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F r o m  T h e  E d i t o r

The Domain Name System (DNS) was not designed to support any-
thing beyond 7-bit ASCII characters. Thus my middle name, Jørgen, or 
my colleague’s surname, Fältström, cannot be used in a domain name. 
In fact, even using such strings on the left side of the @-sign—or in the 
body of an e-mail message—is problematic. We often find ourselves 
ignoring this limitation, using either “Jorgen” and “Faltstrom” or in 
some cases the two-letter convention “Joergen” and “Faelt stroem.” 
As Scandinavians, Mr. Fältström and I are relatively lucky in that 
our languages contain only three characters in addition to those that 
can be represented by 7-bit ASCII. This, of course, isn’t true for such 
languages as Arabic, Chinese, Japanese, or Korean, to name just a 
few. The IETF, ICANN, and others have been working hard to design 
and deploy a system that will allow native characters to appear in 
the DNS. Our first article discusses these efforts, known collectively 
as Internationalized Domain Names (IDNs). Geoff Huston gives an 
overview of IDNs and describes the many technical and political chal-
lenges that must be overcome in order to deploy such a system.

Recent activities have focused much attention on IPv6 deployment. 
Experiments have been conducted at several major Internet events 
(NANOG, APRICOT, and IETF) to “turn off” IPv4 for a period of 
time to test connectivity and interoperability to the outside world. 
You can read more about these experiments in our “Fragments” 
section on page 41. Such experiments provide valuable information 
about what works and what doesn’t, and several more IPv4 “out-
ages” are planned for 2008 and beyond. At the same time, researchers 
have been looking at ways to scale the routing system of the Internet, 
regardless of IP protocol version. One such approach is the Locator/
Identifier Separation Protocol (LISP), which Dave Meyer describes in 
our second article.

The next issue of The Internet Protocol Journal, to be published some-
time in June 2008, will be our Tenth Anniversary issue. We would 
love to hear your reflections on the last ten years of this journal and 
about the Internet as a whole over the same time period. Send your 
Letters to the Editor to ipj@cisco.com

—Ole J. Jacobsen, Editor and Publisher 
ole@cisco.com

You can download IPJ 
back issues and find 

subscription information at: 
www.cisco.com/ipj
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Internationalizing the Domain Name System
by Geoff Huston, APNIC

C onsidering the global reach of the Internet, internationaliz-
ing the network sounds like a tautology. Surely the Internet 
is already truly “international,” isn’t it? The Internet reaches 

around the globe to every country, doesn’t it? And no matter where 
you may travel these days, an Internet café is just around the corner. 
How much more “international” can you get? 

But maybe I’m just being too parochial here when I call it a tautology. 
I use a dialect of the English language, and all the characters I need 
are contained in the Western Latin character set. Therefore, I avoid 
using a non-English language on the Internet; the only language I use 
on the Internet is English, and all the characters I need are encom-
passed in the ASCII character set. If I tried to use the Internet with a 
language that has a non-Latin character set and a different script, my 
experience would probably be different—and acutely frustrating. If 
my native language used a different script and a different text flow 
than English, I would probably give the Internet an extremely low 
score for ease of use. It is not as simple as managing glyph sets to 
represent the characters of the language; although it is relatively easy 
to present pictures of characters in a variety of fonts and scripts, us-
ing them in an intuitive and natural way in the context of the Internet 
becomes more challenging.

Mostly what is needed is good localization, or adapting the local 
computing environment to suit local linguistic needs. This environ-
ment may include support for additional character sets and additional 
language scripts, and perhaps altering the direction of text flow, or 
even the entire layout of the information.

For example, Japanese is traditionally written in a format called  
Tategaki. In this format, the text flows in columns going from top to 
bottom, with columns ordered from right to left. Modern Japanese 
also uses another writing format, called Yokogaki. This writing  
format is identical to that of European languages such as English, 
where the text flows from left to right in successive rows from top to 
bottom.

Today, the left-to-right direction is dominant in Japanese Kana, 
Chinese characters, and Korean Hangul for horizontal writing. This 
change is due partly to the influence of English, and partly to the 
increased use of computerized typesetting and word-processing soft-
ware, most of which does not directly support right-to-left layout 
of East Asian languages. It would appear that even Yokogaki is an 
outcome of the lack of capability of IT systems to correctly cope with 
localization.[1]
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One topic, however, does not appear to have a compellingly obvious 
localization solution in this multilingual environment: the Domain 
Name System (DNS). The subtle difference here is that the DNS is 
the “glue” that binds all users’ language symbols together, and per-
forming localized adaptations to suit local language use needs is not 
enough. The DNS spans the entire network, so what works for me in 
the DNS must also work for you. What we need is a means to allow 
the use of all of these language symbols within the same system, or 
internationalization.

The DNS is the most prevalent means of initiating a network trans-
action, whether it is a BitTorrent session, the Web, e-mail, or any 
other form of network activity. But the DNS name string is not just 
an arbitrary string of characters. What you find in the DNS is most 
often a sequence of words or their abbreviations, and the words are 
generally English words, using characters drawn from a subset of the 
Latin character set. Perhaps unsurprisingly, some implementations 
of the DNS also assume that all DNS names must be constructed 
only from this ASCII character set, and these implementations are 
incapable of supporting a larger character repertoire. If you want 
to use a larger character set in order to represent various diacritics, 
such as acute and grave symbols, umlauts and similar marks, then the 
deployed DNS can be resistant to this use, and may provide incorrect 
responses to queries that include such characters. And if you want to 
use words drawn from languages that do not use the western script 
for their characters, such as Japanese or Thai, for example, then the 
DNS is highly resistant to this form of multilingual use.

Latin and Roman Alphabets
The default Latin alphabet is the Roman[2] alphabet, supplemented 
with G, J, U, W, Y, Z, and lowercase variants. Additional letters may 
be formed:

•	 As	 ligatures, as W was from VV, for example Æ (ash) from AE, 
oethel Œ from OE, eszett ß from ſz (long s + z), engma ŋ from NG, 
ou Ȣ from OU, Ñ from NN, or ä from ae 

•	 By	diacritics, such as Å, Č, and Ų 

•	 As	digraphs, such as fi and fl

•	 By	modification,	as	J	was	from	I,	G	from	C,	Ø	from	O,	eth Ð from 
D, yogh Ȝ from G, or schwa Ə from E

•	 By	borrowing	from	another	alphabet	entirely,	as	thorn Þ and wynn 
Ƿ were from Futhark (Runic)

Over the years we have done a reasonable job of at least displaying 
non-Latin-based scripts within many applications, and although at 
times it appears to represent a less-than-reasonable compromise, it is 
possible to enter non-Latin characters on computer keyboards. So it 
appears to be possible to customise a local computing environment 
to use a language other than English in a relatively natural way. 
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But what happens when we extend the scope to consider multilingual 
support in the wider world of the Internet? 

Again the overall story is not all that bad. We can use non-Latin char-
acter scripts in e-mail, in all kinds of Web documents, and in a wide 
variety of network applications. We can tag content with a language 
context to allow display of the content in the correct language us-
ing the appropriate character sets and presentation glyphs. However, 
until recently, one area continued to stick steadfastly to its ASCII 
roots: the DNS. This article addresses DNS internationalization, or 
Internationalized Domain Names (IDNs).

What do we mean when we talk of “internationalizing the DNS”? 
It refers to an environment where English, and the Latin character 
set, is just one of many languages and scripts in use, and where a 
communication is initiated in one locale and then the language and 
presentation are preserved wherever the communication is received.

Terminology
The following terms are used in this article:

Language: A language uses characters drawn from a collection of 
scripts.

Script: A script is a collection of characters that are related in 
their use by a language.

Character: A character is a unit of a script.

Glyph: The presentation of a character within the style of a font 
is called a glyph.

Font: A font is a collection of glyphs encompassing a script 
character set that share a consistent presentation style.

Multiple languages can use a common script, and any locale or coun-
try may use many languages, reflecting the diversity of its population 
and the evolution of local dialects within communities.

It is also useful to remember the distinction between internation-
alization and localization. Inter nationalization is concerned with 
providing a common substrate that many—preferably all—languages 
and all users can use, whereas localization is concerned with the use 
of a particular language within a particular locale and within a de-
fined user population. Unsurprisingly, the two concepts are often 
confused, particularly when true internationalization is often far 
more difficult to achieve than localization.

IDNs:  continued
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Internationalizing the DNS
The objective is the internationalization of the DNS, such that the 
DNS can support the union of all character sets while preserving the 
absence of ambiguity and uncertainty in terms of resolution of any 
individual DNS name. We need to describe all possible characters in 
all languages and allow their use in the DNS. So the starting point is 
the “universal character set,” and that appears to be Unicode.

One of the basic building blocks for internationalization is a char-
acter set that is the effective union of all character sets. Unicode[3] is 
intended to be such a universal encoding of characters (and symbols) 
in the contexts of all scripts and all languages. The current version 
of the Unicode Standard, Version 5.0, contains 98,884 distinct coded 
graphic characters.

A sequence of Unicode code points can be represented in multiple 
ways by using different character encoding schemes in a Unicode 
Transformation Format (UTF). The most commonly used schemes 
are UTF-8 and UTF-16.

UTF-8 is a variable-length encoding using 8-bit words, meaning that 
different code points require different numbers of bytes. The larger 
the index number of a code point, the more bytes are required to 
represent it using UTF-8. For example, the first 127 Unicode code 
points, which correspond exactly to the values used by the ASCII 
character set (which maps only 127 characters), can be represented 
using only 8 bits in UTF-8, using the same 8-bit values as in ASCII. 
UTF-8 can require up to 32 bits to encode certain code points. A 
criticism of UTF-8 is that it “penalizes” certain scripts by requiring 
more bytes to represent their code points. The IETF has made UTF-8 
its preferred default character encoding for internationalization of 
Internet application protocols.

UTF-16 is a variable-length character encoding using 16-bit words. 
Characters in the Basic Multilingual Plane are mapped into a single 
16-bit word, with other characters mapped into a pair of 16-bit 
words.

UTF-32 is a fixed-length encoding that uses 32 bits for every code 
point. This encoding tends to make for a highly inefficient coding 
that is, generally, unnecessarily large, because most language uses of 
Unicode draw characters from the Basic Multilingual Plane, making 
the average code size 16 bits in UTF-16 as compared to the fixed-
length 32 bits in UTF-32. For this reason UTF-32 is far less commonly 
used than UTF-8 and UTF-16.
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But languages, which we humans change in various ways every day, 
are not always definitive in their use of characters, and Unicode has 
some weaknesses in terms of identifying a context of a script and 
a language for a given character sequence. The common approach 
to using Unicode encodings in application software is to use an as-
sociated “tag,” allowing content to be tagged with a script and an 
encoding scheme. For example, a content tag might read: “This text 
has been encoded using the KOI-8 encoding of the CYRILLIC script.”

Tagging allows for decoding of the encoded characters in the con-
text of a given script and a given language. This decoding has been 
useful for e-mail or Web page content, but tagging breaks down in 
the context of the DNS. There is no natural space in DNS names to 
contain language and script tags, implying that attempting to support 
internationalization in the DNS has to head toward a “universal” 
character set and a “universal” language context. Another way of 
looking at this situation is that the DNS must use an implicit tag of 
“all characters and all languages.”

The contexts of the use of DNS names have numerous additional 
artefacts. What about domain-name label separators? This “dot” be-
tween DNS “words,” or a DNS label separator, is an ASCII period 
character. In some languages, such as Thai, for example, there is no 
natural use of such a label separator. In a similar vein, are URLs 
intended to be visible to end users? If so, then we may have to trans-
form the punctuation components of the URL into the script of the 
language. Therefore, we may need to understand how to manage 
protocol strings, such as “http:” and separators such as the “/” char-
acter. To complete the integrity of the linguistic environment, these 
elements may also require local presentation transformations.

For example, the Thai alphabet uses 44 consonants and 15 basic 
vowel characters, which are horizontally placed, from left to right, 
with no intervening space, to form syllables, words, and sentences. 
Vowels associated with consonants are nonsequential: they can be 
located before, after, above, or below their associated consonant, or 
in a combination of these positions. The latter in particular causes 
problems for computer encoding and text rendering[4].

The DNS name string reads left to right, and not right to left or top 
to bottom as in other script and language cultures. How much of this 
string you can encode in the DNS and how much must be managed 
by the application is part of the problem here. Is the effort to interna-
tionalize the DNS with multiple languages restricted to the “words” 
of the DNS, leaving the implicit left-to-right ordering and the punc-
tuation of the DNS unaltered? If so, how much of this ordering and 
punctuation is a poor compromise, in that these DNS conventions in 
such languages are not natural translations?

IDNs:  continued



The Internet Protocol Journal
7

The Unicode UTF-8, UTF-16, and UTF-32 encodings all require an 
“8-bit clean” storage and trans mission medium. Because “traditional” 
DNS domain names are representable with 7-bit ASCII characters, 
not all applications that process domain names preserve the status of 
the eighth bit; in other words, they are not 8-bit clean. This situation 
stimulated significant debate in the IETF’s IDN Working Group and 
influenced the direction of the standards development into the area of 
application assistance: the group took a very conservative view of the 
capabilities of the DNS as a restricted ASCII code application.

Accordingly, we now see the DNS itself as a heavily restricted “lan-
guage.” The prudent use of the DNS specifies, in RFC 1035[5], a 
sequence of “words” (or “labels”), where each label conforms to 
the “Letter, Digit, Hyphen” (LDH) restriction. Each DNS label must 
begin with a letter, restricted to the Latin character subset of “A” 
through “Z” and “a” through “z”, followed by a sequence of letters, 
digits, or hyphens, with a trailing letter or digit, and no trailing hy-
phen. Furthermore, the case of the letter is not important to the DNS, 
so, within the DNS “a” is equivalent to “A”, and so on, and all char-
acters are encoded in monocase ASCII. The DNS uses a left-to-right 
ordering of these labels, with the ASCII period as the label delimiter. 
This restriction is often referred to as the LDH Convention.

The challenge posed with the effort of internationalizing the DNS 
is one of attempting to create a framework that allows Internet ap-
plications—and the DNS in particular—to be set in the user’s own 
language in an entirely natural fashion, and yet allow the DNS to 
operate in a consistent and deterministic manner within its restricted 
“language.” In other words, we all should be able to use brow sers 
and e-mail systems using our own language and scripts, yet still be 
able to communicate naturally with others who may be using a dif-
ferent language interface. 

The most direct way of stating the choice set of IDN design is that 
IDNs either change the “prudent use” of the deployed DNS into 
something quite different by permitting a richer character repertoire 
in all parts of the DNS, or IDNs change the applications that want to 
support a multilingual environment such that they have to perform 
some form of encoding transfer to map between a language string 
using Unicode characters and an “equivalent” string using the re-
stricted DNS LDH character-set repertoire. It appears that options 
other than these two lead us into fragmented DNS roots, and having 
already explored that particular concept in the past, not many of us 
want to return to that subject. So if we want to maintain a cohesive 
and unified symbol space for the DNS, then either the deployed DNS 
has to become 8-bit clean, or applications have to do the work and 
present to the DNS an encoded form of the Unicode sequences that 
conform to the restricted DNS character repertoire.
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The IDN Framework
If you are an English language user with the ASCII character set, the 
DNS name you enter into the browser—or the domain part of an 
e-mail address—is almost the same string as the string that is passed 
to the DNS resolver to resolve into an address (the difference is the 
conversion of the characters into monocase). If you want to send a 
mail message, you might send it to user@example.com, for example, 
and the domain name part of this address, example.com, is the string 
used to query the DNS for an MX Resource Record in order to estab-
lish how to actually deliver the message.

But what if you want to use a domain name that is expressed in an-
other language? What if the e-mail address is user@記念.com? The 
problem here is that this domain name cannot be “naturally” ex-
pressed in the restricted syntax of the DNS, and although this domain 
name may have a perfectly reasonable Unicode code sequence, this 
encoded sequence is not a strict LDH sequence, nor is it case-insensi-
tive (whatever “case” may mean in an arbitrary non-Latin script). It 
is here that IDNs depart from the traditional view of the DNS and 
use a hybrid approach to the task of mapping these language strings 
into network addresses. 

The IDN Working Group of the IETF was formed in 2000 with the 
goal of developing standards to internationalize domain names. The 
working group’s charter was to specify a set of requirements and de-
velop IETF standards-track protocols to allow use of a broader range 
of characters in domain names. The outcome of this effort was the 
IDN in Applications (IDNA) framework, published as RFCs 3454, 
3490, 3491, and 3492.[6,7,8,9]

Rather than attempting to expand the character repertoire of the 
DNS itself, the IDN working group used an ASCII Compatible 
Encoding (ACE) to encode the binary data of Unicode strings that 
would make up IDNs into an ASCII character encoding. The concept 
is similar to the Base64 encoding used by the Multipurpose Internet 
Mail Extension (MIME) e-mail standards, but whereas Base64 uses 
64 characters from ASCII, including uppercase and lowercase, the 
ACE approach requires the smaller DNS-constrained LDH subset of 
ASCII. 

The working group examined various ACE algorithms in its efforts 
to converge to a single standard (because different encoding algo-
rithms have different compression goals and yields) and encode the 
data using slightly different subsets of ASCII. Most proposals speci-
fied a prefix to the ACE coding to tag the fact that this string was, 
in fact, an encoded Unicode string. The IETF adopted punycode as 
its standard IDN ACE[9]. Punycode was chosen for its efficient en-
coding compression properties that produce short ACE strings. For 
example, the domain name of 記念.com encodes with punycode to 
xn‑‑h7tw15g.com. 

IDNs:  continued
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IDN in Applications 
Although an ASCII-compatible encoding of Unicode characters al-
lows representation of an IDN in a form that will probably not be 
corrupted by the deployed DNS infrastructure on the Internet, an 
ACE alone is not a full solution. The IDN approach also needs to 
specify how and where the ACE should be applied.

The overall approach to IDNs is relatively straightforward. In IDN 
the application has a critical role to play. The application takes a 
domain name that is expressed in a particular language using a partic-
ular script—and potentially in a particular character and word order 
that is related to that language—and produces an ASCII-compatible 
LDH-encoded version of this DNS name. Equally, when presenting a 
DNS string to the user, the application should take the LDH-encoded 
DNS name and transform it to a presentation sequence of glyphs that 
correspond to the original string in the original script.

It is critical that all applications perform this encoding and decod-
ing function correctly, determin istically, and uniformly. In fact, this 
capability is critical to the entire IDN framework.

The basic shift in the DNS semantics that IDNs bring to the DNS 
is that the actual name itself is no longer in the DNS. An encoded 
version of the canonical name form sits in the DNS, and applications 
need to perform the canonical name transformation, as well as the 
mapping between the Unicode character string and the encoded DNS 
character string. So we need to agree on what are the “canonical” 
forms of name strings in every language. We also need to agree on 
the encoding method, and our various applications must have pre-
cise equivalents of these canonical name and encoding algorithms, 
or the symbolic consistency of the DNS will fail. The problem here 
is that the DNS does not perform approximate matches or return a 
set of possible answers to a query. The DNS is a deterministic system 
that performs a precise match on the query in order to generate a 
response. The implication here is that if we want the same IDN char-
acter sequence to map to the same network response in all cases and 
all contexts, then all applications must perform precisely the same 
operations on the character sequence in order to generate the ACE-
equivalent label sequence.

RFC 3454[6] defines a presentation layer in IDN-aware applications 
that is responsible for the punycode ACE encoding and decoding. This 
new layer in the application architecture is responsible for encoding 
any internationalized input in domain names into punycode format 
before the corresponding LDH encoded domain name is passed to 
the DNS for resolution. This presentation layer is also responsible for 
decoding the punycode format in IDNs and rendering the appropri-
ate glyphs for the user.
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It is a matter of personal perspective whether this solution is an el-
egant one or it simply shifts an unresolved problem from one area of 
the IETF to another. The IDNA approach assumes that it is easier to 
upgrade applications to all behave consistently in interpreting IDNs 
than it is to change the underlying DNS infrastructure to be 8-bit 
clean in a manner that would support direct use of Unicode code 
points in the DNS.

The Presentation Layer Transform for IDNs
The objective here is to define a reliable and deterministic algorithm 
that takes a Unicode string in a given language and produces a DNS 
string as expressed in the LDH character repertoire. This algorithm 
should not provide a unique 1:1 mapping, but should group “equiva-
lent” Unicode strings, where “equivalence” is defined in the context 
of the language of use, into the same DNS LDH string. Any reverse 
mapping from the DNS LDH string into the Unicode string should 
deterministically select the single “canonical” string from the group 
of possible IDN strings.

Stringprep
The first part of the presentation layer transform is to take the original 
Unicode string and apply numerous transformations to it to produce 
a “regular” or “canonical” form of the IDN string. This form of the 
string is then transformed using the punycode ACE into an encoded 
DNS string form. The generic name of this process is, in IDN lan-
guage, “stringprep,”[6] and the particular profile of transform ations 
used in IDNAs is termed “nameprep.”[8]

This transform of a Unicode string into a canonical format is based on 
the observation that many languages have a variety of ways to display 
the same text and a variety of ways to enter the same text. Although 
we humans are unconcerned about this concept of expressing an idea 
in multiple ways, the DNS is an exact equivalence match operation 
and it cannot tolerate imprecision. So how can the DNS tell that two 
text strings are intended to be identical, even though their Unicode 
strings are different? The IDN approach is to transform the string so 
that all equivalent strings are mapped to the same canonical form, or 
“stringprep” the string. The stringprep specification is not a complete 
algorithm, and it requires a “profile” that describes the applicability 
of the profile, the character repertoire (at the time of writing RFC 
3454, it was Unicode 3.2, although the Unicode Consortium has 
subsequently released Unicode Version 4.0, 4.1, and 5.0), mapping 
tables normalization, and prohibited output characters.

Mapping
In converting from a string to a normal, or canonical, form, the first 
step is to map each character into its normalized equivalent, using a 
mapping table. This table is conventionally used to map characters 
to their lowercase equivalent value to ensure that the DNS string 
comparison is case-insensitive. 

IDNs:  continued
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Other characters are removed from the string by using this mapping 
operation because their presence or absence in the string does not affect 
the outcome of a string-equivalence operation, such as characters that 
affect glyph choice and placement, but without semantic meaning.

The mapping function will create monocase (specifically lowercase) 
outcomes and also will eliminate non-significant code points (such 
as, for example, the Unicode code point 1806; MONGOLIAN TODO 
SOFT HYPHEN or the Unicode code point 200B; ZERO WIDTH SPACE, if 
you really wanted to know what a non-significant code point was).

Normalization
Numerous languages use different character sequences for the same 
meaning. Characters may appear the same in presentation format 
as a glyph sequence, yet have different underlying code points. This 
may be associated with variables ways of combining diacritics, or 
using canonical code points, or using compatibility characters, and, 
in some language contexts, performing character reordering. For ex-
ample, the character Ä can be represented by a single Unicode code 
point 00C4; LATIN CAPITAL A WITH DIARESIS. Another valid represen-
tation of this character is the code point 0041; LATIN CAPITAL LETTER 
A followed by the separate code point 0398; COMBINING DIARESIS. 

The intent of normalization is to ensure that every class of character 
sequences that are equivalent in the context of a language is trans-
lated into a single canonical, consistent format. This consistency of 
format allows the equival ence operator to perform at the character 
level using direct comparison without additional language-dependent 
equivalence operations.

Languages in daily use are not rigid structures, and human use pat-
terns of languages change. Normalization is no more than a best-effort 
process to detect equivalences in a rigid, rule-managed manner, and it 
may not always produce predictable outcomes. This unpredictability 
can be a problem with regard to namespace collisions in the DNS, 
because it does not increase the confidence level of the DNS as a 
deterministic exact-match information-retrieval system. IDNs intro-
duce some forms of name approximation into the DNS environment, 
and the DNS is extremely ill-suited to the related “fuzzy-search” 
techniques that accompany such approximations.

Filtering Prohibited Characters
The last phase in string preparation is removal of prohibited charac-
ters, including the various Unicode white-space code points, control 
code points and joiners, private-use code points, and other code 
points used as surrogates or tags. 
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Right-to-Left Characters
As an option for a particular stringprep profile, you can perform 
a check for right-to-left displayed characters, and if any are found, 
make sure that the whole string satisfies the requirements for bidi-
rectional strings. The Unicode standard has an extensive discussion 
of how to reorder glyphs for display when dealing with bidirectional 
text such as Arabic or Hebrew. All Unicode text is stored in logical 
order as distinct from the display order.

Nameprep: A Stringprep Profile for the DNS
The nameprep profile[8] specifies stringprep for internationalized 
domain names, specifying a character repertoire (in this case the 
specification references Unicode 3.2) and a profile of mappings, 
normali zation (form “KC”), prohibited characters, and bidirectional 
character handling. The outcome is that two-character sequences can 
be considered equivalent in the context of IDNs if, by following the 
sequences of operations defined by the nameprep profile, the resul-
tant sequences of Unicode code points are identical. These code point 
sequences are the “canonical” forms of names that the DNS uses.

The Punycode ASCII-Compatible Encoding
The next step in the processing of IDN names by the application is 
to transform this canonical form of the Unicode name string into 
a LDH-equivalent string using an ACE. The algorithm used, puny-
code, uses a highly efficient encoding, attempting to limit the extent 
to which Unicode sequences become extended-length ACE strings. 

The algorithm first divides the input code points into a set of  
“basic” code points that require no further encoding, and the set of  
“extended” code points. The algorithm takes the basic code points 
and reproduces this sequence in the encoded string: the “literal 
portion” of the string. A delimiter is then added to the string. This 
delimiter is a basic code point that does not occur in the remainder 
of the string. The extended code points are then added to the string 
as a series of integers expressed through an encoding into the basic 
(LDH) code set. 

These additions of the extended code points are done primarily in the 
order of their Unicode values, and secondarily in the order in which 
they occur in the string. The encoding of the code point and its inser-
tion position is done by using a difference, or offset, encoding, so that 
sequences of clustered code points, such as would be found in a single 
language, encode efficiently.

For example, the German language string bücher uses basic codes for 
all characters except the ü character. The punycode algorithm copies 
all the basic codes, followed by a “-”. The value and position of the 
ü insertion now has to follow. 

IDNs:  continued
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The encoded form for ü (code 252) is at the position between the first 
and second basic characters. Using the punycode[10] algorithm gives a 
delta code of 745, a value that can be expressed in base 35 as (21 x 
35) + 10. This code point and the position information are expressed 
in base 35 notation as (10,22,1), or in reverse notation, with the 
encoding kva. So the punycode encoding of bücher is bcher‑kva. 
The internationalized domain-name format prepends the string xn‑‑ 
to the punycode string, resulting in the encoded IDN domain-name 
form of xn‑‑bcher‑kva.

IDNS and Our Assumptions About the DNS
At this stage it should be evident that we have the code points for 
characters drawn from all languages, and the means to create canoni-
cal forms of various words and express them in an encoded form that 
the DNS can resolve.

However, there is more to IDNs than the encoding algorithm. 
Although a massive number of discrete code points exist in the realm 
of Unicode, all these distinct characters are not necessarily displayed 
in unique ways. Indeed, given a relatively finite range of glyphs, the 
same glyph can display numerous discrete code points.

The often-quoted example with IDNs and name confusion is the 
name paypal. What is the difference between www.paypal.com 
and www.paypal.com? There is a subtle difference in the first “a” 
character, where the second domain name has replaced the Latin 
a with the Cyrillic a. Did you spot the difference? Of course not. 
These homoglyphs are cases where the underlying domain names are 
distinct, yet their appearance is indistinguishable. In the first case 
the domain name www.paypal.com is resolved in the DNS with the 
query string www.paypal.com, yet in the second case the query string 
www.paypal.com is translated by the application to the DNS query 
string www.xn‑‑pypal‑4ve.com. How can you tell one case from 
the other? 

This example is by no means a unique case in the IDN realm. The 
reports “Unicode Security Considerations” (Unicode Technical 
Report 36) and “Unicode Security Mechanisms” (Unicode Technical 
Report 39) provide many more examples of postnormalization 
homographs.

There is no clear and unique relationship between characters and 
glyphs. Cyrillic, Latin, and Greek share numerous common glyphs. 
Glyphs may change their shape depending on the character sequence, 
multiple characters may produce a single glyph, such as the character 
pair f l being displayed as the single glyph fl, and a single character 
may generate multiple glyphs. 
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Homoglyphs extend beyond a conventional set of characters and in-
clude syntax elements as well. For example, the Unicode point 0244 
FRACTION SLASH is often displayed using the slash glyph, allowing 
URLs of the form http://a.com/e.com. Despite its appearance, 
this is not a reference to a.com with a locator suffix of e.com, but is 
a reference to the domain a.com/e.com.

The basic response is that if you maintain IDN integrity at the ap-
plication level, then the user just cannot tell. The punycode transform 
of www.paypal.com into www.xn‑‑pypal‑4ve.com is intended to 
be a secret between the application and the DNS, because this ASCII-
encoded form is simply meaningless to the user. But if this encoded 
form remains invisible to the user, how can the user detect that the 
two identically presented name strings are indeed different? Sadly, 
the only true “security” we have in the DNS is the “look” of the DNS 
name that is presented to the user, and the user typically works on the 
principle that if the presented DNS string looks like the real thing, 
then it must be the real thing.

When this homoglyph problem was first exposed, the response from 
many browser imple mentations was to turn off all IDN support in 
their browser. The next response was to deliberately expose the puny-
code version of the URL in the browser address bar, so that directing 
the browser to http://www.paypal.com would display in the ad-
dress bar the URL value of http://www.xn‑‑pypal‑4ve.com.

The distinction between the two equivalently displayed names was 
then visible to the user, but the downside was that we were back to 
displaying ASCII names again, and in this case ASCII versions of pu-
nycode-encoded names. If trying to “read” Base64 was difficult, then 
the displaying—and understanding—of displayed punycode names 
is surely equally as difficult, if not more so. The encoded names can 
be completely devoid of any form of useful association or meaning. 
Although the distinction between ASCII and Cyrillic may be evident 
by overt differences in their ASCII-encoded names, what happens 
when the homoglyph occurs across two non-Latin languages? The 
punycode strings are different, but which string is the “intended” 
one? Did you mean http://xn‑‑21bm4l.com or http://xn‑‑
q2buub.com when you enter a Hindi script URL?

Using ASCII as the fall-back to resolve name confusion in response 
to the problem of ambiguities in non-ASCII script names appears to 
be a nonsensical solution. We appear to be back to guessing games in 
the DNS again, unfortunately, and particularly impossible guessing 
games at that.

These days most popular browsers display the glyphs, rather than 
the ASCII punycode, but once more we are back to the homoglyph 
problem.

IDNs:  continued
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If the intention in the IDN effort was to preserve the deterministic 
property of DNS resolution, such that a DNS query can be phrased 
deterministically and not have the query degenerate into a search 
term or require the application of fuzzy logic to complete the query, 
then we are not quite there yet. 

The under lying observation is that languages are indeed human-use 
systems. They can be tricky, and they invariably use what appear to 
be rules in strange and inconsistent ways. They are also resistant to 
auto mated processing and the application of rigid rule sets. The ca-
nonical name forms that are produced by nameprep-like procedures 
are not comprehensive, nor does it appear that such a rigidly defined 
rule-driven system can produce the desired outcomes in all possible 
linguistic situations. And if the intention of the IDN effort was to 
create a completely “natural” environment using a language environ-
ment other than English and a display environment that is not reliant 
on ASCII and ASCII glyphs, while preserving all the other properties 
of the DNS, then the outcome does not appear to match our original 
IDN expectations.

The underlying weakness here is the implicit assumption that in the 
DNS “what you see is what you get,” and that two DNS names that 
look identical are indeed references to the same name, and when re-
solved in the DNS produce precisely the same resolution outcome. 
When you broaden the repertoire of appearances of the DNS, such 
that the entire set of glyphs can be used in the DNS, then the map-
ping from glyph to underlying code point is not unique. Any effort 
to undertake such a mapping needs additional context in the form 
of a language and script context. But the DNS does not carry such 
a context, making the task of maintaining uniqueness and determin-
ism of DNS name translation essentially impossible if we also want 
to maintain the property that it is the appearance, or presentation 
format, of DNS names to the user that is the foundation stone of the 
integrity of our trust in the DNS.

Some concerns still remain in this space, including the inclusion 
of various forms of character codes that are in effect invisible. In 
addition, homoglyphs could be better managed by using a refined 
definition of IDN labels that lists which Unicode code points can be 
used in the context of IDNs, excluding all others. It would be helpful 
if confusing and non-reversible character mappings were removed 
from the IDN space, including the consistent treatment of ligatures 
and diacritics, refining the treatment of right-to-left and left-to-right 
scripts, and removing the dependency on a particular version of the 
Unicode standard. This effort is under way in the IETF in the context 
of revisions to the IDNA specification documents.
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IDNS, TLDs, and the Politics of the DNS 
So why is there a very active debate, particularly within ICANN-
related forums, about putting IDN codes into the root of the DNS as 
alternative top-level domains (TLDs)? 

I have seen two major lines of argument here; namely the argument 
that favors the existence of IDNs in all parts of the DNS, including 
the TLDs, and the argument that favors a more restricted view of 
IDNs in the root of the DNS that links their use to that of an existing 
(ASCII-based) DNS label in the TLD zone.

Apparently, those who favor the approach of using IDNs in the top-
level zone as just another DNS label see this as a natural extension 
of adding punycode-encoded name entries into lower levels of the 
DNS. Why should the root of the DNS be any different, in terms of 
allowing IDNs? Why should a non-Latin script user of the Internet 
have to enter the TLD code in its ASCII text form, while entering 
the remainder of the string in a local language? And in right-to-left 
scripts, where does this awkward ASCII appendage sit when a user 
attempts to enter it into an application? 

Surely, goes the argument, the more natural approach is to allow any 
DNS name to be wholly expressible in the user’s language, implying 
that all parts of the DNS should be able to carry native language-en-
coded DNS names. After all, コンピュータは予約する.jp looks wrong 
as a monolingual domain name. What is that .jp appendage doing 
there in that DNS name? Surely a Japanese user should not have to 
resort to an ASCII English abbreviation to enter in the country code 
for Japan, when 日本 is obviously more “natural” in the context of a 
Japanese user using Japanese script. If we had punycode TLDs then, 
goes the line of argument, users could enter the entire domain name 
in their language and have the punycode encoding happen across 
the entire name string, and then successfully perform a DNS lookup 
on the punycode equivalent. This way the user would enter the 
Japanese character sequence: コンピュータは予約する.日本 and have 
the application translate this entry to the DNS string xn‑‑88j0bve5g9‑
bxg1ewerdw490b930f.xn‑‑wgv71a. For this process to work in its 
entirety uniformly and consistently, the name xn‑‑wgv71a needs to 
be a TLD name. 

We can always take this thought process one step further and ques-
tion the ASCII string http and the punctuation symbols :// for 
precisely the same reason, but I have not heard (yet) calls for mul-
tilingual equivalents of protocol identifier codes. The multilingual 
presentation of these elements remains firmly in the provenance of 
the application, rather than attempting to alter the protocol identi-
fiers in the relevant standards.

IDNs:  continued
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The line of argument also encompasses the implicit threat that if the 
root of the DNS does not embrace TLDs as expressed in the lan-
guage of the Internet’s users, then language communities will break 
away from a single DNS root and meet their linguistic community’s 
requirements in their own DNS hierarchy. Admitting such encoded 
tags into the DNS root is the least problematic, including the conse-
quence of inactivity, which is cited as being tantamount to condoning 
the complete fragmentation of the Internet’s symbol set. 

Of course having an entirely new TLD name in an IDN name format 
does not solve all of the potential problems with IDNs. How can a 
user tell what domain names are in the ASCII top level, and what are 
in the “equivalent” IDN-encoded TLDs? Are any two name spaces 
that refer to the same underlying name concept equivalent? Is xn‑
‑88j0bve5g9bxg1ewerdw490b930f appropriately a subdomain of 
.jp, or a subdomain of xn‑‑wgv71a? Should the two domains be 
tightly synchronized with respect to their zone content and represent 
the same underlying token set, or should they be independent of-
ferings to the marketplace, and allow registrants and the end-user 
base make implicit choices here? In other words, should the pair of 
domain names, namely xn‑‑88j0bve5g9bxg1ewerdw490b930f.
xn‑‑wgv71a and xn‑‑88j0bve5g9bxg1ewerdw490b930f.jp, ref-
erence precisely the same DNS zone, or should they be allowed to 
compete, and each find their own “natural” level of market support 
based on decoupled TLD names of .jp and .xn‑‑wgv71a? 

What does the term equivalence really imply here? Is equivalence 
something as loose as the relationship between .com and .biz, namely 
being different abbreviations of words that reflect similar concepts 
with different name-space populations that reflect market diversity 
and a competitive supply industry? Or is equivalence a much tighter 
binding in that equivalent names share precisely the same subdomain 
name set, and a registration in one of these equivalence names is in 
effect a name registration across the entire equivalence set? 

Even this subject is not readily resolvable given our various in- 
terpretations of equivalence. In theory, the DNS root zone is pop-
ulated by ISO two-letter country codes and numerous “generic” 
TLDs. Under what basis, and under what authority, is xn‑‑wgv71a 
considered an “equivalent” of the ISO 3166 two-letter country code 
JP? Are we falling into the trap once again of making up the rules 
as we go along? Is the distinction between .com and .biz apparent 
only in English? And why should this distinction apply only to non-
Latin character sets? Surely it makes more sense for a native German  
language speaker to refer to commercial entities as kommerze, and 
the abbreviated TLD name as .kom? When we say “multilingual” 
are we in fact ignoring “multilingual” and looking exclusively at  
“multiscript”?
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Let’s put aside the somewhat difficult concept of name equivalence 
for a second, and assume that this equivalence problem is solved. 
Also suppose that we want tight coupling across equivalence sets of 
names. 

In other words, what we want is that a name registered in any of 
the elements of the equivalent domain-name set in all scripts is, in 
effect, registered in all the equivalent DNS zones. The question is: 
how should it be implemented in the DNS? One approach that could 
support tight synchronization of equivalence is to use the DNAME 
record[11] to create these TLD name aliases for their ASCII equiva-
lents, thereby allowing a single name registration to be resolvable 
using a root name expressed in any of the linguistic equivalents of 
the original TLD name. The DNAME entry for all but the “canoni-
cal” element of the equivalence set effectively translates all queries 
to a query on the canonical name. The positive aspects of such an 
approach is uniformity across linguistic equivalents of the TLD name 
form—a single name delegation in a TLD domain becomes a name 
within all the linguistic equivalents of the TLD name without any 
further delegation or registration required. 

Using DNAME as a tool to support sets of equivalent names in the 
DNS is still in the early stages. The limited experience so far with 
DNAME indicates that CNAME synthesis places load back on the 
name servers that would otherwise not be there, and the combina-
tion of this synthetic record and DNSSEC starts to get very unwieldy. 
Also, the IETF is reviewing the DNAME specification with the inten-
tion to remove the requirement to perform CNAME synthesis. All of 
these factors may explain why there is no immediate desire to place 
DNAMEs in the DNS root zone.

Different interpretations of equivalence in IDN names are possible. 
The use of DNAMEs as aliases for existing TLDs in effect “locks 
up” IDNs into the hands of the incumbent TLD name-registry opera-
tors. Part of the IDN debate, is, as usual, a debate over the generic 
TLD registry operators and the associated perception of incumbent 
monopolies. An alternative approach is to associate a single registrar 
with each IDN variant of the same generic TLD, allowing a form of 
“competition” between the various registrars. From the perspective 
of a coherent symbol space where the same symbol, expressed in 
any language script, resolves in the same fashion, such independent 
registries are not overly consistent with such a model of registry di-
versity in a multilingual environment. In this case such an artifice of 
IDN “competition” may well do more harm than good for Internet 
users.

IDNs:  continued
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It appears that another line of argument is that the DNS top-level 
name space is very conservatively managed, and new entries into 
this space are not made lightly. There are concerns of stability of 
operation, of attempting to conserve a coherent namespace, and the 
ever-present consideration that if we manage to “break” the DNS 
root zone it would be an irrevocable act. 

This line of argument recognizes the very hazy nature of name equiv-
alence in a multilingual environ ment and is based on the proposition 
that the DNS is incapable of representing such imprecision with any 
utility. The DNS is not a search engine, and the DNS does not handle 
imprecision at all well. Again, goes the argument, if this is the case 
then can we push this problem back to the application rather than 
trying to bend the DNS? If an application is capable of translating, 
say, 日本 into xn‑‑wgv71a, and considering that the TLD name space 
is relatively small, it appears that having the application performing a 
further translation of this intermediate form punycode string into the 
ASCII string jp is not a particularly challenging form of table lookup. 
In such a model no new TLD aliases or equivalences are required in 
the root zone of the DNS. If we are prepared to pass the execution of 
the presentation layer of the DNS to the application layer to perform, 
then why not also ask this same presentation layer to perform the 
step of further mapping the punycode ACE equivalents of the TLDs 
to the actual ASCII TLDs, using some richer language context that 
the application may be aware of that is not viable strictly within the 
confines of the DNS?

So, with respect to the question of whether IDN TLDS should be 
loaded into the DNS at all, and, if so, whether they should represent 
an opportunity for further diversity in name supply or be constrained 
to be aligned to existing names, and precisely how name equivalence 
is to be interpreted in this context, then it appears that ICANN has 
managed to place itself in a challenging situation. In not making a 
decision, those with an interest in having diverse IDN TLDs appear 
to derive some pleasure in pointing out that the political origins of 
ICANN and its strong linguistic bias to English are influencing it to 
ignore non-English language use and non-English language users of 
the Internet. Where dramatic statements are called for, such state-
ments often use terms such as “cultural imperialism” to illustrate the 
nature of the linguistic insult. The case has been made repeatedly, in 
support of IDN TLDs, that an overwhelming majority of Internet 
users and commercial activity of the Internet is in languages other 
than native English, and the imposition of ASCII labels on the DNS 
is an unnatural imposition on the overwhelming majority of Internet 
users. 
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On the other hand, most decisions to permit some form of entry in 
the DNS are generally seen as irrevocable, and building a DNS that 
is littered with the legacy of various non-enduring name technolo-
gies and poor ad hoc decisions to address a particular concern or 
problem without any context of a longer-term framework seems also 
to represent a step along a direction leading to a heavily littered and 
fragmented Internet where, ultimately, users cannot communicate 
with each other. 

What about global interoperability and the Internet? Should we just 
take the easy answer and simply give up on the entire concept? Well 
of course not! But, taking a narrower perspective, are IDNs simply 
not viable in the DNS? I would suggest that not only is this question 
one that was overtaken by events years ago, but even if we want 
to reconsider it now, then the answer remains that any users using 
their local language and local script should have an equally “natu-
ral” experience. IDNs are a necessary and valuable component of the 
symbol space of any global communications system, and the Internet 
is no exception. However, we also should recognize that we do need 
combinations of both localization and globalization, and that we are 
voicing some pretty tough objectives. Is the IDNA approach enough? 
Is our assumption that an unaltered DNS with application-encoded 
name strings represents a rich enough platform to preserve the es-
sential properties of the DNS while allowing true multilingual use of 
the DNS? On the other hand, taking a pragmatic view of the topic, 
is what we have with IDNA enough for us to work on, and is the 
alternative of reengineering the entire fabric of the DNS into an 8-bit 
clean system just not a viable option? 

I suspect that the framework of IDNA is now the technology for 
IDNs for the Internet, and we simply have to move on from here 
and deliberately take the stance of understanding the space from 
users’ perspectives when we look at the policy concerns of IDNs. 
The salient questions from such perspectives include: “What is the 
“natural” thing to do?” and “What causes a user the least amount 
of surprise?” Because in this world, what works for the user is what 
works for the Internet as a whole.

Further IDN News
IDNs are by no means completed work. Development continues in 
the Unicode forum on elaboration of character sets, and there are 
further proposals in the IETF to continue a comple mentary standards 
activity of refining the IDN documents.

In February 2008 the Applications Area of the IETF announced a 
proposal for further work on IDNs. The proposal has noted that the 
existing RFC documents are tied to version 3.2 of Unicode, while the 
Unicode Consortium has released version 5.0.0. 

IDNs:  continued
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The proposed work is to consider revision of the IDN documents to 
untie the Internet specifications that define validity based on Unicode 
properties from specific versions of Unicode using algorithms. It is 
also proposed that these updates study revision of bi-directional algo-
rithms, and to permit the use of some scripts that were inadvertently 
excluded by the original Internet specification.

This is not intended to be a major rewrite of the IDN approach, and, 
in particular, IDNs will continue to use the xn‑‑ prefix, the same 
Punycode ASCII-compatible encoding, and the bidirectional algo-
rithm is intended to follow the same design as presently specified.

Further Reading
It is possible to reference an overwhelming amount of commentary 
on this topic, so I have deliberately kept this list of further reading on 
the topic of IDNs relatively brief: 

 [A] John Klensin, “Internationalizing Top-Level Domain Names: 
Another Look,” ISOC Member Briefing, September 2004, 
http://www.isoc.org/briefings/018/

 [B] John Klensin, “National and Local Characters for DNS Top 
Level Domain (TLD) Names,” RFC 4185, October 2005.

 [C]  Papers submitted to the ICANN IDN TLD workshop, held in 
November 2005: http://www.icann.org/announcements/
announcement‑17nov05.htm

 [D] Internet Architecture Board, “Review and Recommendations 
for Internationalized Domain Names (IDNs),” RFC 4690, 
September 2006.

 [E] “ICANN’s IDN Roadmap Announcement—Progress and Future,”
  http://www.icann.org/announcements/announcement‑

1‑01nov06.htm

 [F] “An Important Step Toward the Implementation of IDN Top-
Level Domains: New Versions of IDNA Protocol Revision 
Proposals Posted,”

  http://www.icann.org/announcements/announcement‑
26nov07.htm

 [G] ICANN’s IDN Evaluation Gateway. Eleven new international-
ized domains representing the name example.test entirely in 
scripts other than the Latin characters: 

  http://idn.icann.org/
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The Locator Identifier Separation Protocol (LISP)
by David Meyer, Cisco Systems

T he Internet Architecture Board’s (IAB)’s October 2006 
Routing and Addressing Workshop[8] renewed interest in the 
design of a scalable routing and addressing architecture for 

the Internet. Many concerns prompted this renewed interest, includ-
ing the scalability of the routing system and the impending exhaustion 
of the IPv4 address space. Since the IAB workshop, several proposals 
have emerged that attempt to address the concerns expressed both at 
the workshop and in other forums[7,9,12,13,14]. All of these proposals are 
based on a common concept: the separation of locator and identifier 
in the numbering of Internet devices, often termed the “Loc/ID split.” 
This article focuses on one proposal for implementing this concept: 
the Locator/Identifier Separation Protocol (LISP)[3]. 

The basic idea behind the Loc/ID split is that the current Internet 
routing and addressing archi tecture combines two functions: Routing 
Locators (RLOCs), which describe how a device is attached to the 
network, and Endpoint Identifiers (EIDs), which define “who” the 
device is, in a single numbering space, the IP address. Proponents of 
the Loc/ID split argue that this “over loading” of functions makes it 
virtually impossible to build an efficient routing system without forc-
ing unacceptable constraints on end-system use of addresses. Splitting 
these functions apart by using different numbering spaces for EIDs 
and RLOCs yields several advantages, including improved scalabil-
ity of the routing system through greater aggregation of RLOCs. 
To achieve this aggregation, we must allocate RLOCs in a way that 
is congruent with the topology of the network (“Rekhter’s Law”). 
Today’s “provider-allocated” IP address space is an example of such 
an allocation scheme. EIDs, on the other hand, are typically allocated 
along organizational bound aries. Because the network topology and 
organizational hierarchies are rarely congruent, it is diffi cult (if not 
impossible) to make a single numbering space efficiently serve both 
purposes without imposing unacceptable constraints (such as requir-
ing renumbering upon provider changes) on the use of that space. 

LISP, as a specific instance of the Loc/ID split, aims to decouple 
location and identity. This decoupling will facilitate improved ag-
gregation of the RLOC space, implement persistent identity in the 
EID space, and, in some cases, increase the security and efficiency of 
network mobility. 

Implementing the Locator/ID Separation
There are two basic approaches to implementing the Loc/ID split: 
map-and-encap and address rewriting. Each is briefly discussed in the 
following sections. 
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Map-and-encap
In the map-and-encap scheme (genenerally considered to have evolved 
from Bob Hinden’s ENCAPS protocol[24]), when a source sends a 
packet to the EID of a destination outside of the source domain, 
the packet traverses the domain infrastructure to a border router (or 
other border element). The border router maps the destination EID 
to a RLOC that corresponds to an entry point in the destination do-
main (hence an EID-to-RLOC mapping system is needed; proposals 
are discussed later in the article). This phase is the “map” phase of 
map-and-encap. The border router then encapsulates the packet and 
sets the destin ation address to the RLOC returned by the mapping 
infrastructure (if any; it may be statically configured as well). This 
phase is the “encap” phase of the map-and-encap model.

Thus map-and-encap works by appending a new header to the exist-
ing packet; the “inner-header” source and destination addresses are 
EIDs, and the “outer-header” source and destination addres ses are in 
most cases RLOCs. When an encapsulated packet arrives at the des-
tination border router, the router decapsulates the packet and sends 
it on to its destination. Note that this process suggests that EIDs may 
need to be routable in some scope (likely scoped to the domain). 

Map-and-encap schemes have the desirable property that they do 
not in general require host changes or changes to the core routing 
infrastructure. In addition, map-and-encap schemes work with both 
IPv4 and IPv6, and retain the original source address (a feature that is 
useful in various filtering scenarios). Controversy remains, however, 
as to whether or not the encapsulation overhead of map-and-encap 
schemes is problematic; opinions exist on both sides of this topic (see, 
for example, [18]). 

Address Rewriting
The basic idea behind the address-rewriting schemes, originally 
proposed by Dave Clark and later by Mike O’Dell in his 8+8/GSE 
specification[11], is to take advantage of the 128-bit IPv6 address and 
use the top 64 bits as the routing locator (“Routing Goop,” or RG), 
and the lower 64 bits as the endpoint identifier (hence rewriting 
works only for IPv6). In this scheme, when a host emits a packet des-
tined for another domain, the source address contains its identifier 
(frequently a IEEE MAC address) in the lower 64 bits, and a special 
value (meaning unspecified) in the RG. The destination address con-
tains the fully specified destination address (RG and EID). 

When a packet destined for a remote domain arrives at the local 
domain egress router, the source RG is filled in (forming a full 128-
bit address), and the packet is routed to the remote domain. On 
ingress to the remote domain, the destination RG is rewritten with 
the unspecified value, ensuring that the host does not know what its 
RG is. 

LISP:  continued
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This process, in theory, would enable the ease of renumbering that 
would be required to maintain congruence between prefix assign-
ment and physical network topology that is required for the kind of 
“aggressive” renumbering envisioned in the 8+8/GSE specification. 

The Locator/Identifier Separation Protocol (LISP)
LISP is designed to be a simple, incremental, network-based map-
and-encap protocol that imple ments separation of Internet addresses 
into EIDs and RLOCs. Because LISP is a map-and-encap protocol, 
it requires no changes to host stacks and no major changes to exist-
ing database infrastructures. It is designed to be implemented in a 
relatively small number of routers. LISP is also an instance of what 
is architecturally called a “jack-up,” because the existing network 
layer is “jacked up” and a new network layer is inserted below it (the 
term “jacked up” is attributed to Noel Chiappa). The LISP jack-up 
is depicted in Figure 1. 

Figure 1: LISP is a Jack-Up
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The LISP design aims to improve site multihoming (for example, by 
controlling site ingress without complex protocols), improve Internet 
Service Provider (ISP) multihoming, decouple site addressing from 
provider addressing, and reduce the size and dynamic properties of 
the core routing tables. 

The LISP data plane (the map-and-encap operation) and the LISP 
control plane (the EID-to-RLOC mapping system) are very modular. 
In particular, although the base LISP specification defines the format 
of messages to query the mapping system and to receive responses 
from that system, it makes no assumptions on the architecture of 
potential mapping systems. As a result, several mapping systems have 
been proposed[0,1,4,5,6,10]. 



The Internet Protocol Journal
26

LISP Network Elements
The LISP specification defines two network elements: The Egress 
Tunnel Router (ETR) and the Ingress Tunnel Router (ITR). 

A LISP Egress Tunnel Router (ETR) receives LISP-encapsulated IP 
packets from the Internet on one side and sends decapsulated IP 
packets to site end systems on the other side. In particular, an ETR 
accepts an IP packet where the destination address in the “outer” IP 
header is one of its own RLOCs. The router strips the “outer” header 
and forwards the packet based on the next IP header found. 

A LISP Ingress Tunnel Router (ITR) accepts IP packets from site end 
systems on one side and sends LISP-encapsulated IP packets toward 
the Internet on the other side. In particular, an ITR accepts an IP packet 
with a single IP header (more precisely, an IP packet that does not 
contain a LISP header). The router treats this “inner” IP destination 
address as an EID and performs an EID-to-RLOC mapping lookup if 
necessary (that is, it does not already have an EID-to-RLOC mapping 
for the EID). The router then prepends an “outer” IP header with one 
of its globally routable RLOCs in the Source Address field and the 
result of the mapping lookup in the Destination Address field. Note 
that this destination RLOC may be an intermediate, proxy device 
that has better knowledge of the EID-to-RLOC mapping closest to 
the destination EID.

LISP Data-Plane Operation
When a host in a LISP-capable domain emits a packet, it puts its 
EID in the packet source address, and EID of the correspondent 
host in its destination address (note that hosts will typically look up 
EIDs in the Domain Name System [DNS]). If the destination of the 
packet is in another domain, the packet traverses the source domain 
infrastructure to one of its ITRs. The ITR maps destin ation EID to 
a RLOC that corresponds to an ETR that is either in the destination 
domain or a proxy for the destination domain (how this mapping is 
accomplished in LISP is discussed later in the article). The ITR then 
encapsulates the packet, setting the destination address to the RLOC 
of the ETR returned by the mapping infrastructure or by static con-
figuration. Note that LISP is address family-agnostic and as such can 
be used with both IPv4 and IPv6 (or any other address family). Figure 
2 depicts the LISP IPv4 in IPv4 encapsulation.

LISP:  continued
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Figure 2: LISP Header Format
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When the packet arrives at the destination ETR, it decapsulates the 
packet and sends it on to its destination. Again, note that this sce-
nario implies that EIDs need to be routable in some scope (likely 
scoped to the domain). 

As mentioned previously, the LISP specification defines three packet 
types designed to support an EID-to-RLOC mapping system. The 
first type of packet, the Data Probe, is a data packet that an ITR may 
send into the mapping system to probe for the mapping; the authori-
tative ETR responds to the ITR with a Map-Reply message when it 
receives such a data packet. Note that in this case the ETR detects 
that the packet is a Data Probe by noticing that the inner Destination 
Address (DA) was copied to the outer DA by the ITR, that is, the in-
ner DA equals the outer DA and is an EID. The second type of LISP 
packet used to support the mapping system is the Map Request. An 
ITR may query the mapping system by sending a Map-Request mes-
sage into the mapping system to request a particular EID-to-RLOC 
mapping. As in the Data Probe case, the authoritative ETR responds 
with a Map-Reply message. 
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The third type of LISP packet used to support the mapping system 
is the Map Reply. An ETR emits a Map Reply under two condi-
tions. First, if the ETR receives a LISP-encapsulated packet in which 
the outer-header destination address is the same as that of the inner 
header, it knows that the packet is a Data Probe and can respond 
with a Map Reply to the source ITR. The ETR may also receive a 
Map Request, in which case it replies to the requesting ITR with the 
mapping. 

LISP Control Plane
Both map-and-encap and address-rewriting models rely on an ad-
ditional of level of indirection in the addressing architecture to make 
the routing system scale reasonably. Because packets are sourced with 
an EID in the Destination Address field and EIDs are not in general 
routable on the global Internet, the destination EID must be mapped 
to an RLOC in order to deliver the packet to another domain (that 
is, across the Internet). In the case of the map-and-encap schemes, it 
is a direct translation: an EID is mapped to a RLOC. The situation 
is subtly different for the rewriting schemes; in general such schemes 
must look up the entire destination address (usually proposed to re-
side in the DNS)[11,13], but must somehow determine the source RG 
when rewriting the source address at the domain border. 

In either Loc/ID split model, an EID-to-RLOC mapping service 
is needed to make the system scale reasonably and to make it op-
erationally viable. There are three important scale parameters to 
consider when architecting a mapping service: the rate of updates 
to the mapping database, the state of the mapping service required, 
and the latency incurred during database lookup. The scaling proper-
ties of the database are frequently characterized as a (Rate × State) 
problem (ignoring for the moment the subject of lookup latency); be-
cause most estimates put the size of the mapping database at O(1010), 
the database update rate must be small (note that this situation is a 
primary reason that current mapping proposals do not incorporate 
reachability information into the mapping database). In addition, the 
choice of push vs. pull also affects latency: if you push the entire 
database close to the edge, you improve lookup latency at the cost 
of increased state; if you architect a service that requires a mapping 
request and you find an authoritative server for that mapping (that is, 
pull), you reduce state at the cost of increased lookup latency.

LISP-Alternative-Topology: A LISP Control Plane
The basic idea behind LISP-Alternative-Topology (LISP-ALT)[4] is 
to build an alternative logical topology for managing EID-to-RLOC 
mappings for LISP. This logical topology uses existing technology 
and tools, specifically the Border Gateway Protocol (BGP)[17] and 
its multiprotocol extension[15], along with the Generic Routing 
Encapsulation (GRE)[16] protocol to construct an overlay network of 
devices that advertise EID prefixes only. 

LISP:  continued
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As was the case for the LISP data plane, an important design goal 
of LISP-ALT is to minimize the number of changes to existing hard-
ware and software that are required to deploy the mapping system. 
Therefore, LISP-ALT requires modifications to neither BGP nor 
GRE. 

Note that LISP-ALT is a hybrid push/pull architecture. Aggregated 
EID prefixes are “pushed” among the LISP-ALT routers and, option-
ally, to ITRs (which may elect to receive the aggregated information, 
as opposed to simply using a default mapping). Specific EID-to-
RLOC mappings are “pulled” by ITRs either by Map Requests or 
Data Probes, both of which are routed over the alternate topology 
and result in Map Replies being generated by ETRs. 

The basic idea behind in LISP-ALT, then, is to use BGP running over a 
GRE overlay to build the reachability required to route Data Probes, 
Map Requests, and Map Replies over the alternate topology. The 
ALT Routing Information Base (RIB) comprises EID prefixes and as-
sociated next hops. The LISP-ALT routers talk External BGP (eBGP) 
to each other in order to propagate EID prefix update information, 
which is learned either over eBGP connections from the authori-
tative ETR or by configuration. ITRs may also eBGP peer with one 
or more LISP-ALT routers in order to route Data Probe packets or 
Map Requests. 

In summary, the LISP-ALT uses BGP to propagate EID-prefix reach-
ability information used by ITRs and ETRs to forward Map Requests, 
Map Replies, and Data Probes. This reachability is carried as IPv4 or 
IPv6 Network Layer Reachability Information (NLRI) without mod-
ification (because the EID space has the same syntax as IPv4 or IPv6). 
LISP-ALT routers eBGP peer with one another, forming the overlay 
network. A LISP-ALT router near the edge learns EID prefixes that 
originate with authoritative ETRs. In general then, LISP-ALT rout-
ers aggregate EID prefixes, and forward Data Probes, Map-Requests, 
and Map-Replies. 

Threat Models and Mitigation
As in any Loc/ID split approach, a critical operation is the creation 
of locator-to-ID binding state that devices will use over time. In the 
case of LISP, the critical operation is the creation of EID-to-RLOC 
mappings in the ITR and the ETR. We can obtain these mappings in 
three ways: 

•	 By	using	the	information	obtained	from	a	LISP	data	packet

•	 By	using	the	information	contained	in	the	Map-Reply	message	

•	 By	using	an	EID-to-RLOC	mapping	database	

LISP mitigates attacks on the first two techniques by including a 
nonce in the LISP header; the nonce is a 32-bit randomly generated 
number (generated by the source ITR) that is used to test route re-
turnability. 
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More specifically, an ETR echoes the nonce back to the ITR in a Map-
Reply message. That is, the nonce, combined with the ITR accepting 
only solicited Map Replies, provides a base level of authentication 
for Map Replies. Note however, that these techniques do not protect 
against man-in-the-middle attacks. 

The LISP design assumes that many (if not most) security mechanisms 
are part of the mapping database service when using control-plane 
procedures for obtaining EID-to-RLOC mappings. Denial-of-Service 
(DoS) attack prevention, on the other hand, depends on the ability 
of an imple mentation to rate-limit Map Requests and Map Replies 
(in the control plane), as well as its ability to rate limit the number of 
data-triggered Map Replies (for example, in response to Data Probe 
packets). 

Refer to [19] for a more detailed preliminary threat analysis for 
LISP. 

LISP and Fast Endpoint Mobility 
Fast endpoint mobility occurs when an endpoint moves relatively 
rapidly, changing its IP layer network attachment point, and main-
tenance of session continuity is a goal. Mobile IPv4[20] and Mobile 
IPv6[21,22,27] mechanisms can be used in this case; note however, that 
the interaction of Mobile IP with LISP needs further exploration. 
Refer to the LISP specification[3] for additional details. 

In summary, the major problem introduced by a Loc/ID split scheme 
is that as an endpoint moves, changes to the mapping between its EID 
and a set of RLOCs for its new network location may be required. 
When this change is added to the overhead of mobile IP binding up-
dates, some packets might be delayed or dropped. In general, the 
problem is controlling the update rate (that is, the [Rate × State] 
product described previously), and is an area of ongoing research. 

Multicast
A multicast group address, as defined in the original Internet archi-
tecture, is an identifier of a grouping of topologically independent 
receiver host locations. The address encoding itself does not deter-
mine the location of the receiver(s). The multicast routing protocol 
and the network-based state the protocol creates determine the loca-
tion of the receivers. 

In the LISP context, a multicast group address is both an EID and a 
RLOC. As such, no specific action is necessary for destination ad-
dresses; a group address that appears in an inner IP header (built by a 
source host) is used as the destination EID by an ITR as a destination 
address when it LISP-encapsulates the packet (that is, the ITR uses 
the same group address as the destination RLOC). 

LISP:  continued
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The source RLOC, as is usually the case, is the ITR IP address (that 
is, one of its RLOCs). 

At the receiving side, Protocol Independent Multicast (PIM)[23] has 
to translate the source-address Join/Prune messages from RLOCs to 
EIDs when multicast packets are forwarded by the ETR. However, in 
contrast to the unicast case (where a Map Request is sent by the ITR 
at forwarding time), a Map Request can be sent when the multicast 
tree is being built. 

Putting It All Together: A Day in the Life of a LISP Packet
When a host in a LISP-capable domain wants to send a packet, it first 
looks up the correspondent host’s EID in the DNS. It then puts its 
EID in the packet source address, and EID of the corres pondent host 
in its destination address; if the destination of the packet is in another 
domain, the packet traverses the source domain infrastructure to one 
of the domain ITRs.

If the ITR has cached the EID-to-RLOC mapping for the destination 
EID, it sets the destination RLOC in the outer (encapsulated) header 
to the cached RLOC, and the source RLOC to its RLOC (note that 
the inner header has the source host’s EID as the source and the des-
tination’s EID in the Destination field). The packet is then sent over 
the Internet to the ETR indicated in the destination RLOC, which 
decapsulates the packet and sends it on to the destination EID. 

If, on the other hand, the ITR does not have a EID-to-RLOC mapping 
for the destination EID, it encapsulates the packet in a LISP header in 
which the destination address is the same as the inner header destina-
tion address, namely, the EID of the destination host. This packet is 
a Data Probe packet, and is routed over the LISP-ALT topology to 
the LISP-ALT router (typically an ETR, but this type of router is not 
required) that is authoritative for the EID-to-RLOC mapping. When 
the ETR receives the Data Probe packet, it decapsulates the packet 
and sends it on to the destination EID and sends a Map Reply to the 
source ITR so subsequent packets are sent natively over the Internet 
(as opposed to over the LISP-ALT overlay network). This query/re-
sponse transaction is required only for the first packet sent between 
sites; all subsequent packets are sent LISP-encapsulated directly be-
tween the ITR and the ETR (and in particular, not over the LISP-ALT 
topology). Finally, note that the ITR could also preload its cache 
with mappings for popular destinations using the Map-Request mes-
sage, avoiding the Data Probe packet (and associated latency, if any) 
altogether. 
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For example, consider the scenario depicted in Figure 3. In this case, 
a source S with EID 1.0.0.1 wants to send a packet to destination D 
whose EID is 2.0.0.2. The packet arrives at ITR S2, which does not 
have an EID-to-RLOC mapping for 2.0.0.2. S2 LISP-encapsulates 
the packet with the outer header having its RLOC (11.0.0.1) as the 
source address, copies the destination EID (2.0.0.2) from the inner 
header to the outer-header destination, and sends the data packet 
(a Data Probe) into the LISP-ALT topology. The packet follows the 
paths computed by BGP in the LISP-ALT topology to ETR D2. When 
D2 receives the packet, it decapsulates it and forwards the packet to 
the destination 2.0.0.2; D2 also responds with a Map-Reply mes-
sage that tells S2 (11.0.0.1) that the EID-to-RLOC mapping for 
2.0.0.0/8 has two elements, ETR D1 (whose RLOC is 12.0.0.2) 
and ETR D2 (whose RLOC is 13.0.0.2). After receiving the Map 
Reply, ITR S2 can send LISP-encapsulated packets natively over the 
Internet (that is, not over the ALT topology). 

Figure 3: A Day in the Life of a LISP Packet
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Note that the mapping has priority (p) and weight (w) attributes. 
Priorities tell the ITR which ETRs to use in which order, and weights 
tell the ITR how to split load across ETRs of a given priority (w is a 
percentage of traffic that should go to each ETR). In this case, both 
ETRs have the same priority (1), and have weight 50 (that is, each 
ETR should receive 50 percent of the traffic).

LISP:  continued
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New Functions Enabled by the Mapping System
Weights and priorities provide new capabilities for multihomed sites, 
which can use these features to control how traffic ingressing to the 
site is spread across its links without the com plexity and overhead 
of running BGP. In particular, a multihomed site can configure its 
mapping database so that its links are used in an “active-active” con-
figuration (that is, both links are in use). This situation is depicted 
in Figure 3, where the mapping databases entry 2.0.0.0/8 has two 
ETRs at the same priority that are equally weighted, meaning that 
the ITR will spread flows equally among the two ETRs. 

This function is particularly attractive for Small Office or Home 
Office (SOHO) sites that desire both redundancy in their Internet 
connections and the ability to easily load share across those links 
in an active-active configuration, without the complexity and opera-
tional expense of running BGP. 

Another interesting functionality enabled by the LISP control plane 
is the ability to mitagate some types of DoS attacks. In particular, if 
an ETR notices that it the subject of a DoS attack from behind an 
ITR (that is, DoS packets are destined to an EID-prefix for which 
it is authorative), it can use the LISP locator reachability bits (see 
Figure 2) to tell the the source ITR that the RLOC for that EID-prefix 
is not available. The ETR accomplishes this by sending a locator-
reachability bit of zero for the RLOC to the offending ITR. Note 
that this functionality is similar to Ioannidis and Bellovin’s “ICMP 
Pushback” proposal[25].

Performance Considerations
LISP and its associated mapping protocol(s) have two primary per-
formance concerns: 

•	 Encapsulation	overhead	

•	 EID-to-RLOC	lookup	latency	and	packet	loss

In the case of encapsulation overhead, the concern is that the addi-
tion of the LISP header will cause the encapsulate packet to exceed 
the path Maximum Transmission Unit (MTU). As mentioned previ-
ously, this area of research is still active (see, for example, [18]). 

In the case of lookup latency and packet loss, because LISP-ALT uses 
BGP to find a particular EID-to-RLOC mapping, there could be la-
tency associated with the first few packets in the first flow between 
sites (note that it is only the first flow; subsequent flows can use the 
mapping installed in the ITR). However, this latency is mitigated, 
and the initial packets are not lost because LISP can send the first few 
data packets over the control plane; these packets are the Data Probe 
packets. There is additional latency associated with the time required 
for the destination ETR to return the Map Reply. However, after this 
initial transaction is completed, no additional latency is injected by 
the mapping system. 
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As mentioned previously, there is a trade-off in the mapping system 
among the state required to be held by network elements, the rate 
of updates to the mapping system, and the latency incurred when 
looking up an EID-to-RLOC mapping. LISP-ALT is a hybrid (push/
pull) architecture that attempts to minimize the state requirements on 
ITRs, while at the same time minimizing lookup latency.

Conclusions
LISP is a new protocol that implements the Loc/ID split using a 
map-and-encap protocol. It obtains the advantages of the level of 
indirection afforded by the Loc/ID split while minimizing changes  
to hosts and to the core routing system. In addition, LISP enables 
new functions such as BGP-free multihoming in an active-active con-
figuration.
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Book Review

Patterns in Network Architecture Patterns in Network Architecture: A Return to Fundamentals, 
by John Day, ISBN-10: 0132252422, ISBN-13: 9780132252423, 
Prentice Hall, 2007. http://www.informit.com/store/product.
aspx?isbn=0132252422

It isn’t every day (pun intended) that one of the true Old Guard writes 
and publishes a book, and it behooves us to take notice. In this case, 
the author’s expertise and his subject matter are of particular timeli-
ness, because of the worldwide resurgence of activities with regard 
to next-generation network architectures, that is, a replacement, or 
upgrade to the Internet (dare one say “Internet 2.0”?).

John Day is a well-known scholar of historical cartography, and this 
book, in a way, is a roadmap of network architecture. The roadmap 
starts back in 1970, tracing from the roots of connectionless packet-
switched dynamically routed systems such as Cyclades, and the 
ARPANET, through to recent discussions on multihoming, multicast, 
and mobility, with a view along the way of naming, addressing, 
protocol stack design, protocol design, and concepts of layering. 

That description makes the book sound fairly standard in terms of 
structure and content, but it isn’t. The book includes many discursive 
elements whose intent is to provide a collection of patterns. Design 
patterns originated in the building trade as a way for crafts people 
to pass on successful methods of construction (in the sense of 
affordable and noncollapsing) to less-inventive people (or people 
who want to spend their inventive efforts in different areas). Software 
engineers picked up on this idea, applying the techniques in both the 
microscopic world: patterns allow you to decide what algorithm is 
applicable in solving a problem in the small; and the macroscopic 
world: architectural patterns allow you to decide on an approach to 
breaking down a large system into the right kind of components.

Essentially, this book does the same thing, at the protocol stack level, 
and at the system level, with a collection of historical and contempo-
rary examples to support the arguments.

The book makes interesting reading, especially as it represents a 
fair balance in reporting the early ideas that came not just from the 
United States, and restates the importance of the Opens Systems 
Interconnection (OSI) model (not the ISO protocols) in understand-
ing layering and beads-on-a-string, as well as reasserting the use of 
the model in clarifying the perennially confusing concepts of names, 
addresses, and routes.
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The book begins with a discussion of seven principles that emerged 
through the early history of networking (I won’t spoil the book for 
readers by listing them here), and ends in the tenth and final chapter, 
entitled “Backing Out of a Blind Alley,” with an appeal to funda-
mentals. Essentially, the author points out that researchers (especially 
academics) are strongly motivated to keep moving on with claims of 
ever-newer tricks, but rarely to consolidate these tricks into a set of 
principles that stand for a long time (because then they would have 
to completely change the topic of their research). Thus uncovering a 
foundational theory of networking would put a whole generation of 
networkers out of work (or funding at least).

The book is peppered (saltily) with fine quotes and fascinating asides 
from philosophy (for this reader, especially, the Chinese diversions 
were most novel and illuminating). Illustrative of the range is that 
one finds Wittgenstein and Dave Clark, Confucius, and Dr. Seuss—
Frege’s useful reminder that “The sign ‘=’ should be read as ‘is easily 
confused with’” would make an excellent IETF T-shirt.

I found the book extremely readable and enjoyable, and although I 
might argue with some of the opinions in the book, I think that this 
is just more evidence that I should recommend the book to anyone 
interested in knowing why we are where we are in networking, and 
being better informed about where we should go next.

—Jon Crowcroft, University of Cambridge
Jon.Crowcroft@cl.cam.ac.uk

________________________

Read Any Good Books Lately?
Then why not share your thoughts with the readers of IPJ? We accept 
reviews of new titles, as well as some of the “networking classics.” In 
some cases, we may be able to get a publisher to send you a book for 
review if you don’t have access to it. Contact us at ipj@cisco.com 
for more information.

Book Review:  continued
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Fragments

ICANN Recovers Large Block of Internet Address Space
The Internet Corporation for Assigned Names and Numbers (ICANN) 
has found a little breathing room in the IPv4 address space with its 
recovery of a block of 16 million IPv4 addresses.

The IP addresses recovered were once used to connect older proto-
col packet-data networks with the fledgling Internet. The block of 
addresses, technically referred to as 14.0.0.0/8, is also known as 
“Net-14.”

“Net-14 was the easiest network to reclaim, the so-called low hang-
ing fruit,” said Barbara Roseman, General Manager with the Internet 
Assigned Numbers Authority (IANA), which is operated by ICANN. 
“None of the other legacy assignments in the IPv4 space are likely to 
be completely reclaimed as they are all in active use.”

A small percentage of the addresses in Net-14 had been assigned, 
most more than 15 years ago. The assignments were so old that find-
ing people who knew about them was a lengthy process. Nearly 50 
organizations worked cooperatively with ICANN staff throughout 
2007 to confirm that the 984 registrations were no longer in use. 
IANA undertook the reclamation effort to ensure that the greatest 
number of IPv4 addresses can be made available to Internet users as 
the overall free pool of IPv4 addresses is depleted. IANA allocates 
IPv4 and IPv6 addresses to Regional Internet Registries (RIRs). The 
five RIRs allocate addresses to network operators in their local re-
gions. IANA allocated more than one /8 (16m IPv4 addresses) per 
month in 2007 and the rate of allocation is not expected to slow 
in 2008. The reclamation of Net-14 means there are now 43 unal-
located /8s left.

“The recovery of these addresses offers some breathing room as the 
four billion addresses in IPv4 space are depleted, but it is only a tem-
porary solution,” added Roseman. “The real and lasting solution is 
the technical move to IPv6—the protocol that will make 340 trillion 
trillion trillion unique IP addresses available.”

IPv6 Address Added for Root Servers in the Root Zone
ICANN recently took another step along the path of deployment for 
the next-generation IPv6 Internet addressing system. IPv6 addresses 
were added for six of the world’s 13 root server networks (A, F, H, J, 
K, M) to the appropriate files and databases. This move allows for the 
possibility of fuller IPv6 usage of the Domain Name System (DNS). 
Prior to today, those using IPv6 had needed to retain the older IPv4 
addressing system in order to be able to use domain names.
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“The ISP community welcomes this development as part of the con-
tinuing evolution of the public Internet,” said Tony Holmes, chair of 
ICANN’s Internet Service and Connectivity Provider Constituency. 
“IPv6 will be an essential part our future and support in the root 
servers is essential to the growth, stability, and reliability of the pub-
lic Internet.”

Name server software relies on the root servers as a key part in trans-
lating domains like icann.org into the routing identifiers used by 
computers to connect to one another. In 2007 the ICANN Security 
and Stability Advisory Committee concluded that ICANN should 
move forward with the enhancement of the DNS root service by 
adding IPv6 addresses for the root servers.“The addition of IPv6 ad-
dresses for the root servers enhances the end-to-end connectivity for 
IPv6 networks, and furthers the growth of the global interoperable 
Internet,” added David Conrad, ICANN’s Vice President of Research 
and IANA Strategy. “This is a major step forward for IPv6-only con-
nectivity and the global migration to IPv6.”

Further technical information on the move is available at: 

http://www.iana.org/reports/root‑aaaa‑announcement.html

RIPE NCC Publishes Case Study of YouTube Hijack
As you may be aware from recent news reports, traffic to the you‑
tube.com Website was “hijacked” on a global scale on Sunday 
February 24, 2008. The incident was a result of the unauthorized an-
nouncement of the prefix 208.65.153.0/24 and caused the popular 
video sharing Website to become unreachable from most, if not all, of 
the Internet. The RIPE NCC conducted an analysis into how this in-
cident was seen and tracked by the RIPE NCC’s Routing Information 
Service (RIS) and has published a case study at:

http://www.ripe.net/news/study‑youtube‑hijacking.html

The RIPE NCC RIS is a service that collects Border Gateway Protocol 
(BGP) routing information from roughly 600 peers at 16 Internet 
Exchange Points (IXPs) across the world. Data is stored in near real-
time and can be instantly queried by anyone to provide multiple views 
of routing activity for any point in time. The RIS forms part of the 
RIPE NCC’s suite of Information Services, which together provide a 
deeper insight into the workings of the Internet. The RIPE NCC is a 
neutral and impartial organization, and commercial interests there-
fore do not influence the data collected. The RIPE NCC Information 
Services suite also includes the Test Traffic Measurement (TTM) ser-
vice, the DNS Monitoring (DNSMON) service and Hostcount. All of 
these services are available to anyone, and most of them are offered 
free of charge. 

More information about RIPE NCC Information Services can be 
found at: http://is‑portal.ripe.net

Fragments:  continued
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IETF Examines Future of the Internet by Going IPv6 Native
The Internet Engineering Task Force (IETF) put a spotlight on the 
next generation of Internet addressing when it switched off attendees’ 
access to IPv4 during its March 2008 meeting. For an hour, Internet 
engineers at the meeting could only access the Internet using an IPv6 
network.

During this event, IETF participants were encouraged to explore the 
Internet as it appears today in the IPv6 environment. The purpose of 
this exploration was to determine the next steps necessary toward de-
ployment of IPv6 as the next generation of Internet addressing. The 
IETF undertook this activity at a time when IPv6-implementation is 
becoming a matter of global importance for the Internet. The event 
provided all IETF meeting attendees a first-hand opportunity to work 
with the Internet over an exclusive IPv6 network. “We get a lot of re-
ports from members of our com munity who use IPv6, but this was an 
opportunity for everyone to observe and discuss the technical issues 
as a group,” said Russ Housley, Chair of the IETF. “This first-hand 
data helps to inform our engineering decisions.”

Some members of the Internet technical community assert that 
the ongoing deployment of IPv6 has been held back by a lack of 
IPv6-accessible Websites, creating the classic first-step dilemma for 
network operators. “It has been incredible to observe as members of 
the community organized themselves and updated their home net-
works to be ready for this event,” said Leslie Daigle, Chief Internet 
Technology Officer at the Internet Society. “As we continue to solve 
the engineering and implementation obstacles to IPv6 deployment, 
creative engineers around the world will develop new uses for the 
Internet, through IPv6, in ways we can’t yet imagine.”

The IETF has provided dual stack IPv4/IPv6 network connectivity 
at its meetings for years, which has been useful for its regular IPv6-
using attendees. The difference during this meeting was that a strictly 
IPv6 network was made available as well, and all attendees were 
encouraged to explore and experiment with the Internet as seen from 
IPv6. This focus was heightened when IPv4 access was deliberately 
shut off for an hour, leaving only IPv6 for connectivity. Following 
this—and other similar experiments—the engineering community 
expects to have a better understanding of the next steps necessary in 
the development of protocols and standards to support the continued 
deployment of IPv6 in support of the global Internet. The Comcast 
Corporation provided the facilities to conduct the live test of IPv6 
and was the host sponsor of IETF-71 in Philadelphia. 

For more information about this event, and similar events please see:

http://www.isoc.org/educpillar/resources/ipv6_faq.shtml

http://wiki.tools.isoc.org/IETF71_IPv4_Outage

http://www.civil‑tongue.net/clusterf/
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Postel Network Operator’s Scholarship 2008
The North American Network Operators’ Group (NANOG) and the 
American Registry for Internet Numbers (ARIN) have been unique 
and successful cooperative fora for Internet builders in North America 
and other parts of the world. Senior practitioners from around the 
world contribute their time to NANOG and ARIN as presenters, 
teachers and trainers, to produce consistent non-commercial confer-
ences of high-quality.

Since 2007, the generosity of an anonymous donor and the adminis-
tration of the Internet Society, have allowed NANOG and ARIN to 
provide financial support to a person from a developing country to 
participate in the October joint NANOG/ARIN meeting through the 
Postel Network Operator’s Scholarship.

The Scholarship Committee cordially invites suitable applicants to 
apply for fellowship funding to participate in the October 2008 joint 
NANOG/ARIN meeting. The Scholarship targets personnel from 
developing countries who are actively involved in Internet develop-
ment, in any of the following roles: Engineers (Network Builders), 
Operational and Infrastructure Support Personnel, and Educators, 
Teachers, and Trainers

Successful applicants will be provided with transportation to and 
from the meetings and a reasonable allowance for food and accom-
modation. In addition all fees for participation in the conferences, 
tutorials, and social events will be waived. Applicants from any 
part of the world will be considered. The deadline for application is  
June 1, 2008, and the awardee will be informed by July 1, 2008.

To apply for the fellowship please read http://www.nanog.org/
postel‑scholarship.html and submit your application by e-mail 
to PostelNOS@nanog.org

For more information about NANOG and ARIN meetings, see: 
http://www.nanog.org/ and http://www.arin.net/

JPNIC Releases IPv4 Exhaustion Report
The Japan Network Information Center (JPNIC) has released a re-
port entitled “Study Report on the IPv4 Address Space Exhaustion 
Issue (Phase I).” The report can be downloaded from the following 
link:

http://www.nic.ad.jp/en/ip/ipv4pool/ipv4exh‑report‑
071207‑en.pdf

Fragments:  continued
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Call for Papers
The Internet Protocol Journal (IPJ) is published quarterly by Cisco 
Systems. The journal is not intended to promote any specific products 
or services, but rather is intended to serve as an informational and 
educational resource for engineering professionals involved in the 
design, development, and operation of public and private internets 
and intranets. The journal carries tutorial articles (“What is...?”), as 
well as implementation/operation articles (“How to...”). It provides 
readers with technology and standardization updates for all levels of 
the protocol stack and serves as a forum for discussion of all aspects 
of internetworking. 

Topics include, but are not limited to: 

•	 Access	 and	 infrastructure	 technologies	 such	 as:	 ISDN,	 Gigabit	
Ethernet, SONET, ATM, xDSL, cable, fiber optics, satellite,              
wireless, and dial systems 

•	 Transport	and	interconnection	functions	such	as:	switching,	rout-
ing, tunneling, protocol transition, multicast, and performance 

•	 Network	management,	administration,	and	security	issues,	includ-
ing: authentication, privacy, encryption, monitoring, fire-walls, 
troubleshooting, and mapping 

•	 Value-added	 systems	 and	 services	 such	 as:	 Virtual	 Private	 Net-
works, resource location, caching, client/server systems, distributed 
systems, network computing, and Quality of Service 

•	 Application	 and	 end-user	 issues	 such	 as:	 e-mail,	 Web	 author-
ing, server technologies and systems, electronic commerce, and                  
application management 

•	 Legal,	 policy,	 and	 regulatory	 topics	 such	 as:	 copyright,	 content	
control, content liability, settlement charges, “modem tax,” and 
trademark disputes in the context of internetworking 

In addition to feature-length articles, IPJ will contain standardization 
updates, overviews of leading and bleeding-edge technologies, book 
reviews, announcements, opinion columns, and letters to the Editor. 

Cisco will pay a stipend of US$1000 for published, feature-length ar-
ticles. Author guidelines are available from Ole Jacobsen, the  Editor 
and Publisher of IPJ, reachable via e-mail at ole@cisco.com

This publication is distributed on an “as-is” basis, without warranty of any kind either 
express or implied, including but not limited to the implied warranties of merchantability, 
fitness for a particular purpose, or non-infringement. This publication could contain technical 
inaccuracies or typographical errors. Later issues may modify or update information provided 
in this issue. Neither the publisher nor any contributor shall have any liability to any person 
for any loss or damage caused directly or indirectly by the information contained herein.
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