SNA Switching Services (SNASw) Technical Overview

Leveraging Investments, Empowering the Enterprise

CISCO SYSTEMS

- Status of Advanced Peer-to-Peer
 Networking (APPN) Networks Today
- Emerging Network Trends
- Cisco APPN Directions

What Is APPN?

- Second-generation SNA
- Support for decentralized networks
- Support for peer-to-peer applications and networking
- A "routable" protocol

APPN Features

- Dynamic network topology
- Distributed directory services
- Native SNA routing
- Route selection using COS
- Concurrent subarea SNA support via DLUR/DLUS

Why Enterprises Choose APPN

- Native SNA routing (95%)
- Reduced FEP dependency (90%)
- Support for sysplex environment (80%)
- Peer-to-peer communications (20%)
- Native SNA network (10%)

What Do Cisco APPN Networks Look Like Today?

90%—DLSw+ on backbone
 APPN in data center

across the backbone

Industry Trends Today

- IP is becoming the default for the corporate intranet
- Non-SNA clients must access
 SNA applications
- Data centers must support SNA and IP applications
- Voice and video traffic will be consolidated with data traffic

Today's Consolidated Data Network

www.cisco.com

- Native APPN in the network is inconsistent with today's IP-based corporate intranet
- But... APPN is desired to route between multiple application hosts
- Native APPN networks are resourceintensive and have been difficult to scale
- APPN networks have been complex to design and configure

Cisco APPN Goals

- Integrate APPN into the IP infrastructure
- Provide efficient APPN functionality to route messages to the desired application host
- Improve APPN scalability by reducing the number of network nodes
- Reduce APPN complexity

Simplify network design

Reduce configuration requirements

Introducing: SNA Switching Services

First of All—1, 2, or 3 Routers in the Data Center?

What Are SNA Switching Services?

- New release of APPN
- Branch Extender (BX) support to improve scalability
- Enterprise Extender (EX) support to integrate APPN into the IP network
- Full HPR support with updated ARB flow control
- Usability and management enhancements
- Reduced configuration requirements

Cisco IOS[®] software release 12.0(5)XN/12.1

Currently scheduled for September/December, 1999

Platforms

Cisco 2500, 2600, 36x0, 4x00, 7200, 7500, RSM

APPN NN versus SNASw BX

Cisco APPN NN	SNASw BX	
Full Routing Services	Works with VTAM To Provide Routing Services	
HPR Network Support	HPR Network Support	
over IP: DLSw+	over IP: DLSw+, EX	
More than100 Configuration	Approximately 30	
Commands and Operands	Commands and Operands	
Broadcast Traffic Grows as	Broadcast Traffic	
Number of Routers Increases	Eliminated from Network	

What Is Branch Extender?

Branch Extender Network Design

- Single (plus backup) VTAM NN with DLUS
- Other VTAMs ENs
- All Cisco data center routers SNASw with BX
- Channel-attached routers bridge
- SNASw nodes connect to VTAMs using connection network

How Session Setup Works

SNASw node

Receives session setup request Looks like an EN to VTAM Passes session request to VTAM NN

- VTAM selects path based on COS
- Application or SNASw node sends BIND to start session
- SNASw node routes traffic directly to correct application host

What Is Enterprise Extender?

- HPR/IP—RFC 2353
- Layer 3 IP routing
 SNA nodes have IP addresses
 IP routing algorithm
- Layer 4 HPR for reliability

HPR end-to-end flow control, error control, segmentation COS-IP precedence bits mapping

 Implemented in OS/390 V2R6 with APAR OW36113
 Parallel sysplex capable

Enterprise Extender Network Design

- EX in VTAM and data center routers or remote routers
- Channel-attached router IP
- Remaining network routers IP
- Remote end user connected to EX network

DLSw+ across WAN to data center

Native SNA to remote EX router

Enterprise Extender Model 1: DLSw+ to the Branch

- No change to remote routers
- SNA ToS sets IP precedence bits
- DLSw+ proven technology
- Considerations

DLSw+ router point of failure

Enterprise Extender Model 2: EX to the Branch

- SNA COS sets IP precedence bits
- Considerations

Scalability not yet determined in large networks

Availability

Remote EX router point of failure or

EX to end station—VTAM recovery issues

Additional memory and processing in branch routers

Remote DLSw+ and EX Comparison

	DLSw+	EX
Message Priority	Sets IP Precedence Bits	Sets IP Precedence Bits
Availability Limitations	DLSw+ Router Point of Failure	VTAM Recovery for RTP Connections
Risks	Mature (500,000+ Routers)	New, Untested
Remote Routers	Minimal Memory, Minimal Processing Overhead	More Memory, More Processing Overhead

SNASw Usability Enhancements

- Dynamic CP name generation *
- Dynamic SNA BTU size *
- DLUR connect-out *
- New adaptive rate-based flow control algorithm
- User-settable port limits *

SNASw Management Enhancements

Unique Cisco management features

- APPN trap MIB support
- Sniffer-compatible traces
- Console message archiving
- Data-link tracing
- Interprocess signal tracing

Simplified Configuration

APPN NN

appn control-point NETA.R4700B01 dlus NETA.SJMVS3 dlur complete appn port SRB rsrb rsrb-virtual-station 4000.5555.6666 54 1 53 complete appn port TOK1 TokenRing1 complete appn link-station SJMVS3 port SRB lan-dest-address 4000,1234,0001 retry-limit infinite

SNASw

snasw cpname NETA.R4700B01

snasw dlus NETA.SJMVS3

snasw port TOK1 TokenRing1 conntype nohpr

snasw port VTOK2 TokenRing2 conntype nohpr

snasw link SJMVS3 port VTOK2 rmac 4000.1234.0001

complete

Managing APPN Resources with Maps and SNAView

 From a Web browser, access:

> SNA resources (PU and LU sessions)

Topology and directory information

Path information

Hot links to other tools

V 2.1 shipping 9/99

APPN Map Application

- Logical view of APPN network
- Topology showing nodes, transmission groups, ports, links, PUs, DLUR-DLUS sessions, LUs, intermediate sessions
- Motif graphical display or Web tabular display
- Color-coding to represent status changes
- Requires the IBM-6611-APPN-MIB or standard APPN MIB (RFC 2455), DLUR MIB (RFC2232)

Display the APPN Global View

www.cisco.com

The Result: An IP Infrastructure

 Internet-ready, multiservice-ready Parallel **Sysplex** Web SNA or IP clients Server SNA or IP applications TN3270/IP **TN3270** Server SWT ΓCΡ/ΙΡ **SNASw WebClient SNA TN3270** Client Client

The SNASw solution from Cisco

- Integrates SNA into the IP infrastructure
- Reduces complexity in APPN networks
- Provides a scalable solution
- Interfaces with all architecturally compliant APPN nodes
- Provides enhanced usability and management functionality

