

RFC 2460

There are several changes to the header format with IPv6. The diagrams below give a high-level view of the basic comparison between the IPv4 and IPv6 headers.

Figure 1

IPv4 Header

IPv6 Header

Fields not kept in IPv6

Name and position changed in IPv6

Streamlined

- Fragmentation fields moved out of base header
- IP options moved out of base header
- Header checksum eliminated
- Header length field eliminated
- Length field excludes IPv6 header
- Alignment changed from 32 to 64 bits

Revised

- Time to live -> hop limit
- Protocol -> next header
- Precedence and TOS -> traffic class
- Addresses increased 32 bits -> 128 bits

Extended

Flow label field added

Figure 2

IPv6 Header Options

IPv6 Header Next Header = TCP	TCP Header + Data		
IPv6 Header Next Header = Routing	Routing Header Next Header = TCP	TCP Header + Data	
IPv6 Header Next Header = Routing	Routing Header Next Header = Fragment	Fragment Header Next Header = TCP	Fragment of TCP Header + Data

Header options processed only by node are identified in the IPv6 destination address field, except the hop-by-hop option. Eliminates the IPv4 40-octet limit on options. In IPv6, the limit is the total packet size or max valued from the path MTU. Headers are linked together by populating the next header (8-bit) field.

When more than one extension header is used in the same packet, it is recommended that those headers appear in the following order:

- IPv6 header
- · Hop-by-hop options header
- Destination options header (routing header associations)
- Routing header
- Fragment header
- Authentication header
- Encapsulating security payload header
- Destination options header (options processed by final destination)
- Upper-layer header

Table 1. Summary of Header Types and Values

Header Type	Next Header Value	
Hop-by-Hop Options Header	0	
Destination Option Header	60	
Routing Header	43	
Fragment Header	44	
Authentication Header (RFC 1826 and ESP Header (RFC 1827)	5) 51	
Upper-Layer Header	6 (TCP)	
	17 (UDP)	
Mobility Header	135	

Copyright © 2005 Cisco Systems, Inc. All rights reserved. Cisco, Cisco IOS, Cisco Systems, and the Cisco Systems logo are registered trademarks of Cisco Systems, Inc. and/or its affiiliates in the U.S. and certain other countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0502R) 204171.p_ETMG_AE_3.05