
March 2008 Volume 11, Number 1

A Quarterly Technical Publication for
Internet and Intranet Professionals

In This Issue

From the Editor 1

IDNs 2

LISP 23

Book Review......................... 37

Fragments 39

Call for Papers 43

F r o m T h e E d i t o r

The Domain Name System (DNS) was not designed to support any-
thing beyond 7-bit ASCII characters. Thus my middle name, Jørgen, or
my colleague’s surname, Fältström, cannot be used in a domain name.
In fact, even using such strings on the left side of the @-sign—or in the
body of an e-mail message—is problematic. We often find ourselves
ignoring this limitation, using either “Jorgen” and “Faltstrom” or in
some cases the two-letter convention “Joergen” and “Faelt stroem.”
As Scandinavians, Mr. Fältström and I are relatively lucky in that
our languages contain only three characters in addition to those that
can be represented by 7-bit ASCII. This, of course, isn’t true for such
languages as Arabic, Chinese, Japanese, or Korean, to name just a
few. The IETF, ICANN, and others have been working hard to design
and deploy a system that will allow native characters to appear in
the DNS. Our first article discusses these efforts, known collectively
as Internationalized Domain Names (IDNs). Geoff Huston gives an
overview of IDNs and describes the many technical and political chal-
lenges that must be overcome in order to deploy such a system.

Recent activities have focused much attention on IPv6 deployment.
Experiments have been conducted at several major Internet events
(NANOG, APRICOT, and IETF) to “turn off” IPv4 for a period of
time to test connectivity and interoperability to the outside world.
You can read more about these experiments in our “Fragments”
section on page 41. Such experiments provide valuable information
about what works and what doesn’t, and several more IPv4 “out-
ages” are planned for 2008 and beyond. At the same time, researchers
have been looking at ways to scale the routing system of the Internet,
regardless of IP protocol version. One such approach is the Locator/
Identifier Separation Protocol (LISP), which Dave Meyer describes in
our second article.

The next issue of The Internet Protocol Journal, to be published some-
time in June 2008, will be our Tenth Anniversary issue. We would
love to hear your reflections on the last ten years of this journal and
about the Internet as a whole over the same time period. Send your
Letters to the Editor to ipj@cisco.com

—Ole J. Jacobsen, Editor and Publisher
ole@cisco.com

You can download IPJ
back issues and find

subscription information at:
www.cisco.com/ipj

The Internet Protocol Journal
2

Internationalizing the Domain Name System
by Geoff Huston, APNIC

C onsidering the global reach of the Internet, internationaliz-
ing the network sounds like a tautology. Surely the Internet
is already truly “international,” isn’t it? The Internet reaches

around the globe to every country, doesn’t it? And no matter where
you may travel these days, an Internet café is just around the corner.
How much more “international” can you get?

But maybe I’m just being too parochial here when I call it a tautology.
I use a dialect of the English language, and all the characters I need
are contained in the Western Latin character set. Therefore, I avoid
using a non-English language on the Internet; the only language I use
on the Internet is English, and all the characters I need are encom-
passed in the ASCII character set. If I tried to use the Internet with a
language that has a non-Latin character set and a different script, my
experience would probably be different—and acutely frustrating. If
my native language used a different script and a different text flow
than English, I would probably give the Internet an extremely low
score for ease of use. It is not as simple as managing glyph sets to
represent the characters of the language; although it is relatively easy
to present pictures of characters in a variety of fonts and scripts, us-
ing them in an intuitive and natural way in the context of the Internet
becomes more challenging.

Mostly what is needed is good localization, or adapting the local
computing environment to suit local linguistic needs. This environ-
ment may include support for additional character sets and additional
language scripts, and perhaps altering the direction of text flow, or
even the entire layout of the information.

For example, Japanese is traditionally written in a format called
Tategaki. In this format, the text flows in columns going from top to
bottom, with columns ordered from right to left. Modern Japanese
also uses another writing format, called Yokogaki. This writing
format is identical to that of European languages such as English,
where the text flows from left to right in successive rows from top to
bottom.

Today, the left-to-right direction is dominant in Japanese Kana,
Chinese characters, and Korean Hangul for horizontal writing. This
change is due partly to the influence of English, and partly to the
increased use of computerized typesetting and word-processing soft-
ware, most of which does not directly support right-to-left layout
of East Asian languages. It would appear that even Yokogaki is an
outcome of the lack of capability of IT systems to correctly cope with
localization.[1]

The Internet Protocol Journal
3

One topic, however, does not appear to have a compellingly obvious
localization solution in this multilingual environment: the Domain
Name System (DNS). The subtle difference here is that the DNS is
the “glue” that binds all users’ language symbols together, and per-
forming localized adaptations to suit local language use needs is not
enough. The DNS spans the entire network, so what works for me in
the DNS must also work for you. What we need is a means to allow
the use of all of these language symbols within the same system, or
internationalization.

The DNS is the most prevalent means of initiating a network trans-
action, whether it is a BitTorrent session, the Web, e-mail, or any
other form of network activity. But the DNS name string is not just
an arbitrary string of characters. What you find in the DNS is most
often a sequence of words or their abbreviations, and the words are
generally English words, using characters drawn from a subset of the
Latin character set. Perhaps unsurprisingly, some implementations
of the DNS also assume that all DNS names must be constructed
only from this ASCII character set, and these implementations are
incapable of supporting a larger character repertoire. If you want
to use a larger character set in order to represent various diacritics,
such as acute and grave symbols, umlauts and similar marks, then the
deployed DNS can be resistant to this use, and may provide incorrect
responses to queries that include such characters. And if you want to
use words drawn from languages that do not use the western script
for their characters, such as Japanese or Thai, for example, then the
DNS is highly resistant to this form of multilingual use.

Latin and Roman Alphabets
The default Latin alphabet is the Roman[2] alphabet, supplemented
with G, J, U, W, Y, Z, and lowercase variants. Additional letters may
be formed:

•	 As	 ligatures, as W was from VV, for example Æ (ash) from AE,
oethel Œ from OE, eszett ß from ſz (long s + z), engma ŋ from NG,
ou Ȣ from OU, Ñ from NN, or ä from ae

•	 By	diacritics, such as Å, Č, and Ų

•	 As	digraphs, such as fi and fl

•	 By	modification,	as	J	was	from	I,	G	from	C,	Ø	from	O,	eth Ð from
D, yogh Ȝ from G, or schwa Ə from E

•	 By	borrowing	from	another	alphabet	entirely,	as	thorn Þ and wynn
Ƿ were from Futhark (Runic)

Over the years we have done a reasonable job of at least displaying
non-Latin-based scripts within many applications, and although at
times it appears to represent a less-than-reasonable compromise, it is
possible to enter non-Latin characters on computer keyboards. So it
appears to be possible to customise a local computing environment
to use a language other than English in a relatively natural way.

The Internet Protocol Journal
4

But what happens when we extend the scope to consider multilingual
support in the wider world of the Internet?

Again the overall story is not all that bad. We can use non-Latin char-
acter scripts in e-mail, in all kinds of Web documents, and in a wide
variety of network applications. We can tag content with a language
context to allow display of the content in the correct language us-
ing the appropriate character sets and presentation glyphs. However,
until recently, one area continued to stick steadfastly to its ASCII
roots: the DNS. This article addresses DNS internationalization, or
Internationalized Domain Names (IDNs).

What do we mean when we talk of “internationalizing the DNS”?
It refers to an environment where English, and the Latin character
set, is just one of many languages and scripts in use, and where a
communication is initiated in one locale and then the language and
presentation are preserved wherever the communication is received.

Terminology
The following terms are used in this article:

Language: A language uses characters drawn from a collection of
scripts.

Script: A script is a collection of characters that are related in
their use by a language.

Character: A character is a unit of a script.

Glyph: The presentation of a character within the style of a font
is called a glyph.

Font: A font is a collection of glyphs encompassing a script
character set that share a consistent presentation style.

Multiple languages can use a common script, and any locale or coun-
try may use many languages, reflecting the diversity of its population
and the evolution of local dialects within communities.

It is also useful to remember the distinction between internation-
alization and localization. Inter nationalization is concerned with
providing a common substrate that many—preferably all—languages
and all users can use, whereas localization is concerned with the use
of a particular language within a particular locale and within a de-
fined user population. Unsurprisingly, the two concepts are often
confused, particularly when true internationalization is often far
more difficult to achieve than localization.

IDNs: continued

The Internet Protocol Journal
5

Internationalizing the DNS
The objective is the internationalization of the DNS, such that the
DNS can support the union of all character sets while preserving the
absence of ambiguity and uncertainty in terms of resolution of any
individual DNS name. We need to describe all possible characters in
all languages and allow their use in the DNS. So the starting point is
the “universal character set,” and that appears to be Unicode.

One of the basic building blocks for internationalization is a char-
acter set that is the effective union of all character sets. Unicode[3] is
intended to be such a universal encoding of characters (and symbols)
in the contexts of all scripts and all languages. The current version
of the Unicode Standard, Version 5.0, contains 98,884 distinct coded
graphic characters.

A sequence of Unicode code points can be represented in multiple
ways by using different character encoding schemes in a Unicode
Transformation Format (UTF). The most commonly used schemes
are UTF-8 and UTF-16.

UTF-8 is a variable-length encoding using 8-bit words, meaning that
different code points require different numbers of bytes. The larger
the index number of a code point, the more bytes are required to
represent it using UTF-8. For example, the first 127 Unicode code
points, which correspond exactly to the values used by the ASCII
character set (which maps only 127 characters), can be represented
using only 8 bits in UTF-8, using the same 8-bit values as in ASCII.
UTF-8 can require up to 32 bits to encode certain code points. A
criticism of UTF-8 is that it “penalizes” certain scripts by requiring
more bytes to represent their code points. The IETF has made UTF-8
its preferred default character encoding for internationalization of
Internet application protocols.

UTF-16 is a variable-length character encoding using 16-bit words.
Characters in the Basic Multilingual Plane are mapped into a single
16-bit word, with other characters mapped into a pair of 16-bit
words.

UTF-32 is a fixed-length encoding that uses 32 bits for every code
point. This encoding tends to make for a highly inefficient coding
that is, generally, unnecessarily large, because most language uses of
Unicode draw characters from the Basic Multilingual Plane, making
the average code size 16 bits in UTF-16 as compared to the fixed-
length 32 bits in UTF-32. For this reason UTF-32 is far less commonly
used than UTF-8 and UTF-16.

The Internet Protocol Journal
6

But languages, which we humans change in various ways every day,
are not always definitive in their use of characters, and Unicode has
some weaknesses in terms of identifying a context of a script and
a language for a given character sequence. The common approach
to using Unicode encodings in application software is to use an as-
sociated “tag,” allowing content to be tagged with a script and an
encoding scheme. For example, a content tag might read: “This text
has been encoded using the KOI-8 encoding of the CYRILLIC script.”

Tagging allows for decoding of the encoded characters in the con-
text of a given script and a given language. This decoding has been
useful for e-mail or Web page content, but tagging breaks down in
the context of the DNS. There is no natural space in DNS names to
contain language and script tags, implying that attempting to support
internationalization in the DNS has to head toward a “universal”
character set and a “universal” language context. Another way of
looking at this situation is that the DNS must use an implicit tag of
“all characters and all languages.”

The contexts of the use of DNS names have numerous additional
artefacts. What about domain-name label separators? This “dot” be-
tween DNS “words,” or a DNS label separator, is an ASCII period
character. In some languages, such as Thai, for example, there is no
natural use of such a label separator. In a similar vein, are URLs
intended to be visible to end users? If so, then we may have to trans-
form the punctuation components of the URL into the script of the
language. Therefore, we may need to understand how to manage
protocol strings, such as “http:” and separators such as the “/” char-
acter. To complete the integrity of the linguistic environment, these
elements may also require local presentation transformations.

For example, the Thai alphabet uses 44 consonants and 15 basic
vowel characters, which are horizontally placed, from left to right,
with no intervening space, to form syllables, words, and sentences.
Vowels associated with consonants are nonsequential: they can be
located before, after, above, or below their associated consonant, or
in a combination of these positions. The latter in particular causes
problems for computer encoding and text rendering[4].

The DNS name string reads left to right, and not right to left or top
to bottom as in other script and language cultures. How much of this
string you can encode in the DNS and how much must be managed
by the application is part of the problem here. Is the effort to interna-
tionalize the DNS with multiple languages restricted to the “words”
of the DNS, leaving the implicit left-to-right ordering and the punc-
tuation of the DNS unaltered? If so, how much of this ordering and
punctuation is a poor compromise, in that these DNS conventions in
such languages are not natural translations?

IDNs: continued

The Internet Protocol Journal
7

The Unicode UTF-8, UTF-16, and UTF-32 encodings all require an
“8-bit clean” storage and trans mission medium. Because “traditional”
DNS domain names are representable with 7-bit ASCII characters,
not all applications that process domain names preserve the status of
the eighth bit; in other words, they are not 8-bit clean. This situation
stimulated significant debate in the IETF’s IDN Working Group and
influenced the direction of the standards development into the area of
application assistance: the group took a very conservative view of the
capabilities of the DNS as a restricted ASCII code application.

Accordingly, we now see the DNS itself as a heavily restricted “lan-
guage.” The prudent use of the DNS specifies, in RFC 1035[5], a
sequence of “words” (or “labels”), where each label conforms to
the “Letter, Digit, Hyphen” (LDH) restriction. Each DNS label must
begin with a letter, restricted to the Latin character subset of “A”
through “Z” and “a” through “z”, followed by a sequence of letters,
digits, or hyphens, with a trailing letter or digit, and no trailing hy-
phen. Furthermore, the case of the letter is not important to the DNS,
so, within the DNS “a” is equivalent to “A”, and so on, and all char-
acters are encoded in monocase ASCII. The DNS uses a left-to-right
ordering of these labels, with the ASCII period as the label delimiter.
This restriction is often referred to as the LDH Convention.

The challenge posed with the effort of internationalizing the DNS
is one of attempting to create a framework that allows Internet ap-
plications—and the DNS in particular—to be set in the user’s own
language in an entirely natural fashion, and yet allow the DNS to
operate in a consistent and deterministic manner within its restricted
“language.” In other words, we all should be able to use brow sers
and e-mail systems using our own language and scripts, yet still be
able to communicate naturally with others who may be using a dif-
ferent language interface.

The most direct way of stating the choice set of IDN design is that
IDNs either change the “prudent use” of the deployed DNS into
something quite different by permitting a richer character repertoire
in all parts of the DNS, or IDNs change the applications that want to
support a multilingual environment such that they have to perform
some form of encoding transfer to map between a language string
using Unicode characters and an “equivalent” string using the re-
stricted DNS LDH character-set repertoire. It appears that options
other than these two lead us into fragmented DNS roots, and having
already explored that particular concept in the past, not many of us
want to return to that subject. So if we want to maintain a cohesive
and unified symbol space for the DNS, then either the deployed DNS
has to become 8-bit clean, or applications have to do the work and
present to the DNS an encoded form of the Unicode sequences that
conform to the restricted DNS character repertoire.

The Internet Protocol Journal
8

The IDN Framework
If you are an English language user with the ASCII character set, the
DNS name you enter into the browser—or the domain part of an
e-mail address—is almost the same string as the string that is passed
to the DNS resolver to resolve into an address (the difference is the
conversion of the characters into monocase). If you want to send a
mail message, you might send it to user@example.com, for example,
and the domain name part of this address, example.com, is the string
used to query the DNS for an MX Resource Record in order to estab-
lish how to actually deliver the message.

But what if you want to use a domain name that is expressed in an-
other language? What if the e-mail address is user@記念.com? The
problem here is that this domain name cannot be “naturally” ex-
pressed in the restricted syntax of the DNS, and although this domain
name may have a perfectly reasonable Unicode code sequence, this
encoded sequence is not a strict LDH sequence, nor is it case-insensi-
tive (whatever “case” may mean in an arbitrary non-Latin script). It
is here that IDNs depart from the traditional view of the DNS and
use a hybrid approach to the task of mapping these language strings
into network addresses.

The IDN Working Group of the IETF was formed in 2000 with the
goal of developing standards to internationalize domain names. The
working group’s charter was to specify a set of requirements and de-
velop IETF standards-track protocols to allow use of a broader range
of characters in domain names. The outcome of this effort was the
IDN in Applications (IDNA) framework, published as RFCs 3454,
3490, 3491, and 3492.[6,7,8,9]

Rather than attempting to expand the character repertoire of the
DNS itself, the IDN working group used an ASCII Compatible
Encoding (ACE) to encode the binary data of Unicode strings that
would make up IDNs into an ASCII character encoding. The concept
is similar to the Base64 encoding used by the Multipurpose Internet
Mail Extension (MIME) e-mail standards, but whereas Base64 uses
64 characters from ASCII, including uppercase and lowercase, the
ACE approach requires the smaller DNS-constrained LDH subset of
ASCII.

The working group examined various ACE algorithms in its efforts
to converge to a single standard (because different encoding algo-
rithms have different compression goals and yields) and encode the
data using slightly different subsets of ASCII. Most proposals speci-
fied a prefix to the ACE coding to tag the fact that this string was,
in fact, an encoded Unicode string. The IETF adopted punycode as
its standard IDN ACE[9]. Punycode was chosen for its efficient en-
coding compression properties that produce short ACE strings. For
example, the domain name of 記念.com encodes with punycode to
xn‑‑h7tw15g.com.

IDNs: continued

The Internet Protocol Journal
9

IDN in Applications
Although an ASCII-compatible encoding of Unicode characters al-
lows representation of an IDN in a form that will probably not be
corrupted by the deployed DNS infrastructure on the Internet, an
ACE alone is not a full solution. The IDN approach also needs to
specify how and where the ACE should be applied.

The overall approach to IDNs is relatively straightforward. In IDN
the application has a critical role to play. The application takes a
domain name that is expressed in a particular language using a partic-
ular script—and potentially in a particular character and word order
that is related to that language—and produces an ASCII-compatible
LDH-encoded version of this DNS name. Equally, when presenting a
DNS string to the user, the application should take the LDH-encoded
DNS name and transform it to a presentation sequence of glyphs that
correspond to the original string in the original script.

It is critical that all applications perform this encoding and decod-
ing function correctly, determin istically, and uniformly. In fact, this
capability is critical to the entire IDN framework.

The basic shift in the DNS semantics that IDNs bring to the DNS
is that the actual name itself is no longer in the DNS. An encoded
version of the canonical name form sits in the DNS, and applications
need to perform the canonical name transformation, as well as the
mapping between the Unicode character string and the encoded DNS
character string. So we need to agree on what are the “canonical”
forms of name strings in every language. We also need to agree on
the encoding method, and our various applications must have pre-
cise equivalents of these canonical name and encoding algorithms,
or the symbolic consistency of the DNS will fail. The problem here
is that the DNS does not perform approximate matches or return a
set of possible answers to a query. The DNS is a deterministic system
that performs a precise match on the query in order to generate a
response. The implication here is that if we want the same IDN char-
acter sequence to map to the same network response in all cases and
all contexts, then all applications must perform precisely the same
operations on the character sequence in order to generate the ACE-
equivalent label sequence.

RFC 3454[6] defines a presentation layer in IDN-aware applications
that is responsible for the punycode ACE encoding and decoding. This
new layer in the application architecture is responsible for encoding
any internationalized input in domain names into punycode format
before the corresponding LDH encoded domain name is passed to
the DNS for resolution. This presentation layer is also responsible for
decoding the punycode format in IDNs and rendering the appropri-
ate glyphs for the user.

The Internet Protocol Journal
10

It is a matter of personal perspective whether this solution is an el-
egant one or it simply shifts an unresolved problem from one area of
the IETF to another. The IDNA approach assumes that it is easier to
upgrade applications to all behave consistently in interpreting IDNs
than it is to change the underlying DNS infrastructure to be 8-bit
clean in a manner that would support direct use of Unicode code
points in the DNS.

The Presentation Layer Transform for IDNs
The objective here is to define a reliable and deterministic algorithm
that takes a Unicode string in a given language and produces a DNS
string as expressed in the LDH character repertoire. This algorithm
should not provide a unique 1:1 mapping, but should group “equiva-
lent” Unicode strings, where “equivalence” is defined in the context
of the language of use, into the same DNS LDH string. Any reverse
mapping from the DNS LDH string into the Unicode string should
deterministically select the single “canonical” string from the group
of possible IDN strings.

Stringprep
The first part of the presentation layer transform is to take the original
Unicode string and apply numerous transformations to it to produce
a “regular” or “canonical” form of the IDN string. This form of the
string is then transformed using the punycode ACE into an encoded
DNS string form. The generic name of this process is, in IDN lan-
guage, “stringprep,”[6] and the particular profile of transform ations
used in IDNAs is termed “nameprep.”[8]

This transform of a Unicode string into a canonical format is based on
the observation that many languages have a variety of ways to display
the same text and a variety of ways to enter the same text. Although
we humans are unconcerned about this concept of expressing an idea
in multiple ways, the DNS is an exact equivalence match operation
and it cannot tolerate imprecision. So how can the DNS tell that two
text strings are intended to be identical, even though their Unicode
strings are different? The IDN approach is to transform the string so
that all equivalent strings are mapped to the same canonical form, or
“stringprep” the string. The stringprep specification is not a complete
algorithm, and it requires a “profile” that describes the applicability
of the profile, the character repertoire (at the time of writing RFC
3454, it was Unicode 3.2, although the Unicode Consortium has
subsequently released Unicode Version 4.0, 4.1, and 5.0), mapping
tables normalization, and prohibited output characters.

Mapping
In converting from a string to a normal, or canonical, form, the first
step is to map each character into its normalized equivalent, using a
mapping table. This table is conventionally used to map characters
to their lowercase equivalent value to ensure that the DNS string
comparison is case-insensitive.

IDNs: continued

The Internet Protocol Journal
11

Other characters are removed from the string by using this mapping
operation because their presence or absence in the string does not affect
the outcome of a string-equivalence operation, such as characters that
affect glyph choice and placement, but without semantic meaning.

The mapping function will create monocase (specifically lowercase)
outcomes and also will eliminate non-significant code points (such
as, for example, the Unicode code point 1806; MONGOLIAN TODO
SOFT HYPHEN or the Unicode code point 200B; ZERO WIDTH SPACE, if
you really wanted to know what a non-significant code point was).

Normalization
Numerous languages use different character sequences for the same
meaning. Characters may appear the same in presentation format
as a glyph sequence, yet have different underlying code points. This
may be associated with variables ways of combining diacritics, or
using canonical code points, or using compatibility characters, and,
in some language contexts, performing character reordering. For ex-
ample, the character Ä can be represented by a single Unicode code
point 00C4; LATIN CAPITAL A WITH DIARESIS. Another valid represen-
tation of this character is the code point 0041; LATIN CAPITAL LETTER
A followed by the separate code point 0398; COMBINING DIARESIS.

The intent of normalization is to ensure that every class of character
sequences that are equivalent in the context of a language is trans-
lated into a single canonical, consistent format. This consistency of
format allows the equival ence operator to perform at the character
level using direct comparison without additional language-dependent
equivalence operations.

Languages in daily use are not rigid structures, and human use pat-
terns of languages change. Normalization is no more than a best-effort
process to detect equivalences in a rigid, rule-managed manner, and it
may not always produce predictable outcomes. This unpredictability
can be a problem with regard to namespace collisions in the DNS,
because it does not increase the confidence level of the DNS as a
deterministic exact-match information-retrieval system. IDNs intro-
duce some forms of name approximation into the DNS environment,
and the DNS is extremely ill-suited to the related “fuzzy-search”
techniques that accompany such approximations.

Filtering Prohibited Characters
The last phase in string preparation is removal of prohibited charac-
ters, including the various Unicode white-space code points, control
code points and joiners, private-use code points, and other code
points used as surrogates or tags.

The Internet Protocol Journal
12

Right-to-Left Characters
As an option for a particular stringprep profile, you can perform
a check for right-to-left displayed characters, and if any are found,
make sure that the whole string satisfies the requirements for bidi-
rectional strings. The Unicode standard has an extensive discussion
of how to reorder glyphs for display when dealing with bidirectional
text such as Arabic or Hebrew. All Unicode text is stored in logical
order as distinct from the display order.

Nameprep: A Stringprep Profile for the DNS
The nameprep profile[8] specifies stringprep for internationalized
domain names, specifying a character repertoire (in this case the
specification references Unicode 3.2) and a profile of mappings,
normali zation (form “KC”), prohibited characters, and bidirectional
character handling. The outcome is that two-character sequences can
be considered equivalent in the context of IDNs if, by following the
sequences of operations defined by the nameprep profile, the resul-
tant sequences of Unicode code points are identical. These code point
sequences are the “canonical” forms of names that the DNS uses.

The Punycode ASCII-Compatible Encoding
The next step in the processing of IDN names by the application is
to transform this canonical form of the Unicode name string into
a LDH-equivalent string using an ACE. The algorithm used, puny-
code, uses a highly efficient encoding, attempting to limit the extent
to which Unicode sequences become extended-length ACE strings.

The algorithm first divides the input code points into a set of
“basic” code points that require no further encoding, and the set of
“extended” code points. The algorithm takes the basic code points
and reproduces this sequence in the encoded string: the “literal
portion” of the string. A delimiter is then added to the string. This
delimiter is a basic code point that does not occur in the remainder
of the string. The extended code points are then added to the string
as a series of integers expressed through an encoding into the basic
(LDH) code set.

These additions of the extended code points are done primarily in the
order of their Unicode values, and secondarily in the order in which
they occur in the string. The encoding of the code point and its inser-
tion position is done by using a difference, or offset, encoding, so that
sequences of clustered code points, such as would be found in a single
language, encode efficiently.

For example, the German language string bücher uses basic codes for
all characters except the ü character. The punycode algorithm copies
all the basic codes, followed by a “-”. The value and position of the
ü insertion now has to follow.

IDNs: continued

The Internet Protocol Journal
13

The encoded form for ü (code 252) is at the position between the first
and second basic characters. Using the punycode[10] algorithm gives a
delta code of 745, a value that can be expressed in base 35 as (21 x
35) + 10. This code point and the position information are expressed
in base 35 notation as (10,22,1), or in reverse notation, with the
encoding kva. So the punycode encoding of bücher is bcher‑kva.
The internationalized domain-name format prepends the string xn‑‑
to the punycode string, resulting in the encoded IDN domain-name
form of xn‑‑bcher‑kva.

IDNS and Our Assumptions About the DNS
At this stage it should be evident that we have the code points for
characters drawn from all languages, and the means to create canoni-
cal forms of various words and express them in an encoded form that
the DNS can resolve.

However, there is more to IDNs than the encoding algorithm.
Although a massive number of discrete code points exist in the realm
of Unicode, all these distinct characters are not necessarily displayed
in unique ways. Indeed, given a relatively finite range of glyphs, the
same glyph can display numerous discrete code points.

The often-quoted example with IDNs and name confusion is the
name paypal. What is the difference between www.paypal.com
and www.paypal.com? There is a subtle difference in the first “a”
character, where the second domain name has replaced the Latin
a with the Cyrillic a. Did you spot the difference? Of course not.
These homoglyphs are cases where the underlying domain names are
distinct, yet their appearance is indistinguishable. In the first case
the domain name www.paypal.com is resolved in the DNS with the
query string www.paypal.com, yet in the second case the query string
www.paypal.com is translated by the application to the DNS query
string www.xn‑‑pypal‑4ve.com. How can you tell one case from
the other?

This example is by no means a unique case in the IDN realm. The
reports “Unicode Security Considerations” (Unicode Technical
Report 36) and “Unicode Security Mechanisms” (Unicode Technical
Report 39) provide many more examples of postnormalization
homographs.

There is no clear and unique relationship between characters and
glyphs. Cyrillic, Latin, and Greek share numerous common glyphs.
Glyphs may change their shape depending on the character sequence,
multiple characters may produce a single glyph, such as the character
pair f l being displayed as the single glyph fl, and a single character
may generate multiple glyphs.

The Internet Protocol Journal
14

Homoglyphs extend beyond a conventional set of characters and in-
clude syntax elements as well. For example, the Unicode point 0244
FRACTION SLASH is often displayed using the slash glyph, allowing
URLs of the form http://a.com/e.com. Despite its appearance,
this is not a reference to a.com with a locator suffix of e.com, but is
a reference to the domain a.com/e.com.

The basic response is that if you maintain IDN integrity at the ap-
plication level, then the user just cannot tell. The punycode transform
of www.paypal.com into www.xn‑‑pypal‑4ve.com is intended to
be a secret between the application and the DNS, because this ASCII-
encoded form is simply meaningless to the user. But if this encoded
form remains invisible to the user, how can the user detect that the
two identically presented name strings are indeed different? Sadly,
the only true “security” we have in the DNS is the “look” of the DNS
name that is presented to the user, and the user typically works on the
principle that if the presented DNS string looks like the real thing,
then it must be the real thing.

When this homoglyph problem was first exposed, the response from
many browser imple mentations was to turn off all IDN support in
their browser. The next response was to deliberately expose the puny-
code version of the URL in the browser address bar, so that directing
the browser to http://www.paypal.com would display in the ad-
dress bar the URL value of http://www.xn‑‑pypal‑4ve.com.

The distinction between the two equivalently displayed names was
then visible to the user, but the downside was that we were back to
displaying ASCII names again, and in this case ASCII versions of pu-
nycode-encoded names. If trying to “read” Base64 was difficult, then
the displaying—and understanding—of displayed punycode names
is surely equally as difficult, if not more so. The encoded names can
be completely devoid of any form of useful association or meaning.
Although the distinction between ASCII and Cyrillic may be evident
by overt differences in their ASCII-encoded names, what happens
when the homoglyph occurs across two non-Latin languages? The
punycode strings are different, but which string is the “intended”
one? Did you mean http://xn‑‑21bm4l.com or http://xn‑‑
q2buub.com when you enter a Hindi script URL?

Using ASCII as the fall-back to resolve name confusion in response
to the problem of ambiguities in non-ASCII script names appears to
be a nonsensical solution. We appear to be back to guessing games in
the DNS again, unfortunately, and particularly impossible guessing
games at that.

These days most popular browsers display the glyphs, rather than
the ASCII punycode, but once more we are back to the homoglyph
problem.

IDNs: continued

The Internet Protocol Journal
15

If the intention in the IDN effort was to preserve the deterministic
property of DNS resolution, such that a DNS query can be phrased
deterministically and not have the query degenerate into a search
term or require the application of fuzzy logic to complete the query,
then we are not quite there yet.

The under lying observation is that languages are indeed human-use
systems. They can be tricky, and they invariably use what appear to
be rules in strange and inconsistent ways. They are also resistant to
auto mated processing and the application of rigid rule sets. The ca-
nonical name forms that are produced by nameprep-like procedures
are not comprehensive, nor does it appear that such a rigidly defined
rule-driven system can produce the desired outcomes in all possible
linguistic situations. And if the intention of the IDN effort was to
create a completely “natural” environment using a language environ-
ment other than English and a display environment that is not reliant
on ASCII and ASCII glyphs, while preserving all the other properties
of the DNS, then the outcome does not appear to match our original
IDN expectations.

The underlying weakness here is the implicit assumption that in the
DNS “what you see is what you get,” and that two DNS names that
look identical are indeed references to the same name, and when re-
solved in the DNS produce precisely the same resolution outcome.
When you broaden the repertoire of appearances of the DNS, such
that the entire set of glyphs can be used in the DNS, then the map-
ping from glyph to underlying code point is not unique. Any effort
to undertake such a mapping needs additional context in the form
of a language and script context. But the DNS does not carry such
a context, making the task of maintaining uniqueness and determin-
ism of DNS name translation essentially impossible if we also want
to maintain the property that it is the appearance, or presentation
format, of DNS names to the user that is the foundation stone of the
integrity of our trust in the DNS.

Some concerns still remain in this space, including the inclusion
of various forms of character codes that are in effect invisible. In
addition, homoglyphs could be better managed by using a refined
definition of IDN labels that lists which Unicode code points can be
used in the context of IDNs, excluding all others. It would be helpful
if confusing and non-reversible character mappings were removed
from the IDN space, including the consistent treatment of ligatures
and diacritics, refining the treatment of right-to-left and left-to-right
scripts, and removing the dependency on a particular version of the
Unicode standard. This effort is under way in the IETF in the context
of revisions to the IDNA specification documents.

The Internet Protocol Journal
16

IDNS, TLDs, and the Politics of the DNS
So why is there a very active debate, particularly within ICANN-
related forums, about putting IDN codes into the root of the DNS as
alternative top-level domains (TLDs)?

I have seen two major lines of argument here; namely the argument
that favors the existence of IDNs in all parts of the DNS, including
the TLDs, and the argument that favors a more restricted view of
IDNs in the root of the DNS that links their use to that of an existing
(ASCII-based) DNS label in the TLD zone.

Apparently, those who favor the approach of using IDNs in the top-
level zone as just another DNS label see this as a natural extension
of adding punycode-encoded name entries into lower levels of the
DNS. Why should the root of the DNS be any different, in terms of
allowing IDNs? Why should a non-Latin script user of the Internet
have to enter the TLD code in its ASCII text form, while entering
the remainder of the string in a local language? And in right-to-left
scripts, where does this awkward ASCII appendage sit when a user
attempts to enter it into an application?

Surely, goes the argument, the more natural approach is to allow any
DNS name to be wholly expressible in the user’s language, implying
that all parts of the DNS should be able to carry native language-en-
coded DNS names. After all, コンピュータは予約する.jp looks wrong
as a monolingual domain name. What is that .jp appendage doing
there in that DNS name? Surely a Japanese user should not have to
resort to an ASCII English abbreviation to enter in the country code
for Japan, when 日本 is obviously more “natural” in the context of a
Japanese user using Japanese script. If we had punycode TLDs then,
goes the line of argument, users could enter the entire domain name
in their language and have the punycode encoding happen across
the entire name string, and then successfully perform a DNS lookup
on the punycode equivalent. This way the user would enter the
Japanese character sequence: コンピュータは予約する.日本 and have
the application translate this entry to the DNS string xn‑‑88j0bve5g9‑
bxg1ewerdw490b930f.xn‑‑wgv71a. For this process to work in its
entirety uniformly and consistently, the name xn‑‑wgv71a needs to
be a TLD name.

We can always take this thought process one step further and ques-
tion the ASCII string http and the punctuation symbols :// for
precisely the same reason, but I have not heard (yet) calls for mul-
tilingual equivalents of protocol identifier codes. The multilingual
presentation of these elements remains firmly in the provenance of
the application, rather than attempting to alter the protocol identi-
fiers in the relevant standards.

IDNs: continued

The Internet Protocol Journal
17

The line of argument also encompasses the implicit threat that if the
root of the DNS does not embrace TLDs as expressed in the lan-
guage of the Internet’s users, then language communities will break
away from a single DNS root and meet their linguistic community’s
requirements in their own DNS hierarchy. Admitting such encoded
tags into the DNS root is the least problematic, including the conse-
quence of inactivity, which is cited as being tantamount to condoning
the complete fragmentation of the Internet’s symbol set.

Of course having an entirely new TLD name in an IDN name format
does not solve all of the potential problems with IDNs. How can a
user tell what domain names are in the ASCII top level, and what are
in the “equivalent” IDN-encoded TLDs? Are any two name spaces
that refer to the same underlying name concept equivalent? Is xn‑
‑88j0bve5g9bxg1ewerdw490b930f appropriately a subdomain of
.jp, or a subdomain of xn‑‑wgv71a? Should the two domains be
tightly synchronized with respect to their zone content and represent
the same underlying token set, or should they be independent of-
ferings to the marketplace, and allow registrants and the end-user
base make implicit choices here? In other words, should the pair of
domain names, namely xn‑‑88j0bve5g9bxg1ewerdw490b930f.
xn‑‑wgv71a and xn‑‑88j0bve5g9bxg1ewerdw490b930f.jp, ref-
erence precisely the same DNS zone, or should they be allowed to
compete, and each find their own “natural” level of market support
based on decoupled TLD names of .jp and .xn‑‑wgv71a?

What does the term equivalence really imply here? Is equivalence
something as loose as the relationship between .com and .biz, namely
being different abbreviations of words that reflect similar concepts
with different name-space populations that reflect market diversity
and a competitive supply industry? Or is equivalence a much tighter
binding in that equivalent names share precisely the same subdomain
name set, and a registration in one of these equivalence names is in
effect a name registration across the entire equivalence set?

Even this subject is not readily resolvable given our various in-
terpretations of equivalence. In theory, the DNS root zone is pop-
ulated by ISO two-letter country codes and numerous “generic”
TLDs. Under what basis, and under what authority, is xn‑‑wgv71a
considered an “equivalent” of the ISO 3166 two-letter country code
JP? Are we falling into the trap once again of making up the rules
as we go along? Is the distinction between .com and .biz apparent
only in English? And why should this distinction apply only to non-
Latin character sets? Surely it makes more sense for a native German
language speaker to refer to commercial entities as kommerze, and
the abbreviated TLD name as .kom? When we say “multilingual”
are we in fact ignoring “multilingual” and looking exclusively at
“multiscript”?

The Internet Protocol Journal
18

Let’s put aside the somewhat difficult concept of name equivalence
for a second, and assume that this equivalence problem is solved.
Also suppose that we want tight coupling across equivalence sets of
names.

In other words, what we want is that a name registered in any of
the elements of the equivalent domain-name set in all scripts is, in
effect, registered in all the equivalent DNS zones. The question is:
how should it be implemented in the DNS? One approach that could
support tight synchronization of equivalence is to use the DNAME
record[11] to create these TLD name aliases for their ASCII equiva-
lents, thereby allowing a single name registration to be resolvable
using a root name expressed in any of the linguistic equivalents of
the original TLD name. The DNAME entry for all but the “canoni-
cal” element of the equivalence set effectively translates all queries
to a query on the canonical name. The positive aspects of such an
approach is uniformity across linguistic equivalents of the TLD name
form—a single name delegation in a TLD domain becomes a name
within all the linguistic equivalents of the TLD name without any
further delegation or registration required.

Using DNAME as a tool to support sets of equivalent names in the
DNS is still in the early stages. The limited experience so far with
DNAME indicates that CNAME synthesis places load back on the
name servers that would otherwise not be there, and the combina-
tion of this synthetic record and DNSSEC starts to get very unwieldy.
Also, the IETF is reviewing the DNAME specification with the inten-
tion to remove the requirement to perform CNAME synthesis. All of
these factors may explain why there is no immediate desire to place
DNAMEs in the DNS root zone.

Different interpretations of equivalence in IDN names are possible.
The use of DNAMEs as aliases for existing TLDs in effect “locks
up” IDNs into the hands of the incumbent TLD name-registry opera-
tors. Part of the IDN debate, is, as usual, a debate over the generic
TLD registry operators and the associated perception of incumbent
monopolies. An alternative approach is to associate a single registrar
with each IDN variant of the same generic TLD, allowing a form of
“competition” between the various registrars. From the perspective
of a coherent symbol space where the same symbol, expressed in
any language script, resolves in the same fashion, such independent
registries are not overly consistent with such a model of registry di-
versity in a multilingual environment. In this case such an artifice of
IDN “competition” may well do more harm than good for Internet
users.

IDNs: continued

The Internet Protocol Journal
19

It appears that another line of argument is that the DNS top-level
name space is very conservatively managed, and new entries into
this space are not made lightly. There are concerns of stability of
operation, of attempting to conserve a coherent namespace, and the
ever-present consideration that if we manage to “break” the DNS
root zone it would be an irrevocable act.

This line of argument recognizes the very hazy nature of name equiv-
alence in a multilingual environ ment and is based on the proposition
that the DNS is incapable of representing such imprecision with any
utility. The DNS is not a search engine, and the DNS does not handle
imprecision at all well. Again, goes the argument, if this is the case
then can we push this problem back to the application rather than
trying to bend the DNS? If an application is capable of translating,
say, 日本 into xn‑‑wgv71a, and considering that the TLD name space
is relatively small, it appears that having the application performing a
further translation of this intermediate form punycode string into the
ASCII string jp is not a particularly challenging form of table lookup.
In such a model no new TLD aliases or equivalences are required in
the root zone of the DNS. If we are prepared to pass the execution of
the presentation layer of the DNS to the application layer to perform,
then why not also ask this same presentation layer to perform the
step of further mapping the punycode ACE equivalents of the TLDs
to the actual ASCII TLDs, using some richer language context that
the application may be aware of that is not viable strictly within the
confines of the DNS?

So, with respect to the question of whether IDN TLDS should be
loaded into the DNS at all, and, if so, whether they should represent
an opportunity for further diversity in name supply or be constrained
to be aligned to existing names, and precisely how name equivalence
is to be interpreted in this context, then it appears that ICANN has
managed to place itself in a challenging situation. In not making a
decision, those with an interest in having diverse IDN TLDs appear
to derive some pleasure in pointing out that the political origins of
ICANN and its strong linguistic bias to English are influencing it to
ignore non-English language use and non-English language users of
the Internet. Where dramatic statements are called for, such state-
ments often use terms such as “cultural imperialism” to illustrate the
nature of the linguistic insult. The case has been made repeatedly, in
support of IDN TLDs, that an overwhelming majority of Internet
users and commercial activity of the Internet is in languages other
than native English, and the imposition of ASCII labels on the DNS
is an unnatural imposition on the overwhelming majority of Internet
users.

The Internet Protocol Journal
20

On the other hand, most decisions to permit some form of entry in
the DNS are generally seen as irrevocable, and building a DNS that
is littered with the legacy of various non-enduring name technolo-
gies and poor ad hoc decisions to address a particular concern or
problem without any context of a longer-term framework seems also
to represent a step along a direction leading to a heavily littered and
fragmented Internet where, ultimately, users cannot communicate
with each other.

What about global interoperability and the Internet? Should we just
take the easy answer and simply give up on the entire concept? Well
of course not! But, taking a narrower perspective, are IDNs simply
not viable in the DNS? I would suggest that not only is this question
one that was overtaken by events years ago, but even if we want
to reconsider it now, then the answer remains that any users using
their local language and local script should have an equally “natu-
ral” experience. IDNs are a necessary and valuable component of the
symbol space of any global communications system, and the Internet
is no exception. However, we also should recognize that we do need
combinations of both localization and globalization, and that we are
voicing some pretty tough objectives. Is the IDNA approach enough?
Is our assumption that an unaltered DNS with application-encoded
name strings represents a rich enough platform to preserve the es-
sential properties of the DNS while allowing true multilingual use of
the DNS? On the other hand, taking a pragmatic view of the topic,
is what we have with IDNA enough for us to work on, and is the
alternative of reengineering the entire fabric of the DNS into an 8-bit
clean system just not a viable option?

I suspect that the framework of IDNA is now the technology for
IDNs for the Internet, and we simply have to move on from here
and deliberately take the stance of understanding the space from
users’ perspectives when we look at the policy concerns of IDNs.
The salient questions from such perspectives include: “What is the
“natural” thing to do?” and “What causes a user the least amount
of surprise?” Because in this world, what works for the user is what
works for the Internet as a whole.

Further IDN News
IDNs are by no means completed work. Development continues in
the Unicode forum on elaboration of character sets, and there are
further proposals in the IETF to continue a comple mentary standards
activity of refining the IDN documents.

In February 2008 the Applications Area of the IETF announced a
proposal for further work on IDNs. The proposal has noted that the
existing RFC documents are tied to version 3.2 of Unicode, while the
Unicode Consortium has released version 5.0.0.

IDNs: continued

The Internet Protocol Journal
21

The proposed work is to consider revision of the IDN documents to
untie the Internet specifications that define validity based on Unicode
properties from specific versions of Unicode using algorithms. It is
also proposed that these updates study revision of bi-directional algo-
rithms, and to permit the use of some scripts that were inadvertently
excluded by the original Internet specification.

This is not intended to be a major rewrite of the IDN approach, and,
in particular, IDNs will continue to use the xn‑‑ prefix, the same
Punycode ASCII-compatible encoding, and the bidirectional algo-
rithm is intended to follow the same design as presently specified.

Further Reading
It is possible to reference an overwhelming amount of commentary
on this topic, so I have deliberately kept this list of further reading on
the topic of IDNs relatively brief:

 [A] John Klensin, “Internationalizing Top-Level Domain Names:
Another Look,” ISOC Member Briefing, September 2004,
http://www.isoc.org/briefings/018/

 [B] John Klensin, “National and Local Characters for DNS Top
Level Domain (TLD) Names,” RFC 4185, October 2005.

 [C] Papers submitted to the ICANN IDN TLD workshop, held in
November 2005: http://www.icann.org/announcements/
announcement‑17nov05.htm

 [D] Internet Architecture Board, “Review and Recommendations
for Internationalized Domain Names (IDNs),” RFC 4690,
September 2006.

 [E] “ICANN’s IDN Roadmap Announcement—Progress and Future,”
 http://www.icann.org/announcements/announcement‑

1‑01nov06.htm

 [F] “An Important Step Toward the Implementation of IDN Top-
Level Domains: New Versions of IDNA Protocol Revision
Proposals Posted,”

 http://www.icann.org/announcements/announcement‑
26nov07.htm

 [G] ICANN’s IDN Evaluation Gateway. Eleven new international-
ized domains representing the name example.test entirely in
scripts other than the Latin characters:

 http://idn.icann.org/

The Internet Protocol Journal
22

References

 [1] http://en.wikipedia.org/wiki/Horizontal_and_verti‑
cal_writing_in_East_Asian_scripts

 [2] http://en.wikipedia.org/wiki/Roman_script

 [3] http://unicode.org

 [4] http://www.omniglot.com/writing/thai.htm

 [5] Mockapetris, P., “Domain Names—Implementation and Specifi-
cation,” RFC 1035, November 1987.

 [6] Hoffman, P., and Blanchet, M., “Preparation of Internationalized
Strings (“stringprep”),” RFC 3454, December 2002.

 [7] Hoffman, P., Fältström, P., and Costello, A., “Internationalizing
Domain Names in Applications (IDNA),” RFC 3490, March
2003.

 [8] Hoffman, P., and Blanchet, M., “Nameprep: A Stringprep Profile
for Internationalized Domain Names (IDN),” RFC 3491, March
2003.

 [9] Costello, A., “Punycode: A Bootstring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA),”
RFC 3492, March 2003.

 [10] http://en.wikipedia.org/wiki/Punycode

 [11] Crawford, M., “Non-Terminal DNS Name Redirection,” RFC
2672, August 1999.

GEOFF HUSTON holds a B.Sc. and a M.Sc. from the Australian National University.
He has been closely involved with the development of the Internet for many years,
particularly within Australia, where he was responsible for the initial build of the
Internet within the Australian academic and research sector. The author of numer-
ous Internet-related books, he is currently the Chief Scientist at APNIC, the Regional
Internet Registry serving the Asia Pacific region. He was a member of the Internet
Architecture Board from 1999 until 2005, and served on the Board of the Internet
Society from 1992 until 2001. E-mail: gih@apnic.net

IDNs: continued

The Internet Protocol Journal
23

The Locator Identifier Separation Protocol (LISP)
by David Meyer, Cisco Systems

T he Internet Architecture Board’s (IAB)’s October 2006
Routing and Addressing Workshop[8] renewed interest in the
design of a scalable routing and addressing architecture for

the Internet. Many concerns prompted this renewed interest, includ-
ing the scalability of the routing system and the impending exhaustion
of the IPv4 address space. Since the IAB workshop, several proposals
have emerged that attempt to address the concerns expressed both at
the workshop and in other forums[7,9,12,13,14]. All of these proposals are
based on a common concept: the separation of locator and identifier
in the numbering of Internet devices, often termed the “Loc/ID split.”
This article focuses on one proposal for implementing this concept:
the Locator/Identifier Separation Protocol (LISP)[3].

The basic idea behind the Loc/ID split is that the current Internet
routing and addressing archi tecture combines two functions: Routing
Locators (RLOCs), which describe how a device is attached to the
network, and Endpoint Identifiers (EIDs), which define “who” the
device is, in a single numbering space, the IP address. Proponents of
the Loc/ID split argue that this “over loading” of functions makes it
virtually impossible to build an efficient routing system without forc-
ing unacceptable constraints on end-system use of addresses. Splitting
these functions apart by using different numbering spaces for EIDs
and RLOCs yields several advantages, including improved scalabil-
ity of the routing system through greater aggregation of RLOCs.
To achieve this aggregation, we must allocate RLOCs in a way that
is congruent with the topology of the network (“Rekhter’s Law”).
Today’s “provider-allocated” IP address space is an example of such
an allocation scheme. EIDs, on the other hand, are typically allocated
along organizational bound aries. Because the network topology and
organizational hierarchies are rarely congruent, it is diffi cult (if not
impossible) to make a single numbering space efficiently serve both
purposes without imposing unacceptable constraints (such as requir-
ing renumbering upon provider changes) on the use of that space.

LISP, as a specific instance of the Loc/ID split, aims to decouple
location and identity. This decoupling will facilitate improved ag-
gregation of the RLOC space, implement persistent identity in the
EID space, and, in some cases, increase the security and efficiency of
network mobility.

Implementing the Locator/ID Separation
There are two basic approaches to implementing the Loc/ID split:
map-and-encap and address rewriting. Each is briefly discussed in the
following sections.

The Internet Protocol Journal
24

Map-and-encap
In the map-and-encap scheme (genenerally considered to have evolved
from Bob Hinden’s ENCAPS protocol[24]), when a source sends a
packet to the EID of a destination outside of the source domain,
the packet traverses the domain infrastructure to a border router (or
other border element). The border router maps the destination EID
to a RLOC that corresponds to an entry point in the destination do-
main (hence an EID-to-RLOC mapping system is needed; proposals
are discussed later in the article). This phase is the “map” phase of
map-and-encap. The border router then encapsulates the packet and
sets the destin ation address to the RLOC returned by the mapping
infrastructure (if any; it may be statically configured as well). This
phase is the “encap” phase of the map-and-encap model.

Thus map-and-encap works by appending a new header to the exist-
ing packet; the “inner-header” source and destination addresses are
EIDs, and the “outer-header” source and destination addres ses are in
most cases RLOCs. When an encapsulated packet arrives at the des-
tination border router, the router decapsulates the packet and sends
it on to its destination. Note that this process suggests that EIDs may
need to be routable in some scope (likely scoped to the domain).

Map-and-encap schemes have the desirable property that they do
not in general require host changes or changes to the core routing
infrastructure. In addition, map-and-encap schemes work with both
IPv4 and IPv6, and retain the original source address (a feature that is
useful in various filtering scenarios). Controversy remains, however,
as to whether or not the encapsulation overhead of map-and-encap
schemes is problematic; opinions exist on both sides of this topic (see,
for example, [18]).

Address Rewriting
The basic idea behind the address-rewriting schemes, originally
proposed by Dave Clark and later by Mike O’Dell in his 8+8/GSE
specification[11], is to take advantage of the 128-bit IPv6 address and
use the top 64 bits as the routing locator (“Routing Goop,” or RG),
and the lower 64 bits as the endpoint identifier (hence rewriting
works only for IPv6). In this scheme, when a host emits a packet des-
tined for another domain, the source address contains its identifier
(frequently a IEEE MAC address) in the lower 64 bits, and a special
value (meaning unspecified) in the RG. The destination address con-
tains the fully specified destination address (RG and EID).

When a packet destined for a remote domain arrives at the local
domain egress router, the source RG is filled in (forming a full 128-
bit address), and the packet is routed to the remote domain. On
ingress to the remote domain, the destination RG is rewritten with
the unspecified value, ensuring that the host does not know what its
RG is.

LISP: continued

The Internet Protocol Journal
25

This process, in theory, would enable the ease of renumbering that
would be required to maintain congruence between prefix assign-
ment and physical network topology that is required for the kind of
“aggressive” renumbering envisioned in the 8+8/GSE specification.

The Locator/Identifier Separation Protocol (LISP)
LISP is designed to be a simple, incremental, network-based map-
and-encap protocol that imple ments separation of Internet addresses
into EIDs and RLOCs. Because LISP is a map-and-encap protocol,
it requires no changes to host stacks and no major changes to exist-
ing database infrastructures. It is designed to be implemented in a
relatively small number of routers. LISP is also an instance of what
is architecturally called a “jack-up,” because the existing network
layer is “jacked up” and a new network layer is inserted below it (the
term “jacked up” is attributed to Noel Chiappa). The LISP jack-up
is depicted in Figure 1.

Figure 1: LISP is a Jack-Up

Network Layer
(IP)

Transport Layer
(TCP, UDP)

Application Layer
(Telnet, HTTP, FTP, SMTP)

Host Stack

Map-and-EncapNetwork Layer
(IP)

Physical Layer
(Ethernet, X.25, Token Ring)

Uses IDs

Uses Locators

The LISP design aims to improve site multihoming (for example, by
controlling site ingress without complex protocols), improve Internet
Service Provider (ISP) multihoming, decouple site addressing from
provider addressing, and reduce the size and dynamic properties of
the core routing tables.

The LISP data plane (the map-and-encap operation) and the LISP
control plane (the EID-to-RLOC mapping system) are very modular.
In particular, although the base LISP specification defines the format
of messages to query the mapping system and to receive responses
from that system, it makes no assumptions on the architecture of
potential mapping systems. As a result, several mapping systems have
been proposed[0,1,4,5,6,10].

The Internet Protocol Journal
26

LISP Network Elements
The LISP specification defines two network elements: The Egress
Tunnel Router (ETR) and the Ingress Tunnel Router (ITR).

A LISP Egress Tunnel Router (ETR) receives LISP-encapsulated IP
packets from the Internet on one side and sends decapsulated IP
packets to site end systems on the other side. In particular, an ETR
accepts an IP packet where the destination address in the “outer” IP
header is one of its own RLOCs. The router strips the “outer” header
and forwards the packet based on the next IP header found.

A LISP Ingress Tunnel Router (ITR) accepts IP packets from site end
systems on one side and sends LISP-encapsulated IP packets toward
the Internet on the other side. In particular, an ITR accepts an IP packet
with a single IP header (more precisely, an IP packet that does not
contain a LISP header). The router treats this “inner” IP destination
address as an EID and performs an EID-to-RLOC mapping lookup if
necessary (that is, it does not already have an EID-to-RLOC mapping
for the EID). The router then prepends an “outer” IP header with one
of its globally routable RLOCs in the Source Address field and the
result of the mapping lookup in the Destination Address field. Note
that this destination RLOC may be an intermediate, proxy device
that has better knowledge of the EID-to-RLOC mapping closest to
the destination EID.

LISP Data-Plane Operation
When a host in a LISP-capable domain emits a packet, it puts its
EID in the packet source address, and EID of the correspondent
host in its destination address (note that hosts will typically look up
EIDs in the Domain Name System [DNS]). If the destination of the
packet is in another domain, the packet traverses the source domain
infrastructure to one of its ITRs. The ITR maps destin ation EID to
a RLOC that corresponds to an ETR that is either in the destination
domain or a proxy for the destination domain (how this mapping is
accomplished in LISP is discussed later in the article). The ITR then
encapsulates the packet, setting the destination address to the RLOC
of the ETR returned by the mapping infrastructure or by static con-
figuration. Note that LISP is address family-agnostic and as such can
be used with both IPv4 and IPv6 (or any other address family). Figure
2 depicts the LISP IPv4 in IPv4 encapsulation.

LISP: continued

The Internet Protocol Journal
27

Figure 2: LISP Header Format

0 4 8 16 32

Version IHL

Time to LiveOH

UDP

Protocol = 17 Header Checksum

Type of Service Total Length

Fragment OffsetFlagsIdentification

Source Routing Locator

Destination EID

Source EID

Nonce

Locator Reach Bits

Destination Routing Locator

Source Port

UDP Length

Dest Port (4341)

UDP Checksum

Time to Live Protocol Header Checksum

Fragment OffsetFlagsIdentification

Version IHL Type of Service Total Length

LISP

IH

When the packet arrives at the destination ETR, it decapsulates the
packet and sends it on to its destination. Again, note that this sce-
nario implies that EIDs need to be routable in some scope (likely
scoped to the domain).

As mentioned previously, the LISP specification defines three packet
types designed to support an EID-to-RLOC mapping system. The
first type of packet, the Data Probe, is a data packet that an ITR may
send into the mapping system to probe for the mapping; the authori-
tative ETR responds to the ITR with a Map-Reply message when it
receives such a data packet. Note that in this case the ETR detects
that the packet is a Data Probe by noticing that the inner Destination
Address (DA) was copied to the outer DA by the ITR, that is, the in-
ner DA equals the outer DA and is an EID. The second type of LISP
packet used to support the mapping system is the Map Request. An
ITR may query the mapping system by sending a Map-Request mes-
sage into the mapping system to request a particular EID-to-RLOC
mapping. As in the Data Probe case, the authoritative ETR responds
with a Map-Reply message.

The Internet Protocol Journal
28

The third type of LISP packet used to support the mapping system
is the Map Reply. An ETR emits a Map Reply under two condi-
tions. First, if the ETR receives a LISP-encapsulated packet in which
the outer-header destination address is the same as that of the inner
header, it knows that the packet is a Data Probe and can respond
with a Map Reply to the source ITR. The ETR may also receive a
Map Request, in which case it replies to the requesting ITR with the
mapping.

LISP Control Plane
Both map-and-encap and address-rewriting models rely on an ad-
ditional of level of indirection in the addressing architecture to make
the routing system scale reasonably. Because packets are sourced with
an EID in the Destination Address field and EIDs are not in general
routable on the global Internet, the destination EID must be mapped
to an RLOC in order to deliver the packet to another domain (that
is, across the Internet). In the case of the map-and-encap schemes, it
is a direct translation: an EID is mapped to a RLOC. The situation
is subtly different for the rewriting schemes; in general such schemes
must look up the entire destination address (usually proposed to re-
side in the DNS)[11,13], but must somehow determine the source RG
when rewriting the source address at the domain border.

In either Loc/ID split model, an EID-to-RLOC mapping service
is needed to make the system scale reasonably and to make it op-
erationally viable. There are three important scale parameters to
consider when architecting a mapping service: the rate of updates
to the mapping database, the state of the mapping service required,
and the latency incurred during database lookup. The scaling proper-
ties of the database are frequently characterized as a (Rate × State)
problem (ignoring for the moment the subject of lookup latency); be-
cause most estimates put the size of the mapping database at O(1010),
the database update rate must be small (note that this situation is a
primary reason that current mapping proposals do not incorporate
reachability information into the mapping database). In addition, the
choice of push vs. pull also affects latency: if you push the entire
database close to the edge, you improve lookup latency at the cost
of increased state; if you architect a service that requires a mapping
request and you find an authoritative server for that mapping (that is,
pull), you reduce state at the cost of increased lookup latency.

LISP-Alternative-Topology: A LISP Control Plane
The basic idea behind LISP-Alternative-Topology (LISP-ALT)[4] is
to build an alternative logical topology for managing EID-to-RLOC
mappings for LISP. This logical topology uses existing technology
and tools, specifically the Border Gateway Protocol (BGP)[17] and
its multiprotocol extension[15], along with the Generic Routing
Encapsulation (GRE)[16] protocol to construct an overlay network of
devices that advertise EID prefixes only.

LISP: continued

The Internet Protocol Journal
29

As was the case for the LISP data plane, an important design goal
of LISP-ALT is to minimize the number of changes to existing hard-
ware and software that are required to deploy the mapping system.
Therefore, LISP-ALT requires modifications to neither BGP nor
GRE.

Note that LISP-ALT is a hybrid push/pull architecture. Aggregated
EID prefixes are “pushed” among the LISP-ALT routers and, option-
ally, to ITRs (which may elect to receive the aggregated information,
as opposed to simply using a default mapping). Specific EID-to-
RLOC mappings are “pulled” by ITRs either by Map Requests or
Data Probes, both of which are routed over the alternate topology
and result in Map Replies being generated by ETRs.

The basic idea behind in LISP-ALT, then, is to use BGP running over a
GRE overlay to build the reachability required to route Data Probes,
Map Requests, and Map Replies over the alternate topology. The
ALT Routing Information Base (RIB) comprises EID prefixes and as-
sociated next hops. The LISP-ALT routers talk External BGP (eBGP)
to each other in order to propagate EID prefix update information,
which is learned either over eBGP connections from the authori-
tative ETR or by configuration. ITRs may also eBGP peer with one
or more LISP-ALT routers in order to route Data Probe packets or
Map Requests.

In summary, the LISP-ALT uses BGP to propagate EID-prefix reach-
ability information used by ITRs and ETRs to forward Map Requests,
Map Replies, and Data Probes. This reachability is carried as IPv4 or
IPv6 Network Layer Reachability Information (NLRI) without mod-
ification (because the EID space has the same syntax as IPv4 or IPv6).
LISP-ALT routers eBGP peer with one another, forming the overlay
network. A LISP-ALT router near the edge learns EID prefixes that
originate with authoritative ETRs. In general then, LISP-ALT rout-
ers aggregate EID prefixes, and forward Data Probes, Map-Requests,
and Map-Replies.

Threat Models and Mitigation
As in any Loc/ID split approach, a critical operation is the creation
of locator-to-ID binding state that devices will use over time. In the
case of LISP, the critical operation is the creation of EID-to-RLOC
mappings in the ITR and the ETR. We can obtain these mappings in
three ways:

•	 By	using	the	information	obtained	from	a	LISP	data	packet

•	 By	using	the	information	contained	in	the	Map-Reply	message	

•	 By	using	an	EID-to-RLOC	mapping	database	

LISP mitigates attacks on the first two techniques by including a
nonce in the LISP header; the nonce is a 32-bit randomly generated
number (generated by the source ITR) that is used to test route re-
turnability.

The Internet Protocol Journal
30

More specifically, an ETR echoes the nonce back to the ITR in a Map-
Reply message. That is, the nonce, combined with the ITR accepting
only solicited Map Replies, provides a base level of authentication
for Map Replies. Note however, that these techniques do not protect
against man-in-the-middle attacks.

The LISP design assumes that many (if not most) security mechanisms
are part of the mapping database service when using control-plane
procedures for obtaining EID-to-RLOC mappings. Denial-of-Service
(DoS) attack prevention, on the other hand, depends on the ability
of an imple mentation to rate-limit Map Requests and Map Replies
(in the control plane), as well as its ability to rate limit the number of
data-triggered Map Replies (for example, in response to Data Probe
packets).

Refer to [19] for a more detailed preliminary threat analysis for
LISP.

LISP and Fast Endpoint Mobility
Fast endpoint mobility occurs when an endpoint moves relatively
rapidly, changing its IP layer network attachment point, and main-
tenance of session continuity is a goal. Mobile IPv4[20] and Mobile
IPv6[21,22,27] mechanisms can be used in this case; note however, that
the interaction of Mobile IP with LISP needs further exploration.
Refer to the LISP specification[3] for additional details.

In summary, the major problem introduced by a Loc/ID split scheme
is that as an endpoint moves, changes to the mapping between its EID
and a set of RLOCs for its new network location may be required.
When this change is added to the overhead of mobile IP binding up-
dates, some packets might be delayed or dropped. In general, the
problem is controlling the update rate (that is, the [Rate × State]
product described previously), and is an area of ongoing research.

Multicast
A multicast group address, as defined in the original Internet archi-
tecture, is an identifier of a grouping of topologically independent
receiver host locations. The address encoding itself does not deter-
mine the location of the receiver(s). The multicast routing protocol
and the network-based state the protocol creates determine the loca-
tion of the receivers.

In the LISP context, a multicast group address is both an EID and a
RLOC. As such, no specific action is necessary for destination ad-
dresses; a group address that appears in an inner IP header (built by a
source host) is used as the destination EID by an ITR as a destination
address when it LISP-encapsulates the packet (that is, the ITR uses
the same group address as the destination RLOC).

LISP: continued

The Internet Protocol Journal
31

The source RLOC, as is usually the case, is the ITR IP address (that
is, one of its RLOCs).

At the receiving side, Protocol Independent Multicast (PIM)[23] has
to translate the source-address Join/Prune messages from RLOCs to
EIDs when multicast packets are forwarded by the ETR. However, in
contrast to the unicast case (where a Map Request is sent by the ITR
at forwarding time), a Map Request can be sent when the multicast
tree is being built.

Putting It All Together: A Day in the Life of a LISP Packet
When a host in a LISP-capable domain wants to send a packet, it first
looks up the correspondent host’s EID in the DNS. It then puts its
EID in the packet source address, and EID of the corres pondent host
in its destination address; if the destination of the packet is in another
domain, the packet traverses the source domain infrastructure to one
of the domain ITRs.

If the ITR has cached the EID-to-RLOC mapping for the destination
EID, it sets the destination RLOC in the outer (encapsulated) header
to the cached RLOC, and the source RLOC to its RLOC (note that
the inner header has the source host’s EID as the source and the des-
tination’s EID in the Destination field). The packet is then sent over
the Internet to the ETR indicated in the destination RLOC, which
decapsulates the packet and sends it on to the destination EID.

If, on the other hand, the ITR does not have a EID-to-RLOC mapping
for the destination EID, it encapsulates the packet in a LISP header in
which the destination address is the same as the inner header destina-
tion address, namely, the EID of the destination host. This packet is
a Data Probe packet, and is routed over the LISP-ALT topology to
the LISP-ALT router (typically an ETR, but this type of router is not
required) that is authoritative for the EID-to-RLOC mapping. When
the ETR receives the Data Probe packet, it decapsulates the packet
and sends it on to the destination EID and sends a Map Reply to the
source ITR so subsequent packets are sent natively over the Internet
(as opposed to over the LISP-ALT overlay network). This query/re-
sponse transaction is required only for the first packet sent between
sites; all subsequent packets are sent LISP-encapsulated directly be-
tween the ITR and the ETR (and in particular, not over the LISP-ALT
topology). Finally, note that the ITR could also preload its cache
with mappings for popular destinations using the Map-Request mes-
sage, avoiding the Data Probe packet (and associated latency, if any)
altogether.

The Internet Protocol Journal
32

For example, consider the scenario depicted in Figure 3. In this case,
a source S with EID 1.0.0.1 wants to send a packet to destination D
whose EID is 2.0.0.2. The packet arrives at ITR S2, which does not
have an EID-to-RLOC mapping for 2.0.0.2. S2 LISP-encapsulates
the packet with the outer header having its RLOC (11.0.0.1) as the
source address, copies the destination EID (2.0.0.2) from the inner
header to the outer-header destination, and sends the data packet
(a Data Probe) into the LISP-ALT topology. The packet follows the
paths computed by BGP in the LISP-ALT topology to ETR D2. When
D2 receives the packet, it decapsulates it and forwards the packet to
the destination 2.0.0.2; D2 also responds with a Map-Reply mes-
sage that tells S2 (11.0.0.1) that the EID-to-RLOC mapping for
2.0.0.0/8 has two elements, ETR D1 (whose RLOC is 12.0.0.2)
and ETR D2 (whose RLOC is 13.0.0.2). After receiving the Map
Reply, ITR S2 can send LISP-encapsulated packets natively over the
Internet (that is, not over the ALT topology).

Figure 3: A Day in the Life of a LISP Packet

S

Provider A
10.0.0.0/8

Provider B
11.0.0.0/8

ITR

S2

Alternate Topology
Running BGP on

EID-prefixes Map-Reply

PI EID-prefix 1.0.0.0/8

PI EID-prefix 2.0.0.0/8

Provider Y
13.0.0.0/8

Provider X
12.0.0.0/8

1.0.0.1 –> 2.0.0.2

11.0.0.1 –> 2.0.0.2

1.0.0.1 –> 2.0.0.2

11.0.0.1 –> 12.0.0.2

1.0.0.1 –> 2.0.0.2

11.0.0.1 –> 12.0.0.2

1.0.0.1 –> 2.0.0.2

D

ETR

D1
12.0.0.2

ETR

D2
13.0.0.2

1.0.0.1 –> 2.0.0.2

13.0.0.2 –> 11.0.0.1
2.0.0.0/8
 12.0.0.2, p: 1, w: 50
 13.0.0.2, p: 1, w: 50

Legend: EIDs –> Dark Gray
 Locators –> Blue

ITR

S1S1

Note that the mapping has priority (p) and weight (w) attributes.
Priorities tell the ITR which ETRs to use in which order, and weights
tell the ITR how to split load across ETRs of a given priority (w is a
percentage of traffic that should go to each ETR). In this case, both
ETRs have the same priority (1), and have weight 50 (that is, each
ETR should receive 50 percent of the traffic).

LISP: continued

The Internet Protocol Journal
33

New Functions Enabled by the Mapping System
Weights and priorities provide new capabilities for multihomed sites,
which can use these features to control how traffic ingressing to the
site is spread across its links without the com plexity and overhead
of running BGP. In particular, a multihomed site can configure its
mapping database so that its links are used in an “active-active” con-
figuration (that is, both links are in use). This situation is depicted
in Figure 3, where the mapping databases entry 2.0.0.0/8 has two
ETRs at the same priority that are equally weighted, meaning that
the ITR will spread flows equally among the two ETRs.

This function is particularly attractive for Small Office or Home
Office (SOHO) sites that desire both redundancy in their Internet
connections and the ability to easily load share across those links
in an active-active configuration, without the complexity and opera-
tional expense of running BGP.

Another interesting functionality enabled by the LISP control plane
is the ability to mitagate some types of DoS attacks. In particular, if
an ETR notices that it the subject of a DoS attack from behind an
ITR (that is, DoS packets are destined to an EID-prefix for which
it is authorative), it can use the LISP locator reachability bits (see
Figure 2) to tell the the source ITR that the RLOC for that EID-prefix
is not available. The ETR accomplishes this by sending a locator-
reachability bit of zero for the RLOC to the offending ITR. Note
that this functionality is similar to Ioannidis and Bellovin’s “ICMP
Pushback” proposal[25].

Performance Considerations
LISP and its associated mapping protocol(s) have two primary per-
formance concerns:

•	 Encapsulation	overhead	

•	 EID-to-RLOC	lookup	latency	and	packet	loss

In the case of encapsulation overhead, the concern is that the addi-
tion of the LISP header will cause the encapsulate packet to exceed
the path Maximum Transmission Unit (MTU). As mentioned previ-
ously, this area of research is still active (see, for example, [18]).

In the case of lookup latency and packet loss, because LISP-ALT uses
BGP to find a particular EID-to-RLOC mapping, there could be la-
tency associated with the first few packets in the first flow between
sites (note that it is only the first flow; subsequent flows can use the
mapping installed in the ITR). However, this latency is mitigated,
and the initial packets are not lost because LISP can send the first few
data packets over the control plane; these packets are the Data Probe
packets. There is additional latency associated with the time required
for the destination ETR to return the Map Reply. However, after this
initial transaction is completed, no additional latency is injected by
the mapping system.

The Internet Protocol Journal
34

As mentioned previously, there is a trade-off in the mapping system
among the state required to be held by network elements, the rate
of updates to the mapping system, and the latency incurred when
looking up an EID-to-RLOC mapping. LISP-ALT is a hybrid (push/
pull) architecture that attempts to minimize the state requirements on
ITRs, while at the same time minimizing lookup latency.

Conclusions
LISP is a new protocol that implements the Loc/ID split using a
map-and-encap protocol. It obtains the advantages of the level of
indirection afforded by the Loc/ID split while minimizing changes
to hosts and to the core routing system. In addition, LISP enables
new functions such as BGP-free multihoming in an active-active con-
figuration.

Acknowledgments
The LISP specification and supporting documents are the work of
many people, including Scott Brim, Noel Chiappa, Dino Farinacci,
Vince Fuller, Eliot Lear, Darrel Lewis, and Dave Oran.

References
 [0] Brim, S., et al., “EID Mappings Multicast Across Cooperating

Systems for LISP,” Internet Draft, Work in Progress,
 draft‑curran‑lisp‑emacs‑00.txt

 [1] Brim, S., et al., “LISP-CONS: A Content distribution Overlay
Network Service for LISP,” Internet Draft, Work in Progress,
draft‑meyer‑lisp‑cons‑03.txt

 [2] Chiappa, N., “Endpoints and Endpoint Names: A Proposed
Enhancement to the Internet Architecture,”

 http://ana.lcs.mit.edu/~jnc//tech/endpoints.txt

 [3] Farinacci, D., et al., “Locator/ID Separation Protocol (LISP),”
Internet Draft, Work in Progress,

 draft‑farinacci‑lisp‑06.txt

 [4] Fuller, V., et al., “LISP Alternative Topology (LISP-ALT),”
Internet Draft, Work in Progress,

 draft‑fuller‑lisp‑alt‑01.txt

 [5] Jen, D., et al., “APT: A Practical Transit Mapping Service,”
Internet Draft, Work in Progress, draft‑jen‑apt‑01.txt

 [6] Lear, E., “NERD: A Not-so-Novel EID to RLOC Database,”
Internet Draft, Work in Progress,

 draft‑lear‑lisp‑nerd‑03.txt

LISP: continued

The Internet Protocol Journal
35

 [7] Massey, D., Wang, L., Zhang, B., and L. Zhang, “A Proposal
for Scalable Internet Routing and Addressing,” Internet Draft,
Work in Progress, draft‑wang‑ietf‑efit‑01.txt

 [8] Meyer, D., et al., “Report from the IAB Workshop on Routing
and Addressing,” RFC 4984, September 2007.

 [9] Narten, T., et al., “Routing and Addressing Problem Statement,”
Internet Draft, Work in Progress,

 draft‑narten‑radir‑problem‑statement‑01.txt

 [10] Nordmark, E., “Shim6: Level 3 Multihoming Shim Protocol for
IPv6,” Internet Draft, Work in Progress,

 draft‑ietf‑shim6‑proto‑09.txt

 [11] O’Dell, M., “GSE - An Alternate Addressing Architecture for
IPv6,” http://www.watersprings.org/pub/id/draft‑

 ietf‑ipngwg‑gseaddr‑00.txt

 [12] Templin, F., “The IPvLX Architecture,” Internet Draft, Work in
Progress, draft‑templin‑ipvlx‑08.txt

 [13] Vogt, C., “Six/One: A Solution for Routing and Addressing in
IPv6,” Internet Draft, Work in Progress,

 draft‑vogt‑rrg‑six‑one‑01.txt

 [14] Whittle, R., “Ivip (Internet Vastly Improved Plumbing)
Architecture,” Internet Draft, Work in Progress,

 draft‑whittle‑ivip‑arch‑01.txt

 [15] Bates, T., et al., “Multiprotocol Extensions for BGP-4,” RFC
2858, June 2000.

 [16] Farinacci, D., et al., “Generic Routing Encapsulation (GRE),”
RFC 2784, March 2000.

 [17] Rekhter, Y., (Ed.), et al., “A Border Gateway Protocol 4
(BGP-4),” RFC 4271, January 2006.

 [18] Templin, F., “Subnetwork Encapsulation and Adaptation
Layer,” Internet Draft, Work in Progress,

 draft‑templin‑seal‑02.txt

 [19] Bagnulo, M., “Preliminary LISP Threat Analysis,” Internet
Draft, Work in Progress,

 draft‑bagnulo‑lisp‑threat‑01.txt

 [20] Perkins, C., “IP Mobility Support for IPv4, revised,” Internet
Draft, Work in Progress,

 draft‑ietf‑mip4‑rfc3344bis‑05.txt

The Internet Protocol Journal
36

 [21] Johnson, D., Perkins, C., and J. Arkko, “Mobility Support in
IPv6,” RFC 3775, June 2004.

 [22] Arkko, J., Vogt, C., and W. Haddad, “Enhanced Route Opti-
mization for Mobile IPv6,” RFC 4866, May 2007.

 [23] Fenner, B., et al., “Protocol Independent Multicast - Sparse
Mode (PIM-SM): Protocol Specification (Revised),” RFC 4601,
August 2006.

 [24] Hinden, R., “New Scheme for Internet Routing and Addressing
(ENCAPS) for IPNG,” RFC 1955, June 1996.

 [25] Ioannidis John, and Bellovin, S., “Pushback: Router-Based
Defense Against DDoS Attacks,”

 http://citeseer.ist.psu.edu/420554.html

 [26] Huston, G., “More ROAP: Routing and Addressing at IETF68,”
The Internet Protocol Journal, Volume 10, No. 2, June 2007.

 [27] Carlos J. Bernardos, Ignacio Soto, and María Calderón, “IPv6
Network Mobility,” The Internet Protocol Journal, Volume 10,
No. 2, June 2007.

DAVID MEYER is currently a Director in the Advanced Research and Technologies
Group at Cisco Systems, where he works on future directions for Internet technolo-
gies. E-mail: dmm@cisco.com

LISP: continued

The Internet Protocol Journal
37

Book Review

Patterns in Network Architecture Patterns in Network Architecture: A Return to Fundamentals,
by John Day, ISBN-10: 0132252422, ISBN-13: 9780132252423,
Prentice Hall, 2007. http://www.informit.com/store/product.
aspx?isbn=0132252422

It isn’t every day (pun intended) that one of the true Old Guard writes
and publishes a book, and it behooves us to take notice. In this case,
the author’s expertise and his subject matter are of particular timeli-
ness, because of the worldwide resurgence of activities with regard
to next-generation network architectures, that is, a replacement, or
upgrade to the Internet (dare one say “Internet 2.0”?).

John Day is a well-known scholar of historical cartography, and this
book, in a way, is a roadmap of network architecture. The roadmap
starts back in 1970, tracing from the roots of connectionless packet-
switched dynamically routed systems such as Cyclades, and the
ARPANET, through to recent discussions on multihoming, multicast,
and mobility, with a view along the way of naming, addressing,
protocol stack design, protocol design, and concepts of layering.

That description makes the book sound fairly standard in terms of
structure and content, but it isn’t. The book includes many discursive
elements whose intent is to provide a collection of patterns. Design
patterns originated in the building trade as a way for crafts people
to pass on successful methods of construction (in the sense of
affordable and noncollapsing) to less-inventive people (or people
who want to spend their inventive efforts in different areas). Software
engineers picked up on this idea, applying the techniques in both the
microscopic world: patterns allow you to decide what algorithm is
applicable in solving a problem in the small; and the macroscopic
world: architectural patterns allow you to decide on an approach to
breaking down a large system into the right kind of components.

Essentially, this book does the same thing, at the protocol stack level,
and at the system level, with a collection of historical and contempo-
rary examples to support the arguments.

The book makes interesting reading, especially as it represents a
fair balance in reporting the early ideas that came not just from the
United States, and restates the importance of the Opens Systems
Interconnection (OSI) model (not the ISO protocols) in understand-
ing layering and beads-on-a-string, as well as reasserting the use of
the model in clarifying the perennially confusing concepts of names,
addresses, and routes.

The Internet Protocol Journal
38

The book begins with a discussion of seven principles that emerged
through the early history of networking (I won’t spoil the book for
readers by listing them here), and ends in the tenth and final chapter,
entitled “Backing Out of a Blind Alley,” with an appeal to funda-
mentals. Essentially, the author points out that researchers (especially
academics) are strongly motivated to keep moving on with claims of
ever-newer tricks, but rarely to consolidate these tricks into a set of
principles that stand for a long time (because then they would have
to completely change the topic of their research). Thus uncovering a
foundational theory of networking would put a whole generation of
networkers out of work (or funding at least).

The book is peppered (saltily) with fine quotes and fascinating asides
from philosophy (for this reader, especially, the Chinese diversions
were most novel and illuminating). Illustrative of the range is that
one finds Wittgenstein and Dave Clark, Confucius, and Dr. Seuss—
Frege’s useful reminder that “The sign ‘=’ should be read as ‘is easily
confused with’” would make an excellent IETF T-shirt.

I found the book extremely readable and enjoyable, and although I
might argue with some of the opinions in the book, I think that this
is just more evidence that I should recommend the book to anyone
interested in knowing why we are where we are in networking, and
being better informed about where we should go next.

—Jon Crowcroft, University of Cambridge
Jon.Crowcroft@cl.cam.ac.uk

Read Any Good Books Lately?
Then why not share your thoughts with the readers of IPJ? We accept
reviews of new titles, as well as some of the “networking classics.” In
some cases, we may be able to get a publisher to send you a book for
review if you don’t have access to it. Contact us at ipj@cisco.com
for more information.

Book Review: continued

The Internet Protocol Journal
39

Fragments

ICANN Recovers Large Block of Internet Address Space
The Internet Corporation for Assigned Names and Numbers (ICANN)
has found a little breathing room in the IPv4 address space with its
recovery of a block of 16 million IPv4 addresses.

The IP addresses recovered were once used to connect older proto-
col packet-data networks with the fledgling Internet. The block of
addresses, technically referred to as 14.0.0.0/8, is also known as
“Net-14.”

“Net-14 was the easiest network to reclaim, the so-called low hang-
ing fruit,” said Barbara Roseman, General Manager with the Internet
Assigned Numbers Authority (IANA), which is operated by ICANN.
“None of the other legacy assignments in the IPv4 space are likely to
be completely reclaimed as they are all in active use.”

A small percentage of the addresses in Net-14 had been assigned,
most more than 15 years ago. The assignments were so old that find-
ing people who knew about them was a lengthy process. Nearly 50
organizations worked cooperatively with ICANN staff throughout
2007 to confirm that the 984 registrations were no longer in use.
IANA undertook the reclamation effort to ensure that the greatest
number of IPv4 addresses can be made available to Internet users as
the overall free pool of IPv4 addresses is depleted. IANA allocates
IPv4 and IPv6 addresses to Regional Internet Registries (RIRs). The
five RIRs allocate addresses to network operators in their local re-
gions. IANA allocated more than one /8 (16m IPv4 addresses) per
month in 2007 and the rate of allocation is not expected to slow
in 2008. The reclamation of Net-14 means there are now 43 unal-
located /8s left.

“The recovery of these addresses offers some breathing room as the
four billion addresses in IPv4 space are depleted, but it is only a tem-
porary solution,” added Roseman. “The real and lasting solution is
the technical move to IPv6—the protocol that will make 340 trillion
trillion trillion unique IP addresses available.”

IPv6 Address Added for Root Servers in the Root Zone
ICANN recently took another step along the path of deployment for
the next-generation IPv6 Internet addressing system. IPv6 addresses
were added for six of the world’s 13 root server networks (A, F, H, J,
K, M) to the appropriate files and databases. This move allows for the
possibility of fuller IPv6 usage of the Domain Name System (DNS).
Prior to today, those using IPv6 had needed to retain the older IPv4
addressing system in order to be able to use domain names.

The Internet Protocol Journal
40

“The ISP community welcomes this development as part of the con-
tinuing evolution of the public Internet,” said Tony Holmes, chair of
ICANN’s Internet Service and Connectivity Provider Constituency.
“IPv6 will be an essential part our future and support in the root
servers is essential to the growth, stability, and reliability of the pub-
lic Internet.”

Name server software relies on the root servers as a key part in trans-
lating domains like icann.org into the routing identifiers used by
computers to connect to one another. In 2007 the ICANN Security
and Stability Advisory Committee concluded that ICANN should
move forward with the enhancement of the DNS root service by
adding IPv6 addresses for the root servers.“The addition of IPv6 ad-
dresses for the root servers enhances the end-to-end connectivity for
IPv6 networks, and furthers the growth of the global interoperable
Internet,” added David Conrad, ICANN’s Vice President of Research
and IANA Strategy. “This is a major step forward for IPv6-only con-
nectivity and the global migration to IPv6.”

Further technical information on the move is available at:

http://www.iana.org/reports/root‑aaaa‑announcement.html

RIPE NCC Publishes Case Study of YouTube Hijack
As you may be aware from recent news reports, traffic to the you‑
tube.com Website was “hijacked” on a global scale on Sunday
February 24, 2008. The incident was a result of the unauthorized an-
nouncement of the prefix 208.65.153.0/24 and caused the popular
video sharing Website to become unreachable from most, if not all, of
the Internet. The RIPE NCC conducted an analysis into how this in-
cident was seen and tracked by the RIPE NCC’s Routing Information
Service (RIS) and has published a case study at:

http://www.ripe.net/news/study‑youtube‑hijacking.html

The RIPE NCC RIS is a service that collects Border Gateway Protocol
(BGP) routing information from roughly 600 peers at 16 Internet
Exchange Points (IXPs) across the world. Data is stored in near real-
time and can be instantly queried by anyone to provide multiple views
of routing activity for any point in time. The RIS forms part of the
RIPE NCC’s suite of Information Services, which together provide a
deeper insight into the workings of the Internet. The RIPE NCC is a
neutral and impartial organization, and commercial interests there-
fore do not influence the data collected. The RIPE NCC Information
Services suite also includes the Test Traffic Measurement (TTM) ser-
vice, the DNS Monitoring (DNSMON) service and Hostcount. All of
these services are available to anyone, and most of them are offered
free of charge.

More information about RIPE NCC Information Services can be
found at: http://is‑portal.ripe.net

Fragments: continued

The Internet Protocol Journal
41

IETF Examines Future of the Internet by Going IPv6 Native
The Internet Engineering Task Force (IETF) put a spotlight on the
next generation of Internet addressing when it switched off attendees’
access to IPv4 during its March 2008 meeting. For an hour, Internet
engineers at the meeting could only access the Internet using an IPv6
network.

During this event, IETF participants were encouraged to explore the
Internet as it appears today in the IPv6 environment. The purpose of
this exploration was to determine the next steps necessary toward de-
ployment of IPv6 as the next generation of Internet addressing. The
IETF undertook this activity at a time when IPv6-implementation is
becoming a matter of global importance for the Internet. The event
provided all IETF meeting attendees a first-hand opportunity to work
with the Internet over an exclusive IPv6 network. “We get a lot of re-
ports from members of our com munity who use IPv6, but this was an
opportunity for everyone to observe and discuss the technical issues
as a group,” said Russ Housley, Chair of the IETF. “This first-hand
data helps to inform our engineering decisions.”

Some members of the Internet technical community assert that
the ongoing deployment of IPv6 has been held back by a lack of
IPv6-accessible Websites, creating the classic first-step dilemma for
network operators. “It has been incredible to observe as members of
the community organized themselves and updated their home net-
works to be ready for this event,” said Leslie Daigle, Chief Internet
Technology Officer at the Internet Society. “As we continue to solve
the engineering and implementation obstacles to IPv6 deployment,
creative engineers around the world will develop new uses for the
Internet, through IPv6, in ways we can’t yet imagine.”

The IETF has provided dual stack IPv4/IPv6 network connectivity
at its meetings for years, which has been useful for its regular IPv6-
using attendees. The difference during this meeting was that a strictly
IPv6 network was made available as well, and all attendees were
encouraged to explore and experiment with the Internet as seen from
IPv6. This focus was heightened when IPv4 access was deliberately
shut off for an hour, leaving only IPv6 for connectivity. Following
this—and other similar experiments—the engineering community
expects to have a better understanding of the next steps necessary in
the development of protocols and standards to support the continued
deployment of IPv6 in support of the global Internet. The Comcast
Corporation provided the facilities to conduct the live test of IPv6
and was the host sponsor of IETF-71 in Philadelphia.

For more information about this event, and similar events please see:

http://www.isoc.org/educpillar/resources/ipv6_faq.shtml

http://wiki.tools.isoc.org/IETF71_IPv4_Outage

http://www.civil‑tongue.net/clusterf/

The Internet Protocol Journal
42

Postel Network Operator’s Scholarship 2008
The North American Network Operators’ Group (NANOG) and the
American Registry for Internet Numbers (ARIN) have been unique
and successful cooperative fora for Internet builders in North America
and other parts of the world. Senior practitioners from around the
world contribute their time to NANOG and ARIN as presenters,
teachers and trainers, to produce consistent non-commercial confer-
ences of high-quality.

Since 2007, the generosity of an anonymous donor and the adminis-
tration of the Internet Society, have allowed NANOG and ARIN to
provide financial support to a person from a developing country to
participate in the October joint NANOG/ARIN meeting through the
Postel Network Operator’s Scholarship.

The Scholarship Committee cordially invites suitable applicants to
apply for fellowship funding to participate in the October 2008 joint
NANOG/ARIN meeting. The Scholarship targets personnel from
developing countries who are actively involved in Internet develop-
ment, in any of the following roles: Engineers (Network Builders),
Operational and Infrastructure Support Personnel, and Educators,
Teachers, and Trainers

Successful applicants will be provided with transportation to and
from the meetings and a reasonable allowance for food and accom-
modation. In addition all fees for participation in the conferences,
tutorials, and social events will be waived. Applicants from any
part of the world will be considered. The deadline for application is
June 1, 2008, and the awardee will be informed by July 1, 2008.

To apply for the fellowship please read http://www.nanog.org/
postel‑scholarship.html and submit your application by e-mail
to PostelNOS@nanog.org

For more information about NANOG and ARIN meetings, see:
http://www.nanog.org/ and http://www.arin.net/

JPNIC Releases IPv4 Exhaustion Report
The Japan Network Information Center (JPNIC) has released a re-
port entitled “Study Report on the IPv4 Address Space Exhaustion
Issue (Phase I).” The report can be downloaded from the following
link:

http://www.nic.ad.jp/en/ip/ipv4pool/ipv4exh‑report‑
071207‑en.pdf

Fragments: continued

The Internet Protocol Journal
43

Call for Papers
The Internet Protocol Journal (IPJ) is published quarterly by Cisco
Systems. The journal is not intended to promote any specific products
or services, but rather is intended to serve as an informational and
educational resource for engineering professionals involved in the
design, development, and operation of public and private internets
and intranets. The journal carries tutorial articles (“What is...?”), as
well as implementation/operation articles (“How to...”). It provides
readers with technology and standardization updates for all levels of
the protocol stack and serves as a forum for discussion of all aspects
of internetworking.

Topics include, but are not limited to:

•	 Access	 and	 infrastructure	 technologies	 such	 as:	 ISDN,	 Gigabit	
Ethernet, SONET, ATM, xDSL, cable, fiber optics, satellite,
wireless, and dial systems

•	 Transport	and	interconnection	functions	such	as:	switching,	rout-
ing, tunneling, protocol transition, multicast, and performance

•	 Network	management,	administration,	and	security	issues,	includ-
ing: authentication, privacy, encryption, monitoring, fire-walls,
troubleshooting, and mapping

•	 Value-added	 systems	 and	 services	 such	 as:	 Virtual	 Private	 Net-
works, resource location, caching, client/server systems, distributed
systems, network computing, and Quality of Service

•	 Application	 and	 end-user	 issues	 such	 as:	 e-mail,	 Web	 author-
ing, server technologies and systems, electronic commerce, and
application management

•	 Legal,	 policy,	 and	 regulatory	 topics	 such	 as:	 copyright,	 content	
control, content liability, settlement charges, “modem tax,” and
trademark disputes in the context of internetworking

In addition to feature-length articles, IPJ will contain standardization
updates, overviews of leading and bleeding-edge technologies, book
reviews, announcements, opinion columns, and letters to the Editor.

Cisco will pay a stipend of US$1000 for published, feature-length ar-
ticles. Author guidelines are available from Ole Jacobsen, the Editor
and Publisher of IPJ, reachable via e-mail at ole@cisco.com

This publication is distributed on an “as-is” basis, without warranty of any kind either
express or implied, including but not limited to the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could contain technical
inaccuracies or typographical errors. Later issues may modify or update information provided
in this issue. Neither the publisher nor any contributor shall have any liability to any person
for any loss or damage caused directly or indirectly by the information contained herein.

The Internet Protocol Journal
Ole J. Jacobsen, Editor and Publisher

Editorial Advisory Board
Dr. Vint Cerf, VP and Chief Internet Evangelist
Google Inc, USA

Dr. Jon Crowcroft, Marconi Professor of Communications Systems
University of Cambridge, England

David Farber
Distinguished Career Professor of Computer Science and Public Policy
Carnegie Mellon University, USA

Peter Löthberg, Network Architect
Stupi AB, Sweden

Dr. Jun Murai, General Chair Person, WIDE Project
Vice-President, Keio University
Professor, Faculty of Environmental Information
Keio University, Japan

Dr. Deepinder Sidhu, Professor, Computer Science &
Electrical Engineering, University of Maryland, Baltimore County
Director, Maryland Center for Telecommunications Research, USA

Pindar Wong, Chairman and President
Verifi Limited, Hong Kong

The Internet Protocol Journal is
published quarterly by the
Chief Technology Office,
Cisco Systems, Inc.
www.cisco.com
Tel: +1 408 526-4000
E-mail: ipj@cisco.com

Copyright © 2008 Cisco Systems, Inc.
All rights reserved. Cisco, the Cisco
logo, and Cisco Systems are
trademarks or registered trademarks
of Cisco Systems, Inc. and/or its
affiliates in the United States and
certain other countries. All other
trademarks mentioned in this document
or Website are the property of their
respective owners.

Printed in the USA on recycled paper.

The Internet Protocol Journal, Cisco Systems
170 West Tasman Drive
San Jose, CA 95134-1706
USA

ADDRESS SERVICE REQUESTED

PRSRT STD
U.S. Postage

PAID
PERMIT No. 5187

SAN JOSE, CA

