

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 39

White Paper

Configuring MAB with LDAP User Device Binding

Last updated: April 2013

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 2 of 39

Contents

Abstract 3

Use of Cisco Secure ACS and Identity Services Engin e (ISE)... 3

Part I—Configuring MAB with LDAP.................... .. 3

Introduction....................................... ... 3

Directory Organization 5
Device Class Considerations.. 6

Directory Definition in Cisco Secure ACS 7
MAB Access Service Definition... 14
Test in Cisco Secure ACS View.. 16

Conclusion 17

Part II—User Device Binding 17

Introduction....................................... ... 17

User Device Binding with Directories............... ... 18
Cross-Referencing Objects... 19
User Device Binding Implementation.. 21
Directory Tie-in.. 21
ACS Device Restriction Policy .. 22

Conclusion 24

Appendix 25
LDIF Script.. 25
Sample Input File.. 33
Sample Output File ... 34

References and Links............................... ... 39

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 3 of 39

Abstract

The first part of this document describes the combination of MAB (MAC Authentication Bypass) with

LDAP/Microsoft Active Directory. It discusses different options of MAC address storage and integration into

RADIUS, specifically into Cisco Secure ACS 5. It provides detailed configuration examples and tools including

a Perl script in the appendix to help provision and maintain MAC address objects in LDAP/Active Directory.

The second part of this document builds on the MAB/LDAP integration and proposes an alternative approach

to allow administrators to tie specific users to specific devices sometimes known as device-user-tie-in or User

Device Binding (UDB).

Use of Cisco Secure ACS and Identity Services Engine (ISE)

While this document has been written with ACS 5 as the primary RADIUS server, it has to be noted that the same

results can be achieved using ISE. When originally testing was done, ISE lacked a critical capability to make this

work (dynamic attribute comparison as laid out later in the document). However, with ISE 1.1.1, this capability has

been added.

Part I—Configuring MAB with LDAP

Introduction

With identity-enabled networks, devices that don’t have a supplicant are often authenticated via their MAC

address using a concept called MAC Authentication Bypass or MAB for short. Typical examples are printers,

cameras or any legacy devices without any IEEE 802.1X supplicant.

A common setup is depicted above. It consists of many devices accessing the network (with or without IEEE

802.1X capabilities) and network infrastructure (switches=authenticators) which acts as ‘gatekeepers’ enforcing

the security policy provided by a central RADIUS server infrastructure. The RADIUS server either has a built-in

identity database for users and devices or it interfaces to an external identity database. Often LDAP is used to

query external identity databases, especially for MAB.

While MAC addresses can be spoofed and there is also no strong authentication, MAB offers at least some level

of authentication compared to an open door policy.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 4 of 39

Authenticators (e.g. routers, switches, etc.) configured for MAB typically take the learned MAC address as the

username and as the password, and send an authentication request to the RADIUS server. This is turned into

a PAP1 request, but could also be in the form of an EAP-MD5 request, where the latter does not provide any

additional security, as the username is still the MAC address and typically the password is identical to the MAC

address2 (username=password=MAC address). Cisco devices set RADIUS attribute 6 (Service-Type) to 10 (Call

Check) to indicate MAB to the RADIUS server (see packet capture below).

The RADIUS server then could have a local ‘host database’, where those MAC addresses are stored.

As an alternative to storing MAC addresses within the RADIUS server, external data stores can be used.

When putting MAC addresses in an external data store, a common recommendation on creating MAC objects

is to leverage user objects where the username is the MAC address and the password is also set to the MAC

address. With Active Directory, several limitations or weaknesses exist:

1) Because the username equals the password, the ‘password complexity rule’ has to be turned off. In earlier

Windows AD versions3, this could only be performed on a domain wide basis (everyone or no one). With

Windows Server 2008 and newer, this can be performed on a user group.

2) Without any further restrictions (for example, explicitly disable interactive logon for those MAC address

objects), every MAC address has also a user object with a known password, and this can potentially be

used to interactively login to any workstation, just by knowing an arbitrary MAC address, which exists

within the directory.

A different and more efficient way to store MAC addresses uses external directories accessed via LDAP.

Directories are widely deployed and available in enterprise networks.

In the first part of this document, the procedure to create a MAC address hierarchy in a popular LDAP

implementation (Microsoft Active Directory with Lightweight Directory Services/LDS) is described. It also explains

the configuration steps required on Cisco Secure ACS 5 to integrate the LDAP identity store for use with MAC

addresses. Please refer to the TechNet article given in the appendix for information regarding how to install and

configure LDS with Microsoft Windows Server. It should be noted however, that basically every LDAP server, like

FreeRADIUS, could be used to achieve this.

1 PAP=Password Authentication Protocol. Username and Password are sent as clear text
2 With release 15.0(2)SE, a new feature has been introduced to make the password for MAC Authentication Bypass configurable
3 Microsoft Active Directory 2003 and earlier

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 5 of 39

Directory Organization

An LDAP-directory will use a (top-level) container where all MAC addresses and groups can be stored. Even

though all objects can go into that very same container, it makes sense to include additional hierarchy layers and

grouping objects into functional containers and groups.

For example, all MAC address objects for a phone can go into an OU=phones container. Additional group objects

can reference all individual MAC objects of a particular device class. An active directory example for a group

object is the group ‘Domain Users’ which references all users of the domain. Grouping objects together allows

creating policy rules which reference e.g. ‘all phones’ instead of individual objects.

The layout/organization within this container is up for discussion; there is definitely no ‘best’ or single way to

achieve the goal of MAC address storage within a directory. Here’s a suggestion for how to layout the containers:

Essentially, every MAC address lives under the OU4=MAC with sub-containers for different device groups

(printers, cameras etc.). A group container ‘MACGroups’ holds the objects for groups. In the above example, every

printer device lives in the container ‘OU=MAC, OU=MACAddress, OU=printers’. It is also represented in the group

object ‘CN5=printers, OU=MACGroups, OU=MAC‘ as a reference, the group’s member-attribute points back to the

device. This way, one can also use group associations and build policy rules within CiscoSecure ACS 5 like

isMemberOf(‘printers’).

The difference between cameras in MACAddresses and cameras in MACGroups in the example given above is

as follows:

● OU=cameras is a container of class ‘organizational unit’, holding all the MAC device objects of a certain

type (here: cameras). This differentiation is technically not necessary, it just allows for more clarity/tidiness.

4 OU Organizational Unit, a container
5 CN Common Name, object name, part of DN

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 39

● CN=cameras is a group object of class ‘group’. All individual children (cameras in this case) are referenced

by the groups ‘member’ attribute.

Note: References between objects can be built in different ways. Either by pointing the child to the parent, or

by populating a list-attribute of the parent with its children (member attribute). In AD, the parent maintains a list

of its children, so Cisco Secure ACS has to be configured accordingly.

Note: The directory names in the examples reflect the lab setup, so the names have to be adapted to

your actual environment. Most notably, the end of the DN6‘DC=wdf, DC=ibns, DC=lab’ must be adapted to

the local environment.

Device Class Considerations

In Microsoft Active Directory 2008 and newer, the class device inherits from class ieee802Device. This effectively

means that each object of class device automatically has a macAddress attribute to store a MAC address.

What if the directory in use does not have the macAddress attribute? In this case, the CN of the device object

must reflect the MAC address. Here are two examples that illustrate the difference:

Example without macAddress attribute:

dn: CN=00112233445C,OU=cameras,OU=addresses,OU=MAC,DC=wdf,DC=ibns,DC=lab

objectClass: top

objectClass: device

name: 00112233445C

showInAdvancedViewOnly: FALSE

description: in room 22/b (mycamera003)

Example with macAddress attribute:

dn: CN=mycamera003,OU=cameras,OU=addresses,OU=MAC,DC=wdf,DC=ibns,DC=lab

objectClass: top

objectClass: device

macAddress: 00112233445C

name: mycamera003

showInAdvancedViewOnly: FALSE

description: in room 22/b (00-11-22-33-44-5C)

In the first example, no macAddress attribute is available. The object’s distinguished name (‘dn’) contains

the MAC address in the ‘cn’ (common name) field and also in the ‘name’ attribute. In the second example, the

‘cn’/‘name’ could contain a more meaningful device name (which still has to be unique in this context) and the

actual MAC address is contained in the macAddress attribute, which is obviously more appropriate. However,

from a functional point of view, both variants work perfectly fine.

Note: The above example puts the MAC address into the description for the object with the macAddress

attribute. It puts the device name into the description for the object without the macAddress attribute. This way,

those attributes will be visible in the ‘Description’ column (See the screen shot below).

6 DN Distinguished name, unique identifier

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 7 of 39

In the appendix of this document, a Perl script is included that creates a LDIF7 file from an Excel table of MAC

addresses via a CSV file.

Directory Definition in Cisco Secure ACS

To allow Cisco Secure ACS 5 to access the LDAP database, a new LDAP identity store configuration must be set

up. Steps 5 and 6 (‘Directory Organization’) are the most important ones, as they have to reflect the actual

directory organization, container names and search bases as previously discussed.

1) Go to ‘Users and Identity Stores’, ‘External Identity Stores’, ‘LDAP’:

7 LDAP Data Interchange Format

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 8 of 39

2) Create a new LDAP Identity store and give it a meaningful name, click ‘Next’

3) In the next step (Step 2—Server Connection), define the LDAP server IP address/hostname and the port

we will connect to. In addition, if authentication is required (usually it is), click on ‘Authenticated Access’.

The ‘Admin DN’ is the distinguished name of a user that has the appropriate rights to read from the directory.

The easiest way to get the DN is by using the ADSI Edit snap-in8 and select the administrator user from here:

8 For the Microsoft Management Console, mmc.exe

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 9 of 39

Then go to properties and copy the distinguishedName:

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 10 of 39

4) If everything has been configured, click ‘Test Bind To Server’ to see if there’s no typo or misconfiguration.

Cisco Secure ACS should respond with ‘Connection test bind succeeded.’

This is what it should look like:

5) Directory Organization/Schema.

Subject Objectclass: which object class has been used to create the device? (‘device’).

Subject Name Attribute: if the macAddress attribute is available, use ‘macAddress’. Otherwise use ‘name’.

Certificate Attribute: unused, can be left as is, or empty.

Group Objectclass: which object class has been used to create the objects that form object groups?
Use ‘group’.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 11 of 39

Group Map Attribute: Within the group object, which attribute holds the references to the actual devices?
Use ‘member’.

Check ‘Group Objects Contain Reference to Subjects’ and select ‘distinguished name’ as the attribute for
members in groups.

6) Directory Organization/Structure

The search bases for the subjects and the groups can actually point to the same point within the directory. If
you separate the groups and the subjects into different OUs, you can also point them into those OUs
specifically—this will increase search performance.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 12 of 39

7) If everything has been configured correct and if there are some MAC address objects already in the directory,

the ‘Test Configuration’ button should give a result similar to this (note that there are objects retrieved for the

subjects/MAC addresses and also for the groups):

8) Check the MAC address format, it must reflect the MAC address format as they have been imported into the

directory

9) Click ‘Finish’

Groups can now be selected within the ‘Directory Groups’ tab of the configured LDAP server. They are only

available if they have been created in the directory structure as discussed above.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 13 of 39

These groups can then be used in policy decisions. Also, within the ‘Directory Attributes’ tab, additional attributes

can be made available for policy decisions. Enter an existing MAC address to retrieve it from the directory and

select attributes that should be used in the MAB access policy (the example shown below uses the macAddress

attribute as part of the device object so the cn can actually be used for a device name, ‘myprinter001’):

This example also shows the back-reference to the devices’ group printers in the memberOf attribute of

the device.

Note: MAC addresses are case sensitive; they are stored with upper case A-F letters.

This concludes the definition/setup of the LDAP identity store. We’re now moving on to configuring the associated

Access Service/rules.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 14 of 39

MAB Access Service Definition

Create a new service of type ‘Network Access’ and make sure that ‘Process Host Lookup’ and ‘PAP’ has

been selected. This ensures that for Service-Type=10 the Calling-Station-ID will be used as a search key

into the directory.

Select the previously created Active Directory LDS identity store for the MAB access service.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 15 of 39

Note: The ‘Advanced Options’ allows configuring an unknown MAC address policy. This could be very useful in

scenarios where users with unknown devices can be granted access to a self-service portal using dACL access

restriction and URL-redirection. In the authorization policy,

(System:AuthenticationStatus=UnknownUser|AuthenticationFailed) can be taken into consideration to return

appropriate Authorization Profiles.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 16 of 39

Test in Cisco Secure ACS View

If everything has been configured correctly, and the switch sends a MAB AAA request to the RADIUS server,

the result should look similar to the following screen shot (see below). Note that the selected service is the MAB

service (SVC_MAB), that we’ve selected the LDAP identity store (here ‘LDS’), and that ACS classifies the request

as ‘Host Lookup’. Also note that ACS retrieved the associated groups for this MAC address (‘printers’), which can

be used within the authorization policy.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 17 of 39

Conclusion

By using Active Directory Lightweight Directory Services or any other directory accessible via LDAP, a MAC

Authentication Bypass database can be easily used together with Cisco Secure ACS as the RADIUS server.

As shown, the direct approach of creating user objects for MAB is not always the best approach. Using

appropriate directory objects, and structuring them in specific containers, is actually a lot more secure and

scalable, by allowing for automation and specific permissions applied to those containers.

Part II—User Device Binding

Introduction

A common requirement within enterprise network environments is to restrict access to network resources if the

device is not known or corporate-owned. Especially in environments where users are able to login using a

username and password, non-corporate devices can be used to authenticate to the network, because user

authentication is not specifically bound to a device.

There have been some approaches in the past to address this problem, e.g.:

1) Machine Access Restrictions (MAR). Allow a user authentication on a given device only with a prior

machine authentication.

2) Certificates (Certs). Use non-password based authentication methods, so credentials are tied to a physical

device (certificate stores).

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 18 of 39

3) EAP Chaining. Tie the machine authentication and the user authentication together into a single, atomic

authentication.

All of the items listed above have their pros and cons, which can be briefly (and non-conclusively) summarized in

the following table:

 Pro Con

MAR Works with PEAP (password based
authentication methods)

● Handles media changes or location changes poorly
(e.g.: going from wired to wireless. Sending PC at home
to sleep, waking it up in the office)

● Only works in with devices which have a ‘machine
authentication concept’, no support for other devices,
most notably smart phones and tablets (e.g.: iPad,
iPhone, Android devices, etc.)

Certs Works out of the box if built-in certificate stores are used
(tie user certificate to device)

● Does not apply for corporations without
Cert infrastructure

● Does not work with mobile certificate stores (e.g.: smart
cards, USB tokens etc.); The
standard Windows Supplicant cannot have
different authentication methods for Machine
and User (e.g. EAP-TLS/Certificate for Machine
and Username/Password/PEAP for the User)

EAP-Chaining ● Best integrated

● Most secure method

● Limited to EAP-FAST

● Limited in terms of platform support (supplicant and
authenticator must support EAP chaining)

● No OS built-in supplicant support; however, starting
with release 3.1, Cisco AnyConnect Secure Mobility
Client supports EAP-Chaining

User Device Binding ● Easy to implement

● No client modification required

● Media independent

● ‘only’ MAC address security

● MAC database required

● Not supported on every RADIUS server

User Device Binding with Directories

This document suggests a different approach to solve this problem, using specific attributes stored in a directory

and bound to a user.

The advantage here is certainly the reduced complexity for this approach: There are no certificates required and

this will work with standard supplicants. It will also work independent of the medium used (wired/wireless) and the

operating system.

On the downside, it has to be noted that the security of this approach is reduced to the MAC address of the

device. A user with proper knowledge and adequate access rights can forge an arbitrary MAC address on that

particular device to circumvent the mechanism.

Setup and organization of MAC address objects has been discussed in the previous section of this document.

Now we look at the linkage of MAC addresses to user objects, within a directory.

Note: To enable User Device Binding, it is not required to create a MAB directory structure and/or device

objects. It’s sufficient to reference the MAC addresses in the user object. However, creating these additional

objects and references may actually be useful for other, advanced scenarios. Examples are PXE booting

machines for OS restore/setup or restricted access scenarios in case of credential failure. Both would use MAB as

a fallback mechanism to allow the device on the network.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 19 of 39

This User Device Binding can be used to augment plain IEEE 802.1X, and can enhance the overall security by

allowing access to the network only to devices that are associated to a particular user. It also has the benefit that

there is no dependency on the availability of any supplicant/client-software specific feature on the end device.

Note: Since the method relies on a MAC/Username match, it does work for all authentication methods involving

a username and a MAC address. Namely EAP-TLS, PEAP and EAP-FAST. It does not work for MAB (the MAC is

the username) and also not for WebAuth (no MAC address is available in the CallingStationID).

Note: In current (as of late 2012) WebAuth for wired switch ports does not send the MAC address in the

CallingStationID. However, for Wireless it can send the MAC address in the CallingStationID. This is the default

setting when RADIUS NAC is enabled on the WLC.

For every IEEE 802.1X authentication request, the RADIUS CallingStationID is set to the MAC address of

the device requesting access. We can check the validity of the access request if the presented MAC address

is associated (thus allowed) with the user (from the RADIUS User-Name), by checking this association in

the directory.

To enforce this, we implement a policy on the authentication server, which checks the ownership of the device and

restricts the access if the user accesses the network with a device that is not owned by the user.

Note: This technique is only relevant if user authentications are being handled. Machine authentications are OK

per se because the machine account (or machine credentials) is more tightly controllable. However, the same

method could also be applied to a machine object, if needed.

Cross-Referencing Objects

Ideally, device objects would be directly connected to person objects. In fact, AD allows building an object

hierarchy to reflect the ownership. As described in the previous section, all the devices will be created within a

specific OU and of type ‘device’, and owned by user objects. This is illustrated by the following screen shot (see

below). Note that the owner attribute of the device points to the DN of the user object:

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 20 of 39

This ownership is then reflected within the user object as a backtracking list to the devices the user actually owns

(in the user object schema, this list object has the name ‘ownerBL’9):

A policy rule on the authentication server (RADIUS server) to reflect the ownership would look something like this

(in meta-syntax):

device-owner=searchLDAP(Calling-Station-ID)->owner

If user->distinguishedName == device-owner Then

 # the user actually owns the device

Permit-all

Else

 # the user does *not* own the device

Restrict-access

EndIf

9 ownerBL=Owner Backtracking List

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 21 of 39

Unfortunately, neither ACS nor ISE can actually perform an additional LDAP search with a key that is different

from the RADIUS User-Name (in this case, the key would have to be the MAC address which is actually available

within the Calling-Station-ID of the user authentication request).

The Perl Script in the appendix is able to create the relationship between the device objects and the user objects,

given user IDs are provided as part of the input table/CSV file.

User Device Binding Implementation

Another, alternative way to address the User Device Binding problem is to leverage a user object attribute, which

is readily available and can be used for this task. This is the ‘Calling Station ID’/‘Verify Caller-ID’ attribute every

user object contains.

This attribute has the added benefit of being easily configurable/editable through the standard user object

properties dialog on the ‘Dial-in’ tab.

And since this is a text field, it can also hold a string of multiple MAC addresses. This suits the requirement that a

user can typically own more than one device. Or the fact that a typical PC device has at least two MAC addresses:

Wired and wireless.

Directory Tie-in

The following screen shot illustrates an example of how a user can own a couple of devices based on the MAC

addresses of these devices.

Note: This technique uses a standard Active Directory attribute, which is readily available without any schema

modification. In addition, it is easily editable via the GUI or via automation tools.

Another way to populate these fields is via an LDIF file. This file can be automatically created from, for example,

an Excel datasheet and imported into Active Directory using ldifde.exe on Windows.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 22 of 39

The Perl script in the appendix can take a comma-separated table, creates the device objects and optionally, fills

the ‘Verify Caller-ID‘ in the user object as well.

This field can hold multiple MAC addresses by concatenating them with a separator. In this example we’re using ‘|’

as this could be used as a regular expression with ISE or with a substring match on Cisco Secure ACS 5.

Note: The “|” (pipe) character separates the MAC addresses to allow for RegEx10 support. MAC addresses must

be formatted like xx-xx-xx-xx-xx-xx, including the dashes (they must be entered in the same way as the access

device sends them in the CallingStationID).

Note: If the ‘Verify Caller-ID:’ attribute is actually in use for regular dial-up caller screening, the regular caller ID

can be included into the attribute as well separating by “|”. Alternatively, another unused attribute could be used

for the MAC address. The ‘Notes’ field on the ‘Telephones’ tab can also successfully be used.

10 RegEx Regular Expression

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 23 of 39

ACS Device Restriction Policy

Now, with this tie-in of device ownership into a user object, we can actually build a policy in ACS. For the actual

rule, we are leveraging a specific feature of ACS (the dynamic LHS/RHS attribute comparison which was

introduced with 5.3). Here are the steps to actually make this work, see below.

ACS Policy

Make the msNPCallingStationID field available for policy decisions in ACS as shown in the next screen shot. The

‘Policy Condition Name’ can be set to something meaningful.

Build an Authorization Policy Rule for your IEEE 802.1X authentication service that says (in plain English): If the

MAC address of the AAA request in the Calling-Station-ID is not contained in the msNPCallingStationID attribute

of the user object, then restrict the user-access.

As stated before, this is possible because with ACS 5.3, a ‘dynamic’ comparison between attributes is available.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 24 of 39

This condition performs a simple string match of the RHS11 (the incoming RADIUS Calling-Station-ID) and the LHS

(the msNPCallingStationID field coming from the Active Directory user object). As mentioned above, the MAC

address has to match exactly, including the hyphens. The “|” separating multiple MAC addresses in the

msNPCallingStationID string could also be a different character, as long as the complete MAC address can be

matched (‘contains’/‘not contains’ operator).

Note: Starting with version 1.1.1, ISE does also support variable LHS:RHS conditions. In Addition, ISE can

perform a RegEx match. Therefore, the proposed concept can also be implemented with ISE (though not tested at

the time of writing of this document). Microsoft NPS can also do the RegEx match, as documented in the TechEd

article in the appendix.

Enforcement

If this rule matches, the administrator then can limit/restrict the access of the user who is using a device that is not

registered to him/her.

In this simple proof of concept setup, we’ve returned a specific ACL for restricted access combined with a URL-

redirection using a specific Cisco Attribute Value Pair (AV-Pair). Further details on how to setup URL-Redirection

can be found in the Web Authentication Deployment Guide (see link in the appendix).

Whenever the user opens up a browser, it will be redirected to a web page, stating that the user has ‘Restricted

Access’ and why this is happening:

11 LHS Left hand side / RHS Right hand side

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 25 of 39

Conclusion

With this simple device restriction policy, the use of unknown devices can be effectively restricted, even with

password-based authentication methods.

It might not scale for thousands of devices and it is potentially less secure than the EAP-Chaining or any certificate

based approach, but it is certainly one step up from using the user password on an arbitrary, non-corporate device

to access the network.

Appendix

LDIF Script

This Perl script reads a comma separated value (CSV) file from the standard input or from the first command line

argument, and converts it into an LDIF file. There are a number of parameters to influence the LDIF generation.

See the help text using ‘mac-ldif.pl --help’ for reference.

The script can also cross-reference devices with user IDs, by querying the LDAP store for DNs of the user ID and

referencing the owner in the device (--owner switch). It assigns the DN of the user ID to the owner attribute of the

device object.

In addition, it can populate the ‘Verify Caller ID’ field of the DN (the ‘user object’) with the MAC addresses of the

user owned devices (--clid switch). Multiple devices will be separated by a ‘|’ (pipe) character. This is useful if the

RADIUS server supports a RegEx search of the CallingStationID in this string, or a substring match (in this case,

both variants would work).

#!/usr/bin/perl

(c) 2012 Cisco

build LDIF from CSV w/ MAC address info

use --help

use strict;

use warnings;

use File::Basename;

use Getopt::Long;

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 26 of 39

use Net::LDAP;

use Net::LDAP::Util qw(ldap_error_text);

use Term::ReadLine;

stuff to adapt

my $domain="DC=stu,DC=ibns,DC=lab";

my $container="OU=MAC".",".$domain;

my $mac_ou="MACAddresses";

my $group_ou="MACGroups";

for user lookup (adapt!)

domain will be appended

if password is empty, you will be prompted for it.

my $ldap_host="localhost";

my $ldap_port=389;

my $user_base="CN=Users";

my $binddn="CN=Administrator";

my $bindpw="your_ldap_password_here";

my $clid_sep="|";

various flags (see help)

my $ieee802=0;

my $help=0;

my $separate=0;

my $owner=0;

my $clid=0;

variables

my $ldap;

read a password, don't echo anything

unix specific, look into Term::ReadPassword

for something more generic.

sub read_password {

 my ($prompt)=@_;

 my $term=Term::ReadLine->new('ldap');

 system('stty','-echo');

 my $password=$term->readline($prompt);

 system('stty','echo');

 print "\n";

 return $password;

}

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 27 of 39

print a formatted MAC address

sub format_mac {

 my ($mac)=@_;

 $mac =~ tr/a-f/A-F/;

 return join ("-", unpack ("A2A2A2A2A2A2",$mac));

}

do ldap related stuff + error handling

if something goes wrong

sub ldap_call {

 my $mesg=shift;

 my $action=shift;

 if ($mesg->code) {

 die "An error occurred $action: "

 .ldap_error_text($mesg->code)."\n";

 }

 return $mesg;

}

generate some header info

sub output_header {

 print "#\n#\n";

 print "# generated by ".basename($0)."\n";

 print "# ".(localtime)."\n";

 print "#\n";

 print "# import via ldifde.exe into Active Directory.\n";

 print "# ldifde -i -k -f input.ldf\n";

 print "#\n#\n\n";

}

output the container OU

sub output_container {

 my ($dn, $desc)=@_;

 my $cn;

 print "dn: ".$dn."\n";

 print "changetype: add\n";

 print "objectClass: top\n";

 print "objectClass: organizationalUnit\n";

 ($cn=$dn) =~ s/^OU=(\w+),.*$/$1/;

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 28 of 39

 print "ou: ".$cn."\n";

 if ($desc) { print "description: ".$desc."\n"; }

 print "\n";

}

returns the formatted MAC address

remove all ':', '.' and '-'

convert all uppercase hex chars to lowercase

sub flatten_mac {

 my ($mac)=@_;

 $mac =~ s/[:.-]//g;

 $mac =~ tr/a-f/A-F/;

 return $mac;

}

output an individual device

sub output_device {

 my ($ou, $mac, $name, $desc, $ieee802, $owner)=@_;

 my $output=$ieee802 ? $name : $mac;

 print "dn: CN=".$output.",".$ou."\n";

 print "changetype: add\n";

 print "objectClass: top\n";

 print "objectClass: device\n";

 # print "distinguishedName: CN=".$output.",".$ou."\n";

 if ($ieee802) {

 print "macAddress: $mac\n";

 print "name: ".$name."\n";

 $desc=$desc . " (" . format_mac($mac) . ")";

 } else {

 print "name: ".$mac."\n";

 $desc=$desc . " (" . $name . ")";

 }

 print "showInAdvancedViewOnly: FALSE\n";

 if ($owner) { print "owner: ".$owner."\n"; }

 if ($desc) { print "description: ".$desc."\n"; }

 print "\n";

}

output top part of the device group

sub output_group_top {

 my ($ou, $name)=@_;

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 29 of 39

 print "dn: CN=".$name.",".$ou."\n";

 print "changetype: add\n";

 print "objectClass: top\n";

 # print "objectClass: groupOfUniqueNames\n";

 print "objectClass: group\n";

 print "cn: ".$name."\n";

 # print "distinguishedName: CN=".$name.",".$ou."\n";

}

output trailing part of the device group

sub output_group_bottom {

 my ($name)=@_;

 print "name: ".$name."\n\n";

}

output a member for the device group

sub output_group_member {

 my ($member, $ou)=@_;

 # print "uniqueMember: CN=".$member.",".$ou."\n";

 print "member: CN=".$member.",".$ou."\n";

}

sub get_optional_ou {

 my ($ou)=@_;

 if (length($ou) > 0) {

 return "OU=".$ou.",";

 } else {

 return "";

 }

}

sub help;

main()

GetOptions('container=s' => \$container,

 'ieee802' => \$ieee802,

 'help' => \$help,

 'macou:s' => \$mac_ou,

 'groupou:s' => \$group_ou,

 'owner' => \$owner,

 'l|clid' => \$clid,

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 30 of 39

 'separate' => \$separate

) or die "Incorrect usage! Try --help\n";

if ($help) {

 help;

 exit;

}

setup LDAP connection if needed

if ($owner || $clid) {

 # ask for password if there's none

 my $dn=$binddn.",".$user_base.",".$domain;

 if ($bindpw eq "") {

 $bindpw=read_password("Password for $dn: ");

 }

 $ldap=Net::LDAP->new($ldap_host, port=>$ldap_port)

 or die "Unable to connect to LDAP server $ldap_host: $@\n";

 my $result=ldap_call($ldap->bind(dn => $dn, password => $bindpw),

 "binding to server");;

}

create header and top container

output_header;

output_container $container, "Top MAC address container";

create optional sub containers

if ($mac_ou ne "") {

 my $ou=(get_optional_ou $mac_ou).$container;

 output_container $ou, "MAC container";

}

if ($group_ou ne "") {

 my $ou=(get_optional_ou $group_ou).$container;

 output_container $ou, "Group container";

}

my %groups;

my %owners_dn;

my %owners_macs;

for every input line

comma separated list

mac-address, group, name, description, owner

while (<>) {

 my $line=$_;

 my $lives_in;

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 31 of 39

 chomp $line;

 if ($line) {

 my @fields=split "," , $line;

 my ($mac, $name, $group, $desc, $owner_id)=@fields;

 if ($separate) {

 $lives_in="OU=$group,".(get_optional_ou $mac_ou).$container;

 if (not exists ($groups{$group})) {

 output_container $lives_in, "Container for $group";

 }

 } else {

 $lives_in=(get_optional_ou $mac_ou).$container;

 }

 $mac=flatten_mac($mac);

 # get the DN from LDAP, if required

 my $owner_dn="";

 if (($clid || $owner) && defined $owner_id) {

 # if not previously found

 $owner_dn=$owners_dn{$owner_id};

 if (not defined $owner_dn) {

 my $sr=ldap_call($ldap->search(base => $user_base.",".$domain,

 filter => "(&(objectclass=person)(sAMAccountName=$owner_id))",

 scope => "one"),

 "searching the LDAP server");

 if ($sr->count == 1) {

 $owner_dn=$sr->entry(0)->dn();

 $owners_dn{$owner_id}=$owner_dn;

 }

 }

 push (@{$owners_macs{$owner_id}}, $mac);

 }

 output_device ($lives_in, $mac, $name, $desc,

 $ieee802, ($owner?$owner_dn:undef));

 push (@{$groups{$group}}, [($ieee802?$name:$mac, $lives_in)]);

 }

}

build the groups from the MAC addresses

hash of arrays of tuples (MAC addresses,OU)

{

 my $group_lives_in=(get_optional_ou $group_ou).$container;

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 32 of 39

 foreach my $key (keys %groups) {

 output_group_top $group_lives_in, $key;

 foreach(@{$groups{$key}}) {

 my ($mac, $group)=($_->[0], $_->[1]) ;

 output_group_member ($mac, $group);

 }

 output_group_bottom $key;

 }

}

this last section populates the msNPCallingStationID

with the MAC addresses of the user if option is set

if ($clid) {

 sub output_user_top {

 my ($dn)=@_;

 print "dn: ", $dn, "\n";

 print "changetype: modify\n";

 print "replace: msNPCallingStationID\n";

 print "msNPCallingStationID: ";

 }

 foreach my $owner (keys %owners_dn) {

 output_user_top $owners_dn{$owner};

 my $total=$#{$owners_macs{$owner}};

 foreach (@{$owners_macs{$owner}}) {

 print format_mac($_);

 if ($total--) {

 print $clid_sep;

 }

 }

 print "\n-\n\n";

 }

}

exit;

output some help text

sub help {

 my $helptext;

 my $name=basename($0);

 $helptext=<< "EOF";

Usage: $name [inputfile]

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 33 of 39

$name reads a comma separated list of MAC address devices and

converts these MAC addresses into an LDAP LDIF file on the

standard output. The input can be either the standard input or

files passed as arguments to $name.

The format is

MAC_address, Device_Name, Group_Name, Description, Owner

00:11:22:33:44:57,myprinter003,printers,device-description,owner1

Optional command line parameters are:

--container, -c: specify the OU where the objects should be stored.

 (default is "$container")

--help, -h: this text

--ieee802 -i: make use of ieee802Device objects (AD 2008+)

--macou, -m: OU of the MAC address container, can be empty

--groupou, -g: OU of the group container, can be empty

--separate, -s: flag to indicate creation of individual group OUs

--owner, -o: create owner backreferences (LDAP setup in script required)

--clid -l: create msNPCallingStationID references

 (LDAP setup in script required)

Example:

$name --container="OU=devices,DC=labtest,DC=local" input.csv

$name -m= -g= input.csv

Note:

$name doesn't do a lot of testing of the command line paramters

and the data format of the input file. Use with caution!

All MAC addressess will be stripped of any '.', ':' and '-'.

LDAP setup:

If owner backreferences or calling station ID information should be

set, a working LDAP connection is requried to resolve the user id

information in the data file to a DN of that user. Therefore, some

script variables have to be setup with the correct values to do

an LDAP search using the user ID (sAMAccountName) to get the DN

of this user. Look at the top of the script.

EOF

 print $helptext;

}

Sample Input File

Here’s an example that shows the structure of the input file for the mac-ldif.pl script. The table structure is

as follows:

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 34 of 39

MAC Name Group Description Owner

00:11:22:33:44:55,myprinter001,printers,updated device text,guest

0011.2233.4456,myprinter002,printers,,rmueller

00:11:A2:33:44:59,myphone001,phones,description,

0011:2A33:445b,mycamera007,cameras,detailed description of cam7,knapf

00.11.22.33.44.57,myprinter003,printers,description of this device,rschmied

00:11:FF:33:44:5a,myphone002,phones,phone device description,netdudes

0011-2233-445c,mycamera003,cameras,in room 22/b,rmueller

00:11:22:33:44:58,myprinter004,printers,dummy text,owner3

000C299B1948,vmwarehost,mabhosts,my vmware MAB host,rschmied

000C2985353B,linux01,mabhosts,my Linux PXE 01 host,rschmied

000C297AB524,xpsp3,regularhosts,my XP SP3 MAB host entry,knapf

Sample Output File

The following LDIF file is a result of the mac-ldif.pl script run on the above data given the following command line:

mac-ldif.pl -con "OU=mab,DC=cisco,DC=com" -g "groups" -m "macs" -i -o -l data.txt
>import.ldf

generated by mac-ldif.pl

Tue Aug 14 14:26:48 2012

import via ldifde.exe into Active Directory.

ldifde -i -k -f input.ldf

dn: OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: organizationalUnit

ou: mab

description: Top MAC address container

dn: OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: organizationalUnit

ou: macs

description: MAC container

dn: OU=groups,OU=mab,DC=cisco,DC=com

changetype: add

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 35 of 39

objectClass: top

objectClass: organizationalUnit

ou: groups

description: Group container

dn: CN=myprinter001,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 001122334455

name: myprinter001

showInAdvancedViewOnly: FALSE

owner: CN=Guest,CN=Users,DC=cisco,DC=com

description: updated device text (00-11-22-33-44-55)

dn: CN=myprinter002,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 001122334456

name: myprinter002

showInAdvancedViewOnly: FALSE

owner: CN=Roland Mueller,CN=Users,DC=cisco,DC=com

description: (00-11-22-33-44-56)

dn: CN=myphone001,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 0011A2334459

name: myphone001

showInAdvancedViewOnly: FALSE

description: description (00-11-A2-33-44-59)

dn: CN=mycamera007,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 00112A33445B

name: mycamera007

showInAdvancedViewOnly: FALSE

owner: CN=Karl Napf,CN=Users,DC=cisco,DC=com

description: detailed description of cam7 (00-11-2A-33-44-5B)

dn: CN=myprinter003,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 36 of 39

objectClass: device

macAddress: 001122334457

name: myprinter003

showInAdvancedViewOnly: FALSE

owner: CN=Ralph Schmieder,CN=Users,DC=cisco,DC=com

description: description of this device (00-11-22-33-44-57)

dn: CN=myphone002,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 0011FF33445A

name: myphone002

showInAdvancedViewOnly: FALSE

description: phone device description (00-11-FF-33-44-5A)

dn: CN=mycamera003,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 00112233445C

name: mycamera003

showInAdvancedViewOnly: FALSE

owner: CN=Roland Mueller,CN=Users,DC=cisco,DC=com

description: in room 22/b (00-11-22-33-44-5C)

dn: CN=myprinter004,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 001122334458

name: myprinter004

showInAdvancedViewOnly: FALSE

description: dummy text (00-11-22-33-44-58)

dn: CN=vmwarehost,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 000C299B1948

name: vmwarehost

showInAdvancedViewOnly: FALSE

owner: CN=Ralph Schmieder,CN=Users,DC=cisco,DC=com

description: my vmware MAB host (00-0C-29-9B-19-48)

dn: CN=linux01,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 37 of 39

objectClass: top

objectClass: device

macAddress: 000C2985353B

name: linux01

showInAdvancedViewOnly: FALSE

owner: CN=Ralph Schmieder,CN=Users,DC=cisco,DC=com

description: my Linux PXE 01 host (00-0C-29-85-35-3B)

dn: CN=xpsp3,OU=macs,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: device

macAddress: 000C297AB524

name: xpsp3

showInAdvancedViewOnly: FALSE

owner: CN=Karl Napf,CN=Users,DC=cisco,DC=com

description: my XP SP3 MAB host entry (00-0C-29-7A-B5-24)

dn: CN=printers,OU=groups,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: group

cn: printers

member: CN=myprinter001,OU=macs,OU=mab,DC=cisco,DC=com

member: CN=myprinter002,OU=macs,OU=mab,DC=cisco,DC=com

member: CN=myprinter003,OU=macs,OU=mab,DC=cisco,DC=com

member: CN=myprinter004,OU=macs,OU=mab,DC=cisco,DC=com

name: printers

dn: CN=cameras,OU=groups,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: group

cn: cameras

member: CN=mycamera007,OU=macs,OU=mab,DC=cisco,DC=com

member: CN=mycamera003,OU=macs,OU=mab,DC=cisco,DC=com

name: cameras

dn: CN=mabhosts,OU=groups,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: group

cn: mabhosts

member: CN=vmwarehost,OU=macs,OU=mab,DC=cisco,DC=com

member: CN=linux01,OU=macs,OU=mab,DC=cisco,DC=com

name: mabhosts

dn: CN=regularhosts,OU=groups,OU=mab,DC=cisco,DC=com

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 38 of 39

changetype: add

objectClass: top

objectClass: group

cn: regularhosts

member: CN=xpsp3,OU=macs,OU=mab,DC=cisco,DC=com

name: mabhosts

dn: CN=phones,OU=groups,OU=mab,DC=cisco,DC=com

changetype: add

objectClass: top

objectClass: group

cn: phones

member: CN=myphone001,OU=macs,OU=mab,DC=cisco,DC=com

member: CN=myphone002,OU=macs,OU=mab,DC=cisco,DC=com

name: phones

dn: CN=Karl Napf,CN=Users,DC=cisco,DC=com

changetype: modify

replace: msNPCallingStationID

msNPCallingStationID: 00-11-2A-33-44-5B|00-0C-29-7A-B5-24

-

dn: CN=Ralph Schmieder,CN=Users,DC=cisco,DC=com

changetype: modify

replace: msNPCallingStationID

msNPCallingStationID: 00-11-22-33-44-57|00-0C-29-9B-19-48|00-0C-29-85-35-3B

-

dn: CN=Roland Mueller,CN=Users,DC=cisco,DC=com

changetype: modify

replace: msNPCallingStationID

msNPCallingStationID: 00-11-22-33-44-56|00-11-22-33-44-5C

-

dn: CN=Guest,CN=Users,DC=cisco,DC=com

changetype: modify

replace: msNPCallingStationID

msNPCallingStationID: 00-11-22-33-44-55

-

References and Links

Remote Authentication Dial In User Service (RADIUS)

MAC Authentication Bypass Deployment Guide

Local WebAuth Deployment Guide

Web Authentication Deployment and Configuration Guide

http://tools.ietf.org/html/rfc2865
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6638/config_guide_c17-663759.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Security/TrustSec_1.99/WebAuth/WebAuth_Dep_Guide.html
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6586/ps6638/app_note_c27-577494.html

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 39 of 39

Using LDIFDE to Import and Export Directory Objects to Active Directory

Enhance Your 802.1x Deployment Security with MAC Filtering

Lightweight Directory Access Protocol

Perl (including binary versions for Windows)

Active Directory Lightweight Directory Services

AD DS Fine-Grained Password and Account Lockout Policy Step-by-Step Guide

Printed in USA C11-717280-00 04/13

http://support.microsoft.com/kb/237677
http://blogs.technet.com/b/nap/archive/2006/09/08/454705.aspx
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://www.perl.org/get.html
http://technet.microsoft.com/en-us/windowsserver/dd448612
http://technet.microsoft.com/en-us/library/cc770842(v=ws.10).aspx

	Configuring MAB with LDAP User Device Binding
	Abstract
	Use of Cisco Secure ACS and Identity Services Engine (ISE)
	Part IŠConfiguring MAB with LDAP
	Introduction
	Directory Organization
	Device Class Considerations

	Directory Definition in Cisco Secure ACS
	MAB Access Service Definition
	Test in Cisco Secure ACS View

	Conclusion
	Part IIŠUser Device Binding
	Introduction
	User Device Binding with Directories
	Cross-Referencing Objects
	User Device Binding Implementation
	Directory Tie-in
	ACS Device Restriction Policy
	ACS Policy
	Enforcement

	Conclusion
	Appendix
	LDIF Script
	Sample Input File
	Sample Output File

	References and Links

