—The

Internet Protocol

December 2004 Volume 7, Number 4

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue
From the Editorcccccvvve.... 1
Network Processors................. 2

Denial of Service Attacks....... 13

Letter to the Editor 36
Book Review.........ccccceeeeeeenns 37
Call for Papers.......cccccceeuveeee. 39

You can download IPJ
back issues and find
subscription information at:
WWw. Ci sco. cond i pj

From The Editor

The electronics industry is full of examples of devices which contain one
or two “special-purpose’ chips. Your computer probably has a modem
that is implemented with a single chip and a few analog components. It
probably also contains a dedicated graphics processor responsible for
driving your display. In networking, vendors have long since realized
that in order to design highly efficient routers or switches, a custom-de-
signed network processor is a good solution. We asked Doug Comer to
give us an overview of network processors.

Attacks against individual computers on a network have become all too
common. Usually these attacks take the form of a virus or worm which
arrives via e-mail to the victim’s machine. The industry has been rela-
tively quick in responding to such attacks by means of antivirus
software, as well as sophisticated filtering of content ““on the way in.”” A
more serious form of attack is the Distributed Denial-of-Service (DDoS)
attack which may render an entire network unusable. Charalampos
Patrikakis, Michalis Masikos, and Olga Zouraraki give an overview of
the many variants of denial-of-service attacks and what can be done to
prevent them.

Although we make every effort to provide you with an error-free jour-
nal, mistakes do happen occasionally. Sometimes it takes careful
analysis by a reader to spot the mistake, and we are grateful for the cor-
rection provided in the “Letter to the Editor”” on page 36. Other times,
technology just gets in our way, such as when all the non-printing end-
of-line and TAB characters became very much “printing”’—see page 35
of the printed version of Volume 7, No. 3. At least it didn’t show up in
the PDF or HTML versions.

Take a moment to visit our Website: htt p: //ww. ci sco. conli pj
and update your mailing address if necessary. You will also find all
back issues and index files at the same address.

—~Ole J. Jacobsen, Editor and Publisher
ol e@i sco. com

Network Processors:

Programmable Technology for Building Network Systems

by Douglas Comer, Cisco Systems (on leave from Purdue University)

hip vendors have defined a new technology that can be used to

implement packet-processing systems such as routers, switches,

and firewalls. The technology offers the advantages of being
software-programmable and sufficiently high-speed to accommodate in-
terfaces running at 10 Gbps.

This article provides an overview of the technology, describes the moti-
vations, and presents a brief survey of hardware architectures. It also
discusses the relationship between programming and the underlying
hardware.

A wide variety of packet-processing systems are used in the Internet, in-
cluding DSL modems, Ethernet switches, IP routers, Network Address
Translation (NAT) boxes, Intrusion Detection Systems (IDS), Soft-
switches used for Voice over IP (VolP), and security firewalls. Such
systems are engineered to provide maximal functionality and perfor-
mance (for example, operate at wire speed) while meeting constraints
on size, cost, and time to market.

Engineers who design network systems face the additional challenges of
keeping designs scalable, general, and flexible. In particular, because in-
dustry trends change rapidly, typical engineering efforts must accom-
modate changes in requirements during product construction and
changes in the specification for a next-generation product.

Generations of Network Systems

During the past 20 years, engineering of network systems has changed
dramatically. Architectures can be divided broadly into three gener-
ations:

= First generation (circa 1980s): Software running on a standard pro-
cessor (for example, an IP router built by adding software to a
standard minicomputer),

= Second generation (mid 1990s): Classification and a few other func-
tions offloaded from the CPU with special-purpose hardware, and a
higher-speed switching fabric replacing a shared bus.

e Third generation (late 1990s): Completely decentralized design with
Application-Specific Integrated Circuit (ASIC) hardware plus a dedi-
cated processor on each network interface offloading the CPU and
handling the fast data path.

The change from a centralized to a completely distributed architecture
has been fundamental because it introduces additional complexity. For
example, in a third-generation IP router, where each network interface
has a copy of the routing table, changing routes is difficult because all
copies must be coordinated to ensure correctness and the router should
not stop processing packets while changes are propagated.

The Internet Protocol Journal
2

Motivation for Network Processors

Although the demand for speed pushed engineers to use ASIC hard-
ware in third-generation designs, the results were disappointing. First,
building an ASIC costs approximately US$1 million. Second, it takes 18
to 22 months to generate a working ASIC chip. Third, although engi-
neers can use software simulators to test ASIC designs before chips are
manufactured, networking tasks are so complex that simulators cannot
handle the thousands of packet sequences needed to verify the function-
ality. Fourth, and most important, ASICs are inflexible.

The inflexibility of ASICs impacts network systems design in two ways.
First, changes during construction can cause substantial delay because a
small change in requirements can require massive changes in the chip
layout. Second, adapting an ASIC for use in another product or the next
version of the current project can introduce high cost and long delays.
Typically, a silicon respin takes an additional 18 to 20 months.

Network-Processor Technology

In the late 1990s as demand for rapid changes in network systems in-
creased, chip manufacturers began to explore a new approach:
programmable processors designed specifically for packet-processing
tasks. The goal was clear: combine the advantage of software program-
mability, the hallmark of the first-generation network systems, with
high speed, the hallmark of third-generation network systems.

Chip vendors named the new technology network processors, and pre-
dicted that in the future, most network systems would be constructed
using network processors. Of course, before the prediction could come
true, vendors faced a tough challenge: programming introduces an ex-
tra level of indirection, meaning that functionality implemented directly
in hardware always performs faster than the same functionality imple-
mented with software. Thus, to make a network processor fast enough,
packet-processing tasks need to be identified and special-purpose hard-
ware units constructed to handle the most intensive tasks.

Interestingly, vendors also face an economic challenge: although an
ASIC costs a million dollars to produce, subsequent copies of the chip
can be manufactured at very low cost. Thus, the initial development
cost can be amortized over many copies. In contrast, purchasing con-
ventional processors does not entail any initial development cost, but
vendors typically charge at least an order of magnitude more per unit
than for copies of an ASIC. So, vendors must consider a pricing strat-
egy that entices systems builders to use network processors in systems
that have many network interfaces with multiple processors per
interface.

The Internet Protocol Journal
3

Network Processors: continued

A Plethora of Architectures

As vendors began to create network processors, fundamental questions
arose. What are the most important protocol-processing tasks to opti-
mize? What hardware units should a network processor provide to
increase performance? What 1/O interfaces are needed? What sizes of
instruction store and data store are needed? What memory technolo-
gies should be used (for example, Static Random-Access Memory
[SRAM], Dynamic Random-Access Memory [DRAM], or others)?
How should functional units on the network-processor chip be orga-
nized and interconnected (for example, what on-chip bus infrastructure
should be used)?

Interestingly, although they realized that it was essential to identify the
basic protocol-processing tasks before hardware could be built to han-
dle those tasks efficiently, chip vendors had little help from the research
community. Much effort had been expended considering how to im-
plement specific protocols such as IP or TCP on conventional
processors. However, researchers had not considered building blocks
that worked across all types of network systems and all layers of the
protocol stack. Consequently, in addition to designing network-proces-
sor chips, vendors needed to decide which protocol functions to embed
in hardware, which to make programmable, and which (if any) to
leave for special-purpose interface chips or coprocessors. Finally, chip
vendors needed to choose software support including programming
language(s), compilers, assemblers, linkers, loaders, libraries, and refer-
ence implementations.

Faced with a myriad of questions and possibilities about how to design
network processors and the recognition that potential revenue was high
if a design became successful, chip vendors reacted in the expected way:
each vendor generated a design and presented it to the engineering com-
munity. By January 2003, more than 30 chip vendors sold products
under the label ““network processor.”

Unfortunately, the euphoria did not last, and many designs did not re-
ceive wide acceptance. Thus, companies began to withdraw from the
network-processor market, and by January 2004, fewer than 30 com-
panies sold network processors.

Basic Architectural Approaches

Hardware engineers use three basic techniques to achieve high-speed
processing: a single processor with a fast clock rate, parallel processors,
and hardware pipelining. Figure 1 illustrates packet flow through a sin-
gle processor, which is known as an embedded processor architecture
or a run-to-completion model. In the figure, three functions must be
performed on each packet.

The Internet Protocol Journal
4

Figure 1: Embedded Processor
Architecture in Which a Single
Processor Handles All Packets

Figure 2: Parallel Architecture in
Which the Incoming Packet
Flow Is Divided Among
Multiple Processors

Figure 3: Pipeline Architecture in
Which Each Incoming Packet
Flows Through Multiple Stages
of a Pipeline

Figure 2 illustrates packet flow through an architecture that uses a par-
allel approach. A coordination mechanism on the ingress side chooses
which packets are sent to which processor. Coordination hardware can
use a simplistic round-robin approach in which a processor receives ev-
ery Nth packet, or a sophisticated approach in which a processor
receives a packet whenever the processor becomes idle.

Coordination

MecTnism f0; 90; h(\
\ N\

f0; 90; h) fF——> ﬂ

f0: 90; h(

Figure 3 illustrates packet flow through a pipeline architecture. Each
packet flows through the entire pipeline, and a given stage of the pipe-
line performs part of the required processing.

The Internet Protocol Journal
5

Network Processors: continued

Figure 4: An Example Embedded
Processor Architecture: The
Processor Has Extra Instructions
to Speed Packet Processing

As we will see, pipelining and parallelism can be combined to produce
hybrid designs. For example, it is possible to have a pipeline in which
each individual stage is implemented by parallel processors or a parallel
architecture in which each parallel unit is implemented with a pipeline.

Examples of Commercial Architectures

To appreciate the broad range of network-processor architectures, we
will examine a few commercial examples. Commercial network proces-
sors first emerged in the late 1990s, and were used in products as early
as 2000. The examples contained in this article are chosen to illustrate
concepts and show broad categories, not to endorse particular vendors
or products. Thus, the examples are not necessarily the best, nor the
most current.

Augmented RISC (Alchemy)

The first example, from Alchemy Semiconductor (now owned by Ad-
vanced Micro Devices), illustrates an embedded processor augmented
with special instructions and 1/O interfaces.

To
SDRAM
<> SDRAM Controller <«>| <> 32-Bit PCl 2.2 <>
: <> EJTAG <>
Instruction
Cache
MIPS-32 <> DMA Controller <>
Embedded Bus Unit
Processor Sl <>
SRAM <> Ethernet MAC <>
Bus Data
Cache
MAC <> Ethernet MAC <>
<> SRAM Controller
<> USB-Host Controller <>
RTC (2) > > USB-Device Controller |<€>
<> Interrupt Controller <>
<> Power Management | <€«—>
<> GPIO (48) <>
<> AC '97 Controller <> <> Serial Line UART (2) <>

The Internet Protocol Journal
6

Parallel Processors Plus Coprocessors (AMCC)

A network processor from AMCC uses an architecture with parallel
processors plus coprocessors that handle packet-processing tasks. When
a packet arrives, one of the parallel processors, called cores, handles the
packet. The coprocessors are shared—any of the parallel processors can
invoke a coprocessor, when needed.

Figure 5: An Example Parallel
Architecture that Uses Special-
Purpose Coprocessors to

. A A \
Speed Execution

4 4 4

External Search External Memory Host
Interface Interface Interface
A
Policy Metering
Engine Engine

! ! !

Memory Access Unit

e I
Six Onboard
nP Cores Memory
<« Input |« Packet Transform Engine <« Output |
Control Debug Interrupt Test
Interface Port Module Interface
A A A A
\7 \7 \7 \7

Extensive and Diverse Processors (Hifn)

A network processor (named Rainier) originally developed by IBM and
now owned by Hifn Corporation uses a parallel architecture, and in-
cludes a variety of special-purpose and general-purpose processors. For
example, the chip provides parallel ingress and egress hardware to han-
dle multiple high-speed network interfaces. It also has intelligent queue-
management hardware that enqueues incoming packets in an ingress
data store, a switching fabric interface built onto the chip, and an intelli-
gent egress data store. Figure 6 illustrates the overall architecture of the
Hifn chip.

The Internet Protocol Journal
7

Network Processors: continued

Figure 6: An Example Parallel
Architecture that Includes
Hardware Support for Ingress
and Egress Processing as well
as Intelligent Queuing

To Switching External DRAM From Switching
Fabric PCI Bus and SRAM Frabric
A A A |
S— \

Ingress Ingress Egress Egress
Data Switch Igtﬂrﬁl Switch Data
Store Interface Interface Store

Processor Processor
vl
__________ S,
Embedded Processor)
Complex | <—>
(EPC) \
Ingress Egress
Physical Physical
MAC MAC]
Multiplexor Multiplexor
A A
\ 4
Packets from Packets to Egress
Physical Devices Physical Devices Data Store

The Embedded Processor Complex (EPC) on the Hifn chip contains 16
programmable packet processors, called picoengines, as well as various
other coprocessors. In addition, the EPC contains an embedded Pow-
erPC to handle control and management tasks. Figure 7 shows a few of
the many processors in the EPC.

Figure 7: Structure of the Embedded Processor Complex on the Example Network Processor in Figure 6

To Onboard Memory

To External Memory

1 1
[| 1 | [|
ﬁ]
| Control Memory Arbiter |
A
Egress
Ingress <« | . . I_ 5
Queue | Completion Unit Queue
A
Interrupts —:I | | . | | |
Exceptions < Debug & Interrupt Hardware Registers Internal Bus Control <:
! { '
(Y VY 4 |
Embedded | _!| . PCI
< > PowerPC |~ Bus
Ingress Ingress Programmable !
Data —»| Data Protocol Processors S] Egress
Store i i
Interface (16 picoengines) — Data |l<d> Data
A A A Interface : Store
:
Y 1
. - . . | _ Internal
| Instruction Memory | —I Classifier Assist | | Bus Arbiter |<- Bus
Ingress - Egress
Data—->| Frame Dispatch I(__ Data
Store Store

The Internet Protocol Journal

Parallel Pipelines of Homogeneous Processors (Cisco)

Although it is not a chip vendor, Cisco Systems uses network proces-
sors in its products, and has developed network processors for internal
use. One of the more interesting designs employs parallel pipelines of
homogeneous processors. Figure 8 illustrates the architecture of the
Cisco chip. When a packet enters, the hardware selects one of the pipe-
lines, and the packet travels through the entire pipeline.

Figure 8: An Example
Architecture that Uses Parallel

Pipelines of Homogeneous Input
Processors

<

MAC Classify

-

Accounting & ICMP

FIB & Netflow

MPLS classify

< Access Control

M N N ouomoaoa
{1 {1
«D«D«D«Q«D«D«D

< CAR Routing
< MLPPP
< WRED

:
7
7
:
7
y

Output

4

Pipeline of Parallel Heterogeneous Processors (EZchip)

EZchip Corporation sells a network processor that combines pipelining
and parallelism by using a four-stage pipeline in which each stage is im-
plemented by parallel processors. However, instead of using the same
processor type at each stage, the EZchip architecture employs heteroge-
neous processors, with the processor type at each stage optimized for a
certain task (for example, the processor that runs forwarding code is
optimized for table lookup). Figure 9 illustrates the architecture.

The Internet Protocol Journal
9

Network Processors: continued

Figure 9: An Example Architecture
that Uses a Pipeline of Parallel
Stages with Heterogeneous

Processors

Figure 10: An Example of an
Extremely Long Pipeline with 200

Stages

—»| TOPparse TOPsearch TOPresolve TOPmodify >
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
Memory Memory Memory Memory

Extremely Long Pipeline (Xelerated)

Xelerated Corporation sells an interesting network processor that uses a
pipelining approach. Unlike other network processors, the Xelerated
chip uses an extremely long pipeline of 200 stages. Figure 10 illustrates
the overall architecture. To achieve high speed, each stage is limited to
executing four instructions per packet.

Packet Packet
Arrives Leaves

200 Processors

In fact, the Xelerated architecture is more complex than the figure
shows because the pipeline contains special hardware units after every
10 stages that allow external communication (for example, access to ex-
ternal memory or a call to a coprocessor).

More Details and Example Network-Processor Source Code

The previous survey is not meant to be complete. Two notable network
processors have been omitted. Agere Systems and Intel each manufac-
ture a network processor. Agere’s design consists of a short pipeline that
has two basic stages. Agere’s architecture is both interesting and un-
usual because the two stages are composed of unconventional
processors. For example, the processor used for classification performs
high-speed pattern matching, but does not have conventional instruc-
tions for iteration or conditional testing. For details about the Agere
network processor seelll, which includes the source code for an exam-
ple Differentiated Services (DiffServ) network system.

Intel’s chip uses a parallel approach in which a set of microengines are
programmed to handle packets. The Intel hardware allows a program-
mer to pass packets between microengines, meaning a programmer can
decide to arrange microengines in a software pipeline. For details about
the Intel network processor seef?l, which includes the source code for an
example NAT implementation.

The Internet Protocol Journal

10

Programming Network Processors

Although the general idea of building programmable devices seems ap-
pealing, most network-processor designs make programming difficult.
In particular, to achieve high speed, many designs use low-level hard-
ware constructs and require a programmer to accommodate the
hardware by writing low-level code. Many network processors are
much closer to a microcontroller than a conventional processor, and are
programmed in microassembly language. Programmers must be con-
scious of details such as register banks.

Programming is especially difficult in cases where the network-proces-
sor hardware uses explicit parallelism and requires a programmer to
plan program execution in such a way that processors do not contend
for resources simultaneously or otherwise stall. For example, on one
vendor’s chip, a packet processor can execute several hundred instruc-
tions while waiting for a single memory access to complete. Thus, to
achieve high performance, a programmer must start a memory opera-
tion, go on with other calculations while the memory operation
proceeds, and then check that the operation has completed.

In addition to considering processing, some network processors pro-
vide a set of memory technologies, and require a programmer to
allocate each data item to a specific memory. A programmer must un-
derstand memory latency, the expected lifetime of a data object, and the
expected frequency of access as well as properties of the hardware such
as memory banks and interleaving.

A few pleasant exceptions exist. For example, Agere Systems provides
special-purpose, high-level programming languages to program its net-
work processors. Thus, it is easy to write classification code or traffic-
management scripts for an Agere processor. More important, an Agere
chip offers implicit parallelism: a programmer writes code as if a single
processor is executing the program; the hardware automatically runs
multiple copies on parallel hardware units and handles all details of co-
ordination and synchronization.

Another pleasant exception comes from IP Fabrics, which has focused
on building tools to simplify programming. Like Agere, IP Fabrics has
developed a high-level language that allows a programmer to specify
packet classification and the subsequent actions to be taken. The lan-
guage from IP Fabrics is even more compact than the language from
Agere.

The Internet Protocol Journal
11

Network Processors: continued

Summary

To provide maximal flexibility, ease of change, and rapid development
for network systems, chip vendors have defined a new technology
known as network processors. The goal is to create chips for packet
processing that combine the flexibility of programmable processors
with the high speed of ASICs.

Because there is no consensus on which packet-processing functions are
needed or which hardware architecture(s) are best, vendors have cre-
ated many architectural experiments. The basic approaches comprise an
embedded processor, parallelism, and hardware pipelining. Commer-
cial chips often combine more than one approach (for example, a
pipeline of parallel stages or parallel pipelines).

Programming network processors can be difficult because many net-
work processors provide low-level hardware that requires a pro-
grammer to use a microassembly language and handle processor, mem-
ory, and parallelism details. A few exceptions exist where a vendor
provides a high-level language.

References

[1] Comer, D., Network Systems Design Using Network Processors,
Agere Version, Prentice Hall, 2005.

[2] Comer, D., Network Systems Design Using Network Processors,
Intel 2xxx Version, Prentice Hall, 2005.

This article is based on material in Network Systems Design Using Net-
work Processors, Agere Version, and Network Systems Design Using
Network Processors, Intel 2xxx Version by Doug Comer. Both books
are published by Prentice Hall in 2005. Used with permission.

DOUGLAS E. COMER is a Visiting Faculty at Cisco Systems, a Distinguished Professor
of Computer Science at Purdue University, a Fellow of the ACM, and editor-in-chief of
the journal Software—Practice and Experience. As a member of the IAB, he participated
in the formation of the Internet, and is considered a leading authority on TCP/IP and In-
ternetworking. He is the author of 16 technical books that that have been translated into
14 languages, and are used around the world in industry and academia. Comer has been
working with network processors for several years, and has reference platforms from
three leading vendors in his lab at Purdue. E-mail: coner @s. pur due. edu

The Internet Protocol Journal
12

Distributed Denial of Service Attacks

By Charalampos Patrikakis, Michalis Masikos, and Olga Zouraraki
National Technical University of Athens

he Internet consists of hundreds of millions of computers dis-

tributed all around the world. Millions of people use the

Internet daily, taking full advantage of the available services at
both personal and professional levels. The interconnectivity among
computers on which the World Wide Web relies, however, renders its
nodes an easy target for malicious users who attempt to exhaust their
resources and launch Denial-of-Service (DoS) attacks against them.

A DosS attack is a malicious attempt by a single person or a group of
people to cause the victim, site, or node to deny service to its custom-
ers. When this attempt derives from a single host of the network, it
constitutes a DoS attack. On the other hand, it is also possible that a lot
of malicious hosts coordinate to flood the victim with an abundance of
attack packets, so that the attack takes place simultaneously from multi-
ple points. This type of attack is called a Distributed DoS, or DDoS
attack.

DDoS Attack Description

DosS attacks attempt to exhaust the victim’s resources. These resources
can be network bandwidth, computing power, or operating system data
structures. To launch a DDoS attack, malicious users first build a net-
work of computers that they will use to produce the volume of traffic
needed to deny services to computer users. To create this attack net-
work, attackers discover vulnerable sites or hosts on the network.
Vulnerable hosts are usually those that are either running no antivirus
software or out-of-date antivirus software, or those that have not been
properly patched. Vulnerable hosts are then exploited by attackers who
use their vulnerability to gain access to these hosts. The next step for the
intruder is to install new programs (known as attack tools) on the com-
promised hosts of the attack network. The hosts that are running these
attack tools are known as zombies, and they can carry out any attack
under the control of the attacker. Many zombies together form what we
call an army.

But how can attackers discover the hosts that will make up the attack
network, and how can they install the attack tools on these hosts?
Though this preparation stage of the attack is very crucial, discovering
vulnerable hosts and installing attack tools on them has become a very
easy process. There is no need for the intruder to spend time in creating
the attack tools because there are already prepared programs that auto-
matically find vulnerable systems, break into these systems, and then
install the necessary programs for the attack. After that, the systems that
have been infected by the malicious code look for other vulnerable com-
puters and install on them the same malicious code. Because of that
widespread scanning to identify victim systems, it is possible that large
attack networks can be built very quickly.

The Internet Protocol Journal
13

DDos Attacks: continued

The result of this automated process is the creation of a DDoS attack
network that consists of handler (master) and agent (slave, daemon)
machines. It can be inferred from this process that another DDos at-
tack takes place while the attack network is being built, because the
process itself creates a significant amount of traffic.

Recruiting the Vulnerable Machines

Attackers can use different kinds of techniques (referred to as scanning
techniques) in order to find vulnerable machinest2E, The most impor-
tant follow:

« Random scanning: In this technique, the machine that is infected by
the malicious code (such a machine can be either the attacker’s ma-
chine or the machine of a member of their army, such as a zombie)
probes IP addresses randomly from the IP address space and checks
their vulnerability. When it finds a vulnerable machine, it breaks into
it and tries to infect it, installing on it the same malicious code that is
installed on itself. This technique creates significant traffic, because
the random scanning causes a large number of compromised hosts to
probe and check the same addresses. An advantage (to attackers) of
this scanning method is that the malicious code can be spread very
quickly because the scans seem to come from everywhere. However,
the fast rate at which the malicious code is dispersed cannot last for-
ever. After a small period of time, the spreading rate reduces because
the number of the new IP addresses that can be discovered is smaller
as time passes. This becomes obvious if we consider the analysis of
David Moore and Colleen Shannon!*! on the spread of the Code-Red
(CRv2) Worm, which uses random scanning to spread itself.

» Hit-list scanning: Long before attackers start scanning, they collect a
list of a large number of potentially vulnerable machines. In their ef-
fort to create their army, they begin scanning down the list in order to
find vulnerable machines. When they find one, they install on it the
malicious code and divide the list in half. Then they give one half to
the newly compromised machine, keep the other half, and continue
scanning the remaining list. The newly infected host begins scanning
down its list, trying to find a vulnerable machine. When it finds one,
it implements the same procedure as described previously, and in this
way the hit-list scanning takes place simultaneously from an endur-
ingly increasing number of compromised machines. This mechanism
ensures that the malicious code is installed on all vulnerable ma-
chines contained in the hit list in a short period of time. In addition,
the hit list possessed by a new compromised host is constantly reduc-
ing because of the partitioning of the list discussed previously.

As has been mentioned, the construction of the list is carried out long
before the attackers start scanning. For that reason, the attackers can
create the list at a very slow rate and for a long period of time. If the
attackers conduct a slow scan, it is possible that this activity would
not be noticed because a scanning process in a network usually oc-
curs at extremely high frequencies, so a slow scan could occur
without anyone realizing that it is a malicious scan.

The Internet Protocol Journal
14

It should also be mentioned that there are public servers such as the
Netcraft Survey!? that can create such hit lists without scanning.

Topological scanning: Topological scanning uses information con-
tained on the victim machine in order to find new targets. In this
technique, an already-compromised host looks for URLs in the disk
of a machine that it wants to infect. Then it renders these URLS tar-
gets and checks their vulnerability. The fact that these URLSs are valid
Web servers means that the compromised host scans possible targets
directly from the beginning of the scanning phase. For that reason,
the accuracy of this technigue is extremely good, and its performance
seems to be similar to that of hit-list scanning. Hence, topological
scanning can create a large army of attackers extremely quickly and
in that way can accelerate the propagation of the malicious code.

Local subnet scanning: This type of scanning acts behind a firewall in
an area that is considered to be infected by the malicious scanning
program. The compromised host looks for targets in its own local
network, using the information that is hidden in “local” addresses.
More specifically, a single copy of the scanning program is running
behind a firewall and tries to break into all vulnerable machines that
would otherwise be protected by the firewall. This mechanism can be
used in conjunction with other scanning mechanisms: for example, a
compromised host can start its scans with local subnet scanning,
looking for vulnerable machines in its local network. As soon as it
has probed all local machines, it can continue the probing process by
switching to another scanning mechanism in order to scan off-local
network machines. In that way, an army with numerous zombies can
be constructed at an extremely high speed.

Permutation scanning: In this type of scanning, all machines share a
common pseudorandom permutation list of IP addresses. Such a per-
mutation list can be constructed using any block cipher of 32 bits
with a preselected keyBl. If a compromised host has been infected
during either the hit-list scanning or local subnet scanning, it starts
scanning just after its point in the permutation list and scans through
this list in order to find new targets. Otherwise, if it has been infected
during permutation scanning, it starts scanning at a random point.
Whenever it encounters an already-infected machine, it chooses a new
random start point in the permutation list and proceeds from there. A
compromised host can recognize an already-infected machine among
noninfected ones, because such machines respond differently than
other machines. The process of scanning stops when the compro-
mised host encounters sequentially a predefined number of already-
infected machines without finding new targets during that period of
time. Then, a new permutation key is produced and a new scanning
phase begins. This mechanism serves two major purposes: first, it pre-
vents unnecessary reinfections of the same target because when a
compromised host recognizes an already-compromised machine, it
changes the way it scans according to the process described
previously.

The Internet Protocol Journal
15

DDos Attacks: continued

Figure 1: Central Source
Propagation

Second, this mechanism maintains the advantages (to attackers) of
random scanning, because the scanning of new targets takes place in
a random way. Hence, permutation scanning can be characterized as
a coordinated scanning with an extremely good performance, be-
cause the randomization mechanism allows high scanning speeds.

An improved version of permutation scanning is partitioned permuta-
tion scanning. This type of scanning is a combination of permutation
and hit-list scanning. In this scenario, the compromised machine has a
permutation list, which is cut in half when it finds a new target. Then
it keeps one section of the list and gives the other section to the newly
compromised machine. When the permutation list that an infected
machine possesses reduces below a predefined level, the scanning
scheme turns from partitioned permutation scanning into simple per-
mutation scanning.

Propagating the Malicious Code

We can identify three groups of mechanisms for propagating malicious
code and building attack networksl4!:

e Central source propagation: In this mechanism, after the discovery of
the vulnerable system that will become one of the zombies, instruc-
tions are given to a central source so that a copy of the attack toolkit
is transferred from a central location to the newly compromised sys-
tem. After the toolkit is transferred, an automatic installation of the
attack tools takes place on this system, controlled by a scripting
mechanism. That initiates a new attack cycle, where the newly in-
fected system looks for other vulnerable computers on which it can
install the attack toolkit using the same process as the attacker. Like
other file-transfer mechanisms, this mechanism commonly uses
HTTP, FTP, and remote-procedure call (RPC) protocols. A graphical
representation of this mechanism is shown in Figure 1.

Attacker |

1. Exploit 9

TN

3. Copy Code
Victim < Central Source

4. Repeat

Next Victim I

The Internet Protocol Journal
16

Figure 2: Back-Chaining
Propagation

» Back-chaining propagation: In this mechanism, the attack toolkit is

transferred to the newly compromised system from the attacker.
More specifically, the attack tools that are installed on the attacker in-
clude special methods for accepting a connection from the
compromised system and sending a file to it that contains the attack
tools. This back-channel file copy can be supported by simple port lis-
teners that copy file contents or by full intruder-installed Web servers,
both of which use the Trivial File Transfer Protocol (TFTP). Figure 2
presents the this mechanism:

Attacker

2 1. Exploit 3. Copy Code
Victim
4, Repeat

Next Victim |

e Autonomous propagation: In this mechanism, the attacking host

transfers the attack toolkit to the newly compromised system at the
exact moment that it breaks into that system. This mechanism differs
from the previously mentioned mechanisms in that the attack tools
are planted into the compromised host by the attackers themselves
and not by an external file source. Figure 3 shows the autonomous
propagation.

The Internet Protocol Journal
17

DDos Attacks: continued

Figure 3: Autonomous
Propagation

Attacker |

1. Exploit and Copy Code

Victim |

2. Repeat

Next Victim |

After the construction of the attack network, the intruders use handler
machines to specify the attack type and the victim’s address and wait
for the appropriate moment in order to mount the attack. Then, either
they remotely command the launch of the chosen attack to agents or the
daemons “wake up’” simultaneously, as they had been programmed to
do. The agent machines in turn begin to send a stream of packets to the
victim, thereby flooding the victim’s system with useless load and ex-
hausting its resources. In this way, the attackers render the victim
machine unavailable to legitimate clients and obtain unlimited access to
it, so that they can inflict arbitrary damage. The volume of traffic may
be so high that the networks that connect the attacking machines to the
victim may also suffer from lower performance. Hence the provision of
services over these networks is no longer possible, and in this way their
clients are denied those services. Thus, the network that has been bur-
dened by the attack load can be considered as one more victim of the
DDos attack.

The whole procedure for carrying out a DDoS attack is mostly auto-
mated thanks to various attack tools. According tols), the existence of
the first controllable DDOS tool was reported by the CERT Coordina-
tion Center (CERT/CC) in early 1998 and it was called “Fapi.” It is a
tool that does not provide easy controls for setting up the DDoS net-
work and does not handle networks with more than 10 hosts very well.
In Mid-1999 Trinoo arrived. Later that year the existence of Tribe
Flood Network (TFN) and its upgraded version TFN2K (or TFN2000)
was reported. Stacheldraht (German for ““barbed wire”’) evolved out of
the latter two tools (Trinoo and TFN). This tool is remarkable because
it has full-control features and a Blowfish-encrypted control channel for
the attacker. Moreover, in early 2000 it mutated into StacheldrahtV4,
and later into Stacheldraht v1.666.

The Internet Protocol Journal
18

However, the development of attack tools did not stop, and many tools
were later introduced, such as Mstream, Omega, Trinity, Derivatives,
myServer, and Plaguel®l. Dave Dittrich and his partners have provided
the most comprehensive analyses of the Trinoo, Tribe Flood Network,
Stacheldraht, shaft, and mstream DDoS attack toolsl”). Through this
work, a lot of malicious code was captured, important observations
were made about DDoS attack tools, and solutions were proposed to-
ward detection and defense.

DDoS Attack Taxonomy

As has been already said, a DDoS attack takes place when many com-
promised machines infected by the malicious code act simultaneously
and are coordinated under the control of a single attacker in order to
break into the victim’s system, exhaust its resources, and force it to deny
service to its customers. There are mainly two kinds of DDoS at-
tacks(tol: typical DDoS attacks and distributed reflector DoS (DRDoS)
attacks. The following paragraphs describe these two kinds analytically.

Typical DDoS Attacks

In a typical DDoS attack, the army of the attacker consists of master
zombies and slave zombies. The hosts of both categories are compro-
mised machines that have arisen during the scanning process and are
infected by malicious code. The attacker coordinates and orders master
zombies and they, in turn, coordinate and trigger slave zombies. More
specifically, the attacker sends an attack command to master zombies
and activates all attack processes on those machines, which are in hiber-
nation, waiting for the appropriate command to wake up and start
attacking. Then, master zombies, through those processes, send attack
commands to slave zombies, ordering them to mount a DDoS attack
against the victim. In that way, the agent machines (slave zombies) be-
gin to send a large volume of packets to the victim, flooding its system
with useless load and exhausting its resources. Figure 4 shows this kind
of DDoS attack.

The Internet Protocol Journal
19

DDos Attacks: continued

Figure 4: A DDoS Attack

Attacker
I I Masters
s> f
/5 /

/N /\ /\

Slaves
>
/

AN
~U
AN
=~
o N
U
AN ———
V)
o —
~J
S\—

b5
Victim

In cases of DDoS attacks, spoofed source IP addresses are used in the
packets of the attack traffic. An attacker prefers to use such counterfeit
source IP addresses for two major reasons: first, the attackers want to
hide the identity of the zombies so that the victim cannot trace the at-
tack back to them. The second reason concerns the performance of the
attack. The attackers want to discourage any attempt of the victim to
filter out the malicious traffic.

DRDoS Attacks

Unlike typical DDoS attacks, in DRDoS attacks the army of the at-
tacker consists of master zombies, slave zombies, and reflectorsi*il, The
scenario of this type of attack is the same as that of typical DDoS at-
tacks up to a specific stage. The attackers have control over master
zombies, which, in turn, have control over slave zombies. The differ-
ence in this type of attack is that slave zombies are led by master
zombies to send a stream of packets with the victim’s IP address as the
source IP address to other uninfected machines (known as reflectors),
exhorting these machines to connect with the victim. Then the reflec-
tors send the victim a greater volume of traffic, as a reply to its
exhortation for the opening of a new connection, because they believe
that the victim was the host that asked for it. Therefore, in DRDoS at-
tacks, the attack is mounted by noncompromised machines, which
mount the attack without being aware of the action.

The Internet Protocol Journal
20

Comparing the two scenarios of DDoS attacks, we should note that a
DRDoS attack is more detrimental than a typical DDoS attack. This is
because a DRDoS attack has more machines to share the attack, and
hence the attack is more distributed. A second reason is that a DRD0S
attack creates a greater volume of traffic because of its more distributed
nature. Figure 5 graphically depicts a DRDoS attack.

Figure 5: A DRDoS Attack

I Attacker

I I I Masters

— — —

/0 /5 /5

Slaves

I I I IReerctors

Well-Known DDoS Attacks

This article would be incomplete without reference to some of the most
well-known DDoS attacks. Some of the most famous documented
DDoS attacks[*223! are summarized in the following:

e Apache2: This attack is mounted against an Apache Web server
where the client asks for a service by sending a request with many
HTTP headers. However, when an Apache Web server receives many
such requests, it cannot confront the load and it crashes.

The Internet Protocol Journal
21

DDos Attacks: continued

e ARP Poison: Address Resolution Protocol (ARP) Poison attacks re-

quire the attacker to have access to the victim’s LAN. The attacker
deludes the hosts of a specific LAN by providing them with wrong
MAC addresses for hosts with already-known IP addresses. This can
be achieved by the attacker through the following process: The net-
work is monitored for “arp who-has™ requests. As soon as such a
request is received, the malevolent attacker tries to respond as quickly
as possible to the questioning host in order to mislead it for the re-
quested address.

Back: This attack is launched against an apache Web server, which is
flooded with requests containing a large number of front-slash (/)
characters in the URL description. As the server tries to process all
these requests, it becomes unable to process other legitimate requests
and hence it denies service to its customers.

CrashlIS: The victim of a CrashlIS attack is commonly a Microsoft
Windows NT IIS Web server. The attacker sends the victim a mal-
formed GET request, which can crash the Web server.

DoSNuke: In this kind of attack, the Microsoft Windows NT victim
is inundated with ““out-of-band” data (MSG_OOB). The packets be-
ing sent by the attacking machines are flagged ““urg” because of the
MSG_OOB flag. As a result, the target is weighed down, and the vic-
tim’s machine could display a ““blue screen of death.”

Land: In Land attacks, the attacker sends the victim a TCP SYN
packet that contains the same IP address as the source and destina-
tion addresses. Such a packet completely locks the victim’s system.

Mailbomb: In a Mailbomb attack, the victim’s mail queue is flooded
by an abundance of messages, causing system failure.

SYN Flood: A SYN flood attack occurs during the three-way hand-
shake that marks the onset of a TCP connection. In the three-way
handshake, a client requests a new connection by sending a TCP
SYN packet to a server. After that, the server sends a SYN/ACK
packet back to the client and places the connection request in a
queue. Finally, the client acknowledges the SYN/ACK packet. If an
attack occurs, however, the attacker sends an abundance of TCP
SYN packets to the victim, obliging it both to open a lot of TCP con-
nections and to respond to them. Then the attacker does not execute
the third step of the three-way handshake that follows, rendering the
victim unable to accept any new incoming connections, because its
queue is full of half-open TCP connections.

Ping of Death: In Ping of Death attacks, the attacker creates a packet
that contains more than 65,536 bytes, which is the limit that the IP
protocol defines. This packet can cause different kinds of damage to
the machine that receives it, such as crashing and rebooting.

The Internet Protocol Journal
22

e Process Table: This attack exploits the feature of some network ser-
vices to generate a new process each time a new TCP/IP connection is
set up. The attacker tries to make as many uncompleted connections
to the victim as possible in order to force the victim’s system to gener-
ate an abundance of processes. Hence, because the number of
processes that are running on the system cannot be boundlessly large,
the attack renders the victim unable to serve any other request.

* Smurf Attack: In a “smurf” attack, the victim is flooded with Inter-
net Control Message Protocol (ICMP) ““echo-reply”” packets. The
attacker sends numerous ICMP ““echo-request™ packets to the broad-
cast address of many subnets. These packets contain the victim’s
address as the source IP address. Every machine that belongs to any
of these subnets responds by sending ICMP ““echo-reply” packets to
the victim. Smurf attacks are very dangerous, because they are
strongly distributed attacks.

« SSH Process Table: Like the Process Table attack, this attack makes
hundreds of connections to the victim with the Secure Shell (SSH)
Protocol without completing the login process. In this way, the dae-
mon contacted by the SSH on the victim’s system is obliged to start
so many SSH processes that it is exhausted.

» Syslogd: The Syslogd attack crashes the syslogd program on a Solaris
2.5 server by sending it a message with an invalid source IP address.

e TCP Reset: In TCP Reset attacks, the network is monitored for “tcp-
connection” requests to the victim. As soon as such a request is
found, the malevolent attacker sends a spoofed TCP RESET packet
to the victim and obliges it to terminate the TCP connection.

» Teardrop: While a packet is traveling from the source machine to the
destination machine, it may be broken up into smaller fragments,
through the process of fragmentation. A Teardrop attack creates a
stream of IP fragments with their offset field overloaded. The destina-
tion host that tries to reassemble these malformed fragments
eventually crashes or reboots.

e UDP Storm: In a User Datagram Protocol (UDP) connection, a char-
acter generation (*‘chargen’) service generates a series of characters
each time it receives a UDP packet, while an echo service echoes any
character it receives. Exploiting these two services, the attacker sends
a packet with the source spoofed to be that of the victim to another
machine. Then, the echo service of the former machine echoes the
data of that packet back to the victim’s machine and the victim’s ma-
chine, in turn, responds in the same way. Hence, a constant stream of
useless load is created that burdens the network.

The Internet Protocol Journal
23

DDos Attacks: continued

The first DoS attack occurred against Panix, the New York City area’s
oldest and largest Internet Service Provider (ISP), on September 6, 1996,
at about 5:30 p.m.[*4, The attack was against different computers on
the provider’s network, including mail, news, and Web servers, user
“login” machines, and name servers. The Panix attack was a SYN
Flood attack deriving from random IP addresses and directed toward
server Simple Mail Transfer Protocol (SMTP) ports. More specifically,
Panix’s computers were flooded by, on average, 150 SYN packets per
second (50 per host), so Panix could not respond to legitimate re-
questsi®sl, Because the attackers used spoofed source IP addresses in
their packets, the addresses could not be traced and malicious traffic
could not be filtered. For that reason the attack was not immediately
confronted. The solution was to use a special structure, instead of full
Transmission Control Block (TCB), to hold half-open connections un-
til the last ACK packet was received. In that way, the listen queue was
large enough to keep all the SYN requests before the half-open connec-
tion timed out. The timeout, on the other hand, was adjusted to 94
secondstt®l, However, although Panix overcame this attack, the new
threat (DoS attacks) made administrators worry.

Problems Caused and Countermeasures

The results of these attacks are disastrous. DDoS attacks have two char-
acteristics: they are both distributed attacks and denial-of-service
attacks. Distributed means that they are large-scale attacks having a
great impact on the victims. Denial of service means that their goal is to
deny the victim’s access to a particular resource (service). This is not too
difficult because the Internet was not designed with security in mind.

First, available bandwidth is one of the ““goods™ that attackers try to
consume. Flooding the network with useless packets, for example, pre-
vents legitimate ICMP echo packets from traveling over the network.
Secondly, attackers try to consume CPU power. By generating several
thousands of useless processes on the victim’s system, attackers manage
to fully occupy memory and process tables. In this way the victim’s
computer cannot execute any process and the system breaks down. Us-
ing this method, the attacker manages to prevent clients from accessing
the victim’s services and disrupts the current connections. Finally, at-
tackers try to occupy victims’ services so that no one else can access
them. For example, by leaving TCP connections half open, attackers
manage to consume the victim’s data structures, and when they do so,
no one else can establish a TCP connection with that victim.

The impact of these attacks is catastrophic, especially when victims are
not individuals but companies. DDoS attacks prevent victims either
from using the Internet, or from being reached by other people. Conse-
quently, when the victim is an ISP, the results of such an attack are far
more severe. ISPs’ clients will not be served. E-business is also top on
the “hit list.”” Being off line for a few hours could result in the loss of
large sums of money for an ISP. Finally, the fact that companies use the
Internet more and more for advertising or for providing goods and ser-
vices increases the severity of such incidents.

The Internet Protocol Journal
24

Defense Mechanisms

From the beginning, all legitimate users have tried to respond against
these threats. University communities and software corporations have
proposed several methods against the DDoS threat. Despite the efforts,
the solution remains a dream. The attackers manage to discover other
weaknesses of the protocols and—what is worse—they exploit the de-
fense mechanisms in order to develop attacks. They discover methods to
overcome these mechanisms or they exploit them to generate false
alarms and to cause catastrophic consequences.

Many experts have tried to classify the DDoS defense mechanisms in or-
der to clarify them. This classification gives users an overall view of the
situation and helps defense-mechanism developers cooperate against the
threat. The basic discrimination is between preventive and reactive de-
fense mechanisms.

Preventive Mechanisms

The preventive mechanisms try to eliminate the possibility of DDoS at-
tacks altogether or to enable potential victims to endure the attack
without denying services to legitimate clients. With regard to attack pre-
vention, countermeasures can be taken on victims or on zombies. This
means modification of the system configuration to eliminate the possi-
bility of accepting a DDoS attack or participating unwillingly in a
DDosS attack. Hosts should guard against illegitimate traffic from or to-
ward the machine. By keeping protocols and software up-to-date, we
can reduce the weaknesses of a computer. A regular scanning of the ma-
chine is also necessary in order to detect any “anomalous™ behavior.
Examples of system security mechanisms include monitoring access to
the computer and applications, and installing security patches, firewall
systems, virus scanners, and intrusion detection systems automatically.
The modern trend is toward security companies that guard a client’s
network and inform the client in case of attack detection to take defend-
ing measures. Several sensors monitor the network traffic and send
information to a server in order to determine the “health” of the net-
work. Securing the computer reduces the possibility of being not only a
victim, but also a zombie. Not being a zombie is very important be-
cause it wipes out the attacker’s army. All these measures can never be
100-percent effective, but they certainly decrease the frequency and
strength of DDoS attacks.

Many other measures can be taken in order to reduce the attacker’s
army or restrict its “power.” Studying the attack methods can lead to
recognizing loopholes in protocols. For example, administrators could
adjust their network gateways in order to filter input and output traffic.
The source IP address of output traffic should belong to the subnet-
work, whereas the source IP address of input traffic should not. In this
way, we can reduce traffic with spoofed IP addresses on the network[2s],

The Internet Protocol Journal
25

DDos Attacks: continued

Furthermore, over the last few years, several techniques have been pro-
posed to test systems for possible drawbacks, before their shipment to
the market. More precisely, by replacing the components of a system
with malicious ones we can discover whether the system can survive an
attack situation(38l. If the system breaks down, a drawback has been de-
tected and developers must correct it.

On the other hand, DoS prevention mechanisms enable the victim to
endure attack attempts without denying service to legitimate clients. Un-
til now, two methods have been proposed for this scenario. The first
one refers to policies that increase the privileges of users according to
their behavior. When users’ identities are verified, then no threat exists.
Any illegitimate action from those users can lead to their legal prosecu-
tion. The second method is usually too expensive; it involves increasing
the effective resources to such a degree that DDoS effects are limited.
Most of the time application of such a measure is impossible.

Reactive Mechanisms

The reactive mechanisms (also referred to as Early Warning Systems)
try to detect the attack and respond to it immediately. Hence, they re-
strict the impact of the attack on the victim. Again, there is the danger
of characterizing a legitimate connection as an attack. For that reason it
is necessary for researchers to be very careful.

The main detection strategies are signature detection, anomaly detec-
tion, and hybrid systems. Signature-based methods search for patterns
(signatures) in observed network traffic that match known attack signa-
tures from a database. The advantage of these methods is that they can
easily and reliably detect known attacks, but they cannot recognize new
attacks. Moreover, the signature database must always be kept up-to-
date in order to retain the reliability of the system.

Anomaly-based methods compare the parameters of the observed net-
work traffic with normal traffic. Hence it is possible for new attacks to
be detected. However, in order to prevent a false alarm, the model of
“normal traffic”” must always be kept updated and the threshold of cat-
egorizing an anomaly must be properly adjusted.

Finally, hybrid systems combine both these methods. These systems up-
date their signature database with attacks detected by anomaly
detection. Again the danger is great because an attacker can fool the
system by characterizing normal traffic as an attack. In that case an In-
trusion Detection System (IDS) becomes an attack tool. Thus IDS
designers must be very careful because their research can boomerang.

After detecting the attack, the reactive mechanisms respond to it. The
relief of the impact of the attack is the primary concern. Some mecha-
nisms react by limiting the accepted traffic rate. This means that
legitimate traffic is also blocked. In this case the solution comes from
traceback techniques that try to identify the attacker. If attackers are
identified, despite their efforts to spoof their address, then it is easy to
filter their traffic. Filtering is efficient only if attackers’ detection is cor-
rect. In any other case filtering can become an attacker’s tool.

The Internet Protocol Journal
26

The University of Washington provides an example of attack detection.
Dave Dittrich and his team of 40 people discovered that more than 30
of their systems were zombies exploited by a single attacker39. By mon-
itoring network traffic, Dittrich’s team located directory and file names
uncommon to the Windows operating systems the attacker ran on the
network, as well as the port through which all these files were running
communications.

Difficulties in Defending

Development of detection and defending tools is very complicated. De-
signers must think in advance of every possible situation because every
weakness can be exploited. Difficulties involve:

e DDoS attacks flood victims with packets. This means that victims
cannot contact anyone else in order to ask for help. So it is possible
for a network neighbor to be attacked, but nobody would know it
and nobody can help. Consequently, any action to react can be taken
only if the attack is detected early. But can an attack be detected
early? Usually traffic flow increases suddenly and without any warn-
ingB34IB3s136], For this reason defense mechanisms must react quickly.

e Any attempt of filtering the incoming flow means that legitimate
traffic will also be rejected. And if legitimate traffic is rejected, how
will applications that wait for information react? On the other hand,
if zombies number in the thousands or millions, their traffic will flood
the network and consume all the bandwidth. In that case filtering is
useless because nothing can travel over the network.

» Attack packets usually have spoofed IP addresses. Hence it is more
difficult to trace back to their source. Furthermore, it is possible that
intermediate routers and ISPs may not cooperate in this attempt.
Sometimes attackers, by spoofing source IP addresses, create counter-
feit armies. Packets might derive from thousands of IP addresses, but
zombies number only a few tens, for example.

» Defense mechanisms are applied in systems with differences in soft-
ware and architecture. Also systems are managed by users with
different levels of knowledge. Developers must design a platform in-
dependent of all these parameters.[3]

Modern Tendencies in Defending Against DDoS Attacks

Until now, developers have not managed to develop a 100-percent-ef-
fective defense mechanism. All mechanisms that have been presented
either can confront only specific DDoS attacks or are being finally com-
promised by the attackers. Therefore, developers are currently working
on DDoS diversion systems. Honeypots are the best representative of
this category (See Figure 6).

The Internet Protocol Journal
27

DDos Attacks: continued

Figure 6: Honeypot

Honeypots

There are two basic types of honeypots: low-interaction honeypots and
high-interaction honeypots. The first ones refer to emulating services
and operating systems. It is easy and safe to implement them. Attackers
are not allowed to interact with the basic operating system, but only
with specific services. For that reason, this type of honeypot cannot pro-
vide detailed informations for attackers’ actions and they can easily be
detected. However, they can detect communication attempts toward
unused IP addresses. In that case an alarm is triggered, warning that
someone is trying to compromise or attack the network. But what hap-
pens if the attack is not directed against the emulated service?

g 1 | 4 ;
e e . R
“« ” | ” g

Ll 1
Firewall Firewall
}N = I 1

FTP

I I
I I
: Server Honeypot I I

|
I I

The answer comes from high-interaction honeypots. In [41], Honeynet
is proposed. Honeynet is not a software solution that can be installed
on a computer but a whole architecture, a network that is created to be
attacked. Within this network, every activity is recorded and attackers
are being trapped. Encrypted SSH sessions, e-mails, file uploads, and ev-
ery possible attacker’s action is captured. Moreover, a Honeywall
gateway allows incoming traffic, but controls outgoing traffic using in-
trusion prevention technologies. This allows the attacker to interact
with Honeynet systems, but prevents the attacker from harming other
non-Honeynet systems. By studying the captured traffic, researchers can
discover new methods and tools and they can fully understand attack-
ers’ tactics. However, Honeynet systems are more complex to install
and deploy and the risk is increased as attackers interact with real oper-
ating systems and not with emulations. But what would happen if
someone did compromise such a system? The consequences could be
disastrous.

The Internet Protocol Journal
28

Route Filter Techniques

Different suggestions for defending against DDoS attacks derive from
the Border Gateway Protocol (BGP) community. When routing proto-
cols were designed, developers did not focus on security, but effective
routing mechanisms and routing loop avoidance. Early on, attackers
started directing their attention towards routers. By gaining access to a
router, they could direct the traffic over bottlenecks, view critical data,
and modify them. Cryptographic authentication mitigates these threats.
Because of neighbor authentication, the routing update comes from a
trusted source and there is no possibility that someone can give routers
invalid routing information in order to compromise a network. On the
other hand, routing filters are necessary for preventing critical routes
and subnetworks from being advertised and suspicious routes from be-
ing incorporated in routing tables. In that way, attackers do not know
the route toward critical servers and suspicious routes are not used.

Two other route filter techniques, blackhole routing and sinkhole rout-
ing, can be used when the network is under attack. These techniques try
to temporarily mitigate the impact of the attack. The first one directs
routing traffic to a null interface, where it is finally dropped. At first
glance, it would be perfect to ““blackhole” malicious traffic. But is it al-
ways possible to isolate malicious from legitimate traffic? If victims
know the exact IP address being attacked, then they can ignore traffic
originating from these sources. This way, the attack impact is restricted
because the victims do not consume CPU time or memory as a conse-
quence of the attack. Only network bandwidth is consumed. However,
if the attackers’ IP addresses cannot be distinguished and all traffic is
blackholed, then legitimate traffic is dropped as well. In that case, this
filter technique fails.

Sinkhole routing involves routing suspicious traffic to a valid IP address
where it can be analyzed. There, traffic that is found to be malicious is
rejected (routed to a null interface); otherwise it is routed to the next
hop. A sniffer on the sinkhole router can capture traffic and analyze it.
This technique is not as severe as the previous one. The effectiveness of
each mechanism depends on the strength of the attack. Specifically,
sinkholing cannot react to a severe attack as effectively as blackholing.
However, it is a more sophisticated technique, because it is more selec-
tive in rejecting traffic.

Filtering malicious traffic seems to be an effective countermeasure
against DDoS. The closer to the attacker the filtering is applied, the
more effective it is. This is natural, because when traffic is filtered by
victims, they “survive,” but the ISP’s network is already flooded. Conse-
quently, the best solution would be to filter traffic on the source; in
other words, filter zombies’ traffic.

The Internet Protocol Journal
29

DDos Attacks: continued

Until now, three filtering possibilities have been reported concerning cri-
teria for filters. The first one is filtering on the source address. This one
would be the best filtering method, if we knew each time who the at-
tacker is. However, this is not always possible because attackers usually
use spoofed IP addresses. Moreover, DDoS attacks usually derive from
thousands of zombies and this makes it too difficult to discover all the
IP addresses that carry out the attack. And even if all these IP addresses
are discovered, the implementation of a filter that rejects thousands of
IP addresses is practically impossible to deploy.

The second filtering possibility is filtering on the service. This tactic pre-
supposes that we know the attack mechanism. In this case, we can filter
traffic toward a specific UDP port or a TCP connection or ICMP mes-
sages. But what if the attack is directed toward a very common port or
service? Then we must either reject every packet (even if it is legitimate)
or suffer the attack.

Finally, there is the possibility of filtering on the destination address.
DDosS attacks are usually addressed to a restricted number of victims,
SO it seems to be easy to reject all traffic toward them. But this means
that legitimate traffic is also rejected. In case of a large-scale attack, this
should not be a problem because the victims will soon break down and
the ISP will not be able to serve anyone. So filtering prevents victims
from breaking down by simply keeping them isolated.

Fred Baker and Paul Ferguson developed an technique called Ingress
Filtering for mitigating DoS attacks (and, later, DDoS attacks too). Af-
ter the Panix attack and a few other attacks, Paul Ferguson wrote RFC
2267142, which became Best Current Practices (BCP) 38 in RFC
28271431, This RFC presents a method for using ingress traffic filtering
against DoS attacks that use forged IP addresses and try to be propa-
gated from “behind”” an ISP’s aggregation point. This method prevents
the attack from forged source addresses, but nothing can be done
against an attack from a valid source address. However, in that case, if
the attack is detected, it is easy to trace the attacker. Finally, although
this solution allows the network to protect itself from other attacks too
(for example, spoofed management access to networking equipment), it
can also create some problems, for example, with multihoming.

For that reason, RFC 2827 was recently (March 2004) updated by Fred
Baker in BCP 84/ RFC 37044, This RFC describes and evaluates the
current ingress filtering mechanisms, examines some implementation
matters related to ingress filtering, and presents some solutions to in-
gress filtering with multihoming. According to this RFC, ingress filtering
should be implemented at multiple levels in order to prohibit the use of
spoofed addresses and to make attackers more traceable, even if asym-
metric/multihomed networks are presented. However, although
Ferguson’s work was published a long time ago, service providers in
some cases ignore his suggestions.

The Internet Protocol Journal
30

Hybrid Methods and Guidelines

Currently researchers try to combine the advantages from all the meth-
ods stated previously in order to minimize their disadvantages. As a
result, several mechanisms that implement two or more of these tech-
niques are proposed for mitigation of the impact of DDoS attacks. The
best solution to the DDoS problem seems to be the following: victims
must detect that they are under attack as early as possible. Then they
must trace back the IP addresses that caused the attack and warn zom-
bies administrators about their actions. In that way, the attack can be
confronted effectively.

However, as we saw previously, this is currently impossible. The lack of
a 100-percent-effective defending tool imposes the necessity of private
alerts. Users must care for their own security. Some basic suggestions
follow:

» Prevent installation of distributed attack tools on our systems. This
will help to restrict the zombies army. Several tasks also need to be
performed. First, keep protocols and operating systems up-to-date.
We can prevent system exploitation by eliminating the number of
weaknesses of our system.

« Use firewalls in gateways to filter incoming and outgoing traffic. In-
coming packets with source IP addresses belonging to the subnetwork
and outgoing packets with source IP addresses not belonging to the
subnetwork are not logical.

« Deploy IDS systems to detect patterns of attacks.
« Deploy antivirus programs to scan malicious code in our system.

Further Thoughts

The Internet is not stable—it reforms itself rapidly. This means that
DDoS countermeasures quickly become obsolete. New services are of-
fered through the Internet, and new attacks are deployed to prevent
clients from accessing these services. However, the basic issue is whether
DDosS attacks represent a network problem or an individual problem—
or both. If attacks are mainly a network problem, a solution could de-
rive from alterations in Internet protocols. Specifically, routers could
filter malicious traffic, attackers could not spoof IP addresses, and there
would be no drawback in routing protocols. If attacks are mostly the re-
sult of individual system weaknesses, the solution could derive from an
effective IDS system, from an antivirus, or from an invulnerable fire-
wall. Attackers then could not compromise systems in order to create a
““zombies’ army. Obviously, it appears that both network and individ-
ual hosts constitute the problem. Consequently, countermeasures
should be taken from both sides. Because attackers cooperate in order
to build the perfect attack methods, legitimate users and security devel-
opers should also cooperate against the threat. The solution will arise
from combining both network and individual countermeasures.

The Internet Protocol Journal
31

DDos Attacks: continued

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

Kevin Tsui, “Tutorial-Virus (Malicious Agents),” University of
Calgary, October 2001.

Nicholas Weaver, “Warhol Worms: The Potential for Very Fast

Internet Plagues,”
http: //waw i war. or g. uk/ consec/ r esour ces/ wor s/ war hol - wor m ht m

Nicholas Weaver, U.C. Berkeley BRASS group, “Potential
Strategies for High Speed Active Worms: A Worst Case Analysis,”
February 2002

David Moore and Colleen Shannon, “The Spread of the Code Red

Worm (crv2),” July 2001,
ht t p: // waw cai da. or g/ anal ysi s/ securi ty/ coder ed/
coder edv2_anal ysi s. xm #ani mat i ons

“A Chronology of CERT Coordination Center Involvement with
Distributed Denial-of-Service Tools,”
http://wn cdt . or g/ securi ty/ dos/ 000229senat ehouse/ chr on. ht ni

“Analyzing Distributed Denial Of Service Tools: The Shaft Case,”
Sven Dietrich, NASA Goddard Space Flight Center; Neil Long,
Oxford University; David Dittrich, University of Washington,

http: //wn useni X. or g/ event s/ | i sa2000/ ful | _papers/dietrich/
dietrich_htn/

http://staff.washi ngton. edu/dittrich

Kevin J. Houle, CERT/CC; George M. Weaver, CERT/CC, in
collaboration with: Neil Long, Rob Thomas, “Trends in Denial of
Service Attack Technology,” V1.0, October 2001.

http://staff.washi ngt on. edu/dittrich/ m sc/stachel draht. anal ysi s

T. Peng, C. Leckie, and K. Ramamohanarao, “Detecting
Distributed Denial of Service Attacks Using Source IP Address
Monitoring,”” The University of Melbourne, Australia, 2003.

Steve Gibson, “Distributed Reflection Denial of Service
Description and Analysis of a Potent, Increasingly Prevalent, and
Worrisome Internet Attack,”” February 2002.

http://wwn 1. mt. edu/ | ST/ i deval / docs/ 1999/ at t ackDB. ht m

Yanet Manzano, “Tracing the Development of Denial of Service
Attacks: A Corporate Analogy,” 2003,

http://wan acm or g/ cr ossr oads/ xr ds10- 1/ t r aci ngDC5. ht m

http: //wawn pani x. cor pr ess/ synat t ack. ht m

htt p: // cypher punks. venona. coni dat e/ 1996/ 09/ nsg01055. ht ni

htt p: // cypher punks. venona. coni dat e/ 1996/ 09/ nsg01061. ht n

The Internet Protocol Journal
32

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Larry Rogers, “What Is a Distributed Denial of Service (DDoS)

Attack and What Can | Do About 1t?” February 2004,
http://ww cert. or g/ honeuser s/ ddos. ht m

Alefiya Hussain, John Heidemann, and Christos Papadopoulo,
“A Framework for Classifying Denial of Service Attacks,” 25
February 2003.

http://ww cs. ber kel ey. edu/ ~nweaver / war hol . ol d. ht m

CIS 659 “Introduction to Network Security — Fall 2003,
http://ww ci s. udel . edu/ ~sunshi ne/ FO3/ A S659/ ¢l ass15. pdf

Miguel Vargas Martin, School of Computer Science, Carleton
University, “Overview of Worms and Defence Strategies,”
October 2003.

“Computer Security,” Testimony of Richard D. Pethia, Director,
CERT Centers Software Engineering Institute, Carnegie Mellon
University, March 2000,

http://wn cert. org/ congressi onal _t esti nony/

Pet hi a_testi nony_Mar 9. ht m #Di st ri but ed

Jelena Mlirkovic, Janice Martin, and Peter Reiher, UCLA, “A
Taxonomy of DDoS Attacks and DDoS Defense Mechanisms.”

Distributed Denial of Service Tools,
http://ww cert. org/inci dent _notes/ I N-99-07. ht m

Barbara Fraser, Lawrence Rogers, and Linda Pesante, “Was the
Melissa Virus So Different?”” The Internet Protocol Journal,
Volume 2, No. 2, June 1999.

ht t p: // news. bbc. co. uk/ 1/ hi / sci / t ech/ 635444. st m
ht t p: // waw nt a- moni t or . comd newr i sks/ f eb2000/ yahoo. ht m
http://www cert. org/ advi sori es/ CA- 1996- 21. ht n

S. Axelsson, “Intrusion Detection Systems: A Survey and
Taxonomy,” Technical Report 99-15, Department of Computer
Engineering, Chalmers University, March 2000.

J. Shapiro and N. Hardy, “EROS: A principle-driven Operating
System from the Ground Up,” IEEE Software, pp. 26-33,
January/February 2002.

A. Garg and A. L. Narasimha Reddy, “Mitigating Denial of
Service Attacks Using QoS Regulation,” Texas A & M University
Tech report, TAMU-ECE-2001-06.

Y. L. Zheng and J. Leiwo, “A method to implement a Denial of
Service Protection Base,” Information Security and Privacy,
Volume 1270 of Lecture Notes in Computer Science (LNCS), pp.
90-101, 1997.

The Internet Protocol Journal
33

DDos Attacks: continued

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

CERT on Home Network Security:
http://wwn cert. org/tech_ti ps/ hone_networ ks. ht m

CERT on SMURF Attacks:
http://wwn cert. or g/ advi sori es/ CA- 1998- 01. ht

CERT on TCP SYN Flooding Attacks:
http://wn cert. or g/ advi sori es/ CA- 1996- 21. ht ni

CERT TRINOO Report:
http://ww cert. org/inci dent_notes/ | N-99-07. ht m #t ri noo

http://fal con.j mu. edu/ ~flynngn/ what next . ht m

Charalampos Patrikakis, Thomas Kalamaris, Vaios Kakavas,
“Performing Integrated System Tests Using Malicious Component
Insertion,” Electronic Notes in Theoretical Computer Science,
Volume 82 No. 6 (2003).

htt p: //www paypal . cond ht nt / conput er wor | d- 011402. ht ni

Ho Chung, “An Evaluation on Defensive Measures against
Denial-of-Service Attacks,” Fall 2002.

Nathalie Weiler, “Honeypots for Distributed Denial of Service
Attacks,”
wawv ti K. ee. et hz. ch/ ~wei | er/ paper s/ wet i ce02. pdf

P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address
Spoofing,” RFC 2267, January 1998.

P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which employ IP Source Address
Spoofing,” RFC 2827, May 2000.

F. Baker and P. Savola, “Ingress Filtering for Multihomed
Networks,” RFC 3704, March 2004.

Taxonomies of Distributed Denial of Service Networks, Attacks,

Tools, and Countermeasures:
wae ee. pri ncet on. edu/ ~r bl ee/ DDoS¥20Sur vey%20Paper _v7final . doc

Lance Spitzner, ““Honeypots Definitions and Value of Honeypots,”
May 2003, ht t p: / / waw t r acki ng- hacker s. com

How to Get Rid of Denial of Service Attacks:
ht t p: // waw bgpexpert . comd ant i dos. php

Proposed Solutions to DDoS Information, March 2001:
http://wawn cs. virgi ni a. edu/ ~sur vi ve/ ddos/ ddos_sol ut i ons. ht n

Dennis Fisher, “Thwarting the Zombies,”” March 2003:
http: //ww eweek. comarti cl e2/ 0, 3959, 985389, 00. asp

The Internet Protocol Journal
34

[50] Merike Kaeo, “Route to Security,” March 2004,
http://infosecuritynag.techtarget. com ss/
0, 295796, si d6_i ss346_art 668, 00. ht m

[51] ““Report to the President’s Commission on Critical Infrastructure
Protection,”” James Ellis, David Fisher, Thomas Longstaff, Linda

Pesante, and Richard Pethia, January 1997,
http://wn cert. org/ pres_commicert. rpcci . body. ht n

[52] *“Cisco Quality of Service and DDOS, Engineering Issues for
Adaptive Defense Network,” MITRE, 7/25/2001.

[53] “Denial of Service Attacks,” CERT Coordination Center, June 4,

2001,
http://www cert.org/tech_tips/denial _of_service. htn

[54] Tom Chen, “Trends in Viruses and Worms,” The Internet
Protocol Journal, Volume 6, No. 3, September 2003.

CHARALAMPOS Z. PATRIKAKIS holds a Dipl.-Ing. and a Ph.D. degree from the Elec-
trical Engineering and Computer Science Department of the National Technical
University of Athens (NTUA). He is currently a senior research associate of the Telecom-
munications Labor-atory of NTUA. He has participated in several European Union
projects (ESPRIT, RACE, ACTS, IST). His main interests are in the area of IP service de-
sign and implementation, multicasting in IP networks, IP transport protocols, and media
streaming over IP networks. He is a member of IEEE, a member of the Greek Computer
Society, a certified trainer by the National Accreditation Centre of Vocational Training
Structures and Accompanying Support Services, and a member of the Technical Cham-
ber of Greece. He can be reached at: bpat r @el ecom nt ua. gr

MICHALIS MASIKOS holds a Dipl.-Ing. degree from the Electrical Engineering and
Computer Science Department of the National Technical University of Athens (NTUA).
He is currently a research associate of the Telecommunications Laboratory of NTUA.
His interests are in the fields of network security, network simulation, and analysis. He
can be reached at: mvasi k@el ecom nt ua. gr

OLGA ZOURARAKI holds a Dipl.-Ing. degree from the Electrical Engineering and
Computer Science Department of the National Technical University of Athens (NTUA).
She is currently a research associate of the Telecommunications Laboratory of NTUA.
Her interests are in the fields of network security, Internet application design, and imple-
mentation. She can be reached at: ozour @el ecom nt ua. gr

The Internet Protocol Journal
35

Letter to the Editor

Ole,

I was reading your latest issue of IPJ (Volume 7, No. 3, September
2004) and | could be wrong but | think you mis-typed an explanation
about the STUN protocol. On page 12, 3rd paragraph, last sentence, it
reads: ““A received response indicates the presence of a port-restricted
cone, and the lack of a response indicates the presence of a restricted
cone.”

According to the definitions you gave about “restricted cone” and

“port-restricted cone” on pages 10 and 11. Shouldn’t this sentence in-

stead read: ““A received response indicates the presence of a restricted

cone, and the lack of a response indicates the presence of a port-re-
stricted cone.”

—Ryan Liles

ryanlil es@otmail.com

The author responds:

Ryan is correct, there is an error here in the text.

The flow control of the sequence of STUN tests is detailed in Figure 9 of
the article. The test referred to here is to determine if the NAT is a re-
stricted cone NAT, or a port-restricted cone NAT.

The restricted cone NAT, in Figure 7, is one where the NAT binding is
accessible using any source port number on the external host when re-
sponding to a UDP packet from the internal sending host.

The port-restricted cone NAT, in Figure 8, is one where the NAT bind-
ing is accessible using the same port number as originally used by the
internal lost host, and this binding is accessible from any external IP
address.

The test referenced in this section, as per Figure 9, is one where the lo-
cal host requests the external agent to respond using the same port
number, but an altered source address. The text should read “This
fourth request includes a control flag to direct the STUN server to re-
spond using the alternate IP address, but with the same port value,” in
which case the interpretation of the response—that a response indicates
the presence of a port-restricted cone NAT and the lack of response in-
dicates the presence of a restricted cone NAT—would be correct.

Ryan is also correct in that if the test is performed the other way, re-
questing the agent to use the same IP address, but with the alternate
port value, then the opposite interpretation would hold, namely that a
response indicates the presence of a restricted cone NAT, and the lack
of a response would indicate the presence of a port-restricted cone
NAT, as Ryan points out.

Thanks to Ryan for following through this rather complex explanation
of the STUN algorithm and spotting this error.

Regards,
—Geoff Huston, APNIC
gi h@pni c. net

The Internet Protocol Journal
36

Book Review

The IP Multimedia Subsystem The IP Multimedia Subsystem—Merging the Internet and the Cellular

Worlds, by Gonzalo Camarillo and Miguel A. Garcia-Martin, John
Wiley & Sons, 2004. ISBN 0470 87156 3.

The Internet and the cellular telephony system are the two most influen-
tial communication systems of the last half century. That the tele-
communications industry would attempt to merge them into a single
system was inevitable. The potential benefits are compelling—a single
packet-based communication system with the capability to carry voice,
video and data while providing ubiquitous wireless access and global
mobility. The resulting system architecture is called the Internet Multi-
media Subsystem (IMS) and is described comprehensively in this volume
by Gonzalo Camarillo and Miguel A. Garcia Martin.

A “merging” of the two systems is only superficially what has hap-
pened. In practice, the IMS is an “embrace and extend” exercise which
adapts the IP protocol suite to the existing architecture of the cellular te-
lephony system. The cellular industry has taken a broad collection of IP
protocols and mapped them onto their existing architecture, effecting a
“protocol transplant’ into an environment somewhat different from the
Internet. Among the protocols imported are IPv6, SIP, DHCP, DNS,
SDP, RTP, IPSec, and DIAMETER. Many are adopted unaltered; some
are profiled by introducing new configuration data and rules; others are
extended in various ways. The authors navigate their way through the
various parts of the system with clarity and confidence. They can speak
with authority on the subject—both were major contributors to the de-
sign through their key roles in the IETF and 3GPP (Third Generation
Partnership Project—the standardization body for third generation cel-
lular systems).

The book is clearly written and logically organized. The first part ex-
plains the reasoning behind adopting Internet-style packet networking
for cellular maobile systems and describes the evolution of the standard-
ization efforts. Although interesting, much of this material can be
skimmed by those only interested in the meaty technical material which
follows. The authors then explain the general principles behind the IMS
architecture, including how various requirements of the cellular tele-
phony industry drove the choices, and particularly the perceived need to
extend and adapt the protocols rather than use them as deployed on the
Internet. The majority of the book is devoted to ex-plaining in consider-
able technical depth how the protocols have been modified and how
they are intended to work when IMS is successfully deployed. While not
for the faint of heart, the writing is extremely clear and logical and
hence should be understandable by anyone with a moderate back-
ground in the principles of protocol and system design. One aspect of
the organization is particularly helpful to readers unfamiliar with some
of the protocols in their native Internet instantiation. The authors di-
vide the material into blocks where they first describe the native Internet
flavor of the protocol, and then introduce the IMS-specific extensions
and modifications.

The Internet Protocol Journal
37

Book Review: continued

Much of the volume is devoted to the Session Initiation Protocol (SIP)
as the core signaling plane for IMS. All aspects of session establishment
and management are covered. In addition, the ancillary parts of the
control system are covered, including Authentication, Authorization,
and Accounting (AAA), Security, Session Policies, and Quality of Ser-
vice. For completeness, the data plane is also covered briefly through a
discussion of the 3GPP audio, video, and text encoders, plus material
on the media transport protocols.

The book concludes with a substantial section on how services are build
on top of the core IMS protocols. Two of the most important, Presence
and Instant Messaging, get comprehensive treatment, with a briefer dis-
cussion of the push-to-talk application.

As an old time “IP-head,” it is hard to come away from this deep explo-
ration of IMS without a bit of trepidation. The hallmark of IP and the
Internet are simplicity and generality. IMS arguably succeeds at the lat-
ter, but at the expense of almost numbing complexity. This was perhaps
inevitable given that the goal was to adapt Internet packet technology to
the cellular system, which is itself quite complex. IMS will be quite a
challenge to deploy. It remains to be seen if transplanting IP into a cellu-
lar telephony architectural model will result in economically sustainable
services for the service providers or if a more native peer-to-peer Inter-
net approach will simply bypass all the fancy IMS elements and just use
basic packet transport. Such a market experiment is currently playing
out in the broadband access arena with the broadband pipe suppliers
offering telephony-oriented services themselves via customized stan-
dards like PacketCable, while third parties like Vonage and Skype
simply piggyback on basic IP packet transport.

The next few years will be interesting. Whatever the outcome, anyone
needing to be technically conversant with the architecture and proto-
cols of IMS wiill find The IP Multimedia Subsystem indispensable.

—David Oran
or an@i sco. com

Read Any Good Books Lately?

Then why not share your thoughts with the readers of IPJ? We accept
reviews of new titles, as well as some of the “networking classics.”” In
some cases, we may be able to get a publisher to send you a book for
review if you don’t have access to it. Contact us at i pj @i sco. comfor
more information.

The Internet Protocol Journal
38

Call for Papers

The Internet Protocol Journal (IPJ) is published quarterly by Cisco
Systems. The journal is not intended to promote any specific products
or services, but rather is intended to serve as an informational and
educational resource for engineering professionals involved in the
design, development, and operation of public and private internets and
intranets. The journal carries tutorial articles (“What is...?””), as well as
implementation/operation articles (““How to...”). It provides readers
with technology and standardization updates for all levels of the
protocol stack and serves as a forum for discussion of all aspects of
internetworking.

Topics include, but are not limited to:

Access and infrastructure technologies such as: ISDN, Gigabit Ether-
net, SONET, ATM, xDSL, cable, fiber optics, satellite, wireless, and
dial systems

Transport and interconnection functions such as: switching, routing,
tunneling, protocol transition, multicast, and performance

Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
trouble-shooting, and mapping

Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed systems,
network computing, and Quality of Service

Application and end-user issues such as: e-mail, Web authoring,
server technologies and systems, electronic commerce, and applica-
tion management

Legal, policy, and regulatory topics such as: copyright, content
control, content liability, settlement charges, “modem tax,” and
trademark disputes in the context of internetworking

In addition to feature-length articles, IPJ will contain standardization
updates, overviews of leading and bleeding-edge technologies, book
reviews, announcements, opinion columns, and letters to the Editor.

Cisco will pay a stipend of US$1000 for published, feature-length
articles. Author guidelines are available from Ole Jacobsen, the Editor
and Publisher of IPJ, reachable via e-mail at ol e@i sco. com

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. This publication could contain technical inaccuracies or typographical
errors. Later issues may modify or update information provided in this issue. Neither the publisher
nor any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.

The Internet Protocol Journal
39

The Internet Protocol Journal

Ole J. Jacobsen, Editor and Publisher
The Internet Protocol Journal is

Editorial Advisory Board published quarterly by the
Dr. Vint Cerf, Sr. VP, Technology Strategy Chief Technology Office,
MCI, USA Cisco Systems, Inc.

Dr. Jon Crowcroft, Marconi Professor of Communications Systems WWW.CISCO.com
University of Cambridge, England Tel: +1 408 526-4000

E-mail: ipj@cisco.com
David Farber
Distinguished Career Professor of Computer Science and Public Policy

Carnegie Mellon University, USA Cisco, Cisco Systems, and the Cisco

Systems logo are registered

Peter Lothberg, Network Architect trademarks of Cisco Systems, Inc. in
Stupi AB, Sweden the USA and certain other countries.
All other trademarks mentioned in this
document are the property of their
respective owners.

Dr. Deepinder Sidhu, Professor, Computer Science & Copyright © 2004 Cisco Systems Inc.

Electrical Engineering, University of Maryland, Baltimore County Al rights reserved. Printed in the USA.
Director, Maryland Center for Telecommunications Research, USA

Dr. Jun Murai, Professor, WIDE Project
Keio University, Japan

Pindar Wong, Chairman and President
VeriFi Limited, Hong Kong

Cisco SYSTEMS The Internet Protocol Journal, Cisco Systems PRSRT STD
170 West Tasman Drive, M/S SJ-7/3 U.S. Postage
San Jose, CA 95134-1706 Y
® UsA PERMIT No. 5187
ADDRESS SERVICE REQUESTED SAN JOSE, CA

