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F r o m  T h e  E d i t o r

 

Network Address Translators

 

 (NATs) were designed to allow multiple
devices in a private address realm to dynamically share a single public
IP address. NATs are widely deployed in today’s Internet. They provide
an effective way of IPv4 address conservation while simultaneously of-
fering some level of security because individual IP addresses on the
“inside” are hidden from the “outside,” or global Internet. But NATs
also present a challenge to existing Internet applications that may de-
pend on globally unique IP addressing for proper operation. To further
complicate matters, not all NATs are created equal, leading to unpre-
dictable behavior. This edition of IPJ is almost entirely devoted to an in-
depth look at NATs. Geoff Huston looks inside the NAT, and explains
the complexities behind each variation of NAT implementation. It
seemed only natural that he would name such an exposé “Anatomy.”

Many IPJ subscriptions had an official expiration date of September 30,
2004, but I am pleased to report that all these subscriptions have been
extended for another year. You should still make sure your delivery ad-
dress and e-mail is up-to-date in our database by using the link at

 

www.cisco.com/ipj

 

 or sending e-mail to 

 

ipj@cisco.com

 

 with your
updated information.

If you’re hungry for even more networking-related reading material,
look at the Internet Society’s publication page at 

 

http://isoc.org/
pubs/

 

. Here you will find The ISP Column, Member Briefings, Articles
of Interest, and links to other material.

We didn’t have room for a book review in this issue, but we have sev-
eral in store for future editions. If you’d like to contribute a book review
for publication in IPJ, please contact me.

 

 

—Ole J. Jacobsen, Editor and Publisher

 

ole@cisco.com
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Anatomy: A Look Inside Network Address Translators

 

by  Geoff Huston, APNIC

 

ver the past decade numerous IP-related technologies have
generated some level of technical controversy. One of these is
the 

 

Network Address Translator,

 

 or NAT. This article de-
scribes the inner workings of NATs in some detail, and then looks at
the issues that have accompanied the deployment of NATs in the Inter-
net that appear to have fueled this technical controversy. NATs are a
very widespread feature of today’s Internet, and this article attempts to
provide some insight as to how they operate, why there is such a level of
technical controversy about NATs, and perhaps some pointers to what
we have learned about technology and the process of standardization of
technology along the way.

 

NAT Motivation

 

The first RFC document describing NATs was by Kjeld Egevang and
Paul Francis in 1994

 

[1]

 

. The original motivation behind the NAT work
was based on efforts in the early 1990s associated with a successor pro-
tocol to IPv4. The overall effort of a successor protocol to IPv4 was to
devise a protocol that would directly address the issues of accelerating
address consumption in IPv4 that appeared to be leading to the pros-
pect of imminent address exhaustion. Although IPv4 was capable of
uniquely addressing some 4.4 billion devices, it was evident by as early
as 1992 that the world was heading down a path of very intensive de-
ployment of devices that included communications capabilities, and that
IPv4 was not going to be able to extend across the full range of future
device deployment. The objective with NAT was to define a mecha-
nism that allowed IP addresses to be shared across numerous devices. In
addition, it was intended that NATs could be deployed in a piecemeal
fashion within the Internet, without causing changes to hosts or other
routers. Other forms of address-sharing technologies relied on intermit-
tent connectivity, whereas NATs were intended to allow a collection of
connected devices to share an address pool dynamically. The original
RFC portrays this approach as being a measure that can “provide tem-
porarily relief while other, more complex and far-reaching solutions are
worked out.”

So, as documented, the original intent of NATs was to be a possible
short-term response to address exhaustion while longer-term solutions
were being devised. NATs were also intended to be unmanaged devices
that are transparent to end-to-end protocol interaction, requiring no
specific interaction between the end systems and the NAT device.

A decade later NATs are attaining a status of near-ubiquitous deploy-
ment across the Internet, and although IPv6 has been defined and
deployment is commencing, NATs appear to be a very well-entrenched
part of the network landscape. And, for the most part, NATs continue
to function as unmanaged devices.

O
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They can be transparent to some forms of protocol interaction, but, as
the voice-over-IP folks are finding out, they can be very obvious to the
point of being highly disruptive to other forms of protocol operation.

 

NAT Operation

 

The operation of NATs is deceptively easy to describe in general terms.
They are active units placed in the data path, usually as a functional
component of a border router or site gateway. NATs intercept all IP
packets, and may forward the packet onward with or without alter-
ation to the contents of the packet, or may elect to discard the packet.
The essential difference here from a conventional router or a firewall is
the discretional ability of the NAT to alter the IP packet before for-
warding it on. NATs are similar to firewalls, and different from routers,
in that they are topologically sensitive. They have an “inside” and an
“outside,” and undertake different operations on intercepted packets
depending on whether the packet is going from inside to outside, or in
the opposite direction.

NATs are IP header translators, and, in particular, NATs are IP 

 

ad-
dress translators.

 

 The header of an IP packet contains the source and
destination IP addresses. If the packet is being passed in the direction

 

from

 

 the inside 

 

to

 

 the outside, a NAT rewrites the source address in the
packet header to a different value, and alters the IP and TCP header
checksums in the packet at the same time to reflect the change of the ad-
dress field. When a packet is received 

 

from

 

 the outside destined 

 

to

 

 the
inside, the destination address is rewritten to a different value, and
again the IP and TCP header checksums are recalculated (Figure 1). The
“inside” does not use globally unique addresses to number every device
within the network served by the NAT. The inside (or “local”) net-
work may use addresses from private address blocks, implying that the
uniqueness of the address holds only for the site. Let’s look at this using
an example.

 

Figure 1: TCP/IP Header
Fields Altered by NATs
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As shown in Figure 2, how can local (private) host A initiate and main-
tain a TCP session with remote (public) host B? Host A first uses the

 

Domain Name System

 

 (DNS) to find the public IP address for host B,
and then creates an IP packet using host B’s address as the destination
address and host A’s local address as the source, and passes the packet
to the local network for delivery. If the packet was delivered to host B
without any further alteration, then host B would be unable to re-
spond. The public Internet does not (or should not at any rate!) carry
private addresses, because they are not globally unique addresses.

 

Figure 2: Public/Private
Communication

 

With a NAT between hosts A and B, the NAT intercepts host A’s out-
going packet and rewrites the source address with a public address.
NATs are configured with a pool of public addresses, and when an “in-
side” host first sends an outbound packet, an address is drawn from this
pool and mapped as a temporary alias to the inside host A’s local ad-
dress. This mapped address is used as the new source address for the
outgoing packet, and a local session state is set up in the NAT unit for
the mapping between the private and the public addresses.

After this mapping is made, all subsequent packets within this applica-
tion stream, from this internal address to the specified external address,
will also have their source address mapped to the external address in the
same fashion.

When an incoming packet arrives on the external interface, the destina-
tion address is checked. If it is one of the NAT pool addresses, the NAT
box looks up its translation table. If it finds a corresponding table en-
try, the destination address is mapped to the local internal address, the
packet checksums are recalculated, and the packet is forwarded. If there
is no current mapping entry for the destination address, the packet is
discarded.
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The mode of operation of a NAT is shown in Figure 3. So, continuing
our example, the local host at address A is directing packets to the ex-
ternal server host at address B. Because the NAT is in the path, the
NAT has altered the packets so that address A is translated to address
X. Host A is aware that it is communicating with host B, and from host
A’s perspective this is a normal session. Host B believes that it is com-
municating with a host at address X, and is entirely unaware of address
A. From host B’s perspective this is a normal session with a host at ad-
dress X.

 

Figure 3: NAT Traversal

 

Dynamically created mapping entries (or “bindings”) are typically
maintained by the NAT with a 

 

timer

 

. If no packets that use the map-
ping are received by the NAT within a certain time window, then the
binding is removed from the NAT and the public address is returned to
the NAT pool.

 

NAPTs

 

A variant of the NAT is the 

 

Port-Translating NAT,

 

 or NAPT. This
form of NAT is used in the context of TCP and 

 

User Datagram Proto-
col

 

 (UDP) sessions, where the NAT maps the local source address and
source port number to a public source address and a public-side port
number for outgoing packets. Incoming packets addressed to this pub-
lic address and port pair are translated to the corresponding local
address and port. Again, the binding is maintained by a NAT idle timer,
and upon expiration of the timer the public address and port pair are
returned to the NAT pool (Figure 4).

 

Figure 4: NAPT
Traversal
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Again the NAPT is attempting to be transparent in terms of providing a
consistent view of the session to each end, using a symmetric binding of
a local address and port pair to an external address and port pair.

A reasonable question to ask is: Why should NAPTs bother with port
translation? Are straight address translations not enough? Surprisingly,
NATs can be relatively profligate with addresses. If each TCP session
from the same local host is assigned a different and unique external
pool address, then the peak address demands on the external address
pool could readily match or exceed the number of local hosts, in which
case the NAT could be consuming more public addresses than if there
were no NAT at all! NAPTs allow concurrent outgoing sessions to be
distinguished by the combination of the mapped address and mapped
port value. In this way each unique external pool address may be used
for up to 65,535 concurrent mapped sessions.

For a while the terminology distinction between NATs and NAPTs was
considered important, but this has faded over time. For the remainder
of this article we use current terminology, and look at NATs and
NAPTs together and refer to them collectively as “NATs.”

 

NAT Behavior

 

The use of NATs involves two basic issues: One is that NATs make ap-
plications “brittle” in that NATs support a particular style of
application operation, and if the application deviates in any way from
this style then the application no longer works. The second is of much
more concern, and that is that NATs differ from each other in quite
fundamental ways. What works across one NAT may not work at all
for another class of NAT. It has also been reported that NATs differ
not only on a vendor-by-vendor basis, but even on a model-by-model
basis within a single vendor’s range of NAT units. The implication here
is that such differences of behavior become a matter for discovery by
applications rather than something applications can predict in advance.
This section explores this behavioral aspects of NATs in further detail.

 

Symmetry and Sessions

 

NATs can manage address mapping in numerous ways, and many im-
plementations of NATs use a form of binding termed a “symmetric”
binding.

A 

 

symmetric

 

 binding is where the mapping of a local address to a pub-
lic address is exclusively tied to the destination address used in the initial
trigger outgoing packet for the lifetime of the binding. Incoming exter-
nal packets with the mapped public address as their destination are
translated to the local address only if the source address of the incom-
ing packet matches the destination address of the original mapping.
Multiple sessions to different public hosts may use the same mapped
public address, or may use different public addresses for each session.
This mapping is “endpoint” sensitive. Symmetric NATs represent a re-
stricted model of operation, where each NAT binding represents a
window through the NAT that is visible only to the destination host
(Figure 5).
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By comparison, a 

 

full-cone

 

 NAT allows any external host to use this
opened window, where all incoming packets addressed to the mapped
external address are translated to the mapped internal address and for-
warded through the NAT. Symmetric NATs represent the most
restrictive form of behavior, whereas full-cone NATs represent a far
more permissive mode of operation.

In the context of NATs, this symmetric mode of operation refers to the
session state 5-tuple, made up of Transport Protocol, the local IP ad-
dress and port number, and the destination IP address and port
number. When a session is opened from the local host to a remote ser-
vice port on a remote host, then only that remote service can pass
packets back through the NAT to the local host on that port. As with
NATs, a full-cone NAT allows any remote service entity to direct pack-
ets back through the port window.

NATs can be further refined by having different behaviors for TCP and
UDP transports. A NAT may behave in a symmetric manner for TCP
sessions, and operate in a full-cone mode for UDP transactions. The
variations in NAT behavior has led to an exercise in categorizing NAT
behaviors and developing a discovery protocol whereby a pair of coop-
erating systems can discover if one or more NATs is on the network
path between them, as well as attempting to establish the type of NAT.

 

Discovering NAT Behaviors and STUN

 

NAT behavior has not been the topic of any industry standardization
efforts, and it should not be surprising to learn that, given that a range
of possible NAT behaviors exist under certain conditions, the market
contains NAT offerings that cover the full spectrum of possibilities. In
the absence of common specifications or standards, implementers have
been placed in the position of having to make some creative guesses as
to what the “right” behavior should be under such circumstances. This
is a significant problem for the application designer, given the prospect
that in today’s Internet any popular application must have a means of
being able to function correctly in the face of one or more NATs on the
path between two hosts that are communicating using the application.

One of the more pressing problems here is that NATs commonly en-
force an application model where the local “hidden” host must initiate
a transaction in order to create a window in the NAT to allow the
packets of the remote host back into the local network.

Some applications may wish to undertake “referral,” where the corre-
spondent host on the external side may want to pass the externally
presented address and port details of the local host to a third party in
order to commence a further part of the transaction. Other application
transactions may simply want to be initiated from the external side. Al-
though this may have been thought of as a relatively obscure condition,
it was brought into the forefront of attention when various forms of
voice-over-IP and peer-to-peer applications gained popularity. In partic-
ular, the question of “how can the external side initiate a packet flow in
the presence of a NAT?” has become increasingly important.
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Given that the application needs to perform some additional gymnas-
tics in such a case, there is the additional question that the application
must answer, namely: “How does the application learn that there are
NATs in the path in the first place?”

At this point the application is placed in the role of performing a foren-
sic exercise of establishing whether or not its packets are being altered
by one of more NATs when it attempts to establish an end-to-end
packet transaction. If so, what types of implementation decisions have
been made by the NAT in terms of the way in which packets are being
systematically modified? In others words, what is the anatomy of the
particular NATs that have been discovered along the path? This anat-
omy exercise is further complicated by the observation that NATs are
silent devices, so the application cannot directly interrogate the NAT to
establish its behavior. All that is left is a somewhat unsatisfying guess-
ing game for the application. It is forced to send particular types of test
packets through the NAT to some pre-defined counterpart on the other
side. The application must then compare the self-view of the IP address
and port number of the local host to the remote view of its IP address
and port number, and then attempt to guess the nature of the system-
atic transforms that the NAT is applying.

In the case of TCP it appears that the prevalent NAT behavior is that of
a symmetric NAT based on address and port bindings. This implies that
when the local host opens up a TCP session with a remote host, the
NAT address and port bindings for the local host are coupled with the
address and port of the destination host. Only packets with a source
field of the destination host can pass packets back through the NAT to
the TCP session of the local host. In other words, when a TCP session
has been established within a NAT, only the two endpoints of the TCP
session can access the NAT bindings, and attempts by others to direct
packets to the external-side presented address and port meet with the
NAT discard response. The fine-grained behavior of NATs with respect
to TCP sessions can vary according to the amount of TCP state main-
tained by the NAT. At a basic level, the NAT can maintain a binding
based on the local address and port and the remote address and port.
The NAT also can keep the binding timer at a high value until a 

 

FIN

 

 ex-
change is observed, or until the session is reset through the 

 

RST

 

 flag
being set, at which point the binding timer can be reduced to a very
short interval. The NAT can also track the sequence number windows
of the two sides and associated window sequence number scaling val-
ues and not adjust the binding timer of the session for TCP packets with
sequence numbers outside the sequence number window with their 

 

FIN

 

or 

 

RST

 

 flags set.
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These NAT behaviors are based on the explicit signaling of changes in
session state within the TCP packet exchange, and the consequent abil-
ity of the NAT to track the session state and adjust the associated
binding timer in response to this state information. UDP is not so
straightforward, because there is no explicit session state within a UDP
packet exchange, and various NATs behave differently with respect to
UDP-based bindings.

Various classes of NAT behavior relate to how UDP bindings are man-
aged within a NAT. These have been classified into four types of
behaviors

 

[11]

 

:
•

 

Symmetric:

 

 We have already encountered the symmetric NAT, where
the NAT mapping refers specifically to the connection between the
local host address and port number and the destination address and
port number and a binding of the local address and port to a public-
side address and port. Any attempts to change any one of these fields
requires a different NAT binding. This is the most restrictive form of
NAT behavior under UDP, and it has been observed that this form of
NAT behavior is becoming quite rare, because it prevents the opera-
tion of all forms of applications that undertake referral and
handover.

 

Figure 5: Symmetric
NAT
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•

 

Full-cone:

 

 A full-cone NAT is the least restrictive form of NAT be-
havior, where the binding of a local address and port to a public-side
address and port, when established, can be used by any remote host
on any remote port address. (Refer to Figure 6.)

 

Figure 6: Full Cone NAT

 

•

 

Restricted-cone:

 

 A restricted-cone NAT is one where the NAT bind-
ing is accessible only by the destination host, although in this case the
destination host can send packets from any port address after the
binding is created. (Refer to Figure 7.)

 

Figure 7: Restricted-
Cone NAT
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•

 

Port-restricted-cone:

 

 A port-restricted-cone NAT is one where the
NAT binding is accessible by any remote host, although in this case
the remote host must use the same source port address as the original
port address that triggered the NAT binding. (Refer to Figure 8.)

 

Figure 8: Port-
Restricted-Cone NAT

 

So can an application tell if one or more NATs are in the path, and, if
so, what form of behavior the NAT is using? For this purpose the 

 

Sim-
ple Traversal of UDP through NATs

 

 (STUN) protocol has been
developed

 

[11]

 

. STUN is a probe system that examines the interchange
between a STUN client that may lie behind a NAT and a STUN server
that is positioned on the public side of the NAT. The STUN-server host
must be configured with two IP addresses, and the STUN itself should
respond to queries on two UDP port numbers. The protocol is a simple
UDP request-response protocol that uses embedded addresses in the
data payload, and compares these addresses with header values in or-
der to determine the type of NAT that may lie in the path between
client and server.

The basic operation of STUN is a request-response protocol, using a
common request of the form: “Please tell me what public address and
port values were used to send this query to you.”

STUN can be used to discover if a NAT is on the path between a client
and server, and attempt to discover the type of NAT by a structured se-
quence of requests and responses. The client sends an initial request to
the STUN server. If the public address and port in the returned re-
sponse are the same as the local address, then the client can conclude
that there is no NAT in the path between the client and the server. If the
values differ, the client can conclude that there is a NAT on the path.
STUN then uses subsequent requests to determine the type of NAT.
One critical additional item of information returned by the STUN
server in the initial response is an alternate IP address and port number
that can also reach the same STUN server.
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The second STUN request is directed to the same address and port as
the initial request, but this time the request includes a control flag that
requests the STUN server to respond using its alternate source address
and port values. If the STUN client receives this alternate-sourced re-
sponse, then it can conclude that it is behind a full-cone NAT. This is
because the initial NAT binding of the local host address to the exter-
nal presentation address can evidently be accessed by third-party
external hosts.

If no response is received to the second request, then the STUN client
sends the original probe request, but this time the request is addressed
to the alternate destination address and port pair for the STUN client. If
the returned address and port values relating to the new NAT binding
are different from those of the first request, then the client can conclude
that it is behind a symmetric NAT.

If the values are unaltered, then a further request can be made to deter-
mine the form of restricted-cone behavior. This fourth request includes
a control flag to direct the STUN server to respond using the same IP
address, but with the alternate port value. A received response indicates
the presence of a port-restricted cone, and the lack of a response indi-
cates the presence of a restricted cone.

Periodic exchanges between the STUN client and server can also dis-
cover the timer used by the NAT to maintain address bindings.
Additional components of STUN are intended to provide some reason-
able level of integrity in the packet exchange. A flowchart of a STUN-
based NAT discovery process is shown in Figure 9.

 

Figure 9: NAT Discovery Process Using STUN
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Further Behaviors: Hairpins and Determinism

 

It would be good if NAT behavior remained that simple. However, it
does not, and some further tests on NATs reveal further differences in
various NAT implementations

 

[16]

 

.

The first area of difference is whether the NAT supports the so-called

 

hairpin

 

 operation, where a local host directs a packet to the public ad-
dress and port of an already mapped local host, or even to its own
mapped address and port. If successful, then the NAT supports hairpin
operation, where the NAT bindings, when created, are available to ei-
ther side of the NAT. (Refer to Figure 10.)

Furthermore, the NAT may generate a binding for this operation—or
not—thereby presenting the hairpin packet with an external address
and port, indicating that an outbound binding has been performed in
conjunction with the inbound binding, or with an internal address and
port, indicating that only an inbound binding is being performed.

 

Figure 10: Hairpin NAT
Operation

 

The second is in the general class of NAT determinism. Nondeterminis-
tic NATs change their binding behavior when a binding conflict of
some sort occurs in the NAT. This is further based on the classification
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differ. To explain primary, secondary, and tertiary behaviors, it is first
noted that some NATs attempt to preserve the port address in the bind-
ing, so that the local source port and the externally bound port are the
same whenever possible. This is the “primary” binding of the NAT. If
another local host obtains a NAT binding using the same source port
number, then the behavior of the NAT for this conflicting port binding
may differ from that where the port number is preserved. The first
conflict of port allocations in bindings is the “secondary” binding. In
some cases the primary behavior is that of a full cone, or a restricted
cone, while the NAT behaves in a symmetric fashion for the secondary
instance where the port number has been mapped to a new value by the
NAT.
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External Access Mask
NAT Filter

Port 2002

Host A

Port 2001 Source: Y / 3002
Dest: A / 2001

Source: Y / 3002
Dest: Z / 3001

Source: D / 2002
Dest: Z / 3001

Site NAT
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A tertiary behavior occurs when a third binding is added to the NAT,
because, again, the behavior of the NAT may be different for this
binding.

It is also possible that the NAT may elect to preserve the binding in any
case, and remove the current binding and replace it with a new binding
that refers to the most recent packet that the NAT has processed.

All these behaviors can be classified as 

 

nondeterministic,

 

 in that the
NAT behavior becomes one that is determined by the order of out-
bound traffic. The implication is that repetitions of the same STUN test
at different times may produce different classifications of the type of
NAT. The inference is that if an application uses STUN to determine
the type of NAT in the path, and then selects a certain behavior based
on this STUN-derived knowledge of the NAT type, nondeterministic
NATs may behave differently between the STUN test and the applica-
tion. The NAT response for a particular binding cannot be predicted in
advance, and even when a binding state is established it may be dis-
rupted or altered by subsequent traffic.

 

Another Approach to Classifying NATs

 

Further tests on NATs reveal that the various behaviors are yet more
complex, and that different sequences of tests across a NAT will lead
the test routine to come to different conclusions as to the type of
NAT

 

[13]

 

. The key observation here is that NATs are the conjunction of
two distinct behavior sets:
•

 

Binding,

 

 or context-based packet translation: Detecting those pack-
ets that can be associated with a current binding and using that
binding in a manner according to the logical direction of the packet
to perform packet header transforms

•

 

Filtering,

 

 or packet discard: Discarding those packets that cannot be
associated with current bindings and discarding them

If a STUN-like test sequence was for a local host to send a packet to one
destination and obtain a response of what NAT binding was used, and
then to send a packet to a second destination and compare the results,
the observation of the NAT using a different binding for each request
may lead the tester to conclude that the NAT is a fully symmetric NAT.
If the test sequence is for the NAT to send one packet to a destination
and have the destination respond using a different source address, then
the observation that the response packet is successfully delivered
through the NAT back to the originating local host may lead the tester
to the conclusion that the same tested NAT is some form of cone NAT.

The STUN approach classifies NAT behaviors on the basis of a single
binding being established by the local host when contacting an external
host, and then considers what constraints are placed on third-party ex-
ternal hosts as they attempt to access this initial binding. An adjunct to
this approach is based on the local host establishing two bindings to
two distinct external hosts, and looking for any relationship between
these two bindings. (See Figure 11).
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Figure 11: Outbound
Connections from a

Common Source

 

The behaviors of NATs under this condition can be classified under nu-
merous behavioral aspects.

 

Binding

 

Binding behavior can be seen as the amalgam of three somewhat dis-
tinct design decisions, namely the manner in which a binding is
generated, the behavior of the NAT in managing external ports used in
bindings, and the manner in which expiration timers that govern the
continued existence of the binding are refreshed.

 

NAT Binding Behavior:

 

•

 

Endpoint independent:

 

 The NAT reuses the port binding for subse-
quent sessions initiated from the same internal IP address and port to
any external IP address and port. This is analogous to a full-cone
NAT.

•

 

Endpoint address dependent:

 

 The NAT reuses the port binding for
subsequent sessions initiated from the same internal IP address and
port only for sessions to the same external IP address, regardless of
the external port. This is a looser form of symmetric NAT, where the
binding is created on the basis of the external address, rather than the
external address and port.

•

 

Endpoint address and port dependent:

 

 The NAT reuses the port
binding for subsequent sessions initiated from the same internal IP
address and port only for sessions to the same external IP address and
port. This is a more precise form of UDP symmetry where the bind-
ing is available only to a single session, where a session is the 5-tuple
of protocol, source address, source port, destination address, and des-
tination port.

X / x           X1 / x1
X / x           X2 / x2

Local Addr / Port           External Addr / Port
NAT Binding

—
—

—
Y1 /y1
Y2 / y2

External Access Mask
NAT Filter

Host X

Port y2

Port y1

Source: X / x
Dest: Y1 / y1

Source: X1 / x1
Dest: Y1 / y1

Source: X2 / x2
Dest: Y2 / y2

Source: X / x
Dest: Y2 / y2

Site NAT

Host Y1

Host Y2

Port 2001
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Port Binding Behavior:

 

•

 

Port preservation:

 

 In addition to the differences in the binding be-
tween the two cases, the NAT may attempt to preserve the local port
number, if possible. The terminology proposed here is port preserva-
tion to describe this NAT action.

•

 

Port overloading:

 

 Some NATs attempt to undertake port preserva-
tion at all times, so that when a different local host establishes a
binding using a port that is already being preserved, the new binding
will usurp the existing binding. This behavior is proposed to be
termed port overloading.

•

 

Port multiplexing: The alternative to port overloading is use of the
external entity to perform the demultiplexing of the port. In this case
if two local systems use the same source port to send packets to two
different external hosts, the NAT preserves the source port in the two
bindings. If the NAT is using a single external address, the external
view is two packets with the same source address and source port,
sent to two different external addresses. The reverse packets have the
same destination address and port, and the NAT determines the ap-
propriate binding based on the source address and port in the reserve
packets. This requires an endpoint address and port-dependant bind-
ing behavior. If two internal hosts are directing packets to the same
external endpoint using the same source port addresses, then it is nec-
essary for one of the sessions to use a binding with an altered port
number. This could be considered as nondeterministic behavior.

Binding Timer Refresh:
• Bidirectional: The NAT does not keep the binding active indefinitely,

and normally removes the binding if there are no further packets that
use the binding within a certain time period. However, there are vari-
ations in the classification of packets that the NAT considers as
packets that reset the timer. In the case of bidirectional binding timer
refresh, packets from either the local hosts or an external host that
uses the NAT binding cause the NAT binding expiration time to be
reset.

• Outbound: An outbound binding timer refresh NAT resets the expi-
ration timer only when packets pass from the local host to the
external host within the context of the binding. The implication is
that a local host may have to use some form of keepalive operation to
maintain a NAT binding in the face of an inbound UDP unidirec-
tional traffic flow. Additionally, the expiration timer may be on a per-
session basis, or may be on a per-binding basis if multiple sessions are
associated to a single binding in the NAT.

• Inbound: As the name suggests, this is the opposite of the previous
case, where only inbound packets cause the expiration timer of the
binding to be refreshed.
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• Transport Protocol state: Although these forms are useful in the case
of UDP-based sessions, when the binding is based on a transport ses-
sion (such as TCP), the NAT can base its binding timer refresh on the
transport session state. For TCP this would infer a binding refresh
time that is refreshed by any session packet in either direction (bidi-
rectional), with the exception of packets with the TCP RST or FIN

flags set. Although it would be an option to drop the NAT binding
state when such packets are seen, this makes the NAT vulnerable to
denial-of-service attacks by third-party injection of TCP RST packets,
so there is some merit in using the binding timer for TCP sessions.

Filtering
The second phase of the test has two external hosts directing a probe to
the same binding address, and classifying the behaviors based on what
packets are filtered and discarded by the NAT (Figure 12).

Figure 12: Inbound Test

External Filtering:

• Endpoint independent: The NAT does not filter and discard packets
that are addressed to the external part of the binding, irrespective of
the source values in the packet. This is analogous to a full-cone NAT.

• Endpoint address dependent: The NAT filters and discards packets
that are addressed to the external part of the binding, unless the
source address of the packet matches the destination address used in
the binding. This is analogous to a restricted-cone NAT.

• Endpoint address and port dependent: The NAT filters and discards
packets that are addressed to the external part of the binding, unless
the source address and port number of the packet matches the desti-
nation address used in the binding. This is analogous to a port-
restricted-cone NAT or a symmetric NAT.

X / x           X1 / x1
Local Addr / Port           External Addr / Port

NAT Binding

—
—

? / ?
External Access Mask

NAT Filter

Host X

Port y2

Port y1

Source: X / x
Dest: Y1 / y1

Source: X1 / x1
Dest: Y1 / y1

Source: Y2 / y2
Dest: X1 / x1

Source: Y2 / y2
Dest: X / x

Site NAT

Host Y1

Host Y2

Port x

Use Address
and

Port X1 / x1
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External Filtering Timer Refresh:

As with binding timers, these timers can be refreshed bidirectionally, in-
bound or outbound.

NAT Behaviors
The approach of carefully identifying the areas where NAT behaviors
differ and classifying these behavioral differences in a methodical man-
ner is one that has the potential to at least allow us to use the same sets
of words when we talk about NAT behaviors, and hopefully also refer
to the same set of actual behaviors when we use the same descriptions.
The original approach with the STUN work used the terms symmetric,
full-cone, and forms of restricted-cone to describe variations of NAT
behaviors. Experience with this form of classification has exposed fur-
ther variations in NAT behaviors, and this has led to a form of NAT
classification that first uses a delineation of binding and filtering behav-
iors, and then classifies the various ways in which these bindings and
filters are maintained within the NAT. Additional classification at-
tributes include whether the NAT supports hairpin connections or not
and whether it operates in a deterministic or nondeterministic manner.

This exercise is not another study in comparative taxonomies. A NAT
has no standard way in which to advertise its presence, nor does it have
any standard way in which to advise protocols or applications of the
particular behaviors it applies to packets being passed through the
NAT. In the absence of such explicit advertisements of the presence of a
NAT, it is left to the application to make the necessary adjustments that
allow it to function in the presence of NATs. The aim of behavioral
classification is to associate test sequences that expose the presence of a
NAT, and to determine its behavior. This allows applications to invoke
a test procedure that exposes a particular choice of behaviors of a NAT
implementation, and then allows the application to invoke a mode of
operation that can operate across the particular NAT.

The choices available to application environments include the use of
agents as session initiation intermediaries, where the endpoints make
initial contact through agents, who then assist in passing binding infor-
mation to the endpoints, allowing them to directly communicate. Other
forms of application behavior need to be invoked when the NAT is end-
point address and port dependant for both binding and filtering.
Different application responses are applicable when one endpoint is be-
hind a NAT and when both endpoints are behind NATs. A typical
application response in this latter case where both endpoints are behind
highly restrictive NATs is for the endpoints to use agents as session in-
termediaries, so that the application payload is then passed through the
intermediaries because an end-to-end pair of NAT bindings cannot be
established.
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Living in a NAT World
It would be a reasonable conclusion to draw from the previous sections
that we are left in the somewhat unsatisfying position of observing that
there is near-universal deployment in today’s Internet of NAT devices
that do not conform to any particular well-defined behavior set. NAT
behavior varies across implementations, and NATs have no ability to
disclose their particular behaviors to applications that are attempting to
compensate for their presence in the path. It is extremely challenging for
applications to reliably predict the behavior of the NATs that lie in the
path, and more so in the face of multiparty applications, such as interac-
tive game environments, where the application is attempting to
understand the level to which this silent intermediary is capable of sup-
porting a relatively promiscuous NAT binding state in terms of external
entities that wish to send packets to the local host, and communicate
between themselves about the local host as a single entity.

NATs, Client-Server, Peer-to-Peer, and Multiparty Applications
NATs, as a class of devices, have strong associations with a client-server
model of communications. As long as all the servers have a consistent
external visibility, with stable addresses in terms of an IP address and
port number, and as long as clients initiate connections with servers in a
fixed two-party communications model using TCP as a transport proto-
col, and refrain from turning on IP Security (IPSec), then NATs
generally behave in a relatively stable and unobtrusive manner. Applica-
tions that operate conservatively in this limited mode can be unaware of
the presence of NATs in their path. The relatively widespread deploy-
ment of NATs and the continued use of client-server-based applications
on the Internet attests to the capability of the NAT to perform transpar-
ently and effectively within the strict confines of this particular mode of
communication.

However, peer-to-peer applications are more problematic for NATs, be-
cause they have extended the model of a NAT beyond its original realm
of capability. If the desire is to continue to support the NAT dynamic
binding, but also allow external parties to initiate a communication to a
local host, then the NAT ceases to be transparent and unobtrusive, and
in this extended environment the NAT transforms itself into an applica-
tion-visible network element. It is overly presumptuous to claim that
NATs have led to the increasing deployment of multiparty applications
on the Internet, but certainly multiparty applications have been seen to
be useful in circumventing some of the more aggravating shortcomings
of NATs in various peer-to-peer realms.

In this latter context, the local party is forced to advertise its willingness
to participate in a peer-to-peer realm by communicating with an exter-
nal agent. The local agent performs a NAT discovery test, and then
selects a mode of operation that is consistent with the discovered behav-
iors of a NAT that may be on the path between the client and the agent.
The agent then advertises itself as the local party’s intermediary to other
peers within the application realm. Attempts to initiate a connection
with the local party are directed to the external agent, who then under-
takes to perform a rendezvous function in order to establish a session. 
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Depending on the NATs that may exist between the two parties, the
rendezvous function may need to perform a convoluted handshake pro-
cess, or, in some instances, may not be able to set up a peer-to-peer
session at all. This topic of establishing connectivity in the face of NATs
in the path is sufficiently complex to warrant a separate examination,
and the various techniques and approaches are not examined in this ar-
ticle other than providing some suggestions for further reading.

The salient general observation is that NATs have fueled a new genera-
tion of applications that use intermediaries and rendezvous protocols.
This shift in application behavior has implied greater attention to secu-
rity frameworks for applications, because intermediaries represent an
additional active element in the trust model. This, in turn, has implied
that the application level has to turn to other chains of derivation of
trust, because the basic Internet model of some form of persistent iden-
tity as being an attribute of an IP address is no longer a workable
proposition in the face of NATs. The position we are reaching here is
that identity and trust need to be derived from other attributes of the
end host and the application that it has invoked.

ICMP
If an Internet Control Message Protocol (ICMP) message is passed
through NAT, there is not only the outer IP header to consider, but also
the ICMP payload. Most ICMP messages contain part of the original IP
packet in the body of the message, so for the NAT to behave as trans-
parently as possible, the IP address of the IP header contained in the
data part of the ICMP packet should be modified according to the NAT
binding state, as well as the IP header Checksum field of this inner
packet header.

NATs and IP Fragmentation
NATs that use bindings that include both address and port values do
not have a clear and uniform response to fragments of an IP packet.
The TCP or UDP header is resident only in the initial IP fragment, and
subsequent IP packet fragments do not contain a copy of the transport
layer packet header.

Some NATs attempt packet reassembly as if they were the end host,
and they perform the NAT translation only when the original IP packet
has been reassembled. Of course the reassembled packet may be too
large to be forwarded onward, and the NAT may be forced to further
fragment the packet. The interplay between this behavior and various
forms of path Maximum Transmission Unit (MTU) discovery become a
source of frustration.

Other NAT packet fragmentation behaviors do not attempt packet re-
assembly, but rely on a stored packet fragment translation state that
directs the translation to be performed on subsequent packet fragments
after the initial packet header translation has been performed on the ini-
tial IP packet fragment.
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This form of behavior has weaknesses in terms of out-of-order
fragments, when following fragments are received by the NAT prior to
the initial IP packet fragment, and in such cases the NAT often has little
choice but to silently discard the out-of-order fragment as un-
translatable.

NATs and Application Level Gateways
This brings up one of the more vexing questions regarding NAT behav-
ior, namely, should the NAT include knowledge of the payload of
certain applications? Numerous applications, including FTP and the
DNS resolution protocol, include IP addresses within the payload of the
application. In an effort to achieve complete transparency of operation,
some NATs have included Application Level Gateway (ALG) function-
ality for certain applications so that this use of IP addresses in the
payload can be detected and altered according to the current NAT
translation bindings.

The case of ICMP represents one of the simpler forms of gateway func-
tionality, because it can be performed in the same manner as the basic
NAT transform, on a per-packet basis while attempting to maintain re-
tained session state. Payload transformations in the case of a TCP-based
application have implications in terms of requiring subsequent alter-
ation of TCP sequence numbers, length fields, and even the
repacketization of the payload data stream, given that the data trans-
form required by the address change may imply a change of payload
length.

Some units attempt to combine the functionality of a NAT with that of
an ALG, such that the NAT is an active intermediary in the transport
session. This allows the NAT/ALG to perform “deep” inspection of the
packets, and use both application protocol knowledge and per-applica-
tion-session retained state in order to apply the NAT binding
transforms to the application payload as well as to the outer IP packet
header.

The most widely deployed application that can use IP addresses in the
payload is FTP, where IP addresses are passed in the payload of the
control channel in order to allow data sessions to be initiated on dis-
tinct transport sessions. The variability and reliability of FTP ALG
support in NATs has led to the widespread use of the passive mode of
FTP operation, where the data flow is passed within the control session.

A related question is that of the use of IPSec and NATs. IPSec with Au-
thenticated Header protection attempts to protect what it believes is the
fixed part of the IP packet header, including the source and destination
addresses. The NAT changes to the IP packet invalidate the Authentica-
tion Header integrity check. Also the NAT changes the IP and UDP or
TCP checksums, and this disrupts the Encapsulating Security Payload
(ESP) function of IPSec. The implication is that IPSec needs to operate
upon a TCP or UDP payload, as in the IPSec operating tunnel model, or
IPSec carried as a payload within other types of tunnel operation.
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It is also the case that NATs today are heavily enmeshed with the UDP
and TCP transport protocols. Other transport protocols exist, includ-
ing the Streams Control Transport Protocol (SCTP) and the Datagram
Congestion Control Protocol (DCCP), and doubtless more transport
protocol offerings will follow over time. In each case it is a matter of in-
dividual choice how NAT implementations define NAT responses to
such additional transport protocols. Although it is tempting to propose
that NATs should fall back to an address-only form of binding that was
not address-and-port based, this does not appear to be practical guid-
ance. Another aspect of today’s NAT deployment is that the most
common scenario appears to be that of a single external address and
mapping each locally initiated session into a binding that uses this com-
mon external IP address and a variable external port number. This
means that NATs need to be able to identify and transform port ad-
dresses from the Transport Protocol section of the IP header.

Another salient factor here is the common association of NATs and fire-
walls into a single unit, and the coupling of address utilization
compression properties of the NAT with its associated packet-filtering
actions. Deploying a NAT at the external interface of a site does lead to
more restrictive site filtering outcomes and a more restrictive model of
application interaction, where the model attempts to impose the con-
straint that applications are initiated from within the site, and that
unknown or unidentifiable external traffic is considered hostile and
should be subject to firewall-based inspection and filtering. From this
perspective there is little desire to make more permissive NATs as an
isolated exercise, and there is instead a codependence between NAT be-
haviors and popularly used applications. Applications that work across
today’s NATs appear to enjoy popular uptake, and applications that
enjoy popular uptake appear to determine what forms of traffic pass
across NATs.

Popular or not, there are a class of applications that simply cannot
work in a “native mode” across NATs, nor can ALGs assist here. These
are applications that attempt to impose some level of end-to-end protec-
tion on the IP header fields, or use the IP address of the endpoint in a
context of some form of persistant identity token. When the NAT al-
ters the IP address, an application that uses strong forms of header
validation rejects such packets as corrupted. Within this class of applica-
tions and tools, one of the more commonly referenced tools is that of
IPSec with Authentication Header. There is a certain sense of irony in
the observation that NATs are often seen as part of an overall ap-
proach to site security, yet cannot support a “native mode” operation
of some of the basic tools that applications could use to support secure
end-to-end data transfer.

Views on NATs
It is certainly the case that NATs are very common in todays Internet,
and it is worth understanding why NATs have enjoyed such wide-
spread deployment while other technologies appear to be meeting some
considerable resistance to widespread deployment. As the original NAT
document points out:
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“The huge advantage of this approach is that it can be installed incre-
mentally, without changes to either hosts or routers. (A few unusual
applications may require changes.) As such, this solution can be
implemented and experimented with quickly. If nothing else, this solu-
tion can serve to provide temporarily relief while other, more complex
and far-reaching solutions are worked out.”

—Egevang and Fancis,
“Network Address Translator,” RFC 1631

More generally, the positive attributes of NATs include the following
considerations:
• End hosts and local routers do not change. Whether there is a NAT

in place between the local network and the Internet or not, local de-
vices can use the same software and support the same applications.
NATs do not require customized versions of operating systems or
router images.

• As long as you accept the limitation that sessions must be initiated
from the “inside,” NATs can work in an entirely transparent fashion
for a set of client-server classes of applications.

• If you accept the perspective that services and usage scenarios that are
not supported by NATs are “unwelcome” or “unsafe,” then NATs
can be placed into a role as a component of a site’s security architec-
ture, providing protection from attacks launched from the outside
toward the inside network.

• NAT conserves its use of public address space.

• NAT allows previously disconnected privately addressed networks to
connect to the global Internet without any form of renumbering or
host changes—and renumbering networks can be a very time-con-
suming, disruptive, and expensive operation, or, in other words,
renumbering is difficult.

• NAT address space is an effective, provider-independent addressing
solution with multihoming capabilities. NAT allows for rapid switch-
ing to a different upstream provider, by renumbering the NAT
address pool to the new provider’s address space. In essence, NATs
provide the local network manager with the flexibility of using pro-
vider-independent space without having to meet certain size and use
requirements that would normally be required for an allocation of
public, provider-independent address space.

• NAT allows the network administrator to exercise some control over
the form of network transactions that can occur between local hosts
and the public network.

• NATs require no local device or application changes. This is perhaps
one of the major “features” of NATs, in that the local network re-
quires no changes in configuration to operate behind a NAT.
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• NATs do not require a coordinated deployment. There is no transi-
tion, and no “flag day” across the Internet. Each local network
manager can make an independent decision whether or not to use a
NAT. This allows for incremental deployment without mutual
dependencies.

• These days the common theme of the public address assignment pol-
icy stresses conservative use of address space with minimum waste.
The standard benchmark is to be able to show that a target of 80 per-
cent of assigned address space is assigned to a number of connected
devices. Achieving such a very high usage rate is a challenging task in
many network scenarios, and NATs represent an alternative ap-
proach where the local network can be configured using private
addresses without reference to the use of public addresses.

• NATs are very widely available and bundled into a large variety of
gateway and firewall units. In many units NATs are not an optional
extra—they are configured in as a basic item of product functionality.

The market has taken NATs and embraced them wholeheartedly. And
in a market-oriented business environment, what is wrong with that?

Unfortunately NATs represent a set of design compromises, and no
delving into the world of NATs would be complete without exploring
some of their shortcomings. So, after enumerating what are commonly
seen as their benefits, it is now necessary to enumerate some of the bro-
ken aspects of the world of NATs.

“This solution has the disadvantage of taking away the end-to-end
significance of an IP address, and making up for it with increased state
in the network.”

—Egevang and Francis,
“Network Address Translator,” RFC 1631

“An opposing view of NAT is that of a malicious technology, a weed
which is destined to choke out continued Internet development. While
recognizing there are perceived address shortages, the opponents of
NAT view it as operationally inadequate at best, bordering on a sham
as an Internet access solution. Reality lies somewhere in between these
extreme viewpoints.”

—Tony Hain,
“Architectural Implications of NAT,” RFC 2993

• First, NATs cannot support applications where the initiator lies on
the “outside.” The external device has no idea of the address of the
local internal device, and, therefore, cannot direct any packets to that
device in order to initiate a session. This implies that peer-to-peer ser-
vices, such as voice, cannot work unaltered in a NAT environment.
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• The workaround to this form of shortcoming is to force an altered
deployment architecture, where service platforms used by external
entities are placed “beside” the NAT, allowing command and con-
trol from the interior of the local network, and having a permanent
(non-NAT) interface to the external network. Obviously this implies
some further centralization of IT services within the NATed site.

• Even this approach does not work well for applications such as voice-
over-IP, where the “server” now needs to operate as some form of
proxy agent. The generic approach here for applications to traverse
NATs in the “wrong” direction is for the inside device to forge a
UDP connection to the outside agent, and for the inside device to
then establish what NAT translated address has been used, and the
nature of the NAT in the path, and then republish this address as the
local entity’s published service rendezvous point. Sounds fragile? Un-
fortunately, it is. The other approach is to shift the application to use
a set of endpoint identifiers that are distinct from IP addresses, and
use a distributed set of “agents” and “helpers” to dynamically trans-
late the application level identifiers into transport IP addresses as
required. This tends to create added complexity in application de-
ployment, and also embarks on a path of interdependency that is less
than desirable. In summary, workarounds to reestablish a peer-to-
peer networking model with NATs tend to be limited, complex, and
often fragile.

• The behavior of NATs varies dramatically from one implementation
to another. Consequently, it is very difficult for applications to pre-
dict or expose the precise behavior of one or more NATs that may
exist on the application data path.

• Robust security in IP environments typically operates on an end-to-
end model, where both ends include additional information in the
packet that can detect attempts to alter the packet in various ways. In
IPSec the header part of the packet is protected by the Authentica-
tion Header, where an encrypted signature of certain packet header
fields is included in the IPSec packet. If the packet header is changed
in transit in unexpected ways, the signature check will fail. Obvi-
ously IPSec attempts to protect the packet address fields—the very
same fields that NATs alter! This leads to the observation that robust
security measures and NATs do not mix very well. NATs inhibit im-
plementation of security at the IP level.

• NATs have no inherent failover. NATs are an active in-band mecha-
nism that cannot fail into a safe operating fallback mode. When a
NAT goes offline, all traffic through the NAT stops. NATs create a
single point where fates are shared in the NAT device maintaining
connection state and dynamic mapping information.
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• NATs sit on the data path and attempt to process every packet. Obvi-
ously bandwidth scaling requires NAT scaling.

• NATs are not backed up by industry-standardized behavior. Al-
though certain NAT-traversal applications make assumptions about
the way NATs behave, it is not the case that all NATs necessarily be-
have in precisely the same way. Applications that work in one
context may not necessarily operate in others.

• Multiple NATs can get very confusing with “inside” and “outside”
concepts when NATs are configured in arbitrary ways. NATs are
best deployed in a strict deployment model of an “inside” being a
stub private network and an “outside” of the public Internet. Forms
of multiple interconnects, potential loops, and other forms of net-
work transit with intervening NATs lead to very strange failure
modes that are at best highly frustrating.

• With NATs there is no clear, coherent, and stable concept of net-
work identity. From the outside these NAT-filtered interior devices
are visible only as transient entities.

• Policy-based mechanisms that are based on network identity (for ex-
ample, Policy Quality of Service [QoS]) cannot work through NATs.

• Normal forms of IP mobility are broken when any element behind
the NAT attempts to roam beyond its local private domain. Solu-
tions are possible, generally involving specific NAT-related alterations
to the behavior of the Home Agent and the mobile device.

• Applications that work with identified devices, or that actually iden-
tify devices (such as the Simple Network Management Protocol
[SNMP] and DNS) require very careful configuration when operat-
ing an a NAT environment.

• NATs may drop IP packet fragments in either direction: without
complete TCP/UDP headers, the NAT may not have sufficient stored
state to undertake the correct header translation.

• NATs often contain ALGs that attempt to be context-sensitive, de-
pending on the source or destination port number. The behavior of
the ALGs can be difficult to anticipate, and these behaviors have not
always been documented.

• Most NAT implementations with ALGs that attempt to translate
TCP application protocols do not perform their functions correctly
when the substrings they must translate span across multiple TCP
segments; some of them are also known to fail on flows that use TCP
option headers, for example timestamps.
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From this perspective, NATs are a short-term expediency that is cur-
rently turning into a longer-term set of overriding constraints placed on
the further evolution of the Internet. Not only do new applications need
to include considerations of NAT traversal, but we appear to be enter-
ing into a situation where if an application cannot work across NATs,
then the application itself fails to gain acceptance. We seem to be lock-
ing into a world that is almost the antithesis of the Internet concept. In
this NAT-based world, servers reside within the network and are oper-
ated as part of the service provider’s role, whereas end devices are seen
as “dumb” clients, who can establish connections to servers but cannot
establish connections between each other. The widespread use of NATs
appears to be reinforcing a reemergence of the model of “smart net-
work, dumb clients,” whereas others would argue that the network is
getting no smarter, it is just that the number of obstacles and amount of
network debris is increasing while clients are getting worse at maintain-
ing coherent end-to-end state in the face of such changes.

However, despite their shortcomings, despite the problems NATs cre-
ate for numerous applications and their users, and despite the continued
grappling over a common language to understand how NATs behave,
numerous NATs are deployed, and, at least in the IPv4 realm, NATs
appear to be a firmly fixed part of the future of the Internet. NATs con-
tinue to proliferate in today’s Internet.

Moving on with NATs
One commonly held belief is that deployment of IPv6 will eliminate the
problem of NATs within the Internet. Certainly it is reasonable to ob-
serve that if achieving high address utilization densities is no longer the
objective, then there will be plentiful public IPv6 address space and that
particular reason to deploy NATs is significantly discounted in an IPv6
realm.

That does not say that IPv6 NATs will not be implemented, nor used.
Indeed IPv6 NATs are already available, and they are being used, albeit
to some small extent. NATs are, rightly or wrongly, considered to be
part of a security solution for a site because of their filtering properties
that prevent incoming packets from entering the site unless the NAT al-
ready has a permitting binding initiated from the inside. In addition,
NATs allow a site to use an internally persistent naming and address-
ing scheme based on some form of deployment of IPv6 unique site local
address, and deploy NATs at the edge to create an external view of the
site that fits within a provider-based address aggregated view of the
IPv6 Internet.

So it would perhaps be too enthusiastic a level of conjecture to suppose
that IPv6 will drive away all forms of NAT use in IPv6. It is reasonable
to predict that some use of NAT will be seen in IPv6, although many
would be highly disappointed if the level of IPv6 NAT use rose to any-
where approaching that of NAT in IPv4.
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However, the Internet is still largely a network that uses IPv4 and
NATs, and efforts continue along the lines of reducing the amount of
friction and frustration in a world in which NATs are prolific. One of
the ways to progress here is to treat NAT boxes as yet another instance
of Internet middleware, and attempt to apply the same sets of processes
to NATs that appear in other instances of middleware. The work of the
IETF in the Middlebox Communication Working Group uses a model
that attempts to expose NATs, as well as firewalls, performance-en-
hancing proxies, application proxies, and relay agents, to the
application, and allows the application to specify the policy that the
middlebox should apply. In the case of NATs, this could allow an appli-
cation to communicate to a NAT that it does not require any form of
third-party access, and that a fully symmetric behavior could be applied
to the binding without any loss in application functionality. Equally, an
application could indicate to the NAT that it expects third parties to be
able to use the NAT binding, and that the binding that the NAT will set
up for the application should be managed as a port-restricted cone.
There is much that could be achieved here that would allow applica-
tions to function with some level of determinism, rather than
attempting to equip an application with a large and complex toolset of
all the relevant techniques of NAT traversal that may be required by the
application when confronted by various NAT behaviors.

In the meantime the NAT-behavior guessing game continues. The ge-
neric class of techniques that support this function is termed Unilateral
Self-Address Fixing (UNSAF). This is a process whereby the local entity
attempts to determine the address and port by which the entity is
known externally, and to determine the characteristics of this associa-
tion to understand in what contexts the external address may be used as
a service rendezvous point for externally initiated communication.
Work in this area[10] has exposed many relevant considerations, includ-
ing a set of deficiencies noted in the previous section.

So, what would a NAT implementation look like if there were stan-
dards relating to NAT behaviors and the implementation were to
comply with these standards? Numerous efforts have been made to doc-
ument various forms of network- and application-friendly ways in
which NATs could behave, but it would appear that such an effort will
require the imprimatur of a standard in order to attain a level of gen-
eral acceptance from NAT implementations. However, it is possible to
predict that any such effort at a “standardized” form of NAT behavior
will include the following considerations. The following set of behav-
iors is based on that enumerated in[13]:
• NATs must show endpoint-independent behavior for UDP-based

bindings. This is to ensure that the NAT can support application ren-
dezvous without the need for various multiparty relays and agents.

• NAT should not use port preservation nor port overloading, and
should operate in a deterministic manner. Port preservation exposes
the NATs to nonstandard behaviors when port preservation cannot
be enforced. In addition, NATs must have deterministic behavior.
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• A dynamic NAT UDP binding timer should be 5 minutes, and should
avoid expiration timers of 2 minutes or less. This is to ensure that the
timeout is long enough to avoid excessively frequent timer refresh
packets.

• The NAT UDP timeout binding must use a timer refresh based on
outbound traffic, and all sessions that use a particular binding should
use a common refresh timer. This requirement is a security consider-
ation, in that letting inbound traffic refresh the timer allows an
external party to keep a port open on the NAT.

• The NAT filtering function should be address dependant. This repre-
sents a balance between security and utility.

• The timeout behavior of the NAT UDP filter must be the same as that
of the NAT UDP binding timeout. This is intended to reduce the
complexity of applications that are reliant on long-held NAT state.

• The NAT should support hairpin connections, using the external ad-
dress and port.

• If the NAT includes ALG support, the ALGs should be configurable
in terms of being able to turn off the ALG function on a per-applica-
tion basis.

• NATs should support fragmentation and forwarding of packet
fragments.

• NATs must support ICMP Destination Unreachable messages, and
the ICMP timeout should be greater than 2 seconds.

Learning from NATs
At this stage we can observe a few relevant lessons about NATs:

The first is that we need standards and we rely on standards. For many
years the IETF has viewed standardization of NATs and their behavior
as being an action that would encourage further deployment of a tech-
nology that was apparently considered undesirable. The result has been
that NATs have been deployed for reasons entirely unconnected with
the IETF and standardization, but because the original specification of
NAT behavior was at such a general level each NAT implementor has
been forced into making local decisions as to how the NAT should be-
have under specific circumstances. We now enjoy a network with
widespread deployment of an active device that does not have consis-
tent implementations and, in the worst cases, exhibits nondeterministic
behaviors. This has made the task of deployment of certain applica-
tions on the Internet, including voice-based applications, incredibly
difficult.
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Whether NATs are good or bad, they would be less of a collective head-
ache today if they shared a common standard core behavior. NATs for
IPv6 may be considered to be unnecessary today, and it can be argued
they represent no real value to an IPv6 site. But a collection of IPv6
NAT implantations with no common core behavior would constitute a
far worse problem to application users. Standardization of technology
at least eliminates some of the worst aspects of application level guess-
work out of technology deployment.

Secondly, a little bit of security is often far worse than no security.
NATs are very poor security devices, and in terms of their behavior
with UDP, NATs afford only minor levels of protection. The task of se-
curing a site from various forms of attack and disruption remains one
of a careful exercise of assessment of acceptable risk coupled with de-
tailed consideration of site-management functions. NATs are not a
quick way out of this effort.

In considering NATs it seems that we are back to the very basics of net-
working. The basic requirements of any network are “who,” “where,”
and “how,” or “identity,” “location,” and “forwarding.” In the case of
IP, all these elements were included in the semantics of an IP address,
and when addresses get translated dynamically we lose track of IP-level
identity across the network. Maybe, just maybe, as we look at the
longer-term developments of IP technology, one potential refinement
may be the separation of endpoint identity to that of location, and as a
potential outcome, NATs could readily manipulate location-based ad-
dresses while applications could look to a different token set as a means
of establishing exactly who is the other party to the communications.

Of course, if we ever venture down such a path, I trust that such a move
toward the use of explicit identities does not generate a complementary
deployment of Network Identity Translators, or NITs, as an adjunct to
the current set of NATs. Too many NITs and NATs will definitely send
us all NUTs!

Further Reading
There is no shortage of material on NATs from a wide variety of
sources. The following is a list of IETF-related documents, encompass-
ing both published Request for Comments (RFCs) and works in
progress, that have been circulated as Internet Drafts.

RFCs:

[1] Egevang, K., and P. Francis, “The IP Network Address Translator
(NAT),” RFC 1631, May 1994.

[2] Srisuresh, P., and D. Gan, “Load Sharing Using IP Network
Address Translation (LSNAT),” RFC 2391, August 1998.



T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
3 1

[3] Srisuresh, P., and M. Holdrege, “IP Network Address Translator
(NAT) Terminology and Considerations,” RFC 2663, August
1999.

[4] Tsirtsis, G., and P. Srisuresh, “Network Address Translation—
Protocol Translation (NAT-PT),” RFC 2776, February 2000.

[5] Hain, T., “Architectural Implications of NAT,” RFC 2993,
November 2000.

[6] Srisuresh, P., and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT),” RFC 3022, January 2001.

[7] Holdrege, M., and P. Srisuresh, “Protocol Complications with the
IP Network Address Translator,” RFC 3027, January 2001.

[8] D. Senie, “Network Address Translator (NAT)-Friendly
Application Design Guidelines,” RFC 3235, January 2002.

[9] Srisuresh, P., J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan,
“Middlebox Communication Architecture and Framework,” RFC
3303, August 2002.

[10] Daigle, L., and IAB, “IAB Considerations for Unilateral Self-
Address Fixing (UNSAF) Across Network Address Translation,”
RFC 3424, November 2002.

[11] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
“STUN—Simple Traversal of User Datagram Protocol (UDP)
Through Network Address Translators (NATs),” RFC 3489,
March 2003.

[12] Aboba, B., and W. Dixon, “IPsec—Network Address Translation
(NAT) Compatibility Requirements,” RFC 3715, March 2004.

Internet Drafts:

Internet Drafts enjoy a fleeting existence, and the following documents
may not be available when you read this article. In such cases it is often
the case that a decent Internet search will locate the document, or its
successor.

[13] Audet, F., and C. Jennings, “NAT/Firewall Behavioral Require-
ments,” work in progress, draft-audet-nat-behave , July 2004.

[14] Ford, B., P. Srisuresh, and D. Kegel, “Peer-to-Peer(P2P)
Communication across Network Address Translators (NATs),”
work in progress, draft-ford-midcom-p2p , June 2004.
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[15] Rosenberg, J., “Interactive Connectivity Establishment (ICE): A
Methodology for Network Address Translator (NAT) Traversal
for the Session Initiation Protocol (SIP),” work in progress,
draft-ietf-mmusic-ice,  July 2004.

[16] Jennings, C., “NAT Classification Results Using STUN,” work in
progress, draft-jennings-midcom-stun-results , July 2004.

[17] J. Rosenberg, J. Weinberger, R. Mahy, and C. Huitema,
“Traversal Using Relay NAT (TURN),” work in progress,
draft-rosenberg-midcom-turn-01 , July 2004.

Other Resources:

NAT Check: Ford, B. and D. Andersen, Nat Check Website:
http://midcom-p2p.sourceforge.net

STUN Client and Server:
http://sourceforge.net/projects/stun

Phifer, Lisa, “The Trouble with NAT,” The Internet Protocol Journal,
Volume 3, No. 4, December 2000.
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Letters to the Editor
Content Networks Dear Editor,

Christophe Deleuze’s article on Content Networks (The Internet Proto-
col Journal, Volume 7, Number 2, June 2004) made me realize that
there are very different ways to look at this issue. I would like to use the
term Content Addressable Network for a network that is used to re-
trieve information not by specifying its location but the identity of the
content itself. The term points to similar concepts in electronics (Con-
tent Addressable Memory) and storage (Content Addressable Storage).
One could argue that a Content Addressable Network is in fact a dis-
tributed Content Addressable Storage.

In a very real sense the Internet already is content addressable. Several
of my non-IT friends use the “Search” field in the Google toolbar even
for regular URLs, foregoing the Address field in their browsers. In do-
ing so, they simply ignore the distinction between content and location.
It usually gets them where they want to go.

Let’s define content as a static binary object, for example, a document,
picture, song, or movie. How can we identify content if not by loca-
tion? We can create a hash of the object as a handle or placeholder. (A
hash is the result of a calculation that takes the whole object as input. A
good hashing algorithm ensures that if you change a bit in the object, at
least one bit in its hash changes too.) If we know the placeholder, we
can retrieve a copy of the original object, even if we don’t know the lo-
cation of any of the copies out there on the net. I could mail you the
hash of a paper, song, or movie and you would be able to retrieve a
copy, although not necessarily from the same place as where I got it.
(You might have to pay to get it though!)

Suppose that the Google bot, while traversing the Internet to build its
index, calculates the hash for each object it encounters. It can then build
an index of all hash codes, relating them to the URLs where they were
found. (This requires no change in Google: the hash is just one more
word it found in the document). We can then google a hash code to find
all occurrences of the object. (You can simulate this today by selecting a
line of text from a document and launching a search for that sequence
of words. Google will often find multiple copies. Just one line of text is
an extremely poor hash, so you may get a few false hits, but in my ex-
perience not many.)

Simply by adding these hashes, we have turned the Internet into a Con-
tent Addressable Network. If our purpose is to make ourselves
independent of any single copy on any particular server, this is all we
need. For other applications, the objective is to optimize the network
paths to the servers that hold a copy of our object (for example, a
movie). We need a metric that tells us which of the listed locations is
“closest” to our point of entry. This is complicated by the fact that the
Internet is a weird space. The shortest route between Amsterdam and
Brussels might well go via London or Paris.
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Fortunately, there is a database that keeps track of all the available
routes and their cost. It is the Border Gateway Protocol (BGP) routing
table. BGP divides the Internet in chunks called Autonomous Systems
or ASs and tracks the cost of the routes to each AS. If the Google bot
would record the AS along with each URL, our client system could
query our local BGP router (or a proxy holding a copy of its database)
to find the AS and thus the copy that is closest in terms of network
costs. Note that these costs also reflect policy rules such as peering ar-
rangements between ISPs.

If our objective is to dynamically optimize the load on the servers, we
cannot avoid querying (a local subset of) these servers for a bid. Distrib-
uting the load over servers in different time zones may sometimes be
more important than keeping the transports local. Our client should se-
lect a server that is not too busy but no further away than necessary.

The Content Networks as discussed by Christophe Deleuze were cre-
ated as a commercial offering that would require no cooperation from
the clients—in every sense an operator’s approach. It is restricted to the
case where all copies of the object are published by a single entity. The
way ahead is to create protocols for requesting network cost for a list of
sites, and service costs from a list of servers, independent of the nature
of the object and the servers that hold copies of it.

It may seem more efficient to let the publisher add the hash code to the
objects. HTML files would be labeled with a <MD5= tag, obviating the
need for bots and users (for “content bookmarks”) to do the calcula-
tion. This would allow publishers to change content without changing
the hash, to correct typos or remove scenes deemed unsuitable for local
viewers. But it would no doubt result in fake objects, purporting to be
copies of popular objects but peddling dubious commercial proposals.
Creating fake objects is more difficult if the hash code is calculated by
an independent and unrecognizable bot, although I’m sure the problem
is not completely solved with that.

—Ernst Lopes Cardozo, Aranea Consult BV, The Netherlands
e.lopes.cardozo@aranea.nl

——————————
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IPJ Article Identification Hi,

I noticed that the IPJ page footer only says “The Internet Protocol Jour-
nal” but neither the Volume/Issue number, nor the issue date. That
makes it a bit hard to correctly reference a given article when you only
have a copy of that article and not the whole issue. I propose that you
add something like (from the August issue of CACM):

Communications of the ACM August 2004/Vol. 47, No. 8

(I only checked the archived PDF files but I suppose the hardcopy has
the same problem.)

—Örjan Petersson
orjan.petersson@logcode.com

We could certainly add the Volume/Issue identifier to the footer, but
since this would have to be done retroactively for all 26 issues to date it
is probably better to use our soon-to-be-deployed ASCII index. This
will allow you to find any article with a simple search. A short sample
of the index is shown below.

—Ole J. Jacobsen, Editor and Publisher
ole@cisco.com

The Internet Protocol Journal Volume 1, 1998

Article Author(s) Page
---------------------------------------------------------------------------------

* Volume 1, No. 1, June 1998:

What Is a VPN? - Part I Ferguson/Huston 2
SSL: Foundation for Web Security William Stallings 20
Book Review: Groupware Dave Crocker 31
Book Review: High-Speed Networks   Neophytos Iacovou 33

* Volume 1, No. 2, September 1998:

What Is a VPN? - Part II Ferguson/Huston 2
Reliable Multicast Protocols and Applications C. Kenneth Miller 19
Layer 2 and Layer 3 Switch Evolution Thayumanavan Sridhar 38
Book Review: Gigabit Ethernet Ed Tittel 44

* Volume 1, No. 3, December 1998:

Security Comes to SNMP: SNMPv3 William Stallings 2
CATV Internet Technology Mark Laubach 13
Digital TV George Abe 27
I Remember IANA Vint Cerf 38
Book Review: Internet Messaging Dave Crocker 40
Book Review: Web Security Richard Perlman 42
Book Review: Internet Cryptography Frederick M. Avolio 44



T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
3 6

Fragments
IPv6 Address “Glue” added to the Root DNS Zone
The Internet Corporation For Assigned Names and Numbers (ICANN)
recently announced that for the first time, an IPv6 nameserver address
has been added to the Internet’s root DNS zone. This next generation
version of the Internet Protocol provides trillions more addresses than
the IPv4 system that is in use by most networks today. By taking this
significant step forward in the transition to IPv6, ICANN is supporting
the innovations through which the Internet evolves to meet the growing
needs of a global economy.

On 20 July 2004 at 18:33 UTC the IPv6 AAAA records for the Japan
(.jp ) and Korea (.kr ) country code Top Level Domain (ccTLD)
nameservers became visible in the root zone file with serial number
2004072000. It is expected that the IPv6 records for France (.fr ) will
be added shortly. Other requests are pending and will be added in ac-
cordance with documented procedure, which was developed through
ICANN’s unique multi-stakeholder consensus-based approach. See:
http://www.iana.org/procedures/delegation-data.html

Recognizing the importance of IPv6 to the Internet community, ICANN
has coordinated with its Root Server System Advisory Committee, Top
Level Domain managers, Security and Stability Advisory Committee,
and other interested parties in careful analysis of this issue. After a pe-
riod of thorough examination, the decision was made to move forward
with deployment of the IPv6 address records in the manner prescribed
by the community.

ICANN is the global public-benefit non-profit organization responsible
for coordinating the Internet’s naming and numbering systems. For
more information please visit: http://www.icann.org

Formation of Asia Pacific ENUM Engineering Team
China Network Information Center (CNNIC), Japan Registry Service
(JPRS), Korea Network Information Center (KRNIC), Singapore Net-
work Information Center (SGNIC) and Taiwan Network Information
Center (TWNIC) recently announced the formation of the Asia Pacific
ENUM Engineering Team (APEET), an informal technical project team
formed to coordinate and synergize ENUM activities in the Asia Pacific
region.

The proposal to form APEET was discussed during an ENUM BoF
(Birds-of-a-Feather) session at the Asia Pacific Regional Internet Confer-
ence on Operational Technologies (APRICOT) in February 2004.
Founding member organizations of APEET shared a common vision
that as a collective group, they will be able to achieve greater commu-
nity awareness and better interoperability of ENUM-based trials.

“ENUM allows IP devices to be assigned a telephone number which is
globally interoperable,” said James Seng, Chairman of APEET. “It is a
key enabling technology for seamless IP Telephony that will greatly
benefit the end-users.”
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Before the formation of APEET, each member organization has been
conducting its own ENUM trials, most of which are isolated trials con-
ducted within each member organization’s country/region. With the
formation of APEET, member organizations will be able to implement
technical solutions that facilitate ENUM trials across Asia Pacific.

“We are extremely excited about the formation of this much needed or-
ganization,” said Hiro Hotta, Director JPRS. “We are ready to bring
ENUM trials to the next level.”

One of APEET’s key project is to implement a live ENUM trial at
APRICOT 2005, Kyoto, Japan. The live trial will allow hundreds of
APRICOT participants to experience IP Telephony using wireless SIP
Phones and calling each another with standard 10-key telephone inter-
face via ENUM. The live trial, believed to be the first of its kind, will
serve to demonstrate and educate the technical community on the
power, capabilities and feasibility of ENUM together with SIP.

“This looks like one of the most exciting events of 2005 with a demon-
stration of technologies to rock Asia Pacific,” said Richard Shockey, co-
Chair of the ENUM Working Group of the IETF.

The formation of APEET has been well received by the Industry. The
Asia Pacific Network Information Centre (APNIC) has extended its
goodwill to host DNS records of apenum.org , the selected “golden
root” of APEET technical trials. APEET is also fortunate to have indi-
vidual experts member such as Richard Shockey.

APEET welcomes all Asia Pacific ccTLD administrators (or its desig-
nated representatives) to join and contribute towards the success of
ENUM adoption in Asia Pacific. For more information, please visit
http://www.apenum.org

Phill Gross Receives Postel Award
Phill Gross is this year’s recipient of the prestigious Jonathan B. Postel
Service Award. A co-founder of the Internet Engineering Task Force
(IETF), Gross has been instrumental in defining and shaping the way in
which the IETF standards process functions. He was awarded the Pos-
tel Service Award in recognition of his early leadership of the IETF and
for firmly establishing the principles that are essential for its success.
The Postel Award was presented on August 5th, during the 60th meet-
ing of the IETF in San Diego, California.

“The Internet Society is pleased to recognize Phill’s significant contribu-
tion to the area of Internet standardization by awarding him this year’s
Postel Award,” said Internet Society President and CEO Lynn
St.Amour. “The continued success of the IETF’s consensus-based pro-
cesses shows the importance of Phill’s pioneering work in developing
the IETF’s foundations.”
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According to Steve Crocker, noted Internet authority and chair of this
year’s Postel award committee, “Many of the IETF’s current structures,
including Working Groups, Technical Areas, Proceedings and Internet
Drafts came about thanks to Phill’s dedication and passion for the Inter-
net standards area. And we’re delighted to be presenting the award to
Phill in San Diego, the location of the first ever IETF meeting back in
1986.”

Gross, who is currently Director of Academics and Technology for the
Northern Virginia ECPI College of Technology, has worked with the
Internet community for over 20 years. His career has taken him from
working with government-funded research projects through to net-
working engineering responsibilities for large corporations and startups,
including leading the development of MCI Corporation’s first national
network.

In 1986 Gross helped found the IETF. He became the first official chair
in 1987—a position he held for seven years. During his chairmanship,
the IETF evolved from a government-sponsored research group to an
industry-wide Internet standards body. As well as contributing to devel-
oping the IETF standards process itself, Gross played an active role as
co-chair of the IETF Routing and Addressing Working Group. This
group led to solutions for growth-related Internet problems and was in-
strumental in specifying the initial direction for the next generation
Internet Protocol (IPv6) in RFC 1719. He also served as a member of
the Internet Architecture Board (IAB) from 1987 to 1996.

Expressing his appreciation for the award, Gross said “It was very grati-
fying to be there at the beginning and to work with such an incredible
group of people. And, working with Jon over the years gives me a spe-
cial appreciation for the honor that comes with this award.”

The Jonathan B. Postel Service Award was established by the Internet
Society to honor those who have made outstanding contributions in ser-
vice to the data communications community. The award is focused on
sustained and substantial technical contributions, service to the commu-
nity, and leadership. With respect to leadership, the nominating
committee places particular emphasis on candidates who have sup-
ported and enabled others in addition to their own specific actions. The
award is named after Dr. Jonathan B. Postel, who embodied all of these
qualities during his extraordinary stewardship over the course of a
thirty-year career in networking. He served as the editor of the RFC se-
ries of notes from its inception in 1969, until 1998. He also served as
the ARPANET “Numbers Czar” and the Internet Assigned Numbers
Authority (IANA) over the same period of time. He was a founding
member of the Internet Architecture Board and the first individual
member of the Internet Society, where he also served as a trustee. Previ-
ous recipients of the Postel Award include Jon himself (posthumously
and accepted by his mother), Scott Bradner, Daniel Karrenberg, Stephen
Wolff and Peter Kirstein. For more information, please visit:
http://www.isoc.org
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Where did my copy of IPJ go?

 

Each time we mail out a new issue of IPJ, a certain number of copies are
returned to us as undeliverable by the postal authorities around the
globe. These so-called “Nixies” can take as much as a year to arrive
back in San Jose, California, and almost all of them are returned with-
out any updated delivery information. Obviously we cannot do much
other than delete these records from our database. However, if you tell
us when you move, we can make sure your address is up-to-date so that
you will receive the next issue of IPJ. You can update your own record
using the subscription tool at 

 

http://www.cisco.com/ipj

 

 or just
send your updates via e-mail to: 

 

ipj@cisco.com

 

Where did you go?
Do let us know!

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. This publication could contain technical inaccuracies or typographical
errors. Later issues may modify or update information provided in this issue. Neither the publisher
nor any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.
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