
 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 16 

White Paper 

The Cisco Application Policy Infrastructure 
Controller 

 

Introduction: What Is the Cisco Application Policy Infrastructure Controller? 

The Cisco® Application Policy Infrastructure Controller (referred to as the APIC) is a distributed system 

implemented as a cluster of controllers. The APIC provides a single point of control, a central API, a central 

repository of global data, and a repository of policy data for the Cisco Application Centric Infrastructure (ACI). 

The Cisco ACI is conceptualized as a distributed overlay system with external endpoint connections controlled and 

grouped via policies. Physically, ACI is a high-speed, multipath leaf and spine (bipartite graph) fabric. 

The APIC is a unified point of policy-driven configuration. The primary function of the APIC is to provide policy 

authority and policy resolution mechanisms for the Cisco ACI and ACI-attached devices. Automation is provided 

as a direct result of policy resolution and of rendering its effects onto the Cisco ACI fabric. 

The APIC communicates in the infrastructure VLAN (in-band) with the Cisco ACI spine and leaf nodes to distribute 

policies to the points of attachment (Cisco leaf) and provide a number of key administrative functions to the Cisco 

ACI. The APIC is not directly involved in data plane forwarding, so a complete failure or disconnection of all APIC 

elements in a cluster will not result in any loss of existing datacenter functionality. 

In general, policies are distributed to nodes as needed upon endpoint attachment or by an administrative static 

binding. You can, however, specify “resolutional immediacy,” which regulates when policies are delivered into 

Cisco nodes. “Prefetch” or early resolution is one of the modes. The most scalable mode is the “just-in-time 

mode,” in which policies are delivered to nodes just in time upon detection of the attachment. Attachment 

detection is based on analysis of various triggers available to the APIC. 

A central APIC concept is to express application networking needs as an extension of application-level metadata 

through a set of policies and requirements that are automatically applied to the network infrastructure. The APIC 

policy model allows specification of network policy in an application- and workload-centric way. It describes sets of 

endpoints with identical network and semantic behaviors as endpoint groups. Policies are specified per interaction 

among such endpoint groups. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 16 

Key features of the Cisco APIC: 

● Application centric network policies 

● Data model-based declarative provisioning 

● Application, topology monitoring, and troubleshooting 

● Third-party integration (Layer 4 through 7 services, storage, computing, WAN) 

● Image management (spine and leaf) 

● ACI inventory and configuration 

● Implementation on a distributed framework across a cluster of appliances 

Figure 1.   Cisco APIC Policy Model 

 

Scalable and Flexible 

A single APIC cluster supports over 1 million ACI endpoints, more than 200,000 ports, and more than 64,000 

tenants and provides centralized access to ACI information through a number of interfaces, including an object-

oriented RESTful API with XML and JSON bindings, a modernized user-extensible command-line interface (CLI), 

and a GUI. All methods are based on a model of equal access to internal information. Furthermore, APIC clusters 

are fully extensible to computing and storage management. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 16 

APIC Is Not Another NMS 

The APIC is a network policy control system. However, it is not a network element management system and 

should not be mistaken for a manager of managers. Instead, it is designed to extend the manageability 

innovations of the ACI Fabric OS platform by augmenting it with a policy-based configuration model and providing 

end-to-end ACI global visibility. Cisco has cultivated a broad ecosystem of partners to work with the APIC and 

provide important functions, including: 

● Fault and event management 

● System and configuration tools 

● Performance management 

● Automation tools 

● Orchestration frameworks 

● Statistical collection and analysis 

● Hypervisor, storage, and computing management 

● Layer 4 through 7 services integration 

● Cloud management 

● IP address management (IPAM) 

Figure 2.   Policy-driven Fabric 

 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 16 

Virtual ACI Context: Securing Tenants 

A tenant is a logical container or a folder for application policies. It can represent an actual tenant, an organization, 

or a domain or can just be used for the convenience of organizing information. A normal tenant represents a unit 

of isolation from a policy perspective, but it does not represent a private network. A special tenant named 

“common” has sharable policies that can be used by all tenants. A context is a representation of a private Layer 3 

namespace or Layer 3 network. It is a unit of isolation in our ACI framework. A tenant can rely on several contexts. 

Contexts can be declared within a tenant (contained by the tenant) or can be in the “common” tenant. This 

approach enables us to provide both multiple private Layer 3 networks per tenant and shared Layer 3 networks 

used by multiple tenants. This way, we do not dictate a specific rigidly constrained tenancy model. The endpoint 

policy specifies a common ACI behavior for all endpoints defined within a given virtual ACI context. 

Endpoints and Policy Control 

The Cisco ACI is conceptualized as a distributed overlay system with external endpoint connections controlled and 

grouped via policies. The central concept here is to group endpoints (EPs) with identical semantics into endpoint 

groups (EPGs) and then write policies that regulate how such groups can interact with each other. These policies 

provide rules for connectivity, visibility (access control), and isolation of the endpoints. The APIC’s primary 

responsibility is distributing, tracking, and updating such policies to corresponding Cisco ACI nodes as client 

endpoint connectivity to the Cisco ACI is established, changed, or removed. Endpoint policy control consists of 

two logically coupled elements: 

Policy repository: This is a collection of policies and rules applied to existing or hypothetical (either deleted or not 

yet created) endpoints. 

Endpoint registry: This is a registry of endpoints currently known to the Cisco ACI. External client endpoints are 

any external computing, network, or storage element that is not a component of the Cisco ACI. Client endpoints 

are directly connected to the Cisco leaf, or indirectly via a fabric extender (FEX) or intermediate switches (such as 

blade switches in the blade systems) or a virtual switch. For example, a computing endpoint can be a single virtual 

machine’s VM network interface card (vmNIC) or virtual NIC (vNIC), a physical server connection via a physical 

NIC, or a virtualized vNIC (SR-IOV, Palo, etc.) 

Figure 3.   Endpoint Identification 

 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 16 

Endpoints and their ACI attachment location may or may not be known when the EPG is initially defined on the 

APIC. Therefore, endpoints either can be prespecified into corresponding EPGs (statically at any time) or can be 

added dynamically as they are attached to the ACI. Endpoints are tracked by a special endpoint registry 

mechanism of the policy repository. This tracking serves two purposes: It gives the APIC visibility into the attached 

endpoints and dictates policy consumption and distribution on the Cisco leaf switches. 

Endpoint Groups: Building Blocks of Policy and Automation 

An endpoint group (EPG) is a collection of endpoints with identical ACI-level behaviors and requirements. The 

practical implication of the EPG in relation to the VM management layer is that it can be thought of as a vSphere 

port group, or as a network as defined in the OpenStack Neutron API. Groups have an “application-tier-like” 

semantic at the application metadata level, where a web server connects to the network as a member of the EPG 

“web-servers” and all rules pertaining to web servers in a given application are applied. However, in more 

traditional environments, it is possible to think of an EPG as a collection of physical ports, VLANs, a subnet, or 

some other unit of isolation or networked workload containment. This group behavior represents the most basic 

building block of network configuration automation on the APIC. 

Endpoint Group Contracts 

The APIC policy model defines EPG “contracts” between EPGs that control the various parameters between 

application tiers such as connectivity, visibility, service insertion, packet quality of service (QoS), etc. A contract 

allows a user to specify rules and policies for groups of physical or virtual endpoints without understanding any 

specific identifiers or even who is providing the service or who is consuming it, regardless of the physical location 

of the devices (Figure 4). This abstraction of specificity makes the Cisco policy model truly object oriented and 

highly flexible. Each contract consists of a filtering construct, which is a list of one or more classifiers (IP address, 

TCP/UDP ports, etc.), and an action construct that dictates how the matching traffic is handled (allow, apply QoS, 

log traffic, etc.). 

Figure 4.   Endpoint Group Contracts 

 

Another implication of the contract filters is their effect on the distribution of policy and endpoint visibility 

information. For a given endpoint attaching to a given leaf, only the information about related endpoints is 

communicated, along with corresponding policies. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 16 

A Model-Based Controller Implemented with Promise Theory 

In model-driven architectures, the software maintains a complete representation of the administrative and 

operational state of the system (the model). 

Subject-matter experts (SMEs) do not configure the physical system resources directly but rather define logical 

configuration policy abstractions of policy state (hardware independent) that control different aspects of the system 

behavior. 

Figure 5.   Promise Theory Model 

 

The APIC uses a variant of promise theory with full formal separation of the logical and concrete models, in which 

no configuration is carried out against concrete entities (Figure 5). Concrete entities are configured implicitly as a 

side effect of the logical model implementation. Concrete entities can be physical, but they don’t have to be (such 

as VMs and VLANs). 

Logical configurations are rendered into concrete configurations by applying the policies in relation to the available 

physical resources, taking into account their state and capabilities. 

Concrete configurations are deployed to the managed endpoints in an asynchronous, nonblocking fashion. 

This involves profiles and policies in which logical entities are expressed as policy requirements. The management 

model applies uniformly to the ACI, services, and system behaviors. 

The enforcement of polices is achieved via a hive of policy elements (PEs), a concept inspired by sensor 

networks. PEs enforce the desired state expressed in declared policies on each node of the ACI, in accordance 

with promise theory. This is distinctly different from traditional top-down management, in which every resource is 

configured directly. 

Given an excitation trigger, it is the responsibility of a PE, directly or indirectly via a proxy, to trigger policy 

resolution. Once policy is resolved, its artifacts are rendered to the concrete model, and the backend (ACI Fabric 

OS processes) reacts to such changes. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 16 

Why Promise Theory? 

Promise theory has many advantages over traditional elemental management (Figure 6): 

● Provides declarative automation. 

● State convergence: The PE continuously conducts checks to ensure that the configuration complies with 

the desired state of the infrastructure. 

● Tight policy loop: The PE corrects drift of the operational state from the desired state. 

● Provides continual real-time auditing of the operational state as compared to the defined state. 

● Removes the side effects of change. 

● Model remains intact at scale. 

● Scales linearly with the object-driven model. 

● Objects are responsible for the requested configuration. 

● No assumptions are made concerning the current object state. Relies on trust relationships and end-device 

ownership of configuration change. 

Figure 6.   Promise Theory vs. Top-Down Management 

 

Cisco ACI Operating System (ACI Fabric OS) 

Cisco has taken the traditional Cisco Nexus® OS (NX-OS) developed for the datacenter and pared it down to the 

essential features required for a modern datacenter deploying the Cisco ACI. There have also been deeper 

structural changes so that the ACI Fabric OS can easily render policy from the APIC into the physical 

infrastructure. A Data Management Engine (DME) in ACI Fabric OS provides the framework that serves read and 

write requests from a shared lockless datastore. The datastore is object oriented, with each object stored as 

chunks of data. 

A chunk is owned by one ACI Fabric OS process, and only the owner of this process can write to the data chunk. 

However, any ACI Fabric OS process can read any of the data simultaneously through the CLI, Simple Network 

Management Protocol (SNMP) or an API call. A local policy element (PE) enables the APIC to implement the 

policy model directly in ACI Fabric OS (Figure 7). 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 16 

Figure 7.   ACI Fabric OS 

 

Architecture: Components and Functions of the APIC 

The APIC consists of a set of basic control functions, including: 

● Policy Manager (policy repository) 

● Topology Manager 

● Observer 

● Boot Manager 

● Appliance Director (cluster controller) 

● VMM Manager 

● Event Manager 

● Appliance Element 

Figure 8.   APIC Component Architecture 

 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 16 

Policy Manager 

The Policy Manager is a distributed policy repository responsible for the definition and deployment of the policy-

based configuration of the Cisco ACI. This is a collection of policies and rules applied to existing or hypothetical 

(not yet created) endpoints. The endpoint registry is a subset of the Policy Manager that tracks endpoints 

connecting to the Cisco ACI and their assignment to endpoint groups as defined by the policy repository. 

Topology Manager 

The Topology Manager maintains up-to-date ACI topology and inventory information. Topology information is 

reported to the APIC by the leaf and spine switches. The physical topology is based on the information discovered 

by the Link Layer Discovery Protocol (LLDP) and the routing topology of the fabric as reported by protocols 

(modified intermediate system to intermediate system [IS-IS]) running within the fabric infrastructure space. 

A global view of time-accurate topology information is available in the Topology Manager, including: 

● Physical topology (Layer 1; physical links and nodes) 

● Logical path topology (reflection of Layer 2 + Layer 3) 

Topology information, along with associated aggregated operational state, is asynchronously updated in the 

Topology Manager upon detection of topology changes, and is available for queries via the APIC API, CLI, and UI. 

A subfunction of Topology Manager performs inventory management for the APIC and maintains a complete 

inventory of the entire Cisco ACI. The APIC inventory management subfunction provides full identification, 

including model and serial number, as well as user-defined asset tags (for ease of correlation with asset and 

inventory management systems) for all ports, line cards, switches, chassis, etc. 

Inventory is automatically pushed by the DME-based policy element/agent embedded in the switches as soon as 

new inventory items are discovered or removed or transition in state in the local repository of the ACI node. 

Observer 

The Observer is the monitoring subsystem of the APIC, and it serves as a data repository of the Cisco ACI’s 

operational state, health, and performance, including: 

● Hardware and software state and health of ACI components 

● Operational state of protocols 

● Performance data (statistics) 

● Outstanding and past fault and alarm data 

● Record of events 

Monitoring data is available for queries via the APIC API, CLI, and UI. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 16 

Boot Director 

The Boot Director controls the booting and firmware updates of the Cisco spine and leaf and the APIC controller 

elements. It also functions as the address allocation authority for the infrastructure network, which allows the APIC 

and the spine and leaf nodes to communicate. The following process describes bringing up the APIC and cluster 

discovery. 

● Each APIC in the Cisco ACI uses an internal private IP address to communicate with the ACI nodes and 

other APICs in the cluster. APICs discover the IP address of other APICs in the cluster using an LLDP-

based discovery process. 

● APICs maintain an appliance vector (AV), which provides a mapping from an APIC ID to an APIC IP 

address and a universally unique identifier (UUID) of the APIC. Initially, each APIC starts with an AV filled 

with its local IP address, and all other APIC slots are marked unknown. 

● Upon switch reboot, the PE on the leaf gets its AV from the APIC. The switch then advertises this AV to all 

of its neighbors and reports any discrepancies between its local AV and neighbors’ AVs to all the APICs in 

its local AV. 

● Using this process, APICs learn about the other APICs in the ACI via switches. After validating these newly 

discovered APICs in the cluster, APICs update their local AV and program the switches with the new AV. 

Switches then start advertising this new AV. This process continues until all the switches have the identical 

AV and all APICs know the IP address of all the other APICs. 

Appliance Director 

The Appliance Director is responsible for formation and control of the APIC appliance cluster. The APIC is 

delivered as a software appliance that is installed on customer-owned server hardware (“bare-metal”).A minimum 

of three controllers are initially installed for control of the scale-out ACI (Figure 9). The ultimate size of the APIC 

cluster is directly proportionate to the ACI size and is driven by the transaction rate requirements. Any controller in 

the cluster is able to service any user for any operation, and a controller can be seamlessly added to or removed 

from the APIC cluster. It is important to understand that unlike an OpenFlow controller, none of the APIC 

controllers are ever in the data path. 

Figure 9.   Appliance Director 

 

VMM Manager 

The VMM Manager acts as an agent between the policy repository and a hypervisor and is responsible for 

interacting with hypervisor management systems such as VMware’s vCenter and cloud software platforms such as 

OpenStack and CloudStack. VMM Manager inventories all of the hypervisor elements (pNICs, vNICs, VM names, 

etc.) and pushes policy into the hypervisor, creating port groups, etc. It also listens to hypervisor events such as 

VM mobility. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 16 

Event Manager 

The Event Manager is a repository for all the events and faults initiated from the APIC or the fabric nodes. 

Appliance Element 

The Appliance Element is a monitor for the local appliance. It manages the inventory and state of the local APIC 

appliance. 

Architecture: Data Management 

The APIC cluster uses a technology from large databases called sharding (Figure 10). This technology provides 

scalability and reliability to the data sets generated and processed by the Distributed Policy Repository, the 

endpoint registry, the Observer, and the Topology Manager. The data for these APIC functions is partitioned 

into logically bounded subsets called shards (analogous to database shards). A shard is a unit of data 

management, and all of the above data sets are placed into shards: 

● Each shard has three replicas 

● Shards are evenly distributed 

● They enable horizontal (scale-out) scaling 

● They simplify the scope of replications 

Figure 10.   Sharding 

 

One or more shards are located on each APIC appliance and processed by a controller instance located on that 

appliance. The shard data assignments are based on a predetermined hash function, and a static shard layout 

determines the assignment of shards to appliances. 

Each replica in the shard has a use preference, and writes occur on the replica that is elected leader. Other 

replicas are followers and do not allow writes. In the case of a split-brain condition, automatic reconciliation is 

performed based on timestamps. Each APIC controller has all APIC functions; however, processing is evenly 

distributed throughout the APIC controller cluster. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 16 

User Interface: Graphical User Interface (GUI) 

The GUI is an HTML5-based web UI that works with most modern web browsers. The GUI provides seamless 

access to both the APIC and the individual nodes. 

User Interface: Command-Line Interface (CLI) 

A full stylistic and semantic (where it applies) compatibility with Cisco NX-OS CLI is provided. The CLI for the 

entire Cisco ACI is accessed through the APIC and supports a transactional mode. There is also the ability to 

access specific Cisco ACI nodes with a read-only CLI for troubleshooting. An integrated Python-based scripting 

interface is supported that allows user-defined commands to attach to the command tree as if they were native 

platform-supported commands. Additionally, the APIC provides a library for any custom scripts. 

User Interface: RESTful API 

The APIC supports a comprehensive RESTful API over HTTP(S) with XML and JSON encoding bindings. Both 

class-level and tree-oriented data access is provided by the API. 

Representational state transfer (REST) is a style of software architecture for distributed systems such as the 

World Wide Web. REST has emerged over the past few years as a predominant web services design model. 

REST has increasingly displaced other design models such as SOAP and Web Services Description Language 

(WSDL) due to its simpler style. The uniform interface that any REST interface must provide is considered 

fundamental to the design of any REST service, and thus the interface has these guiding principles: 

● Identification of resources: Individual resources are identified in requests, for example, using URIs in web-

based REST systems. The resources themselves are conceptually separate from the representations that 

are returned to the client. 

● Manipulation of resources through these representations: When a client holds a representation of a 

resource, including any metadata attached, it has enough information to modify or delete the resource on 

the server, provided it has permission to do so. 

● Self-descriptive messages: Each message includes enough information to describe how to process the 

message. Responses also explicitly indicate their cache ability. 

● An important concept in REST is the existence of resources (sources of specific information), each of 

which is referenced with a global identifier (such as a URI in HTTP). In order to manipulate these 

resources, components of the network (user agents and origin servers) communicate via a standardized 

interface (such as HTTP) and exchange representations of these resources (the actual documents 

conveying the information). 

Any number of connectors (clients, servers, caches, tunnels, etc.) can mediate the request, but each does so 

without “seeing past” its own request (referred to as layering, another constraint of REST and a common principle 

in many other parts of information and networking architecture). Thus, an application can interact with a resource 

by knowing two things: the identifier of the resource and the action required - it does not need to know whether 

there are caches, proxies, gateways, firewalls, tunnels, or anything else between it and the server actually holding 

the information. The application does, however, need to understand the format of the information (representation) 

returned, which is typically an HTML, XML, or JSON document of some kind, although it may be an image, plain 

text, or any other content. 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 16 

System Access: Authentication, Authorization, and RBAC 

The APIC supports both local and external authentication and authorization (TACACS+, RADIUS, Lightweight 

Directory Access Protocol [LDAP]) as well as role-based administrative control (RBAC) to control read and write 

access for all managed objects and to enforce ACI administrative and per-tenant administrative separation 

(Figure 11). The APIC also supports domain-based access control, which enforces where (under which subtrees) 

a user has access permissions. 

Figure 11.   Authentication, Authorization, and RBAC 

 

API Requests and URL/URI 

The Cisco ACI Fabric OS Data Management Engine (DME) hierarchical object model approach is a very good fit 

for a RESTful interface, as URLs and URIs map directly into distinguished names identifying managed objects 

(MO) on the tree, and any data on the distributed Management Information Tree (dMIT) can be described as a 

self-contained structured text document encoded in XML or JSON (Figure 12). This structure is similar to that of 

Common Management Information Protocol (CMIP) and other X.500 invariants. The DME was designed to allow 

the control of managed resources by presenting their manageable characteristics as object properties. The 

objects have parent-child relationships that are identified using distinguished names and properties, which are 

read and modified by a set of create, read, update, and delete (CRUD) operations. The object model features a 

full unified description of entities and no artificial separation of configuration, state, or runtime data (Figure 13). 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 16 

Figure 12.   Unified Data Model 

 

Accessing the dMIT: 

● Queries return a set of objects or subtrees. 

● There is an option to return an entire or partial subtree for each object in resolution scope. 

● RBAC privileges define what types of objects can be accessed. 

● Domain identifies what subtrees are accessed. 

Figure 13.   Organization of Managed Objects 

 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 16 

The REST API uses standard HTTP commands for retrieval and manipulation of APIC data. The URL format used 

in the API is represented as follows: 

<system>/api/[mo|class]/[dn|class][:method].[xml|json] {options} 

● system: System identifier, an IP address or DNS-resolvable host name. 

● mo | class: Indicates whether this is an mo/tree (MIT) or class-level query. 

● class: Managed object class (as specified in the information model) of the objects queried. Class name is 

represented as <pkgName><ManagedObjectClassName>. 

● dn: Distinguished name (unique hierarchical name of the object on the MIT) of the object queried. 

● method: Optional indication of what method is being invoked on the object; applies only to HTTP POST 

requests. 

● xml|json: Encoding format. 

● Options: Query options, filter, arguments. 

For example, ifc-1.foo.com:7580/api/node-20/mo/sys/ch/lcslot-1/lc.xml globally identifies linecard 1 of system 

20 (Figure 14). 

Figure 14.   Class-Level Queries 

 

The API also supports using a specific class-level URL format, providing access to all of a certain class of objects 

from the dMIT (Figure 15). 

Figure 15.   Object-Level Queries 

 



 

 

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 16 of 16 

The API further supports using a tree- or subtree-level URL format, providing access to a specific tree or subtree 

of objects from the dMIT (Figure 16). 

Figure 16.   Tree-Level Queries 

 

Conclusion 

The Cisco Application Policy Infrastructure Controller (APIC) is a modern, highly scalable distributed control 

system that manages the Cisco ACI switch elements and provides policy-driven network provisioning that is 

implicitly automated. Additionally, the APIC provides the technology to implement a new paradigm of application 

policy and a robust automation platform for the network and all the attached elements. The APIC is designed to do 

all of this while remaining out of the data path, thus allowing extremely high performance of the Cisco ACI. 

 

 

 

 

Printed in USA C11-730021-00 11/13 


	The Cisco Application Policy Infrastructure Controller
	Introduction: What Is the Cisco Application Policy Infrastructure Controller?
	Scalable and Flexible
	APIC Is Not Another NMS
	Virtual ACI Context: Securing Tenants
	Endpoints and Policy Control
	Endpoint Groups: Building Blocks of Policy and Automation
	Endpoint Group Contracts
	A Model-Based Controller Implemented with Promise Theory
	Why Promise Theory?
	Cisco ACI Operating System (ACI Fabric OS)
	Architecture: Components and Functions of the APIC
	Policy Manager
	Topology Manager
	Observer
	Boot Director
	Appliance Director
	VMM Manager
	Event Manager
	Appliance Element
	Architecture: Data Management
	User Interface: Graphical User Interface (GUI)
	User Interface: Command-Line Interface (CLI)
	User Interface: RESTful API
	System Access: Authentication, Authorization, and RBAC
	API Requests and URL/URI
	Conclusion


