatic acceptance of BitTorrent and
its extensive use—BitTorrent probably merits closer examination, but
perhaps that is for another time and an article of its own.

Very High Speed Serial TCP
The other general form of approach is to reexamine the current TCP
control algorithm to see if there are parameter or algorithm changes
that could allow TCP to undertake a better form of rate adaptation
to these high-capacity, long-delay network paths. The aim here is to
achieve a good congestion response algorithm that does not amplify
transient congestion conditions into sustained disaster areas, while at
the same time being able to support high-speed data transfers, thereby
making effective use of all available network capacity.

The Internet Protocol Journal
12

We also want TCP to behave sensibly in the face of other TCP sessions,
so that it can share the network with other TCP sessions fairly.

MulTCP
The first of these approaches is MulTCP[1], which is a single TCP
stream that behaves in a manner equivalent to N parallel TCP sessions,
where the virtual sessions are evenly distributed in order to achieve the
optimal outcome in terms of throughput. The essential changes to TCP
are in congestion avoidance mode and the reaction of packet loss. In
congestion avoidance mode MulTCP increases its congestion window
by N segments per RTT, rather than the default of a single segment.
Upon packet loss, MulTCP reduces its window by W/(2N), rather than
the default of W/2. MulTCP uses a slightly different version of slow
start, increasing its window by 3 segments per received ACK, rather
than the default value of 2.

MulTCP represents a simple change to TCP that does not depart radi-
cally from the TCP congestion control algorithm. Of course when
choosing an optimal value for N, some understanding of the network
characteristics would help. If the value for N is too high, the MulTCP
session has a tendency to claim an unfair amount of network capacity,
but if the value is too low, it does not necessarily take full advantage
of available network capacity. Figure 5 shows MulTCP compared to
a simulation of an equivalent number of parallel TCP streams and a
single TCP stream (N = 5 in this particular simulation).

Figure 5: MulTCP

12

10

8

6

4

2

0

Time (Hours)

MulTCP Simulation (N=5)

0.0 0.2 0.4 0.6 0.8 1.0

MulTCP

Single TCP StreamRa
te

 (G
bp

s)

Good as this is, there is the lingering impression that we can do better.
It would be better not to have to configure the number of virtual paral-
lel sessions; it would be better to support fair outcomes when compet-
ing with other concurrent TCP sessions over a range of bandwidths;
and it would be better to have a wide range of scaling properties.

Gigabit TCP: continued

The Internet Protocol Journal
13

There is no shortage of options here for fine-tuning various aspects
of TCP to meet some of these preferences, ranging from adaptations
applied to the TCP rate control equation to approaches that view the
loading onto the network as a power spectrum problem.

HighSpeed TCP
Another approach, described in [2], “HighSpeed TCP for Large Con-
gestion Windows” looks at this from the perspective of the TCP rate
equations, developed by Sally Floyd at ICIR.

When TCP operates in congestion avoidance mode at an average speed
of W packets per RTT, then the number of packets per RTT varies
between (2/3)W and (4/3)W. Each cycle takes (2/3)W RTT intervals,
and the number of packets per cycle is therefore (2/3)W2 packets. This
result implies that the rate can be sustained at W packets per RTT as
long as the packet loss rate is 1 packet loss per cycle, or a loss rate, ρ,
where ρ = 1/((2/3)W2). Solving this equation for W gives the average
packet rate per RTT of W = √(1.5)/√(ρ). The general rate function for
TCP, R, is therefore: R = (MSS/RTT) × (√(1.5)/√(ρ)), where MSS is the
TCP packet size.

Taking this same rate equation approach, what happens for N multiple
streams? The ideal answer is that the parallel streams operate N times
faster at the same loss rate, or, as a rate equation the number of packets
per RTT, WN, can be expressed as WN = N((√(1.5)/√(ρ)), and each TCP
cycle is compressed to an interval of (2/3) (WN

2/N2).

But perhaps the desired response is not to shift the TCP rate response by
a fixed factor of N—as is the intent with MulTCP—but to adaptively
increase the sending rate through increasing values of N as the loss rate
falls. The proposition made by HighSpeed TCP is to use a TCP response
function that preserves the fixed relationship between the logarithm of
the sending rate and the logarithm of the packet loss rate, but alters the
slope of the function, such that TCP increases its congestion avoidance
increment as the packet loss rate falls. This relationship is shown in
Figure 6 where the log of the sending rate is compared to the log of the
packet loss rate. MulTCP preserves the same relationship between the
log of the sending rate and the log of the packet loss rate, but alters the
offset, whereas changing the value of the exponent of the packet loss
rate causes a different slope in the rate equation.

The Internet Protocol Journal
14

Figure 6: TCP Response Functions

1E+06

1E+07

1E+08

1E+09

1E+04

1E+05

1E+02

1E+03

1E+00

1E+01

1E-01

Loss Rate (ρ)
Se

nd
in

g
Ra

te
 (S

),
Pa

ck
et

s
pe

r R
TT

1E-10 1E-081E-09 1E-061E-07 1E-041E-05 1E-021E03 1E-001E-01

TCP (S = 1.22 x ρ0.5)
MulTCP (S = 12.2 x ρ0.5)
HighSpeed TCP (S = 0.15 x ρ0.82)

One way to look at the HighSpeed TCP proposal is that it operates
in the same fashion as a turbocharger on an engine; the faster the
engine is running, the higher the turbo-charged boost to the normal
performance of the engine. Below a certain threshold value the TCP
congestion avoidance function is unaltered, but when the packet loss
rate falls below a certain threshold value then the higher speed conges-
tion avoidance algorithm is invoked. The higher-speed rate equation
proposed by HighSpeed TCP is based on achieving a transfer rate of
10 Gbps over a 100-ms latency path with a packet loss rate of 1 in
10 million packets. Working backward from these parameters gives
us a rate equation for W, the number of packets per RTT interval of
W = 0.12/ρ0.835, approximately equivalent to a MulTCP session where
the number of parallel sessions, N, is raised as the TCP rate increases.

This result can be translated into two critical parameters for a modified
TCP: the number of segments to be added to the current window size for
each lossless RTT time interval, and the number of segments to reduce
the window size in response to a packet loss event. Conventional TCP
uses values of 1 and (½)W, respectively. The HighSpeed TCP approach
increases the congestion window by 1 segment for TCP transfer rates
up to 10 Mbps, but then uses an increase of some 6 segments per RTT
for 100 Mbps, 26 segments at 1 Gbps and 70 segments at 10 Gbps.
In other words the faster the TCP rate that has already been achieved,
then the greater the rate acceleration. Highspeed TCP also advocates a
smaller multiplicative decrease in response to a single packet drop, so
that at 10 Mbps the multiplier would be ½, at 100 Mbps the multiplier
is 1/3, at 1 Gbps it is 1/5, and at 10 Gbps it is set to 1/10.

What does this process look like? Figure 7 shows a HighSpeed TCP
simulation. What is not easy to discern is that during congestion avoid-
ance HighSpeed TCP opens its sending window in increments of 53
through 64 segments each RTT interval, making the rate curve slightly
upward during this window expansion phase.

Gigabit TCP: continued

The Internet Protocol Journal
15

HighSpeed TCP manages to recover from the initial rate halving from
slow start in about 30 seconds, and operates at an 8-second cycle, as
compared to the 38-minute cycle of a single TCP stream, or a 10-stream
MulTCP session that operates at a 21-second cycle.

Figure 7: HighSpeed TCP
Simulation

10.00

12.00

6.00

8.00

4.00

2.00

0.00

Time (Secs)

Ra
te

 (G
bp

s)

0 2010 30 5040 60

MulTCP (N=10)

HighSpeed TCP

TCP

HighSpeed TCP (70ms, 1500 Octet Segments, 10Gbps)

One other aspect of this work concerns the so-called slow start algo-
rithm, which at these speeds is not really slow at all. The final RTT in-
terval in our scenario has TCP attempting to send an additional 50 MB
of data in just 70 ms, meaning an additional 33,333 packets are pushed
into the network queues. Unless the network path is completely idle at
this point, it is likely that hundreds—if not thousands—of these pack-
ets will be dropped in this step, pushing TCP back into a restart cycle.
HighSpeed TCP has proposed a limited slow start to accompany High-
Speed TCP that limits the inflation of the sending window to a fixed
upper rate per RTT to avoid this problem of slow start overwhelming
the network and causing the TCP session to continually restart. Other
changes for HighSpeed TCP are to extend the limit of three duplicate
ACKs before retransmitting to a higher value, and a smoother recovery
when a retransmitted packet is itself dropped.

Scalable TCP
Of course HighSpeed TCP is not the only offering in the high-per-
formance TCP stakes.

Scalable TCP[3], developed by Tom Kelly at Cambridge University, at-
tempts to break the relationship between TCP window management
and the RTT time interval. It does this by noting that in “convention-
al” TCP, the response to each ACK in congestion avoidance mode is
to inflate the sender’s congestion window size (cwnd) by (1/cwnd),
thereby ensuring that the window is inflated by 1 segment each RTT
interval. Similarly the window halving on packet loss can be expressed
as a reduction in size by (cwnd/2). Scalable TCP replaces the additive
function of the window size by the constant value a.

The Internet Protocol Journal
16

The multiplicative decrease is expressed as a fraction b, which is ap-
plied to the current congestion window size.

In Scalable TCP, for each ACK the congestion window is inflated by
the constant value a, and upon packet loss the window is reduced by
the fraction b. The relative performance of Scalable TCP as compared
to conventional TCP and MulTCP is shown in Figure 8.

The essential characteristic of Scalable TCP is the use of a multiplica-
tive increase in the congestion window, rather than a linear increase,
effectively creating a higher frequency of oscillation of the TCP session,
probing upward at a higher rate and more frequently than HighSpeed
TCP or MulTCP. The frequency of oscillation of Scalable TCP is inde-
pendent of the RTT interval, and the frequency can be expressed as f
= log(1 – b) / log(1 + a). In this respect, longer networks paths exhibit
similar behavior to shorter paths at the bottleneck point. Scalable TCP
also has a linear relationship between the log of the packet loss rate and
the log of the sending rate, with a greater slope of HighSpeed TCP.

Figure 8: Scalable TCP

10.00

12.00

6.00

8.00

4.00

2.00

0.00

Time (Secs)

Ra
te

 (G
bp

s)

0 2010 30 5040 60

MulTCP (N=10)

Scalable TCP

TCP

Scalable TCP (70ms, 1500 Octet Segments, 10Gbps, a=0.01, b=0.125)

BIC and CUBIC
The common concern here is that TCP underperforms in those areas of
application where there is a high bandwidth-delay product. The com-
mon problem observed here is that the additive window inflation al-
gorithm used by TCP can be very inefficient in long-delay, high-speed
environments. As can be seen in Figure 10, the ACK response for TCP
is a congestion window inflation operation where the amount of infla-
tion of the window is a function of the current window size and some
additional scaling factor.

Binary Increase Congestion Control (BIC)[4] takes a different view, by
assuming that TCP is actively searching for a packet sending rate that
is on the threshold of triggering packet loss, and uses a binary chop
search algorithm to achieve this efficiently.

Gigabit TCP: continued

The Internet Protocol Journal
17

When BIC performs a window reduction in response to packet drop,
it remembers the previous maximum window size, as well as the cur-
rent window setting. With each lossless RTT interval BIC attempts to
inflate the congestion window by one half of the difference between the
current window size and the previous maximum window size. In this
way BIC quickly attempts to recover from the previous window reduc-
tion, and, as BIC approaches the old maximum value, it slows down its
window inflation rate, halving its rate of window inflation each RTT.
This process is not quite as drastic as it may sound, because BIC also
uses a maximum inflation constant to limit the amount of rate change
in any single RTT interval. The resultant behaviour is a hybrid of a lin-
ear and a non-linear response, where the initial window inflation after
a window reduction is a linear increase, but as the window approaches
the previous point where packet loss occurred the rate of window in-
crease slows down. BIC uses the complementary approach to window
inflation when the current window size passes the previous loss point.
Initially further window inflation is small, and the size of the window
inflation value doubles for each RTT, up to a limit value, beyond which
the window inflation is once more linear.

BIC can be too aggressive in low RTT networks and in slower speed
situations, leading to a refinement of BIC, namely CUBIC[5]. CUBIC
uses a third-order polynomial function to govern the window infla-
tion algorithm, rather than the exponential function used by BIC. The
cubic function is a function of the elapsed time since the previous win-
dow reduction, rather than the implicit use by BIC of an RTT counter,
so that CUBIC can produce fairer outcomes in a situation of multiple
flows with different RTTs. CUBIC also limits the window adjustment
in any single RTT interval to a maximum value, so the initial window
adjustments after a reduction are linear. Here the new window size, W,
is calculated as W = C(t – K)3 + Wmax, where C is a constant scaling
factor, t is the elapsed time since the last window reduction event, Wmax
is the size of the window prior to the most recent reduction and K is
a calculated value: K = (Wmax β / C)1/3. This function is more stable
when the window size approaches the previous window size Wmax. The
use of a time interval rather than an RTT counter in the window size
adjustment is intended to make CUBIC more sensitive to concurrent
TCP sessions, particularly in short RTT environments.

Figure 9 shows the relative adjustments for BIC and CUBIC, using a
single time base. The essential difference between the two algorithms is
evident in that the CUBIC algorithm attempts to reduce the amount of
change in the window size when near the value where packet drop was
previously encountered.

The Internet Protocol Journal
18

Figure 9: Window Adjustment
for BIC and CUBIC

8500

9000

9500

10000

10500

11000

11500

12000

8000

Time
W

in
do

w
 S

iz
e

0 5 25201510 30 35

Wmax

CUBIC

BIC

Westwood
The “steady state” mode of TCP operation is one that is characterized
by the “sawtooth” pattern of rate oscillation. The additive increase
is the means of exploring for viable sending rates while not causing
transient congestion events by accelerating the sending rate too quick-
ly. The multiplicative decrease is the means by which TCP reacts to a
packet loss event that is interpreted as being symptomatic of network
congestion along the sending path.

BIC and CUBIC concentrate on the rate increase function, attempting
to provide for greater stability for TCP sessions as they converge to a
long-term available sending rate. The other perspective is to examine
the multiplicative decrease function, to see if there is further informa-
tion that a TCP session can use to modify this rate decrease function.

The approach taken by Westwood[6], and a subsequent refinement,
Westwood+[7], is to concentrate on the halving by TCP of its congestion
window in response to packet loss (as signaled by three duplicate ACK
packets). The conventional TCP algorithm of halving the congestion
window can be refined by the observation that the stream of return
ACK packets actually provides an indication of the current bottleneck
capacity of the network path, as well as an ongoing refinement of the
minimum RTT of the network path. The Westwood algorithm main-
tains a bandwidth estimate by tracking the TCP acknowledgement
value and the inter-arrival time between ACK packets in order to esti-
mate the current network path bottleneck bandwidth. This technique
is similar to the “Packet Pair” approach, and that used in the TCP
Vegas. In the case of the Westwood approach the bandwidth estimate is
based on the receiving ACK rate, and is used to set the congestion win-
dow, rather than the TCP send window. The Westwood sender keeps
track of the minimum RTT interval, as well as a bandwidth estimate
based on the return ACK stream. In response to a packet loss event,
Westwood does not halve the congestion window, but instead sets it to
the bandwidth estimate times the minimum RTT value.

Gigabit TCP: continued

The Internet Protocol Journal
19

If the current RTT equals the minimum RTT, implying that there are
no queue delays over the entire network path, then the sending rate is
set to the bandwidth of the network path. If the current RTT is greater
than the minimum RTT, the sending rate is set to a value that is lower
than the bandwidth estimate, and allows for additive increase to once
again probe for the threshold sending rate when packet loss occurs.

The major concern here is the potential variation in inter-ACK tim-
ing, and although Westwood uses every available data and ACK pair-
ing to refine the current bandwidth estimate, the approach also uses a
low pass filter to ensure that the bandwidth estimate remains relatively
stable over time. The practical result here is that the receiver may be
performing some form of ACK distortion, such as a delayed ACK re-
sponse, and the network path contains jitter components in both the
forward and reverse direction, so that ACK sequences can arrive back
at the sender with a high variance of inter-ACK arrival times. West-
wood+ further refines this technique to account for a false high reading
of the bandwidth estimate due to ACK compression, using a minimum
measurement interval of the greater of the RTT or 50 ms.

The intention here is to ensure that TCP does not over-correct when
it reduces its congestion window, so that the problems relating to the
slow inflation rate of the window are less critical for overall TCP per-
formance. The critical part of this work lies in the filtering technique
that takes a noisy sequence of measurement samples and applies an
anti-aliasing filter followed by a low-pass discrete-time filter to the data
stream in order to generate a reasonably accurate available bandwidth
estimate. This estimate is coupled with the minimum RTT measure-
ment to provide a lower bound for the TCP congestion window setting
following detection of packet loss and subsequent fast retransmit re-
pair of the data stream. If the packet loss is caused by network conges-
tion the new setting will be lower than the threshold bandwidth (lower
by the ratio RTTmin / RTTcurrent), so that the new sending rate will also
allow the queued backlog of traffic along the path to clear. If the packet
loss is caused by media corruption, the RTT value will be closer to the
minimum RTT value, in which case the TCP session-rate backoff is
smaller, allowing for a faster recovery of the previous data rate.

Although this approach has direct application in environments where
the probability of bit-level corruption is intermittently high, such as of-
ten encountered with wireless systems, it also has some application to
the long-delay, high-speed TCP environment. The rate backoff of TCP
Westwood is one that is based on the RTTmin / RTTcurrent ratio, rather
than rate halving in conventional TCP, or a constant ratio, such as used
in MulTCP, allowing the TCP session to oscillate its sending rate closer
to the achievable bandwidth rather than performing a relatively high-
impact rate backoff in response to every packet loss event.

The Internet Protocol Journal
20

H-TCP
The observation made by the proponents of H-TCP[9] is that better
TCP outcomes on high-speed networks is achieved by modifying
TCP behavior to make the time interval between congestion events
smaller. The signal that TCP has taken up its available bandwidth is a
congestion event, and by increasing the frequency of these events TCP
will track this resource metric with greater accuracy. To achieve this
tracking, the H-TCP proponents argue that both the window increase
and decrease functions may be altered, but in deciding whether to alter
these functions, and in what way, they argue that a critical factor lies
in the level of sensitivity to other concurrent network flows, and the
ability to converge to stable resource allocations to various concurrent
flows.

“While such modifications might appear straightforward, it has been
shown that they often negatively impact the behaviour of networks of
TCP flows. High-speed TCP and BIC-TCP can exhibit extremely slow
convergence following network disturbances such as the start-up of
new flows; Scalable-TCP is a multiplicative-increase multiplicative-
decrease strategy and as such it is known that it may fail to converge
to fairness in drop-tail networks.”

Work-in-progress: draft-leith-tcp-htcp-01.txt

H-TCP argues for minimal changes to the window control functions,
observing that in terms of fairness a flow with a large congestion window
should, in absolute terms, reduce the size of their window by a larger
amount that smaller-sized flows, as a means of readily establishing a
dynamic equilibrium between established TCP flows and new flows
entering the same network path.

H-TCP proposes a timer-based response function to window inflation,
where for an initial period, the existing value of one segment per
RTT is maintained, but after this period the inflation function is a
function of the time since the last congestion event, using an order-2
polynomial function where the window increment in each RTT interval,
α = (½T2 + 10T + 1), where T is the elapsed time since the last packet
loss event. This equation is further modified by the current window
reduction factor β where α’ = 2 × (1 – β) × α.

The window reduction multiplicative factor, β, is based on the variance
of the RTT interval , and β is set to RTTmin / RTTmax for the previous
congestion interval, unless the RTT has a variance of more than 20
percent, in which case the value of ½ is used.

H-TCP appears to represent a further step along the evolutionary path
for TCP, taking the adaptive window inflation function of HighSpeed
TCP, using an elapsed timer as a control parameter as was done in
Scalable TCP, and using the RTT ratio as the basis for the moderation
of the window reduction value from Westwood.

Gigabit TCP: continued

The Internet Protocol Journal
21

FAST
FAST[10] is another approach to high-speed TCP. FAST is probably best
viewed in context in terms of the per packet response of the various
high speed TCP approaches, as indicated in the following Control and
Response table:

Type Control Method Trigger Response

TCP AIMD(1,0.5) ACK response
Loss response

W = W + 1/W
W = W – W × 0.5

MulTCP AIMD(N,1/2N) ACK response
Loss response

W = W + N/W
W = W – W × 1/2N

HighSpeed TCP AIMD(a(w), b(w)) ACK response
Loss response

W = W + a(W)/W
W = W – W × b(W)

Scalable TCP MIMD(1/100, 1/8) ACK response
Loss response

W = W + 1/100
W = W – W × 1/8

FAST RTT Variation RTT W = W × (base RTT/RTT) + α

All these approaches share a common structure of window adjustment,
where the sender’s window is adjusted according to a control function
and a flow gain. TCP, MulTCP, HighSpeed TCP, Scalable TCP, BIC,
CUBIC, Westwood, and H-TCP all operate according to a congestion
measure that is based on ACK clocking and a packet loss trigger. What
is happening in these models is that a bottleneck point on the network
path has reached a level of saturation such that the bottleneck queue
is full and packet loss is occurring. It is noted that the build up of the
queue prior to packet loss would have caused a deterioration of the
RTT.

This fact leads to the observation made by FAST, that another form
of congestion signalling is one that is based on RTT variance, or
cumulative queuing delay variance. FAST is based on this latter form
of congestion signalling.

FAST attempts to stabilize the packet flow at a rate that also stabilizes
queue delay, by basing its window adjustment, and therefore its
sending rate, such that the RTT interval is stabilized. The window
response function is based on adjusting the window size by the
proportionate amount that the current RTT varies from the average
RTT measurement. If the current RTT is lower than the average,
then window size is increased, and if the current RTT is higher then
window size is decreased. The amount of window adjustment is based
on the proportionate difference between the two values, leading to the
observation that FAST exponentially converges to a base RTT flow
state. By comparison, conventional TCP has no converged state, but
instead oscillates between the rate at which packet loss occurs and
some lower rate (Figure 10).

The Internet Protocol Journal
22

Figure 10: TCP Response Function
vs. FAST

De
la

y

FAST

Window Size

Q
ue

ue
 D

el
ay

TCP Rate Oscillation
Packet Loss

FAST maintains an exponential weighted average RTT measurement
and adjusts its window in proportion to the amount by which the
current RTT measurement differs from the weighted average RTT
measurement. It is harder to provide a graph of a simulation of FAST as
compared to the other TCP methods, and the more instructive material
has been gathered from various experiments using FAST.

XCP — End-to-End and Network Signalling
It is possible to also call in the assistance of the routers on the path
and call on them to mark packets with signaling information relating
to current congestion levels. This approach was first explored with
the concept of ECN, or Explicit Congestion Notification, and has
been generalized into a transport flow control protocol, called XCP,[11]

where feedback relating to network load is based on explicit signals
provided by routers relating to their relative sustainable load levels.
Interestingly this digresses from the original design approach of TCP,
where the TCP signaling is set up as effectively a heartbeat signal being
exchanged by the end systems, and the TCP flow control process is
based upon interpretation of the distortions of this heartbeat signal by
the network.

XCP appears to be leading into a design approach where the network
switching elements play an active role in end-to-end flow control, by
effectively signalling to the end systems the current available capacity
along the network path. This setup allows the end systems to respond
rapidly to available capacity by increasing the packet rate to the point
where the routers along the path signal that no further capacity is
available, or to back off the sending rate when the routers along the
path signal transient congestion conditions.

Whether such an approach of using explicit router-to-end host signals
leads to more efficient very high-speed transport protocols remains to
be determined, however.

Gigabit TCP: continued

The Internet Protocol Journal
23

Where Next?
The basic question here is whether we have reached some form of
fundamental limitation of the TCP window-based congestion control
protocol, or whether it is a case that the window-based control system
remains robust at these speeds and distances, but that the manner of
control signalling will evolve to adapt to an ever-widening range of
speed extremes in this environment.

Rate-based pacing, as used in FAST can certainly help with the problem
of the problem of guessing what are “safe” window inflation and
reduction increments, and it is an open question as to whether it is even
necessary to use a window inflation and deflation algorithm or whether
it would be more effective to head in other directions, such as rate
control, RTT stability control or adding additional network-generated
information into the high-speed control loop. Explicit router-based
signaling, such as described in XCP, allows for quite precise controls
over the TCP session, although what is lost there is the adaptive ability
to deploy the control system over any existing IP network.

However, across all these approaches, the basic TCP objectives remain
the same: what we want is a transport protocol that can use the
available network capacity as efficiently as possible—and as quickly as
possible—minimizing the number of retransmissions and maximizing
the effective data throughput.

We also want a protocol that can adapt to other users of the network,
and attempt to fairly balance its use with competing claims for network
resources.

The various approaches that have been studied to date all represent
engineering compromises in one form or another. In attempting
to optimize the instantaneous transfer rate the congestion control
algorithm may not be responsive to other concurrent transport sessions
along the same path. Or in attempting to optimize fairness with other
concurrent sessions, the control algorithm may be unresponsive to
available network path capacity. The control algorithm may be very
unresponsive to dynamic changes in the RTT that may occur during
the session because of routing changes in the network path. Which
particular metrics of TCP performance are critical in a heterogeneous
networking environment is a topic where we have yet to see a clear
consensus emerging from the various research efforts.

However, we have learned a few things about TCP that form part
of this consideration of where to take TCP in this very-high-speed
world:

• The first lesson is that TCP has been so effective in terms of overall
network efficiency and mutual fairness because everyone uses much
the same form of TCP, with very similar response characteristics. If
we all elected to use radically different control functions in each of
our TCP implementations then it appears likely that we would have
a poorly performing chaotic network subject to extended conditions
of complete overload and inefficient network use.

The Internet Protocol Journal
24

• The second lesson is that a transport protocol does not need to
solve media level or application problems. The most general form
of transport protocol should not rely on characteristics of specific
media, but should use specific responses from the lower layers of the
protocol stack in order to function correctly as a transport system.

• The third lesson from TCP is that a transport protocol can become
remarkably persistent and be used in contexts that were simply not
considered in the original protocol design, so any design should be
careful to allow generous margins of use conditions.

• The final lesson is one of fair robustness under competition. Does the
protocol negotiate a fair share of the underlying network resource
in the face of competing resource claims from concurrent transport
flows?

Of all these lessons, the first appears to be the most valuable and
probably the most difficult to put into practice. The Internet works as
well as it does today largely because we all use the much same transport
control protocol. If we want to consider some changes to this control
protocol to support higher-speed flows over extended latency, then it
would be perhaps reasonable to see if there is a single control structure
and a single protocol that we can all use.

So deciding on a single approach for high-speed flows in the high-
speed Internet is perhaps the most critical part of this entire agenda
of activity. It is one thing to have a collection of differently controlled
packet flows each operating at megabits-per-second flow rates on a
multi-gigabit network, but it is quite a frightening prospect to have all
kinds of different forms of flows each operating at gigabits per second
on the same multigigabit network. If we cannot make some progress in
reaching a common view of a single high-speed TCP control algorithm
then it may indeed be the case that none of these approaches will operate
efficiently in a highly diverse high-speed network environment.

Acknowledgment
I must acknowledge the patient efforts of Larry Dunn in reading through
numerous iterations of this article, correcting the text and questioning
some of my wilder assertions. Thanks Larry.

However, whatever errors may remain are, undoubtedly, all mine.

Further Reading
There is a wealth of reading on this topic, and here any decent search
engine can assist. However if you are interested in this topic and want
a starting reference that describes it in a very careful and structured
manner, then I can recommend the following two sources as a good
way to start exploring this topic to gain an overview of the current
state of the art in this area:

Gigabit TCP: continued

The Internet Protocol Journal
25

• “HighSpeed TCP for Large Congestion Windows,” S. Floyd, RFC
3649, December 2003.

 Floyd’s treatment of this topic is precise, encompassing, and
wonderfully presented. If only all RFCs were of this quality.

• Proceedings of the Workshops on Protocols for Fast Long-Distance
Networks.

 These workshops have been held in:

2003: http://datatag.web.cern.ch/datatag/pfldnet2003/

2004: http://www-didc.lbl.gov/PFLDnet2004/program.htm

2005: http://www.ens-lyon.fr/LIP/RESO/pfldnet2005/

References
 [1] “Differentiated End-to-End Internet Services Using a Weighted

Proportional Fair Sharing TCP,” J. Crowroft and P. Oechcslin,
ACM SIGCOMM Computer Communication Review, Volume
28, No. 3, pp. 53–69, July 1998.

 [2] “HighSpeed TCP for Large Congestion Windows,” S. Floyd, RFC
3649, December 2003.

 [3] “Scalable TCP: Improving Performance in High-Speed Wide
Area Networks,” T. Kelly, ACM SIGCOMM Computer Commu-
nication Review, Volume 33, No. 2, pp. 83–91, April 2003.

 [4] “Binary Increase Congestion Control (BIC) for Fast Long-Dis-
tance Networks,” L. Xu, K. Harfoush, and I. Rhee, Proceedings
of IEEE INFOCOMM 2004, March 2004.

 [5] “CUBIC: A New TCP-Friendly High-Speed TCP Variant,” I.
Rhee, L. Xu,

 http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
cubic-paper.pdf, February 2005.

 [6] “TCP Westwood: Congestion Window Control Using Bandwidth
Estimation,” M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C.
Casetti, and S. Mascolo, Proceedings of IEEE Globecom 2001,
Volume 3, pp. 1698–1702, November 2001.

 [7] “Linux 2.4 Implementation of Westwood+ TCP with Rate-
Halving: A Performance Evaluation over the Internet,” A.
Dell’Aera, L. A. Greco, and S. Mascolo, Tech. Rep. No. 08/03/S,
Politecnico di Bari, http://deecal03.poliba.it/mascolo/
tcp%20westwood/Tech_Rep_08_03_S.pdf

 [8] “End-to-end Internet packet dynamics,” V. Paxson, Proceedings
of ACM SIGCOMM 97, pp. 139–152, 1997.

The Internet Protocol Journal
26

[9] “H-TCP: TCP Congestion Control for High Bandwidth-Delay
Product Paths,” D. Leith, R. Shorten, Work in Progress, June
2005. Internet Draft: draft-leith-tcp-htcp-00.txt

 [10] “FAST TCP: Motivation, Architecture, Algorithms, Perfor-
mance,” C. Jin, X. Wei, and S. H. Low, Proceedings of IEEE
INFOCOM 2004, March 2004.

 [11] “Congestion Control for High Bandwidth-Delay Product
Networks,” D. Katabi, M. Handley, and C. Rohrs, ACM
SIGCOMM Computer Communication Review, Volume 32,
No. 4, pp. 89–102, October 2002.

 [12] “TCP Performance,” Geoff Huston, The Internet Protocol
Journal, Volume 3, No. 2, June 2000.

 [13] “The Future for TCP,” Geoff Huston, The Internet Protocol
Journal, Volume 3, No. 3, September 2000.

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University.
He has been closely involved with the development of the Internet for almost two
decades, particularly within Australia, where he was responsible for the initial build of
the Internet within the Australian academic and research sector, and has served time
with Telstra, where he was the Chief Scientist in the company’s Internet area. Geoff
is currently the Internet Research Scientist at the Asia Pacific Network Information
Centre (APNIC). He has been a member of the Internet Architecture Board, and
currently co-chairs three Working Groups in the IETF. He is author of several Internet-
related books. E-mail: gih@apnic.net

Gigabit TCP: continued

The Internet Protocol Journal
27

How Instant Messaging Is Transforming the Enterprise Network
by David Strom

I nstant Messaging (IM) has come of age and is close to becoming
one of those protocols that offers something for everyone. Once
the province of chatty teens looking to replace phone conversations

with electronic ones, IM is now a corporate mainstay and part of a
new breed of applications that are built around “presence detection,”
the ability to determine when someone—or something—is online and
available to communicate.

Indeed, IM is rapidly spreading across the corporate world and
becoming an able replacement for overflowing voicemail and e-mail
inboxes that are clogged with spam and buried in irrelevant and non-
time-sensitive postings. If you must get through to a busy corporate
executive, IM is becoming the fastest and most effective method of
communicating. Move over CrackBerry.

IM offers several benefits today, having taken some lessons learned
by other Internet protocols of the past. First, it has a solid user and
developer base. Second, it has a relatively simple building-block
structure like the best of Internet protocols, with well-defined clients
and servers. Third, interoperability efforts are beginning to pay off
among the leading independent and private IM systems. Fourth,
open-source rules are making inroads in all the right places. Fifth,
Microsoft is a friend (for once) of IM and helping matters—rather
than playing its usual monopolist role in this space, the company is
actually encouraging future developments and interoperability. Finally,
a new collection of advanced applications is taking hold that will take
advantage of the existing Internet and IM infrastructure and create
some very sophisticated IM applications.

Let’s examine more closely where IM originated, where it is going,
and what the specific implications are for each of these developments
and for networking professionals. As a warning, this article by its very
nature takes some positions on products and vendors. These opinions
are solely those of the author, and they represent nothing wider or
more inclusive.

User Base
The IM servers are operated by either public network or private entities.
The major difference between the two is that the public systems operate
across the Internet and can be accessed by any users who download
the appropriate client software and create their own identity. Message
traffic is usually transmitted in plaintext and without any encryption
whatsoever.

The Internet Protocol Journal
28

The private IM systems are usually maintained by a corporate IT
department and operate behind firewalls; they offer message encryption,
message retention, and archiving; prepopulated buddy lists that are
integrated into the corporate authentication and directory servers;
and better security and privacy that are specific to a particular set of
corporate users. These private systems are not available to the public and
are designed strictly for employee communications or communications
among particular trading partners of the corporation

The four most popular public IM systems are currently all in corporate
hands: Microsoft, Yahoo, eBay/Skype, and AOL. Actually, we should
make that five systems because AOL owns two separate networks,
AOL Instant Messenger (AIM) and I seek you (ICQ). Introduced
in November 1996, ICQ was actually the first general-purpose IM
system combining presence or a list of contacts with the ability to send
messages. Other popular systems include the open-source Jabber and
Tencent QQ, the latter very popular in China. Estimates vary widely as
to the total number of nonduplicated users—because many people have
multiple accounts and use multiple systems—but it is safe to say that
more than 150 million users are active across all these systems at any
moment. The most recent estimates of active users are as follows:[1]

IM System Estimate of Active Users

AIM 53 million active users

ICQ 15 million active users

Skype 10 million active users

MSN Messenger 29 million active users

Yahoo Messenger 21 million active users

Jabber 13.5 million enterprise users

Tencent QQ 10 million active users

Why IM Is So Popular for Businesses
But these numbers are more about individuals using IM. They hide the
real story over the past several years, the rise of IM as a solid enterprise
communications tool. Corporate IM usage has skyrocked the last
several years, and one survey has found IM users in more than 50
percent of American corporations[2]. As mentioned earlier, there are
public and private IM systems. The vast majority of the private IM
systems are for institutional use for communications inside a company
or among several suppliers, customers, and other trading partners.

The largest players in the private IM space are Microsoft Office Live
Communications Server and IBM/Lotus’ Sametime, although Jabber
Corporation (not to be confused with the Jabber Software Foundation)
is also gaining a strong following. We will discuss more about the role
of open source in a moment, but first let’s examine the reasons why IM
has become so popular among so many business users.

Instant Messaging: continued

The Internet Protocol Journal
29

First, workers have become more mobile and more difficult to track
down. As secretarial support disappears and voicemail becomes more
the norm, you want to know when people are actually at their desk—
or laptop—these days. Staffs are more far-flung, and the global village
becomes a lot smaller when you use IM to “talk” to someone halfway
across the planet and get an immediate response. Finding someone who
is available requires more than just making a phone call or exchang-
ing e-mail messages. IM automatically tells you who is available—and
who is not—at any given hour of the day.

Second, e-mail is no longer the productivity tool it once was because
pipes are clogged with spam, viruses, and phishing attacks. Getting a
quick response—that is, within minutes—through e-mail now seems so
quaint, so “last year.”

Third, IM enables better collaboration and a tighter sense of commu-
nity. With IM, you can educate an entire team, give the team feedback
in real time, develop relationships, and cement the team together. It is a
nice antidote and countermeasure to connect all these home-based and
remote workers.

Fourth, the next generation of IM is not just about text chats; it also
offers solid integration with voice and video. Voice and video calling is
now part of Microsoft, Yahoo, Apple, and AOL IM software as well
as part of the Skype network, which pioneered the feature. These au-
dio and video extensions are becoming more popular with the private
Lotus and Microsoft systems as well.

Finally, the real-time features of IM and its ability to track someone
down no matter where they are located are attractive to customers,
partners, and suppliers that need a guaranteed method of communica-
tion. IM is becoming the critical technology ingredient for corporations
that are looking for faster response times, tying their customers closer
together, and enabling teleworkers to communicate across the globe.

Components
Following are some definitions and explanations for those unfamiliar
with the world of IM. Every IM network is composed of clients, servers,
and protocols to connect them.

Each IM client has three major pieces:

• A buddy list or roster of friends with whom you wish to com-
municate—The list is organized by groups that you specify, such
as “friends,” “work colleagues,” “family,” and so forth. The list
indicates who is online, who is available to talk to, and who is
offline or blocked by the user from communicating. Users organize
their buddies in different ways and have complete control over the
categories, naming conventions, and the like.

The Internet Protocol Journal
30

• A separate window that shows the text chats in process—Users type
in this window and view the responses of their correspondents.

• Any additional features for video and audio chats and for file transfers
between users

The last item bears some further discussion. All major IM products are
moving beyond their roots of simple text chats toward more integrated
and sophisticated communications, including real-time voice and video
calls. Indeed, the mixture of Voice over IP (VoIP) and IM is a potent
and popular one, accounting for the rapid uptake in Skype’s adoption
around the world. To use Skype as an example (although Yahoo has
begun offering similar phone calling features in its IM client, and the
others are soon to follow), users can make phone calls to the land-line
phone numbers for a few pennies per minute—even calls to numbers in
other countries. This is part of its attraction, along with voice mailboxes
that are attached to a particular IM username.

The IM server maintains the directory of user accounts and keeps track
of who is online, and in most cases routes messages among users. The
major difference between an IM server and a Simple Mail Transfer
Protocol (SMTP) e-mail server is that the IM server operates in real
time, sending messages back and forth between two users as they finish
typing a line of text. The servers also pass information in real time as to
the availability of various users in the directory, when they come online
and change their “status” message.

Users can typically set their availability in one of many different
modes:

• Online and ready to receive messages

• Away from the computer, in which case correspondents receive a
message saying so (or whatever the user wishes to be displayed)

• Unavailable or offline

• Blocked from anyone’s view for privacy reasons

This status message can be changed at the user’s discretion and is one
of the main attractions for teens and other hypercommunicators. You
can actually track what people are doing (or at least, saying that they
are doing), by monitoring their status messages. (I am at the beach, I
am taking a nap, I am at lunch, I am having coffee, and so forth.) For
my teenaged daughter, this is one way she documents her life and one
way that her friends can keep track of her—having a cell phone is not
enough! There are numerous third-party add-ins to enhance your away
message with clever graphics, hyperlinks to various Websites, and other
effluvia as well.

The combination of instant access and persistent status indicator is at
the core of why IM is such a powerful application. In a single window
on your computer, you have a list of all your correspondents and can
quickly determine who is online and who is not.

Instant Messaging: continued

The Internet Protocol Journal
31

The blocking ability for some systems works universally, meaning that
your presence is cloaked for everyone, as well as for specific users that
you do not wish to communicate with or know your particular status,
such as ex-spouses or ex-colleagues.

In most IM networks, you can be signed on from only one computer at
any given moment. If you attempt to sign on from a second machine,
you get an error message or your first computer is automatically logged
out of the system. This is one way for the network to keep track of
where you are located, because you can be in only one place at any
given time.

Each server uses the TCP/IP Internet infrastructure and communicates
with its clients over an assigned port number across the Internet. These
ports can be blocked or proxied to different numbers, depending on
the network administrator’s policies toward IM traffic. Typical port
numbers follow:

IM System Port Numbers

ICQ 4000

AIM 5190–3

XMPP 5222–3

MSNP (Microsoft) 1863

YMSG (Yahoo) 5050

Skype 80, 443, and others

Notice an interesting thing about Skype’s protocol: there is no single
assigned port number. Users can set one of the ports in its configuration
settings, but Skype uses a series of ports to communicate.[3] This setup
suggests several concerns, which we address next.

The Dark Side
Although these are all compelling reasons for the rise of IM across
the corporate network, all is not constructive with IM. This section
discusses problems specifically germane to Skype and problems with
all IM products in general.

When the Skype client is installed on a computer, it picks a random port
to communicate with other Skype computers, using what is believed
to be a form of Request for Comments (RFC) 3489[4]. This process
is similar to many network-based games and peer-to-peer file-sharing
products—no surprise because the developers of Skype worked on the
Kazaa music file-sharing software. Because of its programming model,
Skype is adept at traversing Network Address Translation (NAT)
routers and can usually find a communications path to the outside
world. Skype also encrypts all its message traffic, and this fact coupled
with random port usage and its peer-to-peer programming model
makes it look very similar to some malicious code that is unleashed
across your network.

The Internet Protocol Journal
32

This is part of its charm and its challenge: network administrators who
want to block Skype usage usually have a very difficult time figuring
out how to do so[5], and may have to resort to third-party blocking
products or clever configurations. One of the papers listed in [3] shows
a way to block Skype using the popular open-source Squid caching
proxy: not only do you have to prevent outbound User Datagram
Protocol (UDP) connections over port 443, but you also must prevent
connections to numeric IP addresses.

Although Skype has its own problems because of the way it is designed,
there are several significant drawbacks to widespread adoption and
deployment of any IM application. IM is not immune to infections,
and just as its popularity is on the increase, so are ways to send
malicious payloads and attacks too. What makes matters worse with
IM versus say, e-mail, is its very instant nature: an infection can easily
spread across a network in a matter of seconds, given that users are
logged in, have long lists of users, and tend to think that any message
coming from their respondents is more trusted than the average e-mail.
In addition, Internet chat has long been a mechanism for controlling
large-scale bot-nets of zombie computers, whose owners are unaware
of such usage. Numerous virus authors have used exploits in Internet
Relay Chat, for example, to control their villains across the Internet.

To avoid these problems, many corporations have either designed their
own or are using one of several commercial IM protection products
to screen incoming messages for particular patterns and methods of
attack. The IM protection products work just like antivirus products
work with e-mail messages: they download pattern files on a regular
basis from a central server, and perform deep packet inspection across
a perimeter to determine what is malicious and what is not.

Interoperability
Each public IM system is an island unto itself: users on one cannot
easily communicate with users of another, unless one of two things
happens:

• A user runs one of the multisystem client programs that allows them
to sign in to multiple systems concurrently. Still, using these types of
products means that just the user can communicate with his or her
“buddies” across systems. Many mostly free products that enable
this are available[6].

• A private IM operator can combine more than one protocol inside
the IM server application. This approach means that clients need not
know or care about other IM protocols, such as using Microsoft’s
Live Communications Server 2005[7].

Instant Messaging: continued

The Internet Protocol Journal
33

But variables are changing on the interoperability scene to make life
better for IM users. First, efforts are under way among the major
operators to form better relationships with each other:

In October 2005, Yahoo and Microsoft announced plans to introduce
interoperability between MSN and Yahoo Messenger by mid-2006, us-
ing Session Initiation Protocols (SIPs). In December 2005, AOL and
Google announced a strategic partnership deal where Google Talk us-
ers can talk with AIM and ICQ users provided they have an identity
at AOL.

Second, both Microsoft and Apple have made efforts to include multi-
protocol IM clients as part of their desktop operating systems. Apple’s
iChat in its latest Mac OS 10.4 Tiger, as an example, now supports
AIM, Google Talk, and Jabber. Microsoft has announced plans to sup-
port other networks in its next release of Windows Vista, expected
later this year.

Finally, the private IM systems of Microsoft and Lotus both support
multiple IM protocols, and are widening their support for others, mak-
ing them more useful for corporations.

Still, with all this activity, the IM interoperability scene is pretty poor:
think where e-mail was in the early 1990s with custom-crafted gate-
ways and the like so that an MCIMail user could send messages to a
CompuServe user.

Setting up two systems to talk to each other is neither simple nor ob-
vious, and each pair of systems must be done separately. So to add
Google Talk to Trillian, a user would need to provide the server host
name (talk.google.com) and port number (5222). (By the way,
GoogleTalk has the most helpful instructions on how to set up a variety
of third-party applications to connect to its servers.)

But that is not all—even if a user follows these instructions to set up
cross-system connections, most systems can exchange only plaintext
messages. Video and voice chats between disparate systems are not
generally supported, although Apple’s iChat has done the best job so
far in this arena. And even if users take the multiple-client approach,
the structure of their buddy lists is not always maintained and some-
times is presented in a single group of buddies, rather than separated
into the groups that were specified when initially setting up the IM
account.

The other concern for cross-systems interoperability is a lack of sup-
port for privacy or online status. All of the IM systems have the ability
to create blacklists, or lists of users that cannot view your online status.
These blacklists are not necessarily preserved when running the mul-
tiple client systems.

The Internet Protocol Journal
34

The Rise of Open Source
There is hope on the interoperability scene, however, and that hope
is spelled open source. The Jabber group of programmers is growing,
and the community is aggressively establishing a more pluralistic IM
society. These steps revolve around software using the protocol called
the Extensible Messaging and Presence Protocol (XMPP), the IETF’s
formalization of the core protocols created by the Jabber open-source
community in 1999, and contained in four RFCs[8, 9, 10, and 11].

Jeremie Miller developed the original Jabber server in 1998. Now
the project has reached critical mass. Notable is the wide number of
different server and client formulations that support XMPP. Jabber.
com sells a commercial license, along with a combination of General
Public License (GPL)-based licensed servers and other commercial
versions. The project has supported the efforts of dozens of client
implementations[12]. Last year, support reached a new milestone
with Google Talk and more recently the Gizmo Project using these
protocols.

Numerous efforts are under way with these clients to extend basic IM
functions into new areas, including providing more sophisticated and
secure communications, the ability to have multiple identities presented
(david@strom.com for work colleagues, dstrom@gmail.com for
personal communications) from the same IM client, and support for
more interoperable communications between Jabber and private IM
systems.

At the heart of XMPP is the Extensible Markup Language (XML)
constructs and basic protocols. The core “transport” layer for XMPP
is an XML streaming protocol that makes it possible to exchange
fragments of XML between any two network endpoints. Authentication
and channel encryption happen at the XML streaming layer using
other IETF-standard protocols for Simple Authentication and Security
Layer[13] and Transport Layer Security[14].

Servers can connect to each other for interdomain communications,
using the form of address for each user as <user@domain>—similar to
SMTP e-mail, and in many cases, the IM address is the same as one’s
Internet e-mail address to simplify things.

What is notable about using XMPP is that RFC 3921 also makes it
possible to separate the messaging and presence functions if desired
(although most deployments offer both). This feature is helpful when
building applications-to-applications messaging that does not involve
users typing text messages to each other, such as a server sending a
network operator an alert when it detects a problem.

The Jabber Software Foundation develops extensions to XMPP through
a standards process centered on Jabber Enhancement Proposals
(JEPs), similar to the RFC process[15]. Currently, more than 30 active
proposals have been developed, extending IM into bookmarks, delayed
messaging, and other areas.

Instant Messaging: continued

The Internet Protocol Journal
35

What Microsoft Is Doing
Microsoft is heavily involved in the IM scene in three important areas.
The company operates one of the larger public IM networks, it includes
an IM client as part of its Windows operating system, and it sells a pri-
vate IM server that has some powerful interoperability features called
Live Communications Server (LCS). What does this mean for the IM
community? All good things. Microsoft’s MSN and Skype are the more
popular IM services outside of North America, and having Skype now
a part of eBay is making Microsoft add competitive features such as
voice and video chats to its public IM service. Microsoft has actually
led the way on IM interoperability with LCS, a fact that can only moti-
vate its competitors to include more pluralist IM offerings of their own.
Finally, building in more support for IM in future versions of Windows
will help popularize these applications even further.

It was not always this way. Earlier versions of Windows included some-
thing called Windows Messenger that was woefully underfeatured and
had many bugs. But like so many early Microsoft efforts, technology
has improved over time, and now the built-in software that comes with
Windows is actually quite competitive with the public IM clients from
AOL, Yahoo, and Skype.

Certainly, having Microsoft on one side and open-source efforts on the
other is a nice way to encourage development and innovation in the IM
arena, and we should expect more here in the future.

Building IM Applications
For most of this article we have addressed the one-to-one aspect of IM.
However, IM is evolving into a much more important role, and that is
one-to-many communications, and communications between applica-
tions instead of actual people. Many vendors have begun selling prod-
ucts in this space, and it is more interesting for several reasons:

First, IM is replacing other means for applications communications. It
used to be the case that many network management applications used
the Simple Network Management Protocol (SNMP) or SMTP proto-
cols to send out their alerts. Now, many applications are using IM mes-
sages and taking advantage of the real-time nature of the protocol.

Second, the origins of IM go back to group chat sessions, so group col-
laboration tools make sense for new IM applications.

Third, even the closed public IM vendors have begun to open their pro-
gramming interfaces, making it is easier for corporations to build new
and sophisticated applications that are presence-aware, in some cases
between two computer programs to communicate their status. AOL
this year is one such example of opening its IM application program-
ming interface (API) kimono, and of course Jabber has always been an
open system that has helped lead more of these innovations.

The Internet Protocol Journal
36

One illustration is with the automotive giant Reynolds and Reynolds,
which is using Jabber servers to monitor its own software status at the
numerous automotive dealerships around the world. The IT department
at Reynolds can quickly see if the company’s software is down and take
steps to get it working again.

Accredited Home Lenders is using IM to provide its loan brokers a
secure and reliable means of communicating in real time with loan
specialists to resolve problems with loan applications. And Ecreation
built a virtual disk jockey for a Dutch radio station that also broadcasts
over the Internet, allowing the station to take requests from listeners
around the world through Microsoft’s IM network.

Even traders have embraced IM. NetEnergy has been using IM for
the past three years, and now negotiates trades between buyers and
sellers of oil contracts using IM, decreasing errors and enabling faster
communications.

Finally, IM figures prominently helping deaf and hard-of-hearing users
communicate. In the era before IM, deaf users required a telephone
relay operator to type the message to them and speak to the hearing
callers. Go America has built a gateway to IM for its i711.com Website,
so that deaf users can send messages directly to the operator.

Summary
We have tried to paint a comprehensive a picture of what IM is and
where it is going. Certainly, the amount of messaging traffic using
the various IM protocols is impressive, and will continue to grow as
these new applications are created and as more people discover the
advantages of using IM. In several instances IM has replaced voicemail
for most internal communications, particularly at high-tech companies
and places where real-time communications is important. Although IM
is not without its problems, there are ways to protect networks from
infection and abuse.

For Further Reading
 [1] Nielsen//NetRatings, August 2005 study.

 [2] Osterman Research survey:
http://www.ostermanresearch.com/results/
surveyresults_0905.htm

 [3] More details about the underlying Skype protocols, mech-
anisms for blocking its use, and other helpful tips and
tricks for network administrators can be found at this page
maintained by Salman A. Baset:

 http://www1.cs.columbia.edu/~salman/skype/index.html

 [4] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN—
Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs),” RFC 3489, March
2003.

Instant Messaging: continued

The Internet Protocol Journal
37

 [5] A dissection of the Skype protocol along with suggestions
about how to block its use can be found in this paper by P.
Biondi and F. Desclaux: “Silver Needle in the Skype.”
http://www.blackhat.com/presentations/bh-europe-
06/bh-eu-06-biondi/bh-eu-06-biondi-up.pdf

 [6] Adium and iChat for the Mac, Gaim for Windows and Linux,
Trillian Pro for Windows, WebMessenger for Windows Mobile/
Palm, and others.

 [7] Microsoft’s Live Communications Server 2005 includes its Public
IM connector for an additional charge. Lotus’ Sametime has had
AIM connectivity for several years, and will support other IM
networks later this year.

 [8] P. Saint-Andre, ed., “Extensible Messaging and Presence Protocol
(XMPP): Core,” RFC 3920, October 2004.

 [9] P. Saint-Andre, ed., “Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence,” RFC 3921, October
2004.

 [10] P. Saint-Andre, “Mapping the Extensible Messaging and Presence
Protocol (XMPP) to Common Presence and Instant Messaging
(CPIM),” RFC 3922, October 2004.

 [11] P. Saint-Andre, “End-to-End Signing and Object Encryption for
the Extensible Messaging and Presence Protocol (XMPP),” RFC
3923, October 2004.

 [12] A list of software clients that support Jabber protocols can be
found at:

 http://www.jabber.org/software/clients.shtml

 [13] J. Myers, “Simple Authentication and Security Layer (SASL),”
RFC 2222, October 1997.

 [14] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC
2246, January 1999.

 [15] Jabber Enhancement proposals are listed at:
http://www.jabber.org/jeps/

DAVID STROM has been writing about Internet protocols and applications for nearly
20 years. Founding editor-in-chief for Network Computing magazine, he was most
recently the editor-in-chief for tomshardware.com and related Websites. Strom has
written two books on Internet e-mail (with the doyenne of POP, Marshall T. Rose) and
home networking and thousands of magazine articles for most of the leading trade
magazines in the IT, computing, and networking fields. He can be reached by e-mail at
david@strom.com, or by IM: davidstrom (AIM and Skype) or dstrom (Yahoo,
Google Talk, and MSN).

The Internet Protocol Journal
38

Letters to the Editor

Dear Editor,

In Russ White’s “Working with IP Addresses” article (IPJ Volume 9,
Number 1), he presents an example subnetting problem (“The Hardest
Subnetting Problem”) together with a worked solution. While useful
as a reinforcement exercise for the rest of the article, care should be
exercised before using the steps in the solution “as-is” in a real-world
network configuration.

The main problem is that by packing subnets tightly together as shown,
growth is restricted in order to guarantee that no address space is
wasted. Worse, growth of host numbers on all but the smallest subnet
requires renumbering of the subnet or all the smaller subnets allocated
after it.

For example, the /26 subnet with 58 hosts will not accommodate more
than another four hosts, less than 10-percent growth, without being
renumbered.

Since renumbering a network is a nontrivial task even with the tools at
our disposal, it is desirable to make it as infrequent as possible.[1]

Allowing for growth will likely but not necessarily waste some address
space, but it is preferable to frequent renumbering. It turns out that this
example has alternative arrangements of subnets that would permit
growth of some subnets without the need to renumber and would
lessen the amount of renumbering when it is required.

Using realistic estimates of future hosts rather than current numbers is
a simple measure to decrease the frequency of renumbering required.
This would also make it obvious that the entire allocation is close to
exhaustion and can be exhausted by the need to accommodate as little
as six hosts on two subnets that are near full capacity.

Constraints on the supply of IPv4 address space limits how much growth
can be accommodated and requires taking a shorter-term rather than
longer-term view of growth. For private RFC 1918[2] IP allocations
(such as the one used in the example), this applies in only very large
organisations, allowing a long-term view to be accommodated.

Unfortunately, the future is hard to predict with any degree of accuracy.
In most cases needs for subnet allocation become gradually known over
time rather than all at once. The consequences of incorrect estimation
can be minimised by using an allocation scheme that allows for as much
growth as possible in existing subnets while leaving as much room as
possible for future allocations.

The Internet Protocol Journal
39

This scenario can be achieved by distributing the subnets evenly, weight-
ed by size, across the available address space. The larger the subnet, the
more room that needs to be left between it and other large networks.
This is particularly important for subnets that are near to capacity. At
least the sum of the sizes of neighbouring networks should be allowed.
Space close to a network should be reserved for it to grow into, and
the remaining space between can be allocated to smaller networks in a
recursive fashion. Any allocations in the areas of likely growth should
be reclaimable, and preferably these networks should be sparsely pop-
ulated in order to limit the impact of renumbering on these networks.
Working with a diagram of the address space, for example, a linear
graph or a binary tree of the address space is a helpful aid.

A more systematic way of distributing the subnets evenly is to use mir-
ror-image (MI) counting for allocating subnet numbers. This process is
described in RFC 1219[3], but note that some aspects of subnet address-
ing have altered since this RFC was written (see RFC 1878[4]), so the
description of mirror-image counting there and procedure text exclude
subnet numbers that are now valid.

Using mirror-image counting is like normal counting starting from
zero, except that the binary digits of the number are reversed. These
numbers can be allocated as subnet numbers, starting from the most
significant bit. Contrary to the example in RFC 1219, leading zeros
(including the solitary zero in zero itself) should always be removed
before the number is reversed.

Simplifying greatly, new subnets are allocated by incrementing the sub-
net number until a number is reached where a subnet of the required
size can be accommodated or the subnet prefix becomes so long no
subnets of the required size remain. If the prefix matches a common
but shorter prefix, the subnet may be able to be allocated if we can
lengthen the mask of the matching subnet prefix, freeing space from a
previous allocation by reducing its maximum possible size. If the lon-
gest mask is always used when allocating subnets it is sufficient to just
to skip matching prefixes. Note that the null prefix is common with all
subsequent prefixes until its subnet mask is made smaller, extending
the prefix.

The mask chosen is preferably the longest for the required subnet
size—but can be as short as the length of the subnet prefix, because it
can be adjusted later: made shorter if the subnetwork grows beyond its
mask (if no later allocation has been made) or longer if a subnet shar-
ing its prefix is allocated or increases size. The host number ignoring
the subnet part must be allocated from 1.

As the number is incremented it grows from right to left, progressively
enumerating subnets in smaller sizes. Since subnet numbers grow from
right to left and host numbers from left to right, collision is delayed
between the two. Allocating subnets in descending order of size is pref-
erable in this procedure because it tends to reduce fragmentation of the
address space.

The Internet Protocol Journal
40

The following table shows an example allocation using the sorted
number of hosts in the example:

MI
Number

Subnet
Prefix

Network
Size

Network
Number

Prefix Last Host
Number

Max Host
Number

(null) 00 64 0 /26 58 62

1 10 64 128 /26 177 190

01 010 32 64 /27 93 94

11 1100 16 192 /28 206 206

001 matches subnet prefix 00

101 matches subnet prefix 10

011 01100 8 96 /29 99 102

Note that the /28 and the /29 can grow simply by changing their
netmask. A better allocation is possible if the third and fourth hosts in
the sorted list are interchanged. In this case the three smallest networks
would be able to grow without renumbering. Shortening a netmask is
a much simpler operation than renumbering.

Of course in the real world, needs for subnet allocation do not
conveniently arrive sorted in ascending order. If it happened that one of
the two largest subnets was the fifth requiring allocation, fragmentation
of the address space would require renumbering one of the three
smallest networks to recover an address block of the necessary size.

Another point that may be worth mentioning is that most modern
hosts and routers allow for multiple subnets to share the same physical
subnet, allowing two smaller subnets to cover a range of addresses that
would otherwise receive a single larger allocation. For example, a 40-
host subnet can be allocated a /27 and a /28 rather than a /26.

—Andrew Friedman, Sydney, Australia
rbnsw-ipj@yahoo.com.au

Ed: Readers may wish to also peruse RFC 3531[5].

 [1] P. Ferguson and H. Berkowitz, “Network Renumbering Over-
view: Why Would I Want It and What Is It Anyway?” RFC 2071,
January 1997.

 [2] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear, “Address Allocation for Private Internets,” RFC 1918,
February 1996.

 [3] P. F. Tsuchiya, “On the Assignment of Subnet Numbers,”
RFC 1219, April 1991.

 [4] T. Pummill and B. Manning, “Variable Length Subnet Table for
IPv4,” RFC 1878, December 1995.

 [5] M. Blanchet, “A Flexible Method for Managing the Assignment
of Bits of an IPv6 Address Block,”RFC 3531, April 2003.

Letters: continued

The Internet Protocol Journal
41

The author responds:

Andrew is correct in stating that it is often better to try to account for
future growth when assigning address space. There are many viable
ways to allow for growth when allocating address spaces; hopefully,
this topic will be covered more fully in a future article. I used the
method in the article to illustrate how to employ the technique for
working with IP addresses, rather than as an absolute best practice for
allocating addresses.

—Russ White, Cisco Systems
riw@cisco.com

Dear Editor,

Russ White’s article titled “Working with IP Addresses” was a nice
refresher on how complicated working with IPv4 addresses has become.
It should remind us all how we have gotten used to dealing with the
operational expense of IPv4 address scarcity. The story about putting a
frog in a pot of cold water comes to mind.

In any case, at the end of the article in the section titled “Working
with IPv6 Addresses,” I think the author tries too hard to fit the IPv6
address structure into the model for IPv4. Actually, it is a lot simpler.

The IPv6 address structure and textual representation was designed to
avoid most of the complexities encountered in IPv4. The big differences
follow:

• Addresses are represented in groups of hexadecimal digits instead of
decimal digits. Hexadecimal avoids the need to convert the decimal
digits to octal to find subnet boundaries. In hexadecimal there are
four bits per character. This makes it easy to find the subnet boundary
in an address; in many cases it is at a character boundary.

• Subnet prefix lengths are listed directly in decimal. There are no
decimal subnet masks. This eliminates the need to convert decimal
addresses to octets, convert the subnet masks to octets, apply the
mask, and convert the result back to decimal—or to use the table
and division methods described in the article.

The combination of these changes makes it much easier to work with
IPv6 addresses. They are, of course, longer. The length has a few
advantages besides a much larger Internet.

A byproduct of the larger address space is that most of the common
subnet boundaries fall on hexadecimal digit boundaries; for example,
using the example address in the article:

2002:FF10:9876:DD0A:9090:4896:AC56:0E01

The Internet Protocol Journal
42

The most common subnet boundary is 64 bits. The address and prefix
is represented as:

2002:FF10:9876:DD0A:9090:4896:AC56:0E01/64

The subnet itself then follows:

2002:FF10:9876:DD0A::/64

The current common prefix allocated to a site is a /48. The site prefix
is then:

2002:FF10:9876::/48

The current default allocation to an ISP is a /32. The ISP prefix is
then:

2002:FF10::/32

These common prefix lengths can be derived directly without any need
for decimal-to-octal conversions, table lookups, divisions, etc.

One of the other benefits of the larger addresses and a byproduct of
IPv6 autoconfiguration is that the low-order 64 bits of an IPv6 address
are reserved for the host address (called Interface Identifier in IPv6
terminology). This means that “The Hardest Subnetting Problem”
described in the article is avoided completely. You can have as many
hosts on a specific segment as you want in IPv6. There is no need to
do this kind of calculation. This makes an initial network design trivial
and, more importantly, makes later changes very easy. There is no need
to redesign a subnet architecture because a few hosts need to be added
to a subnet.

—Bob Hinden, Nokia
bob.hinden@nokia.com

The author responds:

Bob brings up many interesting points about IPv6, and the use of the
IPv6 address space. While most IPv6 address spaces have prefix lengths
that break on even octet boundaries today, we can’t always count on
this, for all time, so it is always good to have techniques to work with
situations where the prefix length is not on an octet boundary when
they do occur. As for the last problem, it is true that in all cases the
subnet is the set of octets excluding the last 64 bits. But if we move
the problem up one level, and ask: “What is the most efficient way to
allocate out an existing /48 so customer A can get 10 subnets, customer
B can get 20 subnets, etc. ?” we can see the same problem could occur
at the next higher level.

—Russ White, Cisco Systems
riw@cisco.com

Letters: continued

The Internet Protocol Journal
43

Corrections

A few of our eagle-eyed readers have pointed us to some errors in
IPJ, Volume 9, Number 1. The text below Figure 6 on page 29
and continuing at the top of page 30 should read as follows:

The figure shows four hosts with the addresses 10.1.0.1, 10.1.0.2,
10.1.0.3, and 10.1.0.4. Router A advertises 10.1.0.0/24, meaning:
“Any host within the address range 10.1.0.0 through 10.1.0.255 is
reachable through me.” Note that not all the hosts within this range
exist, and that is okay—if a host within that range of addresses is
reachable, it is reachable through Router A. In IP, the address that A
is advertising is called a network address, and you can conveniently
think of it as an address for the wire to which the hosts and router are
attached, rather than a specific device.

For many people, the confusing part comes next. Router B is adver-
tising 10.1.1.0/24, which is another network address. Router C
can combine—or aggregate—these two advertisements into a single
advertisement. Although we have just removed the correspondence
between the wire and the network address, we have not changed the
fundamental meaning of the advertisement itself. In other words, Router
C is saying: “Any host within the range of addresses from 10.1.0.0
through 10.1.1.255 is reachable through me.” There is no wire with
this address space, but devices beyond Router C do not know this, so
it does not matter.

Also, Figure 8 on page 32 is reproduced here in its corrected form:

Figure 8: Subnet Chart

00000000/.0
26
58

Within each box:
Last Octet Binary/Last Octet Decimal
Prefix Length
Number of Hosts Required

11000000/.192
26

01000000/.64
26
49

10.1.1.0/24

10000000/.128
26

10100000/.160
27

10000000/.128
27
29

10100000/.160
28
14

10110000/.176
28

10110000/.176
29
3

10111000/.184
29

The Internet Protocol Journal
44

Book Review

Wireless Networking Wireless Networking in the Developing World: A practical guide to
planning and building low-cost telecommunications infrastructure,
by Rob Flickenger et al., ISBN 1-4116-7837-0, 234 pages, Limehouse
Book Sprint Team, January 2006. http://wndw.net

To quote from the book’s Website:

“This book was created by a team of individuals who each, in their
own field, are actively participating in the ever-expanding Internet
by pushing its reach farther than ever before. Over a period of a few
months, we have produced a complete book that documents our
efforts to build wireless networks in the developing world.”

Even though I don’t live and work in what is commonly regarded as
part of the developing world, I found this to be a unique and informa-
tive book, as its practical descriptions of wireless networking have ap-
plication in many environments.

Given the widespread availability of the raw materials of computers,
open-source software, Wi-Fi equipment, various pieces of recycled
kitchenware, scrap metal, and plastic, and a wealth of online informa-
tion resources, it is possible to construct inexpensive high-speed wire-
less network systems almost anywhere these days. However, perhaps
the most visible missing component of the overall picture, but also the
most valuable, is a practical path through this wealth of information
on how to construct wireless networks, and a path that is based on the
recent experiences of others who have constructed cost-effective and
practical wireless networks in communities in the developing world.
This book sets out to meet that goal.

Organization
The book starts with a description of radio physics covering the basics
of the topic. It builds upon this a description of the typical radio design
trade-offs between information capacity and radio penetration, and
describes the commonly encountered factors of absorption, reflection,
diffraction, and interference. I found the practical approach to Fresnel
zone calculation and the description of the relationship between dis-
tance and antenna height so well done that I was tempted to embark
on the design of a neighborhood Wi-Fi straightaway!

The chapter on network design is somewhat of a hybrid section, cover-
ing a mix of physical layout of a wireless network and TCP/IP consid-
erations. There were the usual summaries of IP address structure and
an introduction to routing.

The Internet Protocol Journal
45

Study of the deployment of the Optimized Link State Routing (OLSR)
protocol is, however, more detailed. This is a link state routing protocol
that is open-source, supportable by Linux-based access points, and
accommodates link quality metrics into the routing protocol metric.
I found the consideration of the link budget in this section a useful
practical description of the considerations that are unique to the
wireless world, and the worked examples are excellent, together with
some useful references to online tools. This chapter is relatively dense,
and many topics are covered in a relatively short space. I suspect that
an interested reader would want to drill down further before feeling
confident enough to manage a service network, but some carefully
chosen references to further reading are there, so that the reader can
follow up this introductory material with more specialized references.

The section on antennas and transmission lines was also well-struc-
tured. I had heard of using cylindrical cans as Wi-Fi antennas, but
knew little of the detail of how to actually do it. This book not only ex-
plains their design, but provides a step-by-step illustrated guide to their
construction. It also provides a good description of what is involved in
outdoor installation of wireless equipment. The consideration of com-
mercial solutions as compared to the do-it-yourself approach was care-
fully presented, as was the section devoted to security considerations.

Aside from the technical considerations, the book also has some very
interesting case studies of wireless networking projects, and was care-
ful to include both success and failure stories. The issues in the develop-
ing world about combining technical capability with practical business
solutions for communities that can be financially self-sustaining are
indeed challenging, as the case studies show. They provide not only
useful information about related experiences in setting up such net-
work services, but also show how such projects can be assessed in a
constructive manner.

Thoughtfully Written
Having spent some time working in this area myself as part of the ISOC
Developing Countries Workshop training team, I have developed an
appreciation of what constitutes truly useful and valuable training
material, and this book is perhaps the best example I’ve seen yet. It
is practical, helpful, technically accurate, and relatively complete in
terms of coverage of material. Where the book does not dive into
fine detail it provides useful references for further reading. The book
is thoughtfully written in a simple non-nonsense style and does not
hide behind technical jargon. Above all, it is material that can instill
confidence that these networks can readily be built and operated by
people like you and me.

The Internet Protocol Journal
46

I certainly would not call myself an expert after reading this book, but
the next time a radio technician arrives in the office and starts talking
about radiation patterns, front-to-back ratios, and the relative merits
of omnis and yagis, at least I’ll have an idea of what he is talking about.
Even better, I might even be able to show him my own modest efforts
in do-it-yourself Wi-Fi networking by then!

Rectangular plot of a Yagi Radiation
Pattern from Chapter 4 of the book

Publishing Model
This is not a conventional technical book in the sense that it does
not come with a conventional technical book price tag. The book
is published in a manner as to be readily available in the developing
world, so an online publication model has been used here. The PDF
is freely available under a Creative Commons Attribution-Share-
Alike 2.5 license at http://wndw.net, and they have managed to
squeeze all 254 pages into an impressively small 1.92-MB file. You can
find related resources and ways that you can assist in this project at
http://wndw.net.

—Geoff Huston, APNIC
gih@apnic.net

Read Any Good Books Lately?
Then why not share your thoughts with the readers of IPJ? We accept
reviews of new titles, as well as some of the “networking classics.” In
some cases, we may be able to get a publisher to send you a book for
review if you don’t have access to it. Contact us at ipj@cisco.com for
more information.

Book Review: continued

The Internet Protocol Journal
47

Fragments
Internet Governance
The World Summit on the Information Society (WSIS) was held in
two phases. The first phase took place in Geneva in December 2003,
and the second phase took place in Tunis in November 2005. The so-
called “WSIS Outcome Documents” are now available at:

http://www.itu.int/wsis/promotional/outcome.pdf

The follow-on to WSIS is called the Internet Governance Forum (IGF).
The forum will hold its first meeting in Athens, Greece October 30th to
November 2nd, 2006. For more information visit:

http://www.intgovforum.org/

The Internet Society (ISOC) played an active part in the WSIS process.
You will find background information here:

http://www.isoc.org/isoc/conferences/wsis/index.shtml

DNS Root Name Servers Explained
Daniel Karrenberg of RIPE NCC has written two “Member Briefings”
on the subject of DNS root servers that can be found on the ISOC
Website:

http://www.isoc.org/briefings/019/
http://www.isoc.org/briefings/020/

Internationalized Domain Names
Internationalized Domain Names (IDNs) are, according to the ICANN
Website, “...domain names represented by local language characters.
Such domain names could contain letters or characters from non-ASCII
scripts (for example, Arabic or Chinese). Many efforts are ongoing in
the Internet community to make domain names available in character
sets other than ASCII.” ICANN has established an information area on
its Website with links to more information about IDNs. See:

http://icann.org/topics/idn/

The ISP Column
Geoff Huston is well known to readers of this journal. He also hosts
The ISP Column that can be found here:

http://www.isoc.org/pubs/isp/index.shtml

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particu-
lar purpose, or non-infringement. This publication could contain technical inaccuracies or typo-
graphical errors. Later issues may modify or update information provided in this issue. Neither the
publisher nor any contributor shall have any liability to any person for any loss or damage caused
directly or indirectly by the information contained herein.

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

David Farber
Distinguished Career Professor of Computer Science and Public Policy
Carnegie Mellon University, USA

Peter Löthberg, Network Architect
Stupi AB, Sweden

Dr. Jun Murai, General Chair Person, WIDE Project
Vice-President, Keio University
Professor, Faculty of Environmental Information
Keio University, Japan

Dr. Deepinder Sidhu, Professor, Computer Science &
Electrical Engineering, University of Maryland, Baltimore County
Director, Maryland Center for Telecommunications Research, USA

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is
published quarterly by the
Chief Technology Office,
Cisco Systems, Inc.
www.cisco.com
Tel: +1 408 526-4000
E-mail: ipj@cisco.com

Cisco, Cisco Systems, and the Cisco
Systems logo are registered
trademarks of Cisco Systems, Inc. in
the USA and certain other countries.
All other trademarks mentioned in this
document are the property of their
respective owners.

Copyright © 2006 Cisco Systems Inc.
All rights reserved.

Printed in the USA on recycled paper.

The Internet Protocol Journal, Cisco Systems
170 West Tasman Drive, M/S SJ-7/3
San Jose, CA 95134-1706
USA

ADDRESS SERVICE REQUESTED

PRSRT STD
U.S. Postage

PAID
PERMIT No. 5187

SAN JOSE, CA

