

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 1

Technical White Paper

Perform Service-Oriented Orchestration with Cisco
Process Orchestrator

What You Will Learn

Cisco® Process Orchestrator 3.0 introduces a new feature set that provides service-oriented orchestration and

enables a shift away from traditional run-book automation and IT process automation. With this new approach,

automation aligns with the high-level services provided by IT and models the way that a high-level service is

supported by a topology of lower-level services, systems, and devices. Planning for services and their desired

states is the initial step in automation design. The next step is definition of process actions for these services and

then implementation of specific process workflows that traverse these services to act on lower-level elements.

This enables a declarative approach to automation, focusing on the result desired rather than how it is achieved.

The capabilities augment and complement traditional orchestration definitions and approaches, so that Cisco

Process Orchestrator provides both service-oriented and process-based orchestration. This document focuses on

the incremental, differentiated capabilities that service-oriented orchestration adds to Cisco Process Orchestrator.

Overview

Cisco Process Orchestrator is an advanced orchestration engine belonging to the run-book automation (RBA) or

IT process automation (ITPA) class of products. Traditionally, tools in this category focus on a sequence of IT

processes that implement automation. The process is the focal point of automation. Processes act on lower-level

IT elements such as devices, servers, and specific tools. The set of elements on which automation acts is typically

delivered in the product through adapters connecting to various layers of the IT technology stack. IT, however,

focuses on services that provide value to the business, which are much higher in the stack. The inability of RBA

and ITPA tools to act on the business-level services in the environment becomes an inhibitor to delivery and

creates a poor abstraction for users.

Service-oriented orchestration provides the agility to model and act on IT services. These features make creation

of orchestration active and dynamic and allow new, higher-level services to be defined in the system and deployed

quickly. After new types of services are defined, the organization can create instances of those new services.

Using events, automation can detect patterns in these services, enabling policy-based automation.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 19

Service-oriented orchestration incorporates several industry trends to synthesize a fresh approach to

orchestration:

● The service modeling capabilities of a service catalog are now available in the orchestrator layer. Cisco

Process Orchestrator provides fluid mechanisms for exchanging service information with Cisco Prime™

Service Catalog, advancing the integration of these systems.

● The feature delivers many of the capabilities of object-oriented design and programming to ITPA. The shift

from traditional orchestration to service-oriented orchestration is similar to the shift from procedural

programming to object-oriented programming. Today, almost all programming is performed using object-

oriented languages, and object-oriented design has transformed the high-tech industry, increasing

productivity and quality. Service-oriented orchestration has the same promise.

● The IT Infrastructure Library (ITIL) prescribes a service-centric approach for IT. Configuration management

databases (CMDBs) model IT services and their relationships to other IT assets. Service-oriented

automation allows automation to be guided by a model of current and potential IT services with awareness

of their relationships and interdependencies. In this way, the principles of service modeling in Cisco

Process Orchestrator are essentially the same as those for modeling services with ITIL and CMDBs. Also,

although Cisco Process Orchestrator can integrate with an available CMDB, a CMDB is not needed to

enable orchestration.

● The feature aligns with industry standards such as the Distributed Management Task Force (DMTF),

Common Information Model (CIM), and the Topology and Orchestration Specification for Cloud

Applications (TOSCA).

● Model-based automation using script-based tools is becoming popular, especially for configuration

management. Cisco Process Orchestrator combines the capability to model services with the openness to

integrate with these tools to build on their strengths. Moreover, the feature allows model-based

orchestration atop traditional tools to integrate the full power of model-based approaches with other IT

tools.

Service-oriented orchestration allows automation to focus on higher-level IT services, possibly services specific to

the customer’s business and unknown by Cisco when the product is built. User interaction shifts from lists of

processes to services and what the user can do to them. Instead of having to first decompose automation into a

sequence of processes, high-level services are decomposed into their components, and then the actions possible

for each service are defined in automation. This inversion in approach is simple, yet powerful. Cisco Services,

partners, and customers can model services and extend others’ service models without coding. Extensions and

automation can be packaged, shipped to customers, moved from development to test to production environments,

versioned, and upgraded.

This approach delivers several main benefits:

● Cisco Process Orchestrator combined with Cisco Prime Service Catalog facilitates ease of use: The Cisco

Prime Service Catalog Adapter simplifies the exchange of service requests and service items to and from

the orchestrator. Users can easily create targets from incoming service requests. Cisco Process

Orchestrator helps push service items back to the catalog as needed and allows users to pick the right

moments in a flow to synchronize data. Use of an active catalog connection in the Cisco Prime Service

Catalog Adapter optimizes the user experience. With awareness of the Cisco Prime schema, the Cisco

Prime Service Catalog Adapter easily reads, writes, and creates service items. When a service item

definition is created in the catalog, integration can be achieved rapidly. The property browser exposes the

catalog definition to enhance ease of use. “Get Service Item” properties can be followed by “Update Target”

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 19

to save properties in a single step. Users can write directly through the “Create Service Item” or “Update

Service Item” activities using property references.

● Workflows are simpler and more readable.

● Data defines the desired services. The service instance guides automation to achieve the desired state.

The approach separates the desired state from the implementation process, separating the “what” from the

“how.”

● The approach acts on the higher-level service rather than its technology elements. Services can span

tools. Workflows can navigate service topologies to lower-level elements on which they act.

● Operation views of automation by service are provided.

● Organizations can monitor the environment in conjunction with the service definition and bring both in line

with policy.

● Federated storage can be used. Objects and relationships can be pushed to and from service catalog,

CMDB, and service assurance tools when needed.

● Automation is easier to extend and customize.

Cisco Process Orchestrator Features That Support Service-Oriented Orchestration

Several Cisco Process Orchestrator capabilities combine to support service-oriented orchestration:

● Service instances are targets. A target type defines a target.

● Target types support inheritance, so that you can extend a general type for a specialized need.

● Target types have extensible lists of properties, including field-customizable default values.

● Relationships allow modeling of topologies of lower-level services assembled to offer higher-level services.

● Processes provide actions that can be run against targets. You can view a target to see what actions are

possible or what automation is being performed against it.

● Targets and target types have events. These events can be internal process events or open Advanced

Message Queuing Protocol (AMQP) events. Triggering processes in response to patterns in underlying

processes provides policy.

● Service instances can be extended by services, partners, and customers. The content, not the platform,

defines a service model. The platform is open for modeling any IT service topology in the automation

content. For example, some types, actions, and properties may come from a packaged product, some from

team 1, some from team 2, some from a partner, and some from a customer. Using this capability, you can

assemble a complex solution from parts. Each author controls the version and lifecycle of the elements that

he or she delivered, so each author can provide upgrades.

● Service instances use a consistent API, even if elements come from different authors.

Target Types
A target type allows you to define a new service. All new targets are created based on a target type. You use the

target type to model the services on which you want to act. Target types can be bound to actions delivered

through Cisco Process Orchestrator processes. For example, you can provision an application described by a

target type. Target types define inheritance, properties, relationships, and process actions.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 19

Inheritance
Through inheritance, a target type can contain all aspects of another type but can provide an extension through a

more specialized type. For example, a cat is a specialized type of mammal, and a mammal is a specialized type of

animal. A cat is a mammal and hence is an animal. If a mammal generically can perform an action such as wake

up, the cat can also perform that action, but the cat can also do additional things such as meow and purr. If you

define a property of a mammal, such as weight or body temperature, a cat will also have that attribute, but you can

also add properties such as breed, Siamese, tabby, etc., that apply to cats but not to all mammals.

This concept is very useful in real-world modeling of types of IT services and can greatly simplify implementations.

Inheritance can allow common aspects of a collection of types to be defined once in a shared type and then

inherited, without the need to repeat the common implementation in each type in the collection. The mechanism

avoids duplication of properties and processes, making the automation easier to maintain.

Also, it is often simpler to implement something new by starting with something for which automation already

exists and extending the automation for a new specialization. This approach allows you to focus on only what is

new and unique, rather than all the aspects, including those already addressed by existing automation.

Note: If a type “has a” relationship rather than “is a” relationship, you should use target relationships, not

inheritance.

Target Properties
Target properties allow storage of information for targets created from a target type. For example, a target property

can store network device discovery information, such as information about the operating system, version, optional

cards and modules installed in a device, serial numbers, and configuration. Network automation can then use this

information in its workflows. Target properties can be queried in target groups, in triggers that watch for patterns in

the data, in Find Targets activities in a process workflow, or in target selection algorithms in processes, allowing

you to act on collections of targets matched by some criteria.

Target properties can include a default value. This value can provide a general setting that is overridden only on

specific targets. For example, you can define a global threshold and allow customization only for a specific target

instance where needed.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 19

The list of properties for a target type is inherited from the type’s ancestor types, and the type can also define

additional properties. You can package target property definitions from the type as well as target-instance property

values in automation packs to transfer them between environments. The author has full control of the evolution of

the properties of the types, including control of upgrades and other lifecycle management tasks (Figure 1).

Figure 1. Properties of Target Types

Cisco Process Orchestrator provides a unique implementation of target properties that allows properties to be

moved between types. In many cases, property values are even preserved during this restructuring. For example,

prior to the use of target types, Cisco Process Orchestrator provided a service target type that allowed arbitrary

services to be modeled with a single type. This built-in type still exists and is now called Generic Service.

Upgrades will function with no problem. However, this type should be used less now that new types are possible.

To represent multiple services using a single type, property name spaces were employed, creating a large number

of properties to be overloaded on that single type. Although property name spaces are supported, target types

eliminate the need to use name spaces for all properties. Now you can create a new subtype of a Generic Service,

move properties in some name space from the Generic Service to the new type, rename the properties to

eliminate the name space and simplify the name, and then move the inheritance from Generic Service to some

new place in the type structure. The automation pack for the new type can be shipped to a customer, and

importing it will upgrade the types and properties to the new structure without loss of the values stored in the

properties.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 19

Target Relationships
Relationships enable traversal from one target to another in a workflow. Target types define the relationships.

Target instances provide the link to a specific target instance. Like properties, relationships support inheritance.

You can model one-to-many relationships with a reference on the “many” pointing to the “one”; then you can use

Find Targets to query for targets whose relationship refers to some target (Figure 2).

Figure 2. Relationships in a Target

Processes That Act on a Target Type
Process definitions control the target types on which they act (Figure 3).

Figure 3. Selection of Target Types in a Process Definition

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 19

Select a target type or instance to view the processes that run on that type. This selection supports inheritance.
For example, assume that a Microsoft Exchange Server type provides a more specific implementation of a
Microsoft Windows computer through inheritance. All processes that can run on a Microsoft Windows computer
run using Microsoft Exchange Server; a Microsoft Exchange Server “is a” Microsoft Windows computer (Figure 4).

Figure 4. A List of Processes That Act on a Type in a Type Definition

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 19

Target Operations Views
Target views of operations allow you to view ongoing automation in the context of the targets or services on which

the automation acts. You can filter the list of all targets to focus on a specific type or the name of a target, such as

a Cisco Intelligent Automation for Cloud (IAC) service request. Upon target selection, users will see the available

processes that act on that target type along with all process activity related to that target (Figure 5).

Figure 5. Target Views in Operations

Interobject Messaging and Policy Provided by Events for a Target Type
Target events complement target types to allow event-based automation for each type of service. When used as

triggers, these target events enable policy, allowing you to invoke automation as data is created or changed,

according to patterns in the data. Available target events include:

● Target-created event: Target properties are available in reference control.

● Target-changed event: Both old target and new target properties are available in reference control.

Names of changed properties also are available in reference control.

● Target-deleted event: Deleted target properties are available in reference control.

Process events allow you to send arbitrary messages from one process to another. These process events can be

filtered by target type, providing a type-aware open messaging infrastructure.

Event integration to external systems using AMQP, Simple Network Management Protocol (SNMP), or email is

also possible.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 19

Optimization for Cisco Prime Service Catalog
Usability is optimized for interaction with Cisco Prime Service Catalog. You can easily create targets from

incoming service requests. Cisco Process Orchestrator helps push service items to the catalog as needed.

Authors pick the right moments in a flow to synchronize data. Through the Cisco Prime Service Catalog Adapter,

authors can use an active catalog connection to optimize the experience. The Cisco Prime Service Catalog

Adapter easily reads, writes, and creates service items and is aware of the Cisco Prime schema. When a service

item definition is created in the catalog, it can be integrated rapidly. The property browser exposes the catalog

definition to enhance ease of use. Get Service Item properties can be followed by Update Target to save the

properties in a single step. You can write directly through the Create Service Item or Update Service Item activities

using property references.

Automatic and Consistent API Support
Users and automation pack authors can control the target types published to the northbound web service. For

published objects, Cisco Process Orchestrator exposes the type uniquely to the northbound web service. As

content teams, services, partners, and customers extend types, these APIs are maintained to provide a consistent

format for APIs across all types of objects. However, each type of object is uniquely supported. Authors can

choose the properties that are exposed. All exposed properties are automatically accessible through the

northbound web service as optional parameters, per type, in the Web Services Description Language (WSDL).

In a typical API, the application provides a static interface to interact with all or some subset of its components.

However, when a user is allowed to define an arbitrary set of types, all with custom properties and relationships, a

static interface becomes difficult to use. Such an unchanging interface for a service topology might look something

like this:

UpdateTarget(string targetTypeId, keyvaluedictionary properties);

Unfortunately, this specification does not provide much direction or insight as to the target types that can be

created and the properties that can be created and updated. Because target types and target properties are both

user defined, the API must allow for nearly any possible input for the target type as well as any target property

name-value pairs. As a result, use of the interface becomes tedious and error prone.

To address this challenge, Cisco Process Orchestrator provides per-type WSDL that defines a specific interface

using the then-present properties for the type. The API becomes dynamic, changing according to changes to the

type. With the introduction of additional types, additional methods are present, and with the introduction of

additional properties, additional parameters for these methods are available. The resulting API is therefore

extremely explicit, extremely intuitive, and easy for consumers to use.

As multiple contributors (packaged products, services, partners, and customers) define new types and add new

properties to existing types, the API dynamically extends to accommodate the new target types, properties, and

relationships. Similarly, as target types or properties are deleted, the API dynamically changes to accommodate

the deleted type or property.

For example, assume that a user has defined a new target type called Router. The API will have new methods

created for the new target type with parameters that correspond to the user-defined properties. The resulting API

for just the Router target type might look like this:

 UpdateRouter([optional] string name, [optional] int logLevel);

Notice that Router has two properties, name and logLevel, which are both specified in the type.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 19

Similarly, Cisco Process Orchestrator specifies a per-process WSDL that defines a specific interface to invoke a

process using the then-present input and output parameters for the process. The API reflects the current set of

process definitions. With the introduction of additional processes, additional methods are created, and with the

introduction of additional process parameters, additional API parameters for those methods are created. As with

type-specific WDSLs, the resulting API is therefore extremely explicit, extremely intuitive, and easy for consumers

to use.

Automation Packs
Like other aspects of configuration, target types can be placed in an automation pack that is version controlled,

enabling the partner community to define new types of services and augment those delivered by others.

Service Modeling Examples

This section presents several examples of services created using service-oriented orchestration.

Distributed Application and Product as a Service
Service-oriented orchestration can be used to model a distributed application and manage its provisioning and

ongoing operations. To the business, an application and its elements are not important by themselves. The

application is important for the service it provides to the business.

For instance, an application may provide customer support, order entry, or partner billing services. A customer

support service, for example, can be provided by a distributed application. It consists of a number of web servers

behind a load balancer, a database, a cluster of application servers, and a Lightweight Directory Access Protocol

(LDAP) repository for user credentials. Each application server ultimately runs on a Cisco Unified Computing

System™ (Cisco UCSs) blade, which uses Cisco UCS Manager. Each topology node fits within some network, with

each tier separated by firewalls, which require specific firewall configuration, so the application topology has

relationships to a network topology. All these elements together form the service topology.

In a platform-as-a-service (PaaS) solution, you need to enable not only provisioning, but also ongoing operations,

and eventually deprovisioning of services or applications, whereas for an infrastructure-as-a-service (IaaS)

solution, you need to provision individual virtual machines. The leap from what IaaS does to what PaaS does

involves treating a service or a collection of virtual machines and their networks as a package. Applications or

other services are provisioned and configured on these virtual machines and networks. PaaS involves an ordering

experience that allows customers to deploy and use those services.

To this end, service or application blueprints need to be defined that model the services and make them orderable

and support provisioning, operations, and deprovisioning of the services. These blueprints should capture what

the customer needs to deploy an application. Customers want to receive these blueprints from Cisco or from

partners or a community. Customers also need to be able to build these blueprints themselves and move them

from development to test to production environments.

Service-oriented orchestration allows you to define, package, ship, and receive these models, as well as to create

instances of the service from that model. In this way, deployment of the service can be standardized across

development, test, and production systems. For example, a target type can be created for a web server with the

specific web server target being an instance created from that web server target type. This instance may have a

relationship with the Linux server that hosts the web server.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 19

A level-one helpdesk operator may not know or care what specific database or LDAP instance supports the

customer support service or what Cisco UCS blade actually runs a certain instance of the web server. The

operator just wants to use the customer support service. For instance, the operator may want to authorize a new

user to access the customer support service and then provision whatever the user needs. The operator typically

would run an add-user process, acting on the customer support service.

A build process that acts on the customer support service is responsible for provisioning of the whole service. This

process may call the build process for each target type in the topology, building the service an element at a time.

This process could use files, such as an OVF for a server, to stand up the specific service element, or it might

invoke a tool such as Puppet or Chef.

Another example of a process that acts on the service or its elements is site disaster recovery, which may need to

make changes to many parts of the distributed customer support application to move it to another site. Such a

process needs to act on the customer support service as a whole and use the topology and relationships to

traverse to other actions, possibly calling similar processes that act on those elements. For example, a request to

back up the overall service might invoke a backup of each server in the topology as well as the database.

Through service-oriented orchestration, processes can act on the customer support service. As necessary, a

process can traverse relationships to lower-level infrastructure and tool elements on which it acts. For example, a

process that queries capacity might traverse the database target and perform Cisco Process Orchestrator

activities against that database.

Cisco TelePresence Service
A Cisco TelePresence® service has several components. Automation can act on these through Secure Shell

(SSH), SNMP, and web services. Prior to the use of target types, you had to browse through all processes and

possibly filter them by category or automation pack. You would then find and run a process, specifying the

terminal, SNMP, or web service target required for the technical method used to achieve the result you wanted.

You had to understand the underlying implementation to know what target to provide.

With service-oriented orchestration, an external team provides an automation pack that defines a Cisco

TelePresence target type with:

● Relationships to the terminal, SNMP, and web service target types

● Properties such as phone number and escort name

● Process actions for Cisco TelePresence Systems

The automation pack can add properties, such as a location property, to the built-in network device target type.

You install the automation pack and configure Cisco TelePresence service instances by calling a constructor

process named Create. The process not only creates the Cisco TelePresence target, but also creates the

terminal, SNMP, and web service targets and the relationships that unify them in the model. You then browse the

target views or operations views, filter for Cisco TelePresence targets, and select a target. You will see a list of

process actions you can take against a Cisco TelePresence target, and you choose an action to run. Internally,

the workflow traverses the relationship to find the SSH, etc., target required by the action. You see this and other

automation running against the Cisco TelePresence System.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 19

Microsoft Exchange Mailbox
A solution accelerator automation pack defines a Microsoft Exchange Server target type, which inherits from

Microsoft Windows Server.

A partner automation pack defines a Microsoft Exchange Mailbox target type. This type includes:

● A Hosted On relationship with a Microsoft Exchange Server

● Properties such as State, Warning Quota, Display Name, and Microsoft Active Directory (AD) Account

Name

● Process actions (workflows) such as Create, Delete, and Change Quota Settings

You can then create an instance of the Microsoft Exchange Mailbox target, specifying the Microsoft Exchange

Server. A target creation event triggers the Create process action. Alternatively, you can manually run a New

Mailbox action from a Microsoft Exchange Server, which embeds the mailbox target creation. The Create process

changes the State property to Provisioning, and then the property changes to OK after it successfully completes or

Unavailable if it fails. The Create process traverses the Hosted On relationship to the Microsoft Exchange Server

to act on it and access all its properties, and it may also traverse Microsoft Exchange Server relationships to

additional targets.

You can view the properties of the Microsoft Exchange Mailbox, including the traversal to its Microsoft Exchange

Server.

Alignment with IT Standards

Although service-oriented automation is open, allowing any model, it aligns with IT best practices such as those

specified by ITIL. ITIL prescribes a CMDB as a central element that allows high-level services to be decomposed

into their supporting lower-level services and ultimately to lower-level systems and devices. In ITIL, each element

in the model is called a configuration item because it is a unit of configuration. A CMDB provides a mapping of

lower-level elements that support business services. Service-oriented orchestration allows automation to be

guided by a model of current and desired IT services with awareness of their relationships and interdependencies.

In this way, the principles of service modeling are substantially the same as those for modeling services using ITIL

and CMDBs.

However, this implementation bypasses many of the negative features of typical CMDBs. Cisco Process

Orchestrator can integrate with a CMDB if it is there. Targets provide a natural synchronization point for

exchanging data with a CMDB, and target events allow synchronization to be externalized from other processes.

However, service-oriented orchestration does not require a CMDB; you do not need a CMDB for orchestration to

function. Often orchestration needs a smaller data set than that in the CMDB, and it is much easier to keep a

smaller data set current. For example, resource management can be more efficient when externalized. Moreover,

a CMDB typically represents actual elements and not potential elements, and because orchestration is often

responsible for provisioning, the orchestrator may include data prior to its use in the CMDB, which it may write to

the CMDB as it is instantiated. Even if Cisco Process Orchestrator service models use data in CMDBs,

performance is improved because this data remains in the Cisco Process Orchestrator target properties to

optimize queries. Cisco Process Orchestrator allows a local representation of only those services that relate to the

service that you want to automate, so the implementation is right-sized and lighter than that with a complete

CMDB. Updates are more likely to occur in real time and are targeted to meet the needs of automation. A

conceptual alignment with ITIL and CMDB principles provides the flexibility to right-size the implementation while

allowing unification with CMDBs when needed.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 19

Also, ITIL prescribes critical process records such as alerts, incidents, and change requests that are a focal point

for IT operation processes. Cisco Process Orchestrator provides a native representation for these concepts,

allowing content to be abstracted from these concepts in the way that they are provided in the organization. For

example, content that detects an IT incident need not encode the specific service desk used by a particular

customer. Content that enriches incidents with additional diagnostic data can also do so independent of tool

selection. Cisco Process Orchestrator alerts, incidents, and change request records allow reusable content

independent of tool selection and company-specific ITIL extensions. A separate body of content can integrate

orchestrator incidents with a specific service desk such as BMC Remedy. When incidents are created or changed

in general automation, Remedy synchronization processes can trigger and push those changes to Remedy.

Updates in Remedy, such as incident closure, trigger synchronization processes that update the Cisco Process

Orchestrator incident. Processes in the general automation implementation can then proceed from incident

resolution. For example, an incident can be verified to prove that the problematic behavior no longer exists.

Moreover, ITIL prescribes that these records have a relationship to the element that failed, so that you know the

services that may be affected. Cisco Process Orchestrator incidents provide a link to the target defined by the

target type for the service; they also provide a secondary configuration item field to link arbitrary external CMDB

references when a CMDB is present.

The inheritance hierarchy delivered in the product is based on the DMTF Common Information Model. Although

the automation content does not need to use this hierarchy, some implementations will want to align with CIM as a

standard. The base product adheres to the standard, so should a customer want to align with CIM, this is possible.

All target types are derived from a base target element. The inheritance model is fully extensible (Figure 6).

Figure 6. Packaged Target Types Inheritance Hierarchy: Aligned with the DMTF Common Information Model

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 19

TOSCA standardizes capabilities to define and deploy composite services and applications. TOSCA provides a

standard way to define service topologies such as application blueprints. Although Cisco Process Orchestrator

does not deliver 100 percent compatibility or interoperability with TOSCA, the implementation does align with

TOSCA principles (Figure 7).

Figure 7. Structural Elements of a TOSCA Service Template and Their Relations

● A TOSCA node type defines properties and interfaces. Cisco Process Orchestrator target types address

the entire feature set of TOSCA node types and in some cases exceed them. Interfaces are essentially

Cisco Process Orchestrator process definitions. In both TOSCA and Cisco Process Orchestrator, types can

be derived from other types to inherit their properties, etc. Abstract types are supported.

● Through the use of target types, you can model TOSCA relationship types. By defining a target type for a

more complex relationship, you can model many-to-many use cases (Figure 8). Automation uses the Find

Targets activity to query for instances of the relationship type whose relationship refers to some target.

Additionally, you can add properties for these types that link targets. Because the relationships in this case

are targets, processes can act on instances of these relationships. In future releases, Cisco will be

enhancing this concept to advance relationships to use Cisco Process Orchestrator’s type and property

framework with a full relationship type implementation, but you can implement this capability today should

your use case demand it.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 19

Figure 8. Target Types Can Be Used to Model Relationship Types

● Plans describe the management aspects of service instances, especially creation and termination. Plans

too are delivered through the processes that act on a target type.

● The packaging and shipping of process definitions with target types, properties, etc., is a core value. Cisco

Process Orchestrator achieves this benefit through its automation pack capabilities.

● A template allows the service to be ordered as a unit. Ordering is performed in the Cisco Prime Service

Catalog, which can combine orders for complex services into a single form. These instances of composite

service topologies then flow to the orchestrator through the service request.

● An artifact represents content needed to implement a deployment. Examples include an OVA virtual

machine template, an executable file (for example, a script, a Chef recipe, an executable program, or an

image), a configuration file, and a data file. Cisco Process Orchestrator can both package files in an

automation pack distribution and reference artifacts from a share installed by a higher-level package, and

its workflows can push these packages to tools or systems.

Table 1 compares TOSCA features and Cisco Process Orchestrator features and shows the unity of Cisco

Process Orchestrator and Cisco Prime Service Catalog in Cisco IAC.

Table 1. TOSCA and Cisco Process Orchestrator Comparison

Feature TOSCA
Specification

Cisco Process
Orchestrator

Cisco Process Orchestrator
Explanation

Cisco
IAC

Cisco IAC Explanation
(Includes Cisco Prime Service
Catalog)

TOSCA interoperability Yes No No

Overall conceptual
alignment supported in
implementation

Yes Mostly Node types and relationships are
fundamental

Mostly Node types and relationships are
fundamental

Node type Yes Full Target type Full Service item definition

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 16 of 19

Feature TOSCA
Specification

Cisco Process
Orchestrator

Cisco Process Orchestrator
Explanation

Cisco
IAC

Cisco IAC Explanation
(Includes Cisco Prime Service
Catalog)

Relationship type Yes Mostly Target type implementation; true
relationship types planned

Mostly Service item definition
implementation using foreign
keys

Plans (workflows) Yes Full Processes and target types Full Uses Cisco Process Orchestrator

Derived types Yes Full Target type inheritance Full Uses Cisco Process Orchestrator

Abstract types Yes Full Full Uses Cisco Process Orchestrator

Constraints Yes Partial Partial Custom catalog ordering model
and service items

Requirements and
capabilities

Yes No Partial Custom catalog ordering model
and service items

Artifact types and
templates

Yes Partial Can package files in an automation
pack

Partial Uses Cisco Process Orchestrator

Topology template Yes Mostly Requires all the preceding features Mostly Service items and Cisco Process
Orchestrator

Service template Yes Mostly Requires all the preceding features Mostly Service items and Cisco Process
Orchestrator

Policy types and
templates

Yes Partial Uses target types Partial Custom catalog ordering model
and service items

Archive format Yes Mostly Not all constructs and no Cisco
Prime Service Catalog elements,
but automation packs are almost
identical

Mostly Uses Cisco Process
Orchestrator, plus Cisco Prime
Service Catalog allows content
export as well

Events, including data-
pattern triggers

No Full Not in the TOSCA specification, but
implemented by Cisco Process
Orchestrator

Full Uses Cisco Process Orchestrator

Automatic API support
for all objects

No Full Not in the TOSCA specification, but
implemented by Cisco Process
Orchestrator

Full Uses Cisco Process Orchestrator

Move properties;
properties ship from a
variety of contributors

No Full Not in the TOSCA specification, but
implemented by Cisco Process
Orchestrator

Full Uses Cisco Process Orchestrator

Table 2 summarizes the way that service-oriented automation blends aspects of these industry standards as well

as common best practices such as object-oriented programming. Users who are familiar with one of these areas

may prefer to map the concepts with which they are familiar to service-oriented orchestration features. As the table

shows, similar concepts have very different names across the industry. Cisco Process Orchestrator attempts to

use the most intuitive orchestration terms, especially for prior Cisco Process Orchestrator users.

Table 2. Orchestration Terms and Concepts

Cisco Process
Orchestrator

Cisco Prime
Service Catalog

Object-Oriented
Programming

IT Infrastructure
Library (ITIL)

Common Information
Model (CIM)

Topology and
Orchestration
Specification for Cloud
Applications (TOSCA)

Collection of related
targets

 Object model Service

Configuration item
hierarchy

Model Service, service
template, and topology
template

Target type Service item
definition and service
standard definition

Class Configuration item
type, or more loosely,
asset classes

Class Node type

Target Service item and
service standard

Instance and object Configuration item and
service

Object derived from
managed element

Node

Inheritance Inheritance, parent,
child, ancestor, and
descendant

Inheritance, parent,
child, ancestor, and
descendant

Subclass,

Loosely: configuration
item categories and
classification

Inheritance
(subclassing)

Inheritance, parent,
child, ancestor, and
descendant

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 17 of 19

Cisco Process
Orchestrator

Cisco Prime
Service Catalog

Object-Oriented
Programming

IT Infrastructure
Library (ITIL)

Common Information
Model (CIM)

Topology and
Orchestration
Specification for Cloud
Applications (TOSCA)

superclass, subtype,
and supertype

Property Attribute Attribute and field Configuration item
attribute

Property Property

Future: Relationship
type (can be
achieved through
target types as
explained earlier)

 Relationship type Relationship type

Relationship Relationship Links and
associations

Pointers

Configuration item
relationship

Relationship and
association

Relationship

Process

From target type:
process action

Action, associated
services, and tasks

Method and
operation

 Method Plan

Event

From process: trigger
from event

Event

Rules for On Event

Some use of the
term “trigger”

Event or message Indication (SNMP,
alert, threshold, etc.)

Target group and
target selection

Rule Selection by
configuration item
category

Alert (related to
target)

 Event (related to
configuration item)

Incident (related to
target)

 Incident (related to
configuration item)

Change request
(related to target)

 Change request
(related to
configuration item)

Automation pack Cloud service archive
(CSAR)

Files in an
automation pack

 Artifact

No explicit term

The collection of all
processes that act on
a target type,
including their input
and output
parameters

 Class interface Class interface Interface

Process target “This” reference in a
method

“Targets of this type
can be created”
checkbox on a target
type

 Abstract class Abstract type

Can be achieved in
processes; see the
next section,
“Advanced Object-
Oriented Principles”

 Dynamic binding,
overriding, and
polymorphism

Advanced Object-Oriented Programming Principles

As Table 2 shows, service-oriented orchestration supports the major concepts of object-oriented programming.

However, Cisco Process Orchestrator supports process-centric (procedural) and service-centric, target-centric,

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 18 of 19

and object-oriented approaches to orchestration, and it has a large body of existing content that needs to continue

to run. Moreover, the design of Cisco Process Orchestrator is intended to allow IT staff who either are

nonprogrammers or have little scripting experience to define automation. Therefore, some advanced object-

oriented principles are not enforced in the orchestrator itself, but they can be implemented within content for more

sophisticated automation authors:

● With encapsulation, the properties of a type should be read and written only by processes of that specific

type. Encapsulation can be achieved in an implementation. As a best practice, you should separate all

aspects of a target type, so that its properties are manipulated only through its processes (what object-

oriented programming calls its class interface). A process should not change properties of another type.

With this approach, you can alter the implementation of a target type and its processes without affecting

other orchestration elements, avoiding code that is difficult to understand and therefore to fix and modify.

Encapsulation is a best practice for service-oriented orchestration but is not mandatory.

● When target instances must be created dynamically, an encapsulation best practice is to use constructor

processes to create target instances. This approach can hide the construction of related objects and

relationships. For example, creation of a Cisco TelePresence target may also invoke the constructor

process for an SSH target and create a relationship from the Cisco TelePresence target to the newly

created SSH target, and it may do the same for an SNMP target and a web service target. So the Cisco

TelePresence constructor may actually create four objects behind the scenes and relate those objects.

● Cisco Process Orchestrator does not explicitly support override, dynamic binding, or polymorphism. In

Cisco Process Orchestrator, process invocation is explicit. However, you can create a process on a base

type that is set to be field customizable, so that customers in the field can modify it. This type of process is

often called an extension point in Cisco Process Orchestrator. Within this customizable process, users can

alter the definition to invoke a descendant type’s process to override the default behavior of the base type.

This use case can be supported with some planning.

● To help keep Cisco Process Orchestrator usable by nonprogrammers, multiple inheritance is not

supported.

Conclusion

Target types and other features supporting service-oriented orchestration enable a significant shift in the approach

to automation in which the service or the target, not the process, is the focal point. Automation can define and act

on higher-level services that IT provides to the business. Internally, processes follow relationships to the lower-

level elements of the IT stack on which they operate. The feature delivers an agile capability to model any service

(or any application or process), aligning the user experience more closely with the workflow of the business.

Cisco Process Orchestrator enables the partner community and customers to define new types of services and to

extend those shipped by Cisco. New policy capabilities are enabled because automation can be triggered as data

is created or changed.

Target types are a focal point for synchronizing data with Cisco Prime Service Catalog service items, CMDBs,

discovery, etc. Fluid mechanisms are provided to push and pull information to and from the catalog.

A dynamic API is automatically available for anything modeled or extended. You can create, update, and delete

instances, including custom properties, with a per-object WSDL. Additionally, through the API, you can run

process actions (methods) that act on the instances.

© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 19 of 19

For More Information

To learn more about Cisco Process Orchestrator, visit http://www.cisco.com/en/US/products/ps11100/index.html.

Find out more about Cisco Prime Service Catalog at http://www.cisco.com/go/service-catalog.

Printed in USA C11-729698-00 10/13

http://www.cisco.com/en/US/products/ps11100/index.html
http://www.cisco.com/go/service-catalog

	Perform Service-Oriented Orchestration with Cisco Process Orchestrator
	What You Will Learn
	Overview
	Cisco Process Orchestrator Features That Support Service-Oriented Orchestration
	Target Types
	Inheritance
	Target Properties
	Target Relationships
	Processes That Act on a Target Type
	Target Operations Views
	Interobject Messaging and Policy Provided by Events for a Target Type
	Optimization for Cisco Prime Service Catalog
	Automatic and Consistent API Support
	Automation Packs

	Service Modeling Examples
	Distributed Application and Product as a Service
	Cisco TelePresence Service
	Microsoft Exchange Mailbox

	Alignment with IT Standards
	Advanced Object-Oriented Programming Principles
	Conclusion
	For More Information

