## **RF Electronics**

# Scientific Atlanta

## System Amplifier III 750 MHz with 40/52 MHz Split Unbalanced Triple-RC



23034

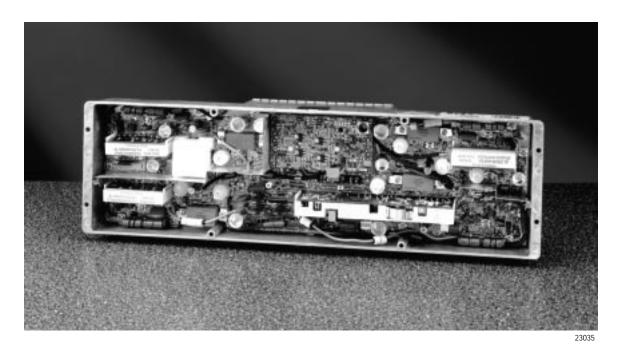
#### **DESCRIPTION**

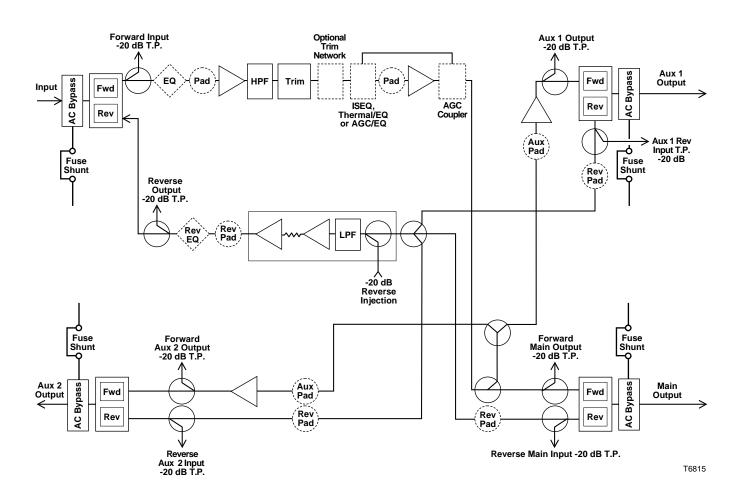
The System Amplifier III (SAIII) family of RF amplifiers includes a variety of gain, output and frequency configurations to optimally address the various network architectures being deployed. All SAIII amplifier modules offer 15 amp current carrying capacity, and come preconfigured with diplexers and reverse amplifier for optimum reverse performance.

The SAIII Unbalanced Triple - RC (Reverse Conditioning) amplifier module incorporates all of the features of the SAII+ Unbalanced Triple. Additionally, maximum flexibility in reverse signal path alignment is achieved via the incorporation of individual reverse input testpoints and pads for each of the reverse inputs.

The Unbalanced Triple - RC amplifier module can be field configured with a variety of standard accessory options to meet specific requirements.

- For applications where output level control is not required, the interstage is typically configured with a stand alone Interstage Equalizer (ISEQ).
- For basic output level control in aerial plant applications, a combination Thermal


Compensator/ISEQ is available.


 For the most accurate degree of level control in both aerial and underground plant, a combination AGC/ISEQ is the desired option.

The Unbalanced Triple - RC provides one low level output (trunk level) and two high level outputs (bridger level).

#### **FEATURES**

- 60 and 90 V AC powering capability
- 15 ampere current capacity (steady state) and 25 ampere surge survivability
- Integrated reverse amplifier, with optimized diplex filter group delay for forward and reverse paths
- Individual reverse input testpoints and input pads for each input port allow optimum reverse path alignment
- Integrated, high efficiency, transformerless power supply lowers system operating cost
- Directional Coupler RF testpoints provide optimum accuracy
- Surge Resistant™ Circuitry ensures hybrid protection without fuses or other nuisance failure-causing devices





| General Station Performance             | Units | Forv             | vard         | Reverse        | Notes |
|-----------------------------------------|-------|------------------|--------------|----------------|-------|
| Pass Band                               | MHz   | 52-              | 750          | 5-40           |       |
| Amplifier Type                          |       | Pl               | HD           | PP             |       |
| Full Gain                               | dB    | 35 main          | /44 aux.     | See Below      | 1     |
| Frequency Response                      | dB    | ± 0.5 main/      | ±0.75 aux.   | ± 0.5          |       |
| Auto Slope and Gain Range               | dB    | ±                | 4            | N/A            |       |
| Return Loss                             | dB    | 1                | 6            | 16             |       |
| Max AC Through Current (continuous)     | Amps  | 1                | 5            |                |       |
| Max AC Through Current (surge)          | Amps  | 2                | 5            | <del></del> -  |       |
| Hum Modulation @ 10 A                   | dB    | 66 (55-7         | 50 MHz)      | 60 (5-15 MHz)  |       |
| (over specified frequency range)        |       |                  |              | 70 (16-40 MHz) |       |
| Hum Modulation @ 15 A                   | dB    | 56 (55-1         | 50 MHz)      | 50 (5-15 MHz)  |       |
| (over specified frequency range)        |       | 59 (151-600 MHz) |              | 58 (16-40 MHz) |       |
|                                         |       | 55 (601-750 MHz) |              |                |       |
| Current Draw @ 24 V DC                  | Amps  | 1.47             |              | 0.09           |       |
| Test Points (± 0.5 dB)                  | dB    | -2               | 20           | -20            |       |
|                                         |       | Main             | Aux.         |                |       |
| Reference Output Level - High Frequency | dBmV  | 36 @ 750 MHz     | 46 @ 750 MHz | 36 @ 40 MHz    |       |
|                                         |       | 34 @ 550 MHz     | 44 @ 550 MHz |                |       |
| Reference Output Level - Low Frequency  |       | 26 @ 55 MHz      | 36 @ 55 MHz  | 36 @ 40 MHz    |       |
| Reference Output Tilt                   | dB    | 10               | 10           | 0              | 2     |

| Forward Station Performance        | Units | Manual<br>9 dB ISEQ |      | Thermal<br>9 dB ISEQ |      | Auto<br>9 dB ISEQ |      | Notes |
|------------------------------------|-------|---------------------|------|----------------------|------|-------------------|------|-------|
|                                    |       | Main                | Aux. | Main                 | Aux. | Main              | Aux. |       |
| Operational Gain                   | dB    | 33.5                | 40   | 28.5                 | 38.5 | 27                | 37   | 1,3,8 |
| Internal Tilt (± 0.5 dB)           | dB    | +6.5                | +6.5 | +5.7                 | +5.7 | +6.9              | +6.9 | 4     |
| Noise Figure @ 54 MHz              | dB    | 6.5                 | 6.5  | 7                    | 7    | 7.5               | 8    | 3     |
| Noise Figure @ 750 MHz             | dB    | 9                   | 9    | 9                    | 9    | 9                 | 9.5  | 3     |
| 78 NTSC Channels (CW)              |       |                     |      |                      |      |                   |      | 5     |
| Composite Triple Beat              | dB    | 86                  | 71   | 85                   | 70   | 84                | 69   |       |
| Cross Modulation                   | dB    | 78                  | 65   | 77                   | 64   | 77                | 64   | 6     |
| Composite Second Order (high side) | dB    | 74                  | 67   | 73                   | 67   | 73                | 67   |       |

| Reverse Station Performance        | Units |    | Notes |
|------------------------------------|-------|----|-------|
| Operational Gain                   | dB    | 19 | 7     |
| Internal Tilt (± 0.5 dB)           | dB    | 0  | 4     |
| Noise Figure                       | dB    | 13 | 7     |
| 5 NTSC Channels (CW)               |       |    |       |
| Composite Triple Beat              | dB    | 90 |       |
| Cross Modulation                   | dB    | 78 | 6     |
| Composite Second Order (high side) | dB    | 81 |       |

#### Notes:

- 1. Operational Gain must not exceed 40 dB. For Manual operation use an interstage pad to reduce gain as needed.
- 2. Reference output tilt is specified as "Cable" tilt (as opposed to "linear" tilt).
- 3. Forward Gain and Noise Figure measured with 0 dB input EQ and 1 dB input pad.
- 4. Down tilt, the effect of cable, is represented by a (-). Up tilt, the effect of equalization, is represented by a (+).
- 5. 78 CW NTSC channels loaded from 55 to 550 MHz. Activation of digital loading may impact analog performance.
- 6. X-mod (@ 15.75 kHz) specified using 100% synchronous modulation and frequency selective measurement device.
- 7. Reverse Gain and Noise Figure for station with 0 dB reverse input pad, 0 dB reverse output EQ, and 1 dB output pad.
- 8. The maximum level difference recommended between the main and auxiliary outputs is 10 dB.

Unless otherwise noted, the above specifications reflect typical station performance at stated reference levels in the recommended operating configuration(s). Unless otherwise noted, specifications are based on measurements made in accordance with NCTA Recommended Practices for Measurements on Cable Television Systems using standard frequency assignments and are referenced to 68°F (20°C).

## Station Delay Characteristics

| Forward                          |            | Reverse                    |            |  |  |  |  |
|----------------------------------|------------|----------------------------|------------|--|--|--|--|
| (Chrominance to Luminance Delay) |            | (Group Delay in 1.5 MHz ba | andwidth)  |  |  |  |  |
| Frequency (MHz)                  | Delay (ns) | Frequency (MHz)            | Delay (ns) |  |  |  |  |
| 55.25 - 58.83                    | 28         | 38.5 - 40.0                | 30         |  |  |  |  |
| 61.25 - 64.83                    | 12         | 33.5 - 35.0                | 8          |  |  |  |  |
| 67.25 - 70.83                    | 7          | 10.0 - 11.5                | 6          |  |  |  |  |
| 77.25 - 80.83                    | 3          | 5.0 - 6.5                  | 60         |  |  |  |  |

Station Powering Data

| System Amplifier II       | I              | I DC   |      | AC Voltage |      |      |      |      |      |      |      |      |      |      |
|---------------------------|----------------|--------|------|------------|------|------|------|------|------|------|------|------|------|------|
| <b>Unbalanced Triple-</b> | RC             | (Amps) | 90   | 85         | 80   | 75   | 70   | 65   | 60   | 55   | 50   | 45   | 40   | 35   |
| Manual / Thermal          | AC Current (A) | 1.56   | 0.61 | 0.64       | 0.67 | 0.69 | 0.72 | 0.75 | 0.78 | 0.82 | 0.91 | 1.00 | 1.13 | 1.31 |
|                           | Power (W)      |        | 42.7 | 42.6       | 42.5 | 42.1 | 42.1 | 41.8 | 41.8 | 41.9 | 42.6 | 42.5 | 42.4 | 42.5 |
| AGC or Status             | AC Current (A) | 1.66   | 0.64 | 0.67       | 0.70 | 0.73 | 0.75 | 0.79 | 0.82 | 0.87 | 0.96 | 1.07 | 1.20 | 1.40 |
| Monitoring                | Power (W)      |        | 45.5 | 45.3       | 45.2 | 44.7 | 44.6 | 44.4 | 44.5 | 44.3 | 45.3 | 45.2 | 45.1 | 45.3 |
| AGC and Status            | AC Current (A) | 1.76   | 0.67 | 0.70       | 0.73 | 0.76 | 0.79 | 0.83 | 0.87 | 0.92 | 1.02 | 1.13 | 1.28 | 1.49 |
| Monitoring                | Power (W)      |        | 48.2 | 47.8       | 47.8 | 47.6 | 47.2 | 47.3 | 47.2 | 46.9 | 47.9 | 47.9 | 47.8 | 48.0 |

Data is based on stations configured for 2-way operation. AC currents specified are based on measurements made with typical CATV type ferroresonant power supply (quasi-square wave).

#### **Mechanical Specifications**

```
Housing Dimensions
17.3 in. L x 4.8 in. H x 7.8 in. D
438.3 mm L x 122.4 mm H x 198.7 mm D
Weight
Housing
9 lbs, 9 oz.
4.4 kg
Module
4 lbs, 13 oz.
2.2 kg
```

Specifications and product availability are subject to change without notice.

Scientific Atlanta and the Scientific-Atlanta logo are registered trademarks of Scientific-Atlanta, Inc.

Surge Resistant is a trademark of Scientific-Atlanta, Inc.

## **ORDERING INFORMATION**

| Amplifier Module - 1 required                                                                    | Part Number                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
| SAIII 750 MHz Unbalanced Triple - RC with 40/52 MHz split. Module comes configured with          | 590533                               |  |  |  |  |
| reverse amplifier, reverse combiner (on board), diplex filters, and integrated DC power          |                                      |  |  |  |  |
| supply. Power supply has 30 V AC undervoltage lockout (40 V lockout is field configurable).      |                                      |  |  |  |  |
| Housing - 1 required (all have 15 amp capacity)                                                  |                                      |  |  |  |  |
| Uncoated 4 port housing without external test point access                                       | 564390                               |  |  |  |  |
| Coated 4 port housing without external test point access                                         | 564391                               |  |  |  |  |
| Uncoated 4 port housing with external test point access                                          | 545435                               |  |  |  |  |
| Coated 4 port housing with external test point access                                            | 545436                               |  |  |  |  |
| Required Accessories                                                                             |                                      |  |  |  |  |
| Plug-in Pads (attenuators) - Available in 0.5 dB steps from 0 to 20 dB.                          | Order Model PP-* (* denotes          |  |  |  |  |
| <ul> <li>4 required for forward (1 input, 1 interstage, 2 output)</li> </ul>                     | pad value), specify value).          |  |  |  |  |
| • 1 required for AGC if applicable                                                               |                                      |  |  |  |  |
| 4 required for reverse (3 input, 1 output)                                                       |                                      |  |  |  |  |
| Plug-in Forward Input Equalizer, 1 required. Available in 1.5 dB steps from 0 to 28.5 dB         | Order Model EQ750-*                  |  |  |  |  |
| at 750 MHz                                                                                       | (*denotes EQ value), specify value.  |  |  |  |  |
| Plug-in Reverse Output Equalizer, Variable or Fixed -1 required. Select one of either type:      |                                      |  |  |  |  |
| <ul> <li>Variable Reverse Equalizers</li> <li>1.5 to 4.5 dB @ 40 MHz</li> </ul>                  | 511075                               |  |  |  |  |
| 4.5 to 7.5 dB @ 40 MHz                                                                           | 511295                               |  |  |  |  |
| 7.5 to 12.0 dB @ 40 MHz                                                                          | 511298                               |  |  |  |  |
| <ul> <li>Fixed Reverse Equalizers - Available in 1 dB steps from 1 to 12 dB at 40 MHz</li> </ul> | Order Model EQ40S-*                  |  |  |  |  |
|                                                                                                  | (* denotes EQ value), specify value. |  |  |  |  |
| Interstage Accessories - 1 of the following is required for most applications:                   |                                      |  |  |  |  |
| <ul> <li>445.25 MHz single pilot AGC with fixed 9 dB interstage equalizer</li> </ul>             | 539578                               |  |  |  |  |
| Thermal Compensator with 3-9 dB variable interstage equalizer                                    | 503100                               |  |  |  |  |
| 3-9 dB variable interstage equalizer                                                             | 511380                               |  |  |  |  |
| Optional Accessories                                                                             |                                      |  |  |  |  |
| 230 V AC Crowbar Surge Protector (plug-in)                                                       | 467351                               |  |  |  |  |
| Plug-in Cable Simulator. Simulates cable losses, creating tilt opposite that of equalizers.      | Order Model CS750-*                  |  |  |  |  |
| Use in place of forward input EQ as needed to maintain proper output tilt in short spaced        | (* denotes CS value), specify value. |  |  |  |  |
| locations. Available in 1.5 dB steps from 1.5 to 12 dB cable loss at 750 MHz.                    |                                      |  |  |  |  |
| Related Equipment                                                                                |                                      |  |  |  |  |
| Long Reach Test Probe Adapter                                                                    | 501111                               |  |  |  |  |
| Reverse Injection Probe                                                                          | 276982                               |  |  |  |  |
| Pad Insertion/Removal Tool                                                                       | 548771                               |  |  |  |  |

## System Amplifier III 750 MHz with 40/52 MHz Split **Unbalanced Triple-RC**

