ılıılı cısco

GainMaker[®] High Output High Gain Balanced Triple Node 5-42/54-1002 MHz

Description

The GainMaker[®] High Output Node is designed to serve as an integral part of today's network architectures, and combines the proven technologies of both the GainMaker RF Amplifier and Prisma[®] Optical components. The GainMaker High Output Node is capable of higher output levels than the standard GainMaker Node. Featuring three RF output ports, it is the ideal platform for delivering video (digital and analog) as well as high-speed data services over advanced hybrid fiber/coax (HFC) networks. With its modular design of fiber receiver, reverse fiber transmitter and RF amplifier electronics, the GainMaker High Output Node station can provide a variety of functions required by advanced networks.

The GainMaker High Output Node accommodates a second forward receiver with an RF switch to accommodate forward path optical redundancy. Reverse traffic can be combined and routed to FP, DFB, or CWDM reverse transmitters. The High Gain Balanced Triple (HGBT) launch amplifier module provides three high-level outputs. Additionally, the node is available with an optional DoCSIS status monitoring transponder. On-board temperature, automatic gain control (AGC) levels, RF switch position, power supply condition, as well as other features/parameters can be monitored through this transponder.

Features

- Capable of higher output levels than standard GainMaker Nodes
- Forward redundancy available via a second 1310/1550 nm optical receiver (optional)
- · Uses plug-in accessories common to all GainMaker products
- Cable to Linear EQ in amplifiers I/S EQ spot provides 15.5 dB of internal Linear tilt
- Local test points and LED indicators on optical receivers, transmitters, and optical interface board simplify installation and maintenance
- · AGC has thermal mode, eliminating disruptive RF output variation in the event of pilot loss
- Optional plug-in Status Monitoring
- Optional 3-state reverse switch (on/off/-6 dB) allows each reverse input to be isolated for noise and ingress troubleshooting (status monitoring required)
- Fiber Management tray provides easy access to fiber connections and folds back to provide access to
 optical transmitter and receivers
- Reverse input pad and RF test point for each reverse input port on launch amplifier allow optimum reverse path design and alignment

Block Diagrams

Optical Section Specifications

Optical Section - Forward Receiver Module	Units	GainMaker Standard RX	Notes
Wavelength	nm	1310 and 1550	
Optical Input Range	mW	0.5 to 1.6	
	dBm	-3 to + 2	
Pass Band	MHz	52-1002	
Frequency Response	dB	+/- 0.75	1
Tilt (+/- 1.0 dB)	dB	0	
Optical Input Test Point (+/- 10%)	V DC	1V/mW	
Redundant Optical Rx switching threshold (± 1.0 dB)	dBm	-6	
RF Output Level @ 0 dBm Optical Input	dBmV	Refer to chart (below)	2
RF Output Test Point (± 1.0 dB)	dB	- 20	

Notes for Optical Section Specifications:

1. For forward receiver module only. Does not include frequency response contributions from forward optical transmitter.

2. Minimum receiver RF output level for the stated transmitter percent OMI/ch. (Optical Modulation Index per channel), with

receiver optical input power of 0 dBm. To determine RF output levels at other optical input power, add (or subtract) 2 dB in RF level for each 1 dB increase (or decrease) in receiver optical input power.

For reverse optical transmitter and link performance, see the "Analog Reverse Optical Transmitters with Thermal Compensation" data sheet.

Unless otherwise noted, specifications reflect typical performance and are referenced to 68°F (20°C). Specifications are based upon measurements made in accordance with SCTE/ANSI standards (where applicable), using standard frequency assignments.

RF Section Specifications

General Station Performance	Units	Forward	Reverse	Notes
Pass Band	MHz	54-1002	5-42	
Return Loss	dB	16	16	7
Hum Modulation @ 12 A	dB	70 (54-870 MHz) 60 (870-1002 MHz)	60 (5-10 MHz) 70 (11-42 MHz)	
Hum Modulation @ 15 A	dB	65 (54-870 MHz) 60 (870-1002 MHz)	60 (5-10 MHz) 65 (11-42 MHz)	
Test Points (±0.5 dB)	dB	-20	-20	

Launch Amplifier Performance - Forward	Units	НСВТ	Notes
Operational Gain (minimum)	dB	41	2
Frequency Response	dB	+/- 0.5	
Internal Tilt (±1 dB)	dB	15.5	1, 3
Noise Figure @ 54 MHz 1002 MHz	dB	8.5 8.0	2
Reference Output Levels @ 1002 MHz 870 MHz 750 MHz 650 MHz 550 MHz 55 MHz	dBmV	56.0 54.0 52.2 50.5 49.0 41.5	
Reference Output Tilt (55-1002 MHz)	dB		1,4
78 NTSC channels (CW) with digital			9
Composite Triple Beat	dB	65	5
Cross Modulation	dB	59	5, 13
Composite Second Order (high side)	dB	64	5
Composite Intermodulation Distortion (CIN)	dB	57	5, 10

Forward Insertion Loss Optical Interface Board and Plug-Ins (Loss from Specified Optical Receiver RF Output to Launch Amplifier RF Input)	Units	With Redundancy Module Installed	Notes
Receiver position 1	dB	1.5	11
Receiver position 2	dB	1.5	11

Unless otherwise noted, specifications reflect typical performance and are referenced to 68 F (20 °C). Specifications are based upon measurements made in accordance with SCTE/ANSI standards (where applicable), using standard frequency assignments.

RF Section Specifications, Continued

Launch Amplifier Performance - Reverse	Units	Reverse	Notes
Amplifier Type	-	Push-Pull	
Operational Gain (minimum)	dBmV	19.5	7, 12
Frequency Response	dB	+/- 0.5	
Internal Tilt (+/- 1dB)	dB	-0.5	
Noise Figure	dB	14.5	7, 12
Reference Output Levels @ 5 and 42 MHz	dBmV	35	6
6 NTSC Channels (CW)			
Composite Triple Beat	dB	92	
Cross Modulation	dB	80	13
Composite Second Order	dB	82	
Station Performance - Reverse (Station port input to optical transmitter input)	Units		
Operational Gain (minimum)	dB	17.5	7, 8

Station Delay Characteristics	42/54 Split			
		Reverse (Group Delay in 1.5 MHz BW)		
Frequency (MHz)	Delay (nS)	Frequency (MHz)	Delay (nS)	
55.25 - 58.83	22	5.0 - 6.5	29	
61.25 - 64.83	9	6.5 - 8.0	13	
67.25 - 70.83	6	8.0 - 9.5	8	
		37.5 - 39.0	13	
		39.0 - 40.5	18	
		40.5 - 42.0	28	

Notes for RF Section Specifications:

- 1. Reference output tilt and internal tilt are both "Linear" tilt.
- 2. Forward Gain and Noise Figure measured with 0 dB input EQ and 1 dB input pad.
- 3. Forward internal tilt specified is primarily due to an on-board equalizer and a factory configured 10.5 dB cable to linear interstage equalizer (ISEQ).
- 4. The forward reference output tilt specified is achieved via field installation of appropriate input EQ, in conjunction with the internal tilt of the launch amplifier and the tilt associated with the optical link (transmitter/receiver combination).
- 5. Station performance can be determined by combining optic performance and launch amplifier performance. Stated distortion performance is for launch amplifier section operated at reference output levels and tilt. Consult Cisco System Engineering for CIN calculations.
- 6. Reverse output reference level at the RF output of the launch amplifier.
- 7. Reverse Operational Gain, Noise Figure, and Return Loss are specified without reverse switch option. If switch is installed, reduce Gain by 0.5 dB, increase Noise Figure by 0.5 dB, and decrease Return Loss by 1 dB.
- 8. Station reverse gain from station input(s) to reverse transmitter input. With 0 dB reverse input pad, 1 dB reverse output pad, and 0 dB reverse EQ in launch amplifier. Includes optical interface board losses.
- 9. "Digital" refers to 550 1002 MHz loading with QAM carriers at -6 dB relative to analog video carrier levels.
- 10. Composite Intermodulation Noise is a broadband noise-like distortion product associated with QAM loading.
- 11. Insertion loss from optical receiver RF output to launch amplifier RF input, with specified forward plug-in module installed in the optical interface board. Subtract this loss from the launch amplifier operational gain to determine forward station gain from optical receiver output to station output.
- 12. Reverse Gain and Noise Figure for launch amp with 0 dB reverse input pad, 0 dB reverse output EQ, and 1 dB output pad.
- 13. X-mod (@ 15.75 kHz) specified using 100% synchronous modulation and frequency selective measurement device.

Unless otherwise noted, specifications reflect typical performance and are referenced to 68°F (20°C). Specifications are based upon measurements made in accordance with SCTE/ANSI standards (where applicable), using standard frequency assignments.

Specifications, Continued

Electrical	Units				
Max. AC Through Current (continuous)	Amps	15			
Max. AC Through Current (surge)	Amps	25			
Component DC Power Consumption (Typical)		@ +24 VDC	@ +15 VDC	@ -6 VDC	1
Launch Amplifier High Gain Dual (thermal)	Amps	1.7	-	-	
Status Monitoring Transponder	Amps	0.15	-	-	
Standard Optical Receiver	Amps	0.25	0.01	0.035	
Reverse Transmitter - Standard FP	Amps	0.14	-	0.07	
Reverse Transmitter - Standard DFB	Amps	0.08	-	0.09	
Power Supply DC Current Rating	Amps	3.4	0.05	0.3	1

Station Powering Data													
High Output GainMaker													
HGBT	(Amps at 24V DC)		90	85	80	75	70	65	60	55	50	45	40
1 or 2 RX,	2.8	AC Current (A)	1.04	1.08	1.09	1.14	1.20	1.28	1.56	1.63	1.77	1.97	2.23
1 TX, & Stat Mon		AC Power (W)	78.50	78.10	77.60	77.90	78.00	77.30	77.60	77.70	77.90	78.40	78.80

Data is based on stations configured for 2-way operation with status monitoring transponder. AC currents specified are based on measurements made with typical CATV type ferro-resonant AC power supply (quasi-square wave), and GainMaker High Output Node DC power supply (3.4 amp, 24 V DC, pn 4022705).

DC supply has a user configurable 40 V or 50 V AC under-voltage lockout circuit.

Note:

1. The total DC Power consumption of installed components should not exceed the power supply DC current rating.

Environmental	Units			
Operating Temperature Range	degrees	-40°F to 140°F (-40°C to 60°C)		
Relative Humidity Range	percent	5% to 95%		
Mechanical				
Housing Dimensions	Weight			
17.5 in. L x 7.3 in. H x 7.5 in. D (445 mm L x 185 mm H x 191 mm D)	Station with 1 RX, 1 TX, & power supply: 22 lbs (9.9 kg)			

Unless otherwise noted, specifications reflect typical performance and are referenced to 68 F (20 °C). Specifications are based upon measurements made in accordance with SCTE/ANSI standards (where applicable), using standard frequency assignments.

Ordering Information

The GainMaker High Output Node is available in a wide variety of configurations. The GainMaker Ordering Matrix provides ordering information for configured node stations, existing amp to node upgrade kits, and launch amplifiers. This page contains ordering information for required and optional accessories. Please consult with your Account Representative, Customer Service Representative, or Applications Engineer to determine the best configuration for your particular application.

Required Accessories for RF Module	Part Number
Plug-in Pads (attenuators) - Available in 0.5 dB steps from 0 to 20 dB	589693 (0 dB)
• 1 required for forward input	sequentially thru
• 1 required for AGC, if applicable	589734 (20.5 dB)
• 4 required for reverse (3 input, 1 output)	
To determine AGC pad value, subtract 34dB from the design value main port RF output level at the AGC pilot frequency.	
Plug-in Forward Linear Equalizer - Available in 1.5 dB steps from 0 to 21 dB • 1 required for forward input	See table below
Plug-in Reverse Equalizer - Available in 1 dB steps from 0 to 12 dB at 40 MHz	712719 (0 dB) and 589628
• 1 required for reverse output - unless design value is 0 dB (0 dB EQ is provided)	(1 dB) sequentially thru 589639 (12 dB)

Required Accessories for Optical Components	Part Number
 Plug-in Pads (attenuators) - Available in 0.5 dB steps from 0 to 20.5 dB 1 ea required for Transmitter and Receiver(s). 	279500 (0 dB)sequentially thru 279513 (13 dB) in 1 dB steps
	504151 (14 dB) sequentially thru 504157 (20 dB) in 1 dB steps
	565231 (0.5 dB) sequentially thru 565251 (20.5 dB) in 1 dB steps

Forward Linear Equalizers	Part Number
0 dB 1GHz Forward Linear EQ	4007228
1.5 dB 1GHz Forward Linear EQ	4008778
3.0 dB 1GHz Forward Linear EQ	4008779
4.5 dB 1GHz Forward Linear EQ	4008780
6.0 dB 1GHz Forward Linear EQ	4008781
7.5 dB 1GHz Forward Linear EQ	4008782
9.0 dB 1GHz Forward Linear EQ	4008783
10.5 dB 1GHz Forward Linear EQ	4008784
12.0 dB 1GHz Forward Linear EQ	4008785
13.5 dB 1GHz Forward Linear EQ	4008786
15.0 dB 1GHz Forward Linear EQ	4008787
16.5 dB 1GHz Forward Linear EQ	4019258
18.0 dB 1GHz Forward Linear EQ	4019259
19.5 dB 1GHz Forward Linear EQ	4019260
21.0 dB 1GHz Forward Linear EQ	4019261

Ordering Information, Continued

Optical Receivers (Available As Part of Configuration or Separately)	Part Number on Module	Part Number for Ordering
GainMaker Node Optical Receiver with SC/APC Connector	4007501	4007671
GainMaker Node Optical Receiver with SC/UPC Connector	4007502	4007672
GainMaker Node Optical Receiver with FC/APC Connector	4007503	4007673
Optical Transmitters (Available As Part of Configuration or Separately)	Part Number on Module	Part Number for
All Listed Below Are Thermally Compensated Transmitters	module	
GainMaker Node FP Optical Transmitter with SC/APC Connector	717904	590930
GainMaker Node FP Optical Transmitter with SC/UPC Connector	717905	590931
GainMaker Node FP Optical Transmitter with FC/APC Connector	717902	590928
1310 nm DFB Optical Transmitter - Standard Gain, with SC/APC connector	4013903.1310	590934
1310 nm DFB Optical Transmitter - Standard Gain, with SC/UPC connector	4013904.1310	590935
1310 nm DFB Optical Transmitter - Standard Gain, with FC/APC connector	4013905.1310	590932
1470 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1470	4006971
1490 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1490	4006972
1510 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1510	4006973
1530 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1530	4006974
1550 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1550	4006975
1570 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1570	4006976
1590 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1590	4006977
1610 nm CWDM DFB Optical Transmitter - Standard Gain with SC/APC connector	4013903.1610	4006978
1470 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1470	4006979
1490 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1490	4006980
1510 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1510	4006981
1530 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1530	4006982
1550 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1550	4006983
1570 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1570	4006984
1590 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1590	4006985
1610 nm CWDM DFB Optical Transmitter - Standard Gain with SC/UPC connector	4013904.1610	4006986
1470 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1470	4006987
1490 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1490	4006988
1510 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1510	4006989
1530 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1530	4006990
1550 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1550	4006991
1570 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1570	4006992
1590 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1590	4006993
1610 nm CWDM DFB Optical Transmitter - Standard Gain with FC/APC connector	4013905.1610	4006994

Related Equipment (Available As Part of Configuration or Separately)	Part Number on Module	Part Number for Ordering
GainMaker High Output Node - DC Power Supply 40 - 90 V AC	4022705	4026156
GainMaker - Crowbar Surge Protector	715973	4007682
GainMaker Reverse RF Switch	-	589347
GainMaker Node Status Monitoring Transponder (See Transponder Data Sheet)	744234	4018687

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore Europe Headquarters Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Printed in USA