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F r o m  T h e  E d i t o r

 

The task of adding security to Internet protocols and applications is a
large and complex one. From a user’s point of view, the security-
enhanced version of any given component should behave just like the
old version, just be “better and more secure.” In some cases this is
simple. Many of us now use a 

 

Secure Shell Protocol

 

 (SSH) client in
place of 

 

Telnet,

 

 and shop online using the secure version of HTTP. But
there is still work to be done to ensure that 

 

all

 

 of our protocols and
associated applications provide security. In this issue we will look at

 

routing,

 

 specifically the 

 

Border Gateway Protocol 

 

(BGP) and efforts
that are underway to provide security for this critical component of the
Internet infrastructure. As is often the case with emerging Internet
technologies, there exists more than one proposed solution for securing
BGP. Two solutions, S-BGP and soBGP, are described by Steve Kent
and Russ White, respectively.

The Internet gets attacked by various forms of viruses and worms with
some regularity. Some of these attacks have been quite sophisticated
and have caused a great deal of nuisance in recent months. The effects
following the 

 

Sobig.F

 

 virus are still very much being felt as I write this.
Tom Chen gives us an overview of the trends surrounding viruses and
worms.

Closely related to the virus attacks is 

 

spam.

 

 Unfortunately, I know of no
complete technical, or even legal, solutions to this growing problem, but
I would love to hear your views and solutions. Send your comments to:

 

ipj@cisco.com

 

, but don’t use the string “spam” in the subject field or
it may get filtered out!    

Following Geoff Huston’s opinion piece “The Myth of IPv6” in our
previous issue, we received a response from 

 

The IPv6 Forum.

 

 The
article is entitled “IPv6 Behind the Wall” and is by Jim Bound.

I was very pleased to hear that professor Peter T. Kirstein of University
College London had been awarded the Internet Society’s 

 

Jonathan B.
Postel Service Award

 

 for 2003. I have known Peter since about 1977,
when we collaborated on SATNET packet voice conferences between
Oslo, London, Boston, and Marina del Rey. Peter is truly an Internet
pioneer. (See “Fragments,” page 41).

 

 

—Ole J. Jacobsen, Editor and Publisher

 

ole@cisco.com

 

You can download IPJ
back issues and find

subscription information at:

 

www.cisco.com/ipj
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Securing the Border Gateway Protocol

 

by  Stephen T. Kent, BBN Technologies

 

outing in the public Internet is based on a distributed system
composed of many routers, grouped into management do-
mains called 

 

Autonomous Systems

 

 (ASes). ASes are operated
by 

 

Internet Service Providers

 

 (ISPs) and by multihomed subscribers.
(Throughout the remainder of this article, for brevity, we will talk in
terms of ISPs, usually omitting references to multihomed subscribers.)
Routing information is exchanged between ASes using the 

 

Border Gate-
way Protocol

 

 (BGP)

 

[1]

 

, via UPDATE messages. 

BGP is used in two different contexts. 

 

External BGP

 

 (eBGP) propa-
gates routes between ISPs. BGP also is used within an AS to propagate
routes acquired from other ASes. This latter use is referred to as 

 

inter-
nal BGP

 

 (iBGP). eBGP is the primary focus of this article, because
failures of eBGP can adversely affect large portions of the Internet, well
beyond the administrative boundary of the source of the failure. None-
theless, some ISPs have expressed interest in protecting the distribution
of routes within an ISP. The security technology discussed in this article
can be used to secure iBGP, but eBGP is the focus of this article. We use
the term “BGP” to refer to eBGP throughout the article. 

BGP is highly vulnerable to a variety of attacks

 

[2]

 

. In some cases, this
vulnerability arises because of a lack of integrity and authentication for
BGP messages. However, the more substantive and harder problem is
the lack of a secure means of verifying that BGP traffic is authorized, a
concept explored in more detail in this article. In April 1997, BBN be-
gan work on the security architecture described here, a system we refer
to as 

 

S-BGP,

 

 to address the vulnerabilities of BGP. This article begins by
reviewing the problem, discusses a model for correct operation of BGP,
presents a threat model, and states the goals and assumptions that un-
derlie our proposed security architecture. 

Before we begin the discussion of BGP in more detail, a few definitions
are in order. A 

 

route

 

 is defined as an 

 

address prefix

 

 and a set of 

 

path at-
tributes.

 

 One of the path attributes is an AS path, and that is the
primary focus of BGP security considerations. The AS path specifies the
sequence of ASes that subscriber traffic should traverse if forwarded via
this route. When propagating an UPDATE to a neighboring AS, the
BGP router prepends its AS number to the sequence, and may update
certain other path attributes. The first AS included in the path is re-
ferred to as the 

 

origin AS

 

. 

Each BGP router (other than at the edges of the Internet) maintains a
complete routing table, capable of routing traffic to any reachable desti-
nation, and sends its best route for each prefix to each neighbor. In
BGP, “best” is very locally defined. The BGP route selection algorithm
has few criteria that are universal, thus limiting the extent to which any
security mechanism can detect and reject “bad” routes emitted by a
neighbor.

R
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Each ISP makes use of local policies that it need not disclose, and this
gives BGP route selection a “black box” flavor, which has significant
adverse implications for security. 

 

Correct Operation of BGP 

 

Security for BGP should be defined as the correct operation of BGP
routers. This definition is based on the observation that any successful
attack against BGP will result in other than correct operation, presum-
ably yielding degraded routing. Correct operation of BGP depends
upon the integrity, authenticity, and timeliness of the routing informa-
tion it distributes, as well as each BGP router processing, storing, and
distributing this information in accordance with both the BGP
specification and local routing policies. Many statements could be
made in an effort to characterize correct operation, but they rest on two
simple assumptions.

First, control (vs. subscriber traffic) communication between neighbor
BGP routers must be authenticity and integrity secure. This is easily
achieved through the use of a point-to-point security protocol capable
of protecting BGP traffic; for example, 

 

IP Security

 

 (IPSec). Second, BGP
routers must execute the route selection algorithm correctly and com-
municate the results. There are two parts to this assumption: processing
received UPDATEs, and generation and transmission of UPDATEs. In
terms of an AS trying to protect itself against external attacks, correct
operation of its own BGP routers is mostly a local security issue, but not
an Internet-wide security issue. However, an AS should not rely on
other ASes to operate properly; such reliance permits a failure in one AS
to propagate to others, a domino failure effect. Thus it is important for
a BGP router to be able to verify that each UPDATE it receives from a
peer is valid (authorized) and timely. 

The validity of an UPDATE message is based on four primary criteria: 

• The router that sent the UPDATE was authorized to act on behalf of
the AS it claims to represent; that is, the AS at the front of the AS
path.

• The AS from which the UPDATE emanates was authorized by the
preceding AS in the AS path (in the UPDATE message) to advertise
the prefixes in the UPDATE. 

• The first AS in the AS path was authorized, by the owner of the set of
prefixes that are represented in the UPDATE, to advertise those
prefixes. 

• If the UPDATE withdraws one or more routes (specified by the
prefixes for the routes), then the sender must have advertised each
route prior to withdrawing it. 

There are some limitations to the ability of any practical security mech-
anism to detect all BGP security failures. The local policy feature of
BGP allows each ISP considerable latitude in how UPDATEs are pro-
cessed, making it difficult for an external observer—for example, a
router in a neighboring AS—to determine if a router is operating
properly.



 

S-BGP: 

 

continued
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This is because such behavior might be attributed to local policies not
visible outside an AS. To address such attacks, the semantics of BGP it-
self would have to change. Moreover, because UPDATEs do not carry
sequence numbers, a BGP router can emit an UPDATE based on au-
thentic, but old, information; for example, withdrawing or reasserting a
route based on outdated information. Thus the temporal accuracy of
UPDATEs, in the face of Byzantine failures, is hard to enforce, except in
a very coarse fashion. (Simply speaking, a 

 

Byzantine failure

 

 is one in
which a nominally trusted or authorized entity misbehaves.)

 

Threat Model and BGP Vulnerabilities 

 

Routers exhibit both architectural and implementation vulnerabilities.
Implementation vulnerabilities are the result of errors that arise in devel-
oping design details or coding; for example, translating the BGP specs
into software. Architectural vulnerabilities permit various forms of at-
tack, independent of implementation details, and thus are potentially
more damaging, because they persist across all implementations. To
make Internet routing robust, both forms of vulnerabilities must be ad-
dressed. BGP vulnerabilities can be exploited to cause improper routing
or nondelivery of subscriber traffic, network congestion, and traffic de-
lays. Misrouting attacks can be used to facilitate both passive and active
wiretapping of subscriber traffic. Often an attack against BGP may be
part of a larger attack against subscriber computers. For example, there
have been BGP attacks that seek to misroute queries to 

 

Domain Name
System

 

 (DNS) root servers, as part of an attack against subscriber
systems.

BGP can be attacked in many ways. Communication between BGP
peers can be subjected to active or passive wiretapping. The BGP soft-
ware, configuration information, or routing databases of a router may
be modified or replaced via unauthorized access to a router, or to a
server or management workstation from which router software is
downloaded. These latter attacks transform routers into hostile insid-
ers, so security measures must address such Byzantine failures. 

Improved physical and procedural security for network management fa-
cilities, and routers, and cryptographic security for BGP traffic between
routers would help reduce some of these vulnerabilities. However, phys-
ical and procedural security is expensive and imperfect, and these
countermeasures would not protect the Internet against accidental or
malicious misconfiguration by operators, nor against attacks that mimic
such errors. Misconfiguration of this sort has been a source of Internet
outages in the past and seems likely to persist. Any security approach
that relies on ISPs to act properly violates the “principle of least privi-
lege” and leaves the Internet routing system vulnerable at its weakest
link. In contrast, the security approach described in this article satisfies
this principle, so that any attack on any component of the routing sys-
tem is limited in its impact on the Internet as a whole. 
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Routers also are susceptible to resource exhaustion attacks based on de-
livery of large quantities of management traffic, BGP or otherwise. This
vulnerability arises because these devices are designed with the not un-
reasonable model that management traffic is a very tiny percentage of
all the traffic that arrives at a router. Router interfaces can deliver traffic
to the management processor at very high rates, because they are de-
signed to accommodate subscriber traffic flows. Solutions to this
problem need to be generic, to accommodate all types of router man-
agement traffic, and thus are outside the scope of the BGP security
measures discussed in this article. 

 

Goals, Constraints, and Assumptions 

 

Any proposed security architecture must exhibit dynamics consistent
with the existing BGP system; for example, responding automatically to
topology changes, including the addition of new networks, routers, and
ASes. These actions take place on different time scales and have differ-
ent scopes. For example, in the current BGP system, if an ISP replaces a
failed router, the action can take place fairly quickly and has only local
impact, because ISPs are not aware of the identity of routers in other,
non-neighboring, ISPs. The issuance of new AS numbers, representing
new nets, is not a fast process, nor is the allocation of new blocks of ad-
dress space (new prefixes). But both of these actions are globally visible.
Changes in routes also may have global impact, and they may occur
very quickly.

Solutions also must scale in a manner consistent with the growth of the
Internet. The countermeasures must be consistent with the BGP proto-
col standards and with the likely evolution of these standards. This
includes packet size limits and features such as path aggregation, com-
munities, and multiprotocol support (for example, 

 

Multiprotocol Label
Switching

 

 [MPLS]). The security measures must be incrementally de-
ployable; there cannot be a “flag day” when all BGP routers suddenly
begin executing a new security protocol. It is desirable to not create new
organizational entities that must be accepted as authorities by ISPs and
subscribers, in order to make routing secure.

 

S-BGP Architecture 

 

S-BGP consists of four major elements: 

• A 

 

Public Key Infrastructure

 

 (PKI) that represents the ownership and
delegation of address prefixes and AS numbers 

•

 

Address Attestations

 

 that the owner of a prefix uses to authorize an
AS to originate routes to the prefix 

•

 

Route Attestations

 

 that an AS creates to authorize a neighbor to ad-
vertise prefixes

•

 

IPSec

 

 for point-to-point security of BGP traffic transmitted between
routers 



 

S-BGP: 
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These elements are used by an S-BGP router to secure communication
with neighbors, and to generate and validate UPDATE messages rela-
tive to the authorization model represented by the PKI and address
attestations. Together, the combination of these security mechanisms
prevents a compromised AS from propagating erroneous routing data
to other, secured ASes. Each element is described in more detail in the
following section. 

 

S-BGP Public Key Infrastructure 

 

S-BGP uses a PKI based on X.509 (v3) certificates to enable routers to
validate the authorization of other routers to represent ASes (ISPs). The
PKI also allows routers to verify the authorization of each ISP as the
owner of one or more prefixes (contiguous blocks of address space).
This PKI was described in

 

[14]

 

, and the reader is referred to that paper for
additional details. The PKI parallels the existing IP address and AS
number assignment delegation system and takes advantage of this infra-
structure. Because the PKI mirrors existing infrastructure, it avoids most
of the “trust” issues that often complicate the creation of a PKI. This
PKI is unusual in that it emphasizes authorization, not authentication.
The names used in the certificates in this PKI are not employed to deter-
mine whether a given ISP or router is authorized to do anything, and
the names are not even meaningful outside of S-BGP.

S-BGP calls for a certificate to be issued to each ISP (or subscriber) that
owns (more properly, has a right to use) a portion of the IP address
space. This certificate is issued through the same procedures employed
for address allocation, starting with the 

 

Internet Assigned Numbers Au-
thority

 

 (IANA) and continuing through a 

 

Regional Internet Registry

 

(RIR), and, if applicable, an ISP. If an ISP owns multiple prefixes, we is-
sue a single certificate containing a list of prefixes, to minimize the
number of certificates in the system. The PKI represents address-space
ownership by binding prefixes to a public key belonging to the ISP to
which the prefixes have been assigned. Each certificate contains a pri-
vate extension that specifies the set of prefixes that has been allocated to
the ISP. Certificates issued under this PKI also represent the binding be-
tween an ISP and the AS numbers allocated to it. The PKI allows each
ISP to issue certificates to its routers, certifying that these routers repre-
sent the ISP and hence, the ASes owned by the ISP. Here too, the PKI
parallels the existing AS allocation system; that is, the IANA allocates
AS numbers to RIRs, which in turn assign AS numbers to ISPs that run
S-BGP. 

 

Attestations 

 

An 

 

attestation

 

 is a digitally signed datum asserting that its target (an AS)
is authorized by the signer (an ISP) to advertise a path to one or more
specified prefixes. There are two types of attestations, address and
route, which share a common format. For an 

 

Address Attestation

 

 (AA),
the signer is the ISP or subscriber that controls the prefixes in the AA,
and the target is a set of ASes that the ISP/subscriber authorizes to origi-
nate a route to the prefixes. AAs are relatively static data items, because
relationships between address-space owners and ISPs change relatively
slowly.
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For a 

 

Route Attestation

 

 (RA), the signer is an S-BGP router (operating
on behalf of an ISP), and the target is an AS or set of ASes, representing
the neighbors to which the UPDATE containing the RA will be sent.
RAs, unlike AAs, are very dynamic, possibly changing for each trans-
mitted UPDATE. 

 

UPDATE Validation 

 

Attestations and certificates are used by S-BGP routers to validate routes
asserted in UPDATE messages; that is, to verify that the first AS in the
route has been authorized to advertise the prefixes by the prefix
owner(s), and that each subsequent AS has been authorized to advertise
the route for the prefixes by the preceding AS in the route. To validate a
route received from AS

 

n

 

, AS

 

n+1

 

 requires: 

• An AA for each organization owning a prefix represented in the UP-
DATE (not for prefixes in the UPDATE that represent routes being
withdrawn)

• A certified public key for each organization owning a prefix in the
UPDATE

• An RA corresponding to each AS along the path (AS

 

n

 

 to AS

 

1

 

), where
the RA generated and signed by the router in AS

 

n

 

 encompasses the

 

Network Layer Reachability Information

 

 (NLRI) and the path from
AS

 

n+1

 

 through AS

 

1

 

 

• A certified public key for each S-BGP router that signed an RA along
the path (AS

 

n

 

 to AS

 

1

 

), to check the signatures on the corresponding
RAs 

An S-BGP router verifies that the advertised prefixes and the origin AS
are consistent with AA information. The router verifies the signature on
each RA and verifies the correspondence between the signer of the RA
and the authorization to represent the AS in question. There also must
be a correspondence between each AS in the path and an appropriate
RA. If all of these checks pass, the UPDATE is valid.

AAs are not used to check withdrawn routes in an UPDATE. Use of IP-
Sec to secure communication between each pair of S-BGP routers, plus
the fact that BGP uses a separate 

 

Adjacency Routing Information Base

 

(Adj-RIB-In) for each neighbor, ensures that only the advertiser of a
route can withdraw it.

 

Distribution of S-BGP Data 

 

Each S-BGP router must have the public keys required to validate the
RAs in UPDATEs, a scenario that translates into securely distributed
keys for every router that implements S-BGP (and that is reachable via
an S-BGP path). Each router also needs access to all AA information, to
verify that the origin AS is authorized to originate a route to the prefixes
in the UPDATE. S-BGP does not distribute certificates, 

 

Certificate Revo-
cation Lists

 

 (CRLs), or AAs via UPDATE messages; transmission of
these items via UPDATEs would be very wasteful of bandwidth, be-
cause each BGP router would receive many redundant copies from its
neighbors.



 

S-BGP: 
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Also, an UPDATE is limited to 4096 bytes and thus generally could not
carry all of this data for the route represented by the UPDATE. Instead,
S-BGP distributes this data to routers via out-of-band means. The data
is relatively static and thus is a good candidate for caching and incre-
mental update. Moreover, the certificates and AAs can be validated and
reduced to a more compact format by ISP operation centers prior to dis-
tribution to routers. This avoids the need for each router to perform this
processing, saving both bandwidth and storage space. It also means that
routers do not need to be able to parse X.509 certificates and validate
certificate paths for S-BGP purposes, although some capability in this
area may be required for IPSec key management. 

S-BGP uses 

 

repositories

 

 for distribution of this data. We initially de-
scribed a model in which a few replicated, loosely synchronized
repositories were operated by the RIRs. Discussions with ISPs suggest a
model in which major ISPs and Internet exchanges operate repositories,
and smaller ISPs and subscribers make use of these repositories. In ei-
ther model, each ISP periodically, for example daily, uploads new/
changed certificates, its current CRL, and AAs. Each ISP also down-
loads all of this data for all other ISPs that are running S-BGP. The
repositories periodically transfer new data to one another to maintain
loose synchronization. ISPs process the repository information to create
more compact files that contain the AA data and the public keys and
prefix and AS data from the certificates, but none of the certificate man-
agement information or CRLs. These resulting “extracted” files are
transferred to the routers executing S-BGP under the control of the ISP. 

Because certificates, AAs, and CRLs are signed and carry validity inter-
val information, they require minimal additional security while in
transit to or from a repository or while stored on a repository. Nonethe-
less, S-BGP employs the 

 

Secure Sockets Layer 

 

(SSL) protocol, with both
client and server certificates, to protect access to the repositories, as a
countermeasure to denial-of-service attacks. The simple, hierarchic
structure of the PKI allows repositories to automatically effect access
control checks on the uploaded data, for example, to prevent one ISP
from accidentally or maliciously overwriting the certificates, CRLs, and
AAs from another ISP. 

 

Distribution of Route Attestations 

 

S-BGP distributes RAs with BGP UPDATEs in a newly defined, op-
tional, 

 

transitive path attribute.

 

 Because routes may change quickly, it is
important that RAs accompany the UPDATEs that are validated using
them. If any other means of distribution is employed for this data, there
is a likelihood that the UPDATEs and the data will be out of synch, cre-
ating a conundrum for a router; that is, what should the router do when
the UPDATE and the security data differ? RAs employ a compact en-
coding scheme to help ensure that they fit within the BGP packet size
limits, even when route or address aggregation occurs. (S-BGP accom-
modates aggregation by explicitly including signed attribute data that
otherwise would be lost when aggregation occurs.) An S-BGP router re-
ceiving an UPDATE from a peer caches the RAs with the route in the
Adj-RIB for the peer, and in the 

 

Local Routing Information Base 

 

[Loc-
RIB] (if the route is selected).
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As noted in the following discussion, the bandwidth required to sup-
port in-band distribution of route attestations is negligible (compared to
subscriber traffic). 

Although the RA mechanism was designed to protect AS path data, it
can also accommodate other new path attributes; for example, commu-
nities

 

[11]

 

 and confederations

 

[12]

 

. Specifically, there is a provision to
indicate what data, in addition to the AS path, is covered by the digital
signature that is part of the RA. 

 

Putting It All Together 

 

Figure 1 illustrates how the major elements of S-BGP interact, using a
simplified example. The figure shows two ISPs, each with a 

 

Network
Operations Center

 

 (NOC), a repository, and three routers. A third ISP
is represented by a single (S-BGP-enabled) router. Each ISP interacts
with an RIR to acquire a certificate representing the prefixes and AS
numbers assigned to the ISP. Each NOC interacts with a repository to
upload data (certificates, CRLs, and AAs) from that ISP, and to down-
load the same data acquired from all other ISPs. The repositories
interact with one another to exchange uploaded ISP data, to make that
data available to all other ISPs. Within an ISP, the NOC pushes a copy
of the extracted certificate and AA data, produced from the downloads
acquired from a repository, to each router. Routers exchange UPDATE
messages, containing RAs, that enable validation of each received
UPDATE. 

 

Figure 1: S-BGP Element Interactions 
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IPSec and Router Authentication 

 

S-BGP uses IPSec

 

[6,7,8]

 

, specifically the 

 

Encapsulating Security Payload

 

(ESP) protocol, to provide authentication, data integrity, and antireplay
for all BGP traffic between neighboring routers. The 

 

Internet Key Ex-
change

 

 (IKE) protocol

 

[9,10]

 

 is used for key management services in
support of ESP. The S-BGP PKI includes certificates for IKE, separate
from those used for RA processing. 

The use of IPSec is preferable to the current option of the 

 

Message Di-
gest Algorithm 5

 

 (MD5) TCP checksum option

 

[15]

 

, in several respects.
IPSec uses keyed hash functions in a way that is cryptographically more
secure that the MD5 checksum option, and IKE provides automated
key management, a feature sorely lacking in the option. Protecting BGP
traffic at the IP layer, vs. the TCP layer, counters more vulnerabilities,
because the TCP implementation is protected as well, for example, in-
cluding SYN flooding and spoofed RSTs (resets), are rejected.

 

Residual Vulnerabilities in S-BGP 

 

Despite the extensive security offered by S-BGP, architectural vulnera-
bilities exist that are not eliminated by its use. For example, an S-BGP
router may reassert a route that was withdrawn earlier, even if the route
has not been readvertised. The router also may suppress UPDATEs, in-
cluding ones that withdraw routes. These vulnerabilities exist because
BGP UPDATEs do not carry sequence numbers or time stamps that
could be used to determine their timeliness. However, RAs do carry an
expiration date and time, so there is a limit on how long an attestation
can be misused this way. S-BGP restricts malicious behavior to the set of
actions for which a router or AS is authorized, based on externally
verifiable, authoritative constraints.

 

Performance and Operational Issues 

 

In developing the S-BGP architecture, we paid close attention to the per-
formance and operational impact of the proposed countermeasures, and
reported our analysis in earlier papers. In preparing this article, we up-
dated our data, utilizing a variety of sources; for example, the 

 

Route
Views

 

 project. Although much data about BGP and associated infra-
structure is available, other data is difficult to acquire in a fashion that is
representative of a “typical” BGP router. This is because each AS in the
Internet embodies a slightly different view of connectivity, as a result of
local policy filters applied by other ASes. 

It is important that the transmission, storage, and processing require-
ments imposed by S-BGP not be so great as to overwhelm routers. Each
of these requirements must be analyzed separately. 

The transmission of RAs in UPDATEs does significantly increase the
size of these messages, by about 800 percent. However, because the vol-
ume of this traffic is minuscule relative to subscriber traffic, the increase
is negligent. The set of files containing certificates, AAs, and CRLs
would be about 75–85 MB. Daily transmission of these files between
ISPs and repositories would not represent a significant increase in traffic
volume for the Internet. 



 

T h e  I n t e r n e t  P r o t o c o l  J o u r n a l
1 1

Although the transmission overhead is not a concern, storage of the
RAs in each Adj-RIB and the Loc-RIB is a problem. The additional
space required to hold these RAs is estimated at about 30–35 MB per
peer, if S-BGP were fully deployed today. This is a modest amount of
memory for a typical router with a few peers, but a significant amount
of storage for routers at Internet exchanges, where a router may have
tens or even hundreds of peers.

Thus the management CPU in a router might need a gigabyte or more
of RAM under these conditions. (When a large ISP peers with many
other ISPs at an exchange, the peering is not symmetric; that is, the large
ISP accepts only a few routes from each of the smaller ISPs, filtering out
the rest. Thus the amount of additional memory required for RAs in
Adj-RIBs for each of these small ISP peers may be considerably less than
for symmetric peer relationships.) This requisite memory seems modest
by current workstation standards, but most deployed routers cannot be
configured with this much memory. 

The computational burden of router processing of RAs in UPDATEs is
a function of the path length in each UPDATE and the rate at which
UPDATEs arrive. The arrival rate is a function of the number of S-BGP
peers the router sees, and the rate at which each peer sends UPDATEs.
Our analysis suggests that the long-term (24-hour) UPDATE rate for a
router with 30 peers is about 0.5 UPDATEs per second. On average,
each UPDATE would contain about 3.7 RAs. We originally estimated
the busy minute rate as about 10 times the average rate. At this rate, a
router could probably perform the requisite signature verification in
software (about 18 signature verifications per second). Recent evidence
suggests a factor of 100–200 might be a better estimate, in light of expe-
rience with major worm attacks, and at that rate it would be hard for
software to keep pace. 

Heuristics are available to reduce this burden. Analysis shows that
about 50 percent of all UPDATEs are sent as a result of route “flaps”;
that is, transient communication failures that, when remedied, result in
a return to the former route. Thus if a router maintained a depth-two
cache for each Adj-RIB-In, it could avoid signature validation about 50
percent of the time. However, this would double the storage require-
ments for these RIBs, and that would exacerbate the storage problem
cited previously. 

Our previous analysis also assumed that receipt of each UPDATE
would result in transmission of an UPDATE with one new signature.
This was an oversimplification; a router generates and transmits an UP-
DATE only if the newly received route is “better” than the current best
route (for the prefix), or if the best route for the prefix is withdrawn by
the UPDATE. When a router has many peers, most of the UPDATEs it
receives may not yield a better route, and thus will not trigger transmis-
sion of a new UPDATE. 
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On the other hand, when a router does select a new route, an UPDATE
may be constructed and sent to each neighbor, requiring one signature
per neighbor. This is because an RA specifies the AS number of the
neighbor to which it is directed. It is possible to construct an RA that
identifies the next hop as a set of AS numbers, corresponding to all the
neighbors to which an UPDATE is authorized to be sent. The downside
of this strategy is that it makes the RAs larger, contributing to the stor-
age problem noted previously.

The observation made previously suggests a heuristic for UPDATE pro-
cessing to mitigate signature validation costs. A router can defer
validation of the RAs in any UPDATE that it receives, if the UPDATE
would not represent a new best route. This optimization could be espe-
cially helpful for routers that receive the greatest number of UPDATEs;
that is, routers with many neighbors. One might worry that this strat-
egy allows an attacker to force processing, by sending what would be
considered “very good” routes, but an S-BGP router could detect such
fraudulent UPDATEs and could choose to drop its connection to a peer
that behaved this way, in order to counter such an attack. 

Initialization/reboot of a BGP router also results in a surge in UPDATE
processing, and the deferred processing heuristic is applicable here too,
even though reboots are relatively infrequent. Saving RIBs in nonvola-
tile storage addresses this problem. Most deployed routers do not have
sufficient nonvolatile storage to adopt this strategy, but some do have
hard drives that would easily accommodate the RIBs. 

It is reasonable to assume that next-generation routers could be
configured with enough RAM for the RIBs, but this analysis shows that
full deployment is not feasible with the currently deployed router base.
To add RAM, and possibly to add nonvolatile storage, router vendors
will have to upgrade the processor boards where net management pro-
cessing takes place. That suggests that addition of a crypto accelerator
chip would be prudent as part of the board redesign process, for exam-
ple, to deal with surge conditions noted previously. 

Deployment and Transition Issues 
Adoption of S-BGP requires cooperation among several groups. ISPs
and subscribers running BGP must cooperate to generate and distribute
AAs. Major ISPs must implement the S-BGP security mechanisms in or-
der to offer significant benefit to the Internet community. The IANA
and RIRs must enhance operational procedures to support generation
of prefix and AS number allocation certificates. Router vendors need to
offer additional storage in next-generation products, or offer ancillary
devices for use with existing router products, and revise BGP software
to support S-BGP.

There is some good news; S-BGP can be deployed incrementally. Only
neighboring ASes receive full benefit from such deployment. Although
we chose a transitive path attribute syntax to carry RAs, and thus it
might be possible for non-neighbor ASes to exchange RAs, it seems
likely that intervening ASes would not have sufficient storage for the
RAs in their RIBs.
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Also, the controls needed in routers to take advantage of noncontiguous
deployment of S-BGP are quite complex, hence our suggestion that only
contiguous deployment of S-BGP be attempted. 

External routes received from S-BGP peers need to be redistributed
within the AS, both to interior routers and to other border routers, in
order to maintain a consistent and stable view of the exterior routes
across the AS. Thus an AS must switch to using S-BGP for all its border
routers at once, to avoid route loops within the AS. 

Status 
As of early 2003, an implementation of S-BGP has been developed and
demonstrated on small numbers of workstations representing small
numbers of ASes. We also developed software for a simple repository,
and for NOC tools that support secure upload and download of
certificates, CRLs, and AAs to and from repositories, and for certificate
management for NOC personnel and routers. This suite of software,
plus CA software from another Defense Advanced Research Projects
Agency (DARPA) program, provide all of the elements needed to repre-
sent a full S-BGP system. All of this software is available in open source
form. 

Summary 
S-BGP represents a comprehensive approach to addressing a wide range
of security concerns associated with BGP. It detects and rejects unautho-
rized UPDATE messages, irrespective of the means by which they arise;
for example, misconfiguration, active wiretapping, compromise of rout-
ers or management systems, etc. S-BGP is not perfect; it has a few
residual vulnerabilities, but these pale in comparison to the security fea-
tures S-BGP provides, and removal of these vulnerabilities would
require more fundamental changes to BGP semantics.

The S-BGP design is based on a top-down security analysis, starting
with the semantics of BGP and factoring in the wide range of attacks
that have or could be launched against the existing infrastructure. 
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Securing BGP Through Secure Origin BGP 
by  Russ White, Cisco Systems

etworks have come under increasing scrutiny in the area of
security. Routing, the part of the network that provides infor-
mation on how to reach destinations within the network, has

been gaining attention from a security perspective as well. The Internet
Engineering Task Force (IETF) has, in fact, formed a new working
group, the Routing Protocols Security Requirements Working Group
(http://www.rpsec.org ), to analyze security in routing systems. 

Of course, the biggest network in existence is the Internet, and the
routing protocol that provides reachability and path information for the
Internet is the Border Gateway Protocol (BGP), specified in RFC 1771.
Several methods of securing the information carried within BGP have
been proposed: 

• Internet Route Verification (IRV), described in “Working Around
BGP: An Incremental Approach to Improving Security and Accuracy
of Interdomain Routing,” Symposium on Network and Distributed
Systems Security, February 2003, by Geoffrey Goodell, William
Aiello, Timothy Griffin, John Ioannidis, Patrick McDaniel, and Aviel
Rubin. IRV relies on out-of-band communication with a route origi-
nator to verify the correctness of a route.

• S-BGP, described in the companion article and at:
 www.net-tech.bbn.com/projects/s-bgp  

• Domain Name System (DNS)-based Network Layer Reachability In-
formation (NLRI) origin Autonomous System (AS) verification in
BGP, which is the oldest attempt at validating the information car-
ried within BGP, is described in draft-bates-bgp4-nlri-orig-

verif-00.html , 

This article discusses Secure Origin BGP (soBGP), a solution recently
proposed by a group (including me) mostly within Cisco Systems. We
believe soBGP to be a deployable mechanism for validating the
correctness and authorization of the data carried within BGP, and also
for preventing the sorts of attacks resulting from misconfiguration or
intentional insertion of bad data into the Internet routing system. 

We address four goals when we consider security in terms of BGP: 

• Is the AS originating the destination (prefix) authorized to advertise
it? In other words, if a router receives an advertisement for the
10.1.1.0/24 network originating in AS65500, is there any way to ver-
ify that AS65500 is supposed to be advertising 10.1.1.0/24? 

• Does the AS advertising the destination actually have a path to the
destination? In other words, if a router is receiving an advertisement
from a BGP peer in AS65501 that it can reach 10.1.1.0/24, is there
any way to verify that AS65501 actually has a path to the AS origina-
tion 10.1.1.0/24? 

N
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• Is the peer advertising the route authorized by the originator, or
owner, of the destination, to advertise a path to the destination? 

• Does the path advertised by a peer AS fall within the policies the lo-
cal network administrators have set forward? The most obvious issue
is whether or not the AS Path advertised by the peer is an acceptable
path to send the traffic along.

We argue elsewhere that the second two goals cannot be fully met
within an operational internetwork, for many reasons; see draft-
white-pathconsiderations-00.txt  for further discussion on this
point. In this article, then, we discuss how soBGP can meet the first two
goals in operational networks. 

Begin at the Beginning: Who Are You? 
The first step in securing anything is authentication; each participant
must have some way of knowing who the other participants are, and
what information they will be using to sign or encrypt their data. This is
a classic problem in cryptography, called key distribution. There must
be some way to receive keys used to sign or encrypt data, and then to
validate that the keys received actually belong to the participant we
believe they belong to. 

This problem is addressed in soBGP using an EntityCert, which ties an
AS number to a public key (or a set of public keys) corresponding to a
private key the AS will be using to sign various other certificates. An
EntityCert is defined in soBGP to be an X.509v3 certificate, similar to
those used by Transport Layer Security (TLS) and IP Security (IPSec).
The main problem we face when accepting an EntityCert is knowing
whether or not the key carried within the certificate is actually the key
of the advertising AS. 

soBGP resolves this by requiring the EntityCert to be signed by a third
party, validating that this AS actually belongs with this key. A small
number of “root keys” distributed out of band could then be used to
validate a set of advertised EntityCerts. These are used in turn to build
up the database of known good ASm/key pairs in the system, allowing
even more EntityCerts to be validated. Thus, EntityCerts can form a
web of trust, built on the public keys of a small number of well-known
entities, such as top-level backbone service providers, key authentication
service providers (such as Verisign), and others. 
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Figure 1: Web of Trust 

The key each AS distributes in its EntityCert is actually the public half
of a private/public key pair. An AS would keep its private key entirely
private, holding it on one highly secure device in its network (which is
not even required to be online), and generating signatures for other
certificates as needed. Only an AS public key is ever exposed in this
way, so no special protection mechanisms (for example, tamper-
resistant hardware) are required at any border to prevent private keys
from being compromised. 

The First Goal: Are You Authorized? 
Now that we have distributed a public key per AS, we can build a
certificate that will provide authorization for an AS to advertise a
specific block of addresses. This authorization is provided through an
Authorization Certificate, or AuthCert. An AuthCert ties an AS to a
block of addresses that the AS may advertise, as Figure 2 illustrates. 
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Figure  2: Authorization
Example

Starting at the top of the illustration, we find that some AS has
authorized AS65000 to advertise prefixes within the block 10.0.0.0/8.
The AuthCert is signed using the authorizing AS key. To delegate some
part of this block of address space to another AS, AS65001, AS65000
builds an AuthCert tying 10.1.0.0/16 to AS65001. AS65001, in turn,
suballocates a smaller part of this address space to AS65002, by
building an AuthCert tying AS65002 to 10.1.1.0/24.

Any device receiving these three AuthCerts can check them by: 

• Looking up the public key of the authorizer, and verifying the signa-
ture on the AuthCert

• Making certain the authorizer is permitted to advertise the address
space it has suballocated this block of address space from 

The device then builds a local table of address blocks and corres-
ponding ASs authorized to advertise prefixes within those address
blocks. Received updates can be checked against this database to verify
authorization of the originating AS to advertise a prefix. 

Blocks of address space are used here, rather than individual prefixes;
an AuthCert can authorize an AS to advertise any number of prefixes
within a block of addresses. This reduces the number of certificates
within the system, thereby reducing overall cryptographic processing
requirements. If a specific AS desires per-prefix authorization, it can
build individual AuthCerts for each allocated prefix, rather than for
blocks of address space. 
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Per-Prefix Policy 
AuthCerts are not advertised as independent certificates within soBGP;
instead, they are wrapped in a PrefixPolicyCert. PrefixPolicyCerts
contain an AuthCert, a set of policies the originator would like to apply
to prefixes advertised within this block of addresses, and a signature
generated using the private key of the authorized AS. Policies that may
be included in the PrefixPolicyCert include the longest prefix length
allowed within the address block, and possibly other policies, such as a
list of ASs that may not be or must be in the AS Path of routes to
destinations within the address block. 

In reality, the per-prefix policies available to the originator are limitless;
the main problem is enforcing those policies when they are received by
other ASs. 

The Second Goal: Do You Really Have a Path? 
Our second goal is to be able to verify that the advertiser of a given
route actually has a path to the destination. This goal is met in soBGP
by building a topology map of the paths of the entire internetwork.
Each AS attached to the internetwork builds an ASPolicyCert, which
contains, primarily, a list of its peers, and signed using the originator’s
private key. Using this list of transit peers, a map of the internetwork
topology may be built, as Figure 3 illustrates. 

Figure 3: Connectivity
Graph Example

If AS65005 receives an update from AS65002, claiming it can reach a
destination in AS65000 through the path {65002, 65001, 65000}, it
can: 

• Check to make certain AS65002 claims to be connected to AS65001
in its ASPolicyCert, and that AS65001 claims to be connected to
AS65002 in its ASPolicyCert 

• Check to make certain AS65001 claims to be connected to AS65000
in its ASPolicyCert, and that AS65000 claims to be connected to
AS65001 in its ASPolicyCert 
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If, for instance, AS65002 claims a path to a destination inside AS65000
through the path (65002, 65000), AS65002 would be able to discover
that the path is invalid, because AS65000 does not claim to be
connected to AS65002. This simple two-way connectivity check along a
graph can be mixed with various policy statements—stating a specific
peer is not a transit, not advertising certain peers, etc.—to provide a
much wider range of policies than AS Path-based methods.

Transporting Certificates 
One of the primary problems any security system such as soBGP is
going to face is transporting security information through the internet-
work. We would like to make certain we do not rely on the routing
system to provide information about the security of the routing system.
In other words, we would not like to rely on unsecured routing infor-
mation in order to reach a server providing the information required to
secure the path to the server itself. 

soBGP resolves this by proposing to advertise certificates in much the
same way as routing information is propagated today—through an in-
terdomain protocol. Currently the soBGP drafts specify a new type of
BGP message, the SECURITY message, which can be used to transport
the required certificates, the EntityCert, the PrefixPolicyCert, and the
ASPolicyCert, throughout an internetwork. Other methods of trans-
porting data such as these certificates throughout an internetwork are
currently being pursued by the IETF; if other methods are offered,
soBGP could transport certificates across any such distribution
mechanism. 

Deployment 
Finally, we come to the hardest problem any routing security system is
going to face: actually getting it operating in the field, with useful results,
with a minimum of equipment changes, and a minimum number of
participants. Here, soBGP provides a wide variety of options, primarily
because it is not transport-dependent, nor dependent on a yet-to-be
constructed centralized set of servers. 

Although deployment options abound, here we discuss three, just to
show the range of options available. Figure 4 illustrates these options. 

The first option shown in this network is direct certificate exchange and
processing between border routers. With this option, routers that are
capable of the cryptographic processing required to validate received
certificates exchange certificates with their peers in other ASs (just as
they exchange routing information today), process those certificates,
and build local databases from which they perform security checks on
received updates. 
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Figure 4: Deployment Options 

Although it may appear that processing, in this situation, would be
extensive, it is actually possible to spread the processing required out
among the border routers in a large AS. For instance, each certificate
that router C receives and processes can be subsequently sent over an
encrypted link to Router E. Router E could treat these certificates as
though they had been validated locally, because they are received across
an encrypted link from a trusted peer within the same administrative
domain. Thus, only the edge router that has learned a certificate would
actually process the certificate. This spreads the processing along all the
edges in the AS. 

A second option is for the edge routers, B and C, to exchange the
certificates, but not process them. Instead, each edge router would re-
lay the not-yet-validated certificates to internal servers A and D,
respectively, thereby validating the certificates by performing the neces-
sary cryptographic operations. As the border routers receive updates,
they can query the server about the validity of each update, and take
action based on the reply received. 

Finally, it is possible for the servers to exchange certificates directly,
over a multihop session. Servers A and D would then process the
certificates, and the border routers, B and C, would query these servers
to determine if received updates are valid or invalid.
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Summary 
Through this short survey of soBGP, we have shown it to be a flexible,
moderately lightweight, yet strong system for validating the information
carried through BGP in a large internetwork. It has low overhead
processing requirements and very flexible deployment options, but no
reliance on centralized servers. We are currently working to develop
prototypes of soBGP on several platforms, to show how the technology
will work on a wide range of devices. 

For more information on soBGP, refer to: 
ftp://ftp-eng.cisco.com/sobgp/index.html  

You will find the most recent versions of the drafts, several slide shows,
and other information about soBGP at this site. 
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Trends in Viruses and Worms 
by Thomas M. Chen, Southern Methodist University

he modern computer virus was conceived and demonstrated by
Fred Cohen in 1983. Like biological viruses, computer viruses
reproduce by attaching to a normal program or document and

taking over control of the execution of that program to infect other
programs. Early viruses could spread slowly mostly by floppies (such as
the 1986 Brain virus), but the Internet has made it much easier for
viruses to move among computers and spread rapidly. Networks have
created a fertile environment for worms, which are related to viruses in
their ability to self-replicate but are not attached to other programs.
Worms are particularly worrisome as standalone automated programs
designed to exploit the network to seek out vulnerable computers. The
term worm was originated by John Shoch and Jon Hupp during their
experiments on mobile software at Xerox PARC in 1979, inspired by
the network-based tapeworm monster in John Brunner’s novel, The
Shockwave Rider[1]. Shoch and Hupp thought of worms as multi-
segmented programs distributed across networked computers. 

The Internet increases the vulnerability of all interconnected machines
by making it easier for malicious programs to travel between computers
by themselves. Recent virus and worm outbreaks, such as the Blaster
worm in August 2003 and the SQL Sapphire/Slammer worm in January
2003, have demonstrated that networked computers continue to be
vulnerable to new attacks despite the widespread deployment of
antivirus software and firewalls. Indeed, a review of the history of
viruses and worms shows that they have continually grown in
sophistication over the years. This article highlights a series of
significant past innovations in virus and worm technology. The purpose
is to show that viruses and worms continue to pose a major risk today
and most likely into the future as their creators persist in seeking ways
to exploit security weaknesses in networked systems. 

Stealth 
The earliest viruses attempted to hide evidence of their presence, a trend
that continues to today. The 1986 DOS-based Brain virus hid itself in
memory by simulating all of the DOS system calls that normally detect
viruses, causing them to return information that gave the appearance
that the virus was not there. 

The 2001 Lion worm installed a rootkit called t0rn, which is designed
to make the actions of the worm harder to detect through numerous
system modifications to deceive syslogd from properly capturing sys-
tem events (syslogd is often used to detect worm activity)[2]. More
recently, viruses and worms have attempted to hide by actively attack-
ing antivirus software on the infected computer (refer to the section
“Armoring”). 

T
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Social Engineering 
The 1987 Christma Exec virus was an early example of social engineer-
ing, spreading by e-mail among IBM mainframes. An arriving message
tricks the user into executing the virus by promising to draw a Christ-
mas tree graphic. The virus does produce a Christmas card graphic on
the computer display (drawn using a scripting language called Rexx)
but sends a copy of itself in the user’s name to that user’s list of outgo-
ing mail recipients. The recipients believe the e-mail is from the user, so
they are more likely to open the e-mail.

Social engineering continues to be common practice in today’s viruses
and worms, particularly those spread by e-mail. In January 1999, the
Happy99/Ska worm/Trojan horse hybrid spread by e-mail with an at-
tachment called Happy99.exe [3]. When the attachment was executed, it
displayed fireworks on the screen to commemorate New Year’s Day,
but secretly modified the WSOCK32.DLL file (the main Windows file for
Internet communications) with a Trojan horse program that allowed
the worm to insert itself into the Internet communications process. Ev-
ery e-mail sent by the user generated a second copy without any text
but carried the worm to the same recipients. 

The 1999 PrettyPark worm propagated as an e-mail attachment called
Pretty Park.exe . The attachment is not explained, but it bears the
icon of a character from the television show, South Park. If executed, it
installs itself into the Windows System folder and modifies the Registry
to ensure that it runs whenever any .EXE  program is executed. In
addition, the worm e-mails itself to addresses found in the Windows
Address Book. It also mails some private system data and passwords to
certain Internet Relay Chat (IRC) servers. Reportedly, the worm also
installs a backdoor to allow a remote machine to create and remove
directories, and send, receive, and execute files. 

In February 2001, the Anna Kournikova virus demonstrated social
engineering again, pretending to carry a JPG picture of the tennis
player. If executed, the virus e-mails a copy of itself to all addresses in
the Outlook address book. 

In March 2002, the Gibe worm spread as an attachment in an e-mail
disguised as a Microsoft security bulletin and patch. The text claimed
that the attachment was a Microsoft security patch for Outlook and
Internet Explorer. If the attachment is executed, it displays dialog boxes
that appear to be patching the system, but a backdoor is secretly
installed on the system. 

Macro Viruses 
The Concept virus was the first macro virus, written for Word for
Windows 95. The vast majority of macro viruses are targeted to
Microsoft Office documents that save macro code within the body of
documents. Macro viruses have the advantages of being easy to write
and independent of computing platform. However, macro viruses are
no longer widespread after people have become more cautious about
using the Office macro feature. 
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Mass E-Mailers 
In March 1999, the Melissa macro virus spread quickly to 100,000
hosts around the world in three days, setting a new record and shutting
down e-mail for many organizations using Microsoft Exchange
Server[4]. It began as a newsgroup posting promising account names and
passwords for erotic Web sites. However, the downloaded Word
document actually contained a macro that used the functions of
Microsoft Word and the Microsoft Outlook e-mail program to
propagate. Up to that time, it was widely believed that a computer
could not become infected with a virus just by opening e-mail. When
the macro is executed in Word, it first checks whether the installed
version of Word is infectable. If it is, it reduces the security setting on
Word to prevent it from displaying any warnings about macro content.
Next, the virus looks for a certain Registry key containing the word
“Kwyjibo” (apparently from an episode of the television show, The
Simpsons). In the absence of this key, the virus launches Outlook and
sends itself to 50 recipients found in the address book. Additionally, it
infects the Word NORMAL.DOT template using the Microsoft Visual
Basic for Applications (VBA) macro auto-execute feature. Any Word
document saved from the template would carry the virus.

In June 1999, the ExploreZip worm appeared to be a WinZip file
attached to e-mail but was not really a zipped file[5]. If executed, it
appears to display an error message, but the worm secretly copies itself
into the Windows Systems directory or loads itself into the Registry. It
sends itself via e-mail using Outlook or Exchange to recipients found in
unread messages in the inbox. It monitors all incoming messages and
replies to the sender with a copy of itself. 

In May 2000, the fast-spreading Love Letter worm demonstrated a
social engineering attack[6]. It propagated as an e-mail message with the
subject “I love you” and text that encourages the recipient to read the
attachment. The attachment is a Visual Basic script that could be
executed with Windows Script Host (present if the computer has
Windows 98, Windows 2000, Internet Explorer 5, or Outlook 5). Upon
execution, the worm installs copies of itself into the Windows System
directory and modifies the Registry to ensure that the files are run when
the computer starts up. The worm also infects various types of files (for
example, .VBS , .JPG , .MP3, etc.) on local drives and networked shared
directories. If Outlook is installed, the worm e-mails copies of itself to
addresses found in the address book. In addition, the worm makes a
connection to IRC and sends a copy of itself to anyone who joins the
IRC channel. The worm has a password-stealing feature that changes
the startup URL in Internet Explorer to a Website in Asia. The Website
downloads a Trojan horse designed to collect various passwords from
the computer. 

In 2002, 90 percent of the known viruses were mass e-mailers. Two of
the most prevalent ones, Bugbear and Klez, began a trend of carrying
their own Simple Mail Transfer Protocol (SMTP) engines. Although e-
mail continues to be the most common infection vector, recent worms
have been exploring new vectors (see the section “New Infection
Vectors”).
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In addition, mail servers are becoming more powerful in their
capabilities to detect and filter malicious code. For these reasons, mass
e-mailing may decline as an infection vector for future viruses. 

Polymorphism 
Polymorphism is based on the simpler idea of encryption, which makes
a virus harder to detect by antivirus software scanning for a unique vi-
rus signature (byte pattern). Encryption attempts to hide a recognizable
signature by scrambling the virus body. To be executable, the en-
crypted virus is prepended with a decryption routine and encryption
key. However, encryption is not effective because the decryption rou-
tine remains the same from generation to generation, although the key
can change, scrambling the virus body differently. Antivirus scanners
can detect a sequence of bytes identifying a specific decryption scheme. 

Polymorphic viruses permute continuously to avoid detection by
antivirus scanning[7]. The earliest polymorphic virus might have been a
virus found in Europe in 1989. This virus replicated by inserting a
pseudorandom number of extra bytes into the decryption algorithm,
preventing any common sequence of more than a few bytes between
two successive infections. Polymorphism became practical when a well-
known hacker, Dark Avenger, developed a user-friendly Mutation
Engine program to provide any virus with variable encryption. With a
static signature so small, the risk of false positives by antivirus scanners
became very high. Other hackers soon followed with their own versions
of so-called mutation engines. The 1995 Pathogen and Queeg viruses
were polymorphic DOS file-infecting viruses produced by Black Baron’s
Simulated Metamorphic Encryption enGine (SMEG)[7]. 

Blended Attacks 
The famous 1988 Morris worm was the first to use a combination of
attacks (or blended attacks) to spread quickly to 6000 UNIX computers
in a few hours (10 percent of the Internet at that time)[8]. 

• It captured the password file and ran a password-guessing program
on it using a dictionary of common words. 

• It exploited the debug option in the UNIX sendmail program, allow-
ing it to transfer a copy of itself. 

• It carried out a buffer overflow attack through a vulnerability in the
UNIX fingerd program. 

In May 2001, the Sadmind/IIS worm spread by targeting two separate
vulnerabilities on two different operating systems. It first exploited a
buffer overflow vulnerability in Sun Solaris systems and installed soft-
ware to carry out an attack to compromise Microsoft Internet
Information Services (IIS) Web servers. 

The July 2001 Sircam worm uses two ways to propagate. First, it e-
mails itself as an attachment using its own SMTP engine, and if the
attachment is executed, e-mails a copy of itself to addresses found in the
Windows address book. Second, it spreads by infection of unprotected
network shares. 
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In September 2001, Nimda raised new alarms by using five different
ways to spread to 450,000 hosts within the first 12 hours[9]. Nimda
seemed to signal a new level of worm sophistication. 

• It found e-mail addresses from the computer Web cache and default
Messaging Application Programming Interface (MAPI) mailbox. It
sent itself by e-mail with random subjects and an attachment named
readme.exe . If the target system supported the automatic execution
of embedded MIME types, the attached worm would be automati-
cally executed and infect the target. 

• It infected Microsoft IIS Web servers, selected at random, through a
buffer overflow attack called a unicode Web traversal exploit. 

• It copied itself across open network shares. On an infected server, the
worm wrote Multipurpose Internet Mail Extensions (MIME)-en-
coded copies of itself to every directory, including network shares. 

• It added JavaScript to Web pages to infect any Web browsers going
to that Website. 

• It looked for backdoors left by previous Code Red II and Sadmind
worms. 

Armoring 
In November 2002, the Winevar worm was an example of an
“armored” worm that contained special code designed to disable
antivirus software using a list of keywords to scan memory to recognize
and stop antivirus processes and scan hard drives to delete associated
files[10]. 

Klez and Bugbear are recent examples of worms that attack antivirus
software by stopping active processes and deleting registry keys and
database files used by popular antivirus programs. The 2003 Fizzer and
Lirva worms also attempt to disable antivirus software.

Dynamic Software Updates 
In October 2000, the Hybris worm propagated as an e-mail attach-
ment[11]. It connected to the alt.comp.virus  newsgroup to receive
encrypted plug-ins (code updates). The method is sophisticated and
potentially very dangerous, because the worm payload (destructive
capability) can be modified dynamically. 

The 2003 Lirva worm attempted to connect to a Website on
web.host.kz  to download BackOrifice, a notorious remote-access
software package that gives complete control to a remote attacker. It
also attempted to download another unknown file that was not found
on the Website. 

This technique was given an interesting twist by the Welchia or Nachi
worm, which began spreading on August 18, 2003, soon after the
Blaster worm. Apparently, its creator intended Welchia as a “good”
worm to remove Blaster. It attempted to download and install a fix for
Blaster from a Microsoft Website.
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New Infection Vectors 
The Linux Slapper worm, appearing in September 2002, was among
the first to exploit peer-to-peer (P2P) technology[12]. It spread to Linux
computers by exploiting the long Secure Sockets Layer 2 (SSL2) key
argument buffer overflow in the libssl library, used by the mod_ssl
module of the Apache 1.3 Web server. When the worm infects a new
machine, it binds to User Datagram Protocol (UDP) port 2002 and
becomes part of a P2P network. The parent of the worm on the
attacking machine sends to its offspring the list of all hosts on the P2P
network and broadcasts the address of the new worm on the network.
Then periodic updates to the host list are exchanged between machines
on the network. The new worm also scans the network for other
vulnerable machines, sweeping randomly chosen class B networks. 

In March 2003, the AimVen worm spread by the America OnLine
Instant Messager (AIM) by modifying the AIM program. Whenever an
.EXE  file is sent through AIM, the worm overwrites the file with a copy
of itself.

The Fizzer worm discovered in May 2003 is a mass e-mailer that
includes its own SMTP engine like Klez and Bugbear. It also tries to
spread via KaZaa, a popular P2P file-sharing application, and shared
directories. 

The 2003 Lirva worm, named after the singer, Avril Lavigne, is a mass
e-mailer taking advantage of the same MIME header exploit as
Badtrans and Klez, but also tries to spread by IRC, “I seek You” (ICQ),
KaZaa, and open network shares[13]. 

Data-Stealing Payloads
Most fast-spreading worms in the past have not carried destructive
payloads. Instead, they have tended to appear to be proof-of-concepts
to demonstrate a particular security weakness. Some worms, though,
such as Code Red, have installed Denial-of-Service (DoS) agents or
backdoors on infected machines. Recently worms have begun to carry
keyloggers and password-stealing Trojans in their payloads. 

The 2003 Fizzer worm includes a keystroke logging Trojan horse that
stores the data in an encrypted file. It establishes its own accounts on
IRC and AIM to wait for instructions from the virus writer, who could
conceivably fetch the keystrokes data. 

The 2003 Lirva worm e-mails cached Windows dialup networking
passwords to the virus writer, and e-mail random .TXT  and .DOC files
to various addresses.

Bugbear installs a keystroke logging tool into the Windows System
folder that e-mails the keystrokes data to preprogrammed addresses[14].
It listens on port 36794 for commands from a remote hacker. 
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Fast and Furious Worms 
A particularly worrisome new trend is extremely fast worms targeted to
specific (usually Windows-related) vulnerabilities that might saturate
their target population within a few hours or even less than an hour.
These worms tend to be simpler and targeted to single rather than
multiple vulnerabilities, in order to be highly efficient in their probing
for other vulnerable machines. 

The first example might be the Code Red worm, which actually
appeared in three different versions[15]. The first version of Code Red I
appeared on July 12, 2001, targeted to a buffer overflow vulnerability
in Microsoft IIS Web servers. However, a programming error in its
pseudorandom address generator caused each worm copy to probe the
same set of IP addresses and prevented the worm from spreading
quickly. A week later on July 19, a second version of Code Red I with
the programming error apparently fixed was able to infect more than
359,000 servers within 14 hours. At its peak, the worm was infecting
2000 hosts every minute. A more complex and dangerous Code Red II
targeted to the same IIS vulnerability appeared on August 4. 

More recently, the Structured Query Language (SQL) Sapphire/
Slammer worm appeared on January 25, 2003, targeted to Microsoft
SQL Server machines not running Service Pack 3 (SP3), such as SQL
Server 2000 and Microsoft Desktop Engine (MSDE) 2000[16]. It
reportedly infected 90 percent of vulnerable hosts within 10 minutes
(about 120,000 servers)[17]. The spreading rate was surprisingly fast and
resulted in DoS effects (network outages and high packet loss) due to
traffic overloading servers and routers. In the first minute, the infection
doubled every 8.5 seconds, and hit a peak scanning rate of 55,000,000
scans per second after only 3 minutes. In comparison, Code Red
infection doubled in 37 minutes (slower but infected more machines).
Slammer was able to spread so quickly because it appeared to be
designed simply for efficient replication. The worm carried no payload
and consisted of a single 404-byte UDP packet (including 376 bytes for
the worm) that could be sent without having to wait for responses from
targeted machines. In contrast, Code Red was about 4000 bytes and
Nimda was 60,000 bytes, and their scanning depended on the time to
establish TCP connections to targeted machines. The Slammer worm
was much more efficient, simply generating copies of itself at the full
rate of the infected machine. 

Latest Developments 
The week of August 12–19, 2003, has been called the worst week for
worms in history, seeing MS Blaster, Welchia (or Nachi), and Sobig.F in
quick succession. MS Blaster or LovSan was another fast worm, which
appeared on August 12, 2003, targeted to a Windows Distributed
Component Object Model (DCOM) Remote Procedure Call (RPC)
vulnerability announced on July 16, 2003[18]. The worm probes for a
DCOM interface with RPC listening on TCP port 135 on Windows XP
and Windows 2000 PCs. Through a buffer overflow attack, the worm
causes the target machine to start a remote shell on port 4444 and send
a notification to the attacking machine on UDP port 69.
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A Trivial File Transfer Protocol (TFTP) “get” command is then sent to
port 4444, causing the target machine to fetch a copy of the worm as
the file MSBLAST.EXE. In addition to a message against Microsoft, the
worm payload carries a DoS agent (using TCP SYN flood) targeted to
the Microsoft Website windowsupdate.com  on August 16, 2003.
Although Blaster has reportedly infected about 400,000 systems, experts
reported that the worm did not achieve near its potential spreading rate
because of novice programming.

Six days later on August 18, 2003, the apparently well-intended
Welchia or Nachi worm spread by exploiting the same RPC DCOM
vulnerability as Blaster. It attempted to remove Blaster from infected
computers and download a security patch from a Microsoft Website to
repair the RPC DCOM vulnerability. Unfortunately, its scanning
resulted in a DoS effect on some networks, such as Air Canada’s check-
in system and the U.S. Navy and Marine Corps computers. 

The very fast Sobig.F worm appeared on the next day, August 19,
2003, only seven days after Blaster[19]. The original Sobig.A version was
discovered in January 2003, and apparently underwent a series of
revisions until the most successful Sobig.F variant. Similar to earlier
variants, Sobig.F spreads among Windows machines by e-mail with
various subject lines and attachment names, using its own SMTP
engine. The worm size is about 73 kilobytes with a few bytes of garbage
attached to the end to evade antivirus scanners. It works well because it
grabs e-mail addresses from a variety of different types of files on the
infected computer and secretly e-mails itself to all of them, pretending to
be sent from one of the addresses. At its peak, Sobig.F accounted for 1
in every 17 messages, and reportedly produced over 1 million copies of
itself within the first 24 hours. Interestingly, the worm was programmed
to stop spreading on September 10, 2003, suggesting that the worm
was intended as a proof-of-concept. This is supported by the absence of
a destructive payload, although the worm is programmed with the
capability to download and execute arbitrary files to infected com-
puters. The downloading is triggered on specific times and weekdays,
which are obtained via one of several Network Time Protocol (NTP)
servers. The worm sends a UDP probe to port 8998 on one of several
preprogrammed servers, which responds with a URL for the worm to
download. The worm also starts to listen on UDP ports 995–999 for
incoming messages, presumably instructions from the creator. 

Conclusions 
Why does the Internet remain vulnerable to large-scale worm out-
breaks? Since at least 1983, the Internet community has understood the
risks and mechanics of viruses. The 1988 Morris worm taught the com-
munity to be watchful for potentially dangerous worms. Over the years,
a variety of antivirus software, firewalls, intrusion detection systems,
and other security equipment have been installed. Moreover, the Com-
puter Emergency Response Team (CERT) at CMU was established as
the first computer security incident response team, which later joined an
expansive global coalition of security incident response teams called the
Forum of Incident Response and Security Teams (FIRST)[20]. 
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Despite our knowledge and infrastructure defenses, many viruses and
worms have broken out regularly in the Internet over the years. By
some reports, 5 to 15 new viruses and worms are released every day,
although a fraction of that number are not released in the wild and
most do not spread well. Still, fast-spreading viruses and worms con-
tinue to appear with regularity. Outbreaks have become so common-
place that most organizations have come to view them as a routine cost
of operation. 

The problem is sometimes portrayed as a perpetual struggle between
virus writers who keep innovating (as described here) and the antivirus
industry, which tries to keep up. However, the problem is actually
larger, involving the entire computer industry. Viruses and worms are
successful because computers have security vulnerabilities that can be
exploited. Clearly, the Internet itself is simply serving its purpose of
interconnecting computer systems. The security vulnerabilities exist in
the host end systems. Security vulnerabilities continue to exist for many
reasons. First, software is often written in an unsecure manner, for
example, vulnerable to buffer overflow attacks that are commonly used
by worms. Buffer overflow attacks have been widely known since 1995,
but this type of vulnerability continues to be found very often (on every
operating system.) Second, when vulnerabilities are announced with
corresponding software patches, many people are slow to apply patches
to their computer for various practical reasons. Weakly protected
computers can be compromised, putting the entire community at risk,
including secured computers that can still be impacted by the traffic
effects of a worm outbreak. 

However, there is reason to be hopeful for a solution. Fortunately,
worms typically have a weakness of exploiting vulnerabilities that have
been known for some time. Worm writers do not invent new exploits
for the simple reason that they want to ensure that their worm will
spread after it is released. For example, the Code Red I worm took
advantage of a buffer overflow vulnerability in Microsoft IIS servers
that had been known for a month. The Nimda worm exploited a
unicode Web traversal vulnerability in Microsoft IIS servers that was
published a year earlier. The SQL Slammer/Sapphire worm exploited a
buffer overflow vulnerability in Microsoft SQL servers that had been
known for six months. The recent Blaster worm exploited a Windows
DCOM RPC vulnerability announced two months earlier. Watching
for probing activity attempting to exploit known vulnerabilities could
help detect and block worm outbreaks at an early stage. Ideas for
automatic detection and quarantine of new epidemics is attracting
research[21]. 

Aside from technological considerations, an important issue is account-
ability. The most obvious parties to hold liable are the virus creators,
but it has been observed many times that few virus writers have been
prosecuted, and sentences have tended to be light. The author of the
1988 Internet worm, Robert Morris, was sentenced to three years of
probation, 400 hours of community service, and a $10,000 fine.
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Chen Ing-hau was arrested in Taiwan for the 1998 Chernobyl virus, but
he was released when no official complaint was filed. Onel de Guzman
was arrested for writing the 2000 LoveLetter virus, which resulted in
$7 billion of damages, but he was released because of the lack of
relevant laws in the Philippines. Jan De Wit was sentenced for the 2001
Anna Kournikova virus to 150 hours of community service. David L.
Smith, creator of the 1999 Melissa that caused at least $80 million of
damages, was sentenced to 20 months of custodial service and a $7500
fine. 

It is notoriously difficult to trace a virus or worm to its creator from
analysis of the code, unless inadvertent clues are left in the code. In
addition, cases are difficult to prosecute, and malicious intention (as
opposed to just recklessness) is difficult to prove. Moreover, long prison
sentences have been perceived as overly harsh for arrested virus
creators, who have tended to be teenagers and university students. In
addition, in the absence of a serious legal deterrent, the general
perception persists that virus creators can easily avoid the legal
consequences of their actions. Perhaps to address this problem,
authorities have been diligently investigating the creators of Blaster and
Sobig. So far, a teenager, Jeffrey Lee Parson, has been arrested for
writing the Blaster.B variant, a slight modification of the original
Blaster. Soon afterward, Dan Dumitru Ciobanu was arrested in
Romania for writing the Blaster.F variant. 

Some have argued wishfully that software vendors should be held
financially liable for damages resulting from the security vulnerabilities
in their products. The assumption is that accountability would increase
motivation to write and sell more secure software, a solution that
would result in a less inviting environment for viruses and worms. So
far, software vendors have managed to acknowledge their role but
avoid accountability.
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IPv6 Behind the Wall
by Jim Bound

Pv6 has technology advantages over IPv4, and most of them will
not be seen by the end user any more than users see features added
to other extensions to the Internet Protocol suite, sensors on their

automobiles, or from any core technology evolution. This article focuses
on three of those IPv6 technology advantages “Behind the Wall.” 

An essential catalyst for the Next-Generation Internet is the Internet
Protocol Version 6 (IPv6), which will provide an evolution to a more
pervasive use of the Internet and networking in general. The current
Internet, using IPv4, is insufficient to support the business and oper-
ational preconditions for peer-to-peer applications and security, billions
of mobile devices, sensor networks, and the requisite distributed com-
puting infrastructure to support a mobile society. The “band aids”
applied to permit the current Internet to keep it operating has created
additional operational costs and reduced operational capabilities for
users and networks. 

This article is an IPv6 Forum (www.ipv6forum.com ) statement of the
technology advantages of IPv6. 

IPv6 Supports End-to-End Applications and Security 
There are several schools of thought and opinions on the issue of
address space and all project different results, depending on one’s
mathematical view and philosophy regarding use models. There is also
the effect of disruptive technology, which can make moot any
projections of IPv4 address space. In that sense, rationing is justified and
intelligent. The IPv6 Forum believes we already are experiencing the
initial quake of disruptive technology, and that there is a need for users
and markets to evolve further with a basic tenet that end-to-end appli-
cations and security are a priori for that evolution to begin. The IPv6
Forum believes that Network Address Translation (NAT) is about
control, but that control comes at a cost of the freedom to use peer-to-
peer computing over client to server-only computing. 

Two users on the Internet today generally cannot each initiate peer-to-
peer communications with each other because their location and
identity are not available to each other from two disparate networks. In
addition, security between them must trust a third party, and absolute
private communications is impossible. The reason is that the Internet
has evolved so that users are generally behind NATs that preclude peer-
to-peer communications, or the exchange of private security credentials.
Some will say this affords users security on the Internet. Although NAT
does provide a denial-of-service perimeter, it also provides a denial of
service to a direct trust relationship between peers. IPv6 is the only way
to have peer-to-peer security for the Next-Generation Internet at a
reasonable cost and a true privacy trust model on the Internet. 

I
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In the field of network computer science when engineers and architects
implement translation functions in a solution, a cost is incurred that
would not exist without translation. This is due to the need to keep
state before, during, and after the translation. In software engineering
terminology, these state machines add time and space costs to the entire
operation. In addition, a NAT box is a single point of failure, because it
is the only point on the network where a user can exit or enter when
translation exists. Translation also does not permit the use of all
functions possible without translation because too many participants
need to know the mappings, and each function requires a separate state
to be maintained, and the time + space costs increase exponentially. The
time + space costs of NAT to keep the Internet operational have been
passed on to every part of the current Internet business, consumer, and
government market sectors, and cannot even support the original
functions of the Internet before NAT. The current Internet has no hope
of supporting the functions of the Next-Generation Internet required or
of offering a solution to the great digital divide that exists currently and
is increasing daily.

The good news is that IPv6 is evolving, early adopter deployment has
begun, and vendors have delivered initial IPv6 products to the market.
IPv6 will not require NAT, and the infrastructure supports a stateless
architecture for the Internet, using statefull properties only where they
can be used without a translation attribute or policy. IPv6 inherently
supports mobile communications, billions of devices, and sensor
networks that will be pervasive at a reasonable cost and provide the
option to eliminate the digital divide within the current Internet. 

IPv6 Supports a Stateless Node Discovery Architecture 
A Next-Generation Internet base technology advantage for mobile user
devices, ad hoc networks, mobile network providers, and generally for
all users is the Stateless Node Discovery Architecture inherent within
IPv6. 

IPv6 nodes can discover each other and form IPv6 addresses to
communicate on a network using what is called Neighbor Discovery
and Stateless Autoconfiguration. IPv6 supports an extensible stateless
node discovery paradigm, which provides the following features: 

• Discover presence of nodes on the network 

• Discover Datalink Layer nodes on the network 

• Discover routers on the network 

• Discover link configuration parameters on the network 

These features permit an IPv6 node to obtain and maintain informa-
tion about the accessibility of another node on the network for
communications. Node Discovery is the predecessor to the node obtain-
ing an address from IPv6 autoconfiguration. This core IPv6 technology
framework also permits nodes to communicate on networks where
there are no routers within an ad hoc network. 
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A host, when booted on an IPv6 link, first creates a link-local address
by taking the architecturally defined prefix in Neighbor Discovery FE80,
and appending an End User Identifier (EUI), determined by the host, to
that prefix. This link-local address is then verified on the link that it is
not duplicated with other link-local addresses on that host’s link. This
host communication is performed using link IPv6 multicast packets, to
avoid duplicate link-local addresses, which are not permitted on an IPv6
Link. 

The host then uses the link-local address to send on the IPv6 link
Neighbor Solicitations, and all other hosts on that link see those
multicast solicitations, and then return Neighbor Advertisements to the
host. After this communications process, all nodes on the IPv6 link can
now communicate, and communication was accomplished without the
use of servers or routers in a stateless manner. 

The host also listens for Router Advertisements on the IPv6 link (or
sends Router Solicitations), which provide address prefixes, link
configuration parameters, and information as to whether or not to use a
stateless or stateful method for address assignment, and additional
network configuration parameters using the Dynamic Host Configur-
ation Protocol for IPv6 (DHCPv6)[1]. 

If the host is instructed to use the stateless method for address
configuration, then it can use the router prefixes announced to form
IPv6 addresses from those prefixes by appending the EUI determined
from the link-local address to that prefix to create an IPv6 Address.
IPv6 supports multiple address types within the address architecture[2,3].
If the host is instructed to use the stateful method for address
configuration, then DHCPv6 can be used to configure additional hosts’
addresses. 

Users will not see these IPv6 stateless advantages for network
communications, but they will exist behind the wall of the user to
provide a new and improved set of mechanisms for Node Discovery
and Address Autoconfiguration far more robust and efficient than using
the current IP Version 4 (IPv4) protocol. The IPv6 Stateless Architecture
for Node Discovery permits a new model for node communications on
links. 

The Mobile IPv6 Technology Value Proposition 
Mobile IPv6 offers many improvements over Mobile IPv4. Mobile IP as
a technology permits users to remain connected across wireline (for
example, Ethernet, xDSL) and wireless (for example, 802.11, cellular,
satellite) networks, while roaming between networks. This permits users
to stay connected while on the way to the airport from home, rather
than shutting down their personal digital assistant (PDA)/laptop at
home, and reconnecting at the WiFi location at the airport. 
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Figure 1: Route Optimization with Built-In Security

Figure 1 depicts the multiple phases of a mobile IPv6 connection. On
the home network, a mobile node receives its home address as any IPv6
node. The mobile node registers that address with the Home Agent,
which is a router that keeps the location information for the mobile
node when it moves to a foreign network, stores the mobile-node care-
of address when the mobile node is away from home, and performs
other functions on behalf of the mobile node when it is away from
home. A peer node that the mobile node communicates with is defined
as the Correspondent Node (which may be stationary or mobile). 

Security between the mobile node and home agent can be accomplished
using the IP Security Protocol (IPSec) architecture. This permits secure
communications between the mobile node and the home agent. When a
correspondent node receives a packet from a mobile node, it first checks
its binding caches to see if it has a cache of the mobile-node care-of
address, and if it does not, the correspondent node sends the packet to
the mobile-node home address. The home agent receives all packets sent
to the mobile node when it is away from home and then tunnels the
packets to the mobile-node care-of address. 

To permit a mobile node and correspondent node to communicate di-
rectly, without going through a home agent, requires the use of Mobile
IPv6 Route Optimization. First the connection to the correspondent
node needs to be secure from the home agent and directly from the mo-
bile node. In the figure, that is done using a procedure defined as Return
Routability (RR) within the Mobile IPv6 protocol. The network path
between the mobile node and correspondent node is secured through
the RR procedure. 
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Mobile IPv6 uses the extensibility of the IPv6 protocol defining new
Neighbor Discovery messages and types, Routing Header, and the use
of the Destination Option in an IPv6 packet, which does not exist in
IPv4. Discussion of those extensions is beyond the scope of this article,
and is left as an exercise for readers to read the actual Mobile IPv6
specification. 

Mobile IPv6 has core technical operational advantages over Mobile
IPv4, as follows: 

• There is no need to deploy special routers as “foreign agents,” as in
Mobile IPv4. Mobile IPv6 operates in any location without any spe-
cial support required from the local router. 

• Support for route optimization is a fundamental part of the protocol,
rather than a set of nonstandard extensions. 

• Mobile IPv6 route optimizations can operate securely even without
prearranged security associations. It is expected that the route optimi-
zations can be deployed on a global scale among all mobile-node
correspondent nodes. 

• Support is also integrated into Mobile IPv6 for allowing route optimi-
zations to coexist with routers that perform ingress filtering. 

• The IPv6 Neighbor Unreachability Detection assures symmetric
reachability between the mobile node and its default router in the cur-
rent location. 

• Most packets sent to a mobile node away from home in Mobile IPv6
are sent using an IPv6 routing header rather than IP encapsulation,
reducing the amount of resulting overhead compared to Mobile IPv4. 

• Mobile IPv6 is decoupled from any particular link layer because it
uses IPv6 Neighbor Discovery instead of IPv4 Address Resolution
Protocol (ARP). This also improves the robustness of the protocol. 

• The use of IPv6 encapsulation (and the routing header) removes the
need in Mobile IPv6 to manage tunnel soft state. 

• The dynamic home-agent address discovery mechanism in Mobile
IPv6 returns a single reply to the mobile node. The directed broad-
cast used in IPv4 returns separate replies from each home agent. 

Summary 
This article has presented three of the key technology advantages of
IPv6 behind the wall. There are others, but they are technically too
complex to define in a short article, but rather the subject of IPv6
implementation white papers. The IPv6 architecture extends the
potential for the Next-Generation Internet to support rapid
renumbering of networks, Quality of Service, extensions for ad hoc
networks, and the hope of extending the Internet beyond the
capabilities and functions today with IPv4. Most important is that IPv6
enhancements will be developed without using “band aids,” as is
currently being done with today’s IPv4 architecture. The author of this
article would like to thank Tony Hain and Patrick Grossetete from
Cisco Systems for their review. 
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For Further Reading
[1] R. Droms,  Ed., J. Bound, B. Volz, T. Lemon, C. Perkins, M. Carney,

“Dynamic Host Configuration Protocol for IPv6 (DHCPv6),” RFC
3315, July 2003.

[2] R. Hinden, S. Deering, “Internet Protocol Version 6 (IPv6) Addressing
Architecture,” RFC 3513, April 2003.

[3] R. Hinden, S. Deering, E. Nordmark, “IPv6 Global Unicast Address
Format,” RFC 3587, August 2003.

Additional information regarding IPv6 can be found at the International
IPv6 Forum Web site www.ipv6forum.com  and the North American
IPv6 Task Force Web site www.nav6tf.org . Specifically, readers can
view the IPv6 Forum basic value proposition at:

http://www.nav6tf.org/summit_slides/
IPv6_Value_Proposition_June_2003final.ppt

JIM BOUND works at Hewlett Packard Corporation as an HP Fellow and is a Network
Technical Director within the Enterprise UNIX (HP-UX) Division’s Network and
Security Lab Engineering Group. Jim was a member of the Internet Protocol Next
Generation (IPng) Directorate within the IETF, which selected IPv6, among several
proposals, to become the basis of the IETF’s work on an IPng in 1994. Jim has been a
key designer and implementor of IPv6, and contributor and coauthor of IPv6 speci-
fications. Jim founded an ad-hoc IPv6 deployment group working with implementors
across the Internet in 1998, which became the IPv6 Forum, where Jim is now Chair of
the IPv6 Forum Technical Directorate and Member of the Board of Directors. Jim is also
Chair of the North American IPv6 Task Force. Jim is a pioneer member of the Internet
Society, and member of the Institute of Electrical and Electronics Engineers (IEEE). In
July 2001, Jim received the IPv6 Forum Internet IPv6 Pioneer Award as the IPv6 Forum’s
“Lead Plumber.” Jim has been working in the field of networking as engineer and
architect since 1978, and is a subject matter expert to government and industry, for IPv6
and network-centric technology. E-mail: jim.bound@hp.com
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Call for Papers
The Internet Protocol Journal (IPJ) is published quarterly by Cisco
Systems. The journal is not intended to promote any specific products
or services, but rather is intended to serve as an informational and
educational resource for engineering professionals involved in the
design, development, and operation of public and private internets and
intranets. The journal carries tutorial articles (“What is…?”), as well as
implementation/operation articles (“How to…”). It provides readers
with technology and standardization updates for all levels of the
protocol stack and serves as a forum for discussion of all aspects of
internetworking.

Topics include, but are not limited to:

• Access and infrastructure technologies such as: ISDN, Gigabit Ether-
net, SONET, ATM, xDSL, cable fiber optics, satellite, wireless, and
dial systems

• Transport and interconnection functions such as: switching, routing,
tunneling, protocol transition, multicast, and performance

• Network management, administration, and security issues, includ-
ing: authentication, privacy, encryption, monitoring, firewalls,
trouble-shooting, and mapping

• Value-added systems and services such as: Virtual Private Networks,
resource location, caching, client/server systems, distributed systems,
network computing, and Quality of Service

• Application and end-user issues such as: e-mail, Web authoring,
server technologies and systems, electronic commerce, and applica-
tion management

• Legal, policy, and regulatory topics such as: copyright, content
control, content liability, settlement charges, “modem tax,” and
trademark disputes in the context of internetworking

In addition to feature-length articles, IPJ will contain standardization
updates, overviews of leading and bleeding-edge technologies, book
reviews, announcements, opinion columns, and letters to the Editor.

Cisco will pay a stipend of US$1000 for published, feature-length
articles. Author guidelines are available from Ole Jacobsen, the Editor
and Publisher of IPJ, reachable via e-mail at ole@cisco.com

  

This publication is distributed on an “as-is” basis, without warranty of any kind either express or
implied, including but not limited to the implied warranties of merchantability, fitness for a particular
purpose, or non-infringement. This publication could contain technical inaccuracies or typographical
errors. Later issues may modify or update information provided in this issue. Neither the publisher nor
any contributor shall have any liability to any person for any loss or damage caused directly or
indirectly by the information contained herein.
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Fragments Peter T. Kirstein Receives Postel Award 
Peter Kirstein is this year’s recipient of the prestigious Jonathan B. Pos-
tel Service Award. A founding member of the Internet Society, Professor
Kirstein is one of the pioneers of the Internet and was directly involved
with its development and evolution. He was awarded the Postel Service
Award in recognition of his foresight, persistence and innovation in
navigating international technical and political complexities, and thus
enabling the global propagation of the Internet. The Postel Award was
presented on July 16, during the 57th meeting of the Internet Engineer-
ing Task Force (IETF) in Vienna, Austria. 

“The Internet Society is pleased to recognize Peter’s significant contribu-
tion to the development of the Internet by awarding him this year’s
Postel Award,” said Internet Society President/CEO Lynn St. Amour.
“His commitment to the evolution and growth of the Internet, particu-
larly during the 1970s, made possible the global infrastructure we have
today. And, his efforts continue, most recently working in the Southern
Caucasus and Central Asia regions.” Steve Crocker, noted Internet au-
thority and chair of this year’s Postel award committee, commented on
Kirstein’s foresight in laying the groundwork for the Internet’s global
scope. “Peter Kirstein saw that the future of networking lay in interna-
tional cooperation and interconnection, and deftly organized the steps
to make it happen. He used both technical and personal skills and en-
abled many others to do magnificent work.” 

In 1973, Kirstein established one of the first two international nodes of
the ARPANET, playing a very active part in the ensuing SATNET activ-
ity, which covered five countries. His group continued to provide the
principal Internet link between the UK and the US throughout the
1980s, during which time he was responsible for both the .UK  and
.INT  domains. He continues to collaborate in US Defense Advanced
Research Agency (DARPA) programs. He has led six European projects
in computers and communications funded by the European Commis-
sion, and participated in twelve more. Currently, he is leading the Silk
Project, which is providing satellite-based Internet access to the Newly
Independent States in the Southern Caucasus and Central Asia. In June,
he was awarded a Commander, Order of the British Empire, for his
services to Internetworking research. 

He has chaired the International Collaboration Board, which currently
involves six NATO countries, since 1983, and served on the
Networking Panel of the NATO Science Committee (serving as chair in
2001). He has been on Advisory Committees for the Australian
Research Council, the Canadian Department of Communications, the
German GMD, and the Indian Education and Research Network
(ERNET) Project. Kirstein obtained his undergraduate degree in
Mathematics and Engineering from Gonville and Caius College,
Cambridge University, his PhD in Electrical Engineering from Stanford
University, and was awarded a DSc in Engineering from the University
of London. 
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Kirstein expressed his appreciation for the award and respect for Jon
Postel’s work, explaining, “Postel’s efforts to ensure the successful
development and deployment of the Internet was an inspiration to us
all. His stewardship of the RFC series was essential to the successful
development of the Internet. His conscientious and painstaking oper-
ation of the Domain Name System and the Internet Assigned Numbers
Authority were indispensable to the international growth of the system.
I am particularly pleased to be recipient of an award in his name, and
feel greatly honored to be considered worthy of having my activities
linked with his memorial.”

The Jonathan B. Postel Service Award was established by the Internet
Society to honor those who have made outstanding contributions in
service to the data communications community. The award is focused
on sustained and substantial technical contributions, service to the
community, and leadership. With respect to leadership, the nominating
committee places particular emphasis on candidates who have support-
ed and enabled others in addition to their own specific actions. 

The award is named after Dr. Jonathan B. Postel, who embodied all of
these qualities during his extraordinary stewardship over the course of a
thirty-year career in networking. He served as the editor of the RFC
series of notes from its inception in 1969, until 1998. He also served as
the ARPANET “numbers Czar” and the Internet Assigned Numbers
Authority over the same period of time. He was a founding member of
the Internet Architecture (nee Activities) Board (IAB) and the first
individual member of the Internet Society, where he also served as a
trustee. 

Previous recipients of the Postel Award include Jon himself (posthu-
mously and accepted by his mother), Scott Bradner, Daniel Karrenberg
and Stephen Wolff. The award consists of an engraved crystal globe
and $20,000. 

The Internet Society (ISOC) (www.isoc.org ) is a not-for-profit mem-
bership organization founded in 1991 to provide leadership in Internet
related standards, education, and policy. With offices in Washington,
DC, and Geneva, Switzerland, it is dedicated to ensuring the open
development, evolution and use of the Internet for the benefit of people
throughout the world. ISOC is the organizational home of the IETF, the
IAB, the Internet Engineering Steering Group (IESG) and other
Internet-related bodies who together play a critical role in ensuring that
the Internet develops in a stable and open manner. For over 12 years
ISOC has run international network training programs for developing
countries and these have played a vital role in setting up the Internet
connections and networks in virtually every country connecting to the
Internet during this time. 
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Deployment of Internationalized Domain Names 
The Internet Corporation for Assigned Names and Numbers (ICANN)
recently announced the commencement of global deployment of
Internationalized Domain Names (IDNs)[2,3,4], which will allow use on
the Internet of domain names in languages used in all parts of the
world.

In October 2002, the IESG approved the publication of a standardized
way of integrating IDNs into the Internet’s Domain Name System
(DNS). After the proposed technical standard was published in March
2003, the ICANN Board endorsed an approach for implementation of
the technical standard that had been developed cooperatively by
ICANN and leading IDN registries. 

Following up on the Board’s endorsement, ICANN and the leading
IDN registries finalized an agreed text of the principles to be followed in
IDN registration activities. Those “Guidelines for the Implementation
of Internationalized Domain Names”[1] were published. IDN registries
adhering to the Guidelines will employ language-specific registration
and administration rules that are documented and publicly available.
These IDN registries will work collaboratively with each other and with
interested stakeholders to develop the language-specific policies, with
the objective of achieving consistent approaches to IDN implementation
to maintain Internet interoperability for the benefit of DNS users
worldwide.

The registries for the .cn  (China), .jp  (Japan), and .tw  (Taiwan)
country codes, as well as for the .info  and .org  generic top-level
domains, have committed to adhere to the Guidelines. As authorized by
the ICANN Board in March, registries seeking to deploy IDNs under
their agreements with ICANN will be authorized to do so on the basis
of the Guidelines. In addition, the ICANN Board has recommended the
Guidelines to other registries, and encourages broad participation by
registries, language experts, and others in consultative, collaborative,
community-based processes to study and develop appropriate language-
specific IDN registration rules and policies. 

As the deployment of IDNs proceeds, ICANN and the participating
IDN registries have agreed to work together to review Guidelines at
regular intervals based on their deployment experience, and to make
any necessary adjustments. 

[1] http://www.icann.org/general/idn-guidelines-20jun03.htm  

[2] P. Faltstrom, P. Hoffman, A. Costello, “Internationalizing Domain
Names in Applications (IDNA),” RFC 3490, March 2003.

[3] P. Hoffman, M. Blanchet, “Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN),” RFC 3491, March 2003. 

[4] A. Costello “Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA),” RFC 3492,
March 2003.
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