
Whitepaper | Tidal Software®

Tidal® Intersperse®

Application Performance
Management for J2EE, .NET, and
SOA Web Applications

In the ongoing quest for real-time automation of business processes, enterprise information
systems are evolving towards more and more web applications and service oriented
architectures (SOA). In an SOA, existing and new software assets are broken down into libraries
of components and services available to multiple applications and processes. Component
relationships and process flows are becoming increasingly complex and dynamic.

As the complexity, immediacy, and scope of enterprise processes increase, so does the risk of
failure. Comprehensive, proactive management of next-generation information processes and
services is critical. Traditional application management tools are inadequate to manage next-
generation cross-application and, eventually, cross-enterprise business processes and services
because they are static, invasive, and unaware of changing application context. Businesses
need a management tool that provides real-time visibility, context, and control from the
application and data level through the dynamic service and business process levels.

Tidal Intersperse is the only management solution designed with the reach and sophistication
to manage production business systems and processes built on J2EE, .NET and SOA. It ensures
the continuity of vital, automated business processes by managing and monitoring all relevant
tiers, their constituent components, and the interrelationships between those components.

2

Tidal Intersperse

Application Performance Management for J2EE, .NET,
and SOA Web Applications

Evolution of Enterprise Applications
Over the past two decades, information systems

have undergone a profound evolution in functional
and geographic scope, the complexity of integration,
and the immediacy of information they supply.
New n-tier applications use application servers and
component technologies such as Java, .NET and SOA
to provide widely distributed application access via
the Internet and to provide multiple applications
with shared transactional access to data. Both
applications and data have become distributed and
componentized. The application has become the
principal building block of the business information
system (Figure 1).

Today, businesses are looking for automation
gains at the next level: end-to-end process
integration through SOA based on Web services.
Now, instead of applications sharing data, complete
business processes are built from applications
packaged as suites of services. Through component
technologies and evolving Web services standards,
these new service-oriented business systems will
make applications and components available across
the enterprise and, eventually, across a company’s
whole ecosystem of vendors, partners, and
customers. The new automated business processes
are real-time and dynamic, fluidly calling on
available services to carry out complex tasks.

Risk Management in the Service-Driven
Enterprise

Over the years, companies have used a variety
of management tools to ensure the stability and
reliability of their computers, networks, and
applications. From the days of the mainframe to
today, the fundamental needs and benefits of system

Fig. 1: The Evolution of Enterprise Information Architecture

1980s
Mainframe

Market = Mainframe

Mainframe = Monolithic
and distributed

• IBM, Tandem, Fujitsu,
 Amdahl, Unisys

Early1990s
Client-server

Market = Client-server Apps
• SAP, PeopleSoft, Oracle

Apps, Siebel, JD Edwards

Applications = Monolithic
(not componentized) and
distributed

Platform = The OS

Principal Building Block = The application

Late 90s - 2000s
Distributed Web Apps

Market = Web Apps
• WebLogic, WebSphere,
 ATG, Oracle, JBoss, Tomcat,
 JRun

• Client - server apps
 rewritten to leverage app
 servers

Applications = Distributed
and componentized

Platform = The app server

Today
Services

Market = Service-Oriented
Composite Applications with
multiple components

~ Web Services
~ Distributed Applications
~ Packaged Applications

Applications = Distributed,
componentized, flexible and
unpredictable

Principal Building Block =
The service

P
R

E
C

I
P

I
T

O
U

S

D
R

O
P

I

N
C

P
U

P
R

I
C

E

A
D

V
E

N
T

O

F

T
H

E
I

N
T

E
R

N
E

T

W
E

B

S
E

R
V

I
C

E
S

S

T A
 N

 D
 A

 R D
 S

IT complexity and management costs increased dramatically

management have stayed the same, but today’s
systems are more difficult to manage, and they
present a greater risk in the event of failure.

In the mainframe era, software was linear
and application behavior was predictable. If an
application failed, it affected one task and one
department, and there was generally time to recover
before the failure affected business results. With
the deployment of fully integrated, real-time, J2EE
and .NET applications and service-oriented business
systems, the complexity and risk have increased
exponentially:

Each process has many components, many “mov-
ing parts” that can cause failure either singly or
through their interactions.

Failure affects people and functions across the
enterprise and, potentially, across the business
ecosystem, risking valuable business relation-
ships.

In a service-oriented architecture, components
and services can work together dynamically.
We cannot predict or test for every possible
combination.

Real-time processes leave no margin to recover
from failures.

Business continuity is dependent on the ability
to predict, diagnose, and resolve potential points of
failure. But traditional management tools lack the
integrated view required to manage today’s complex
business systems. They were designed for visibility
into vertical application silos. Their instrumentation
is invasive, proprietary, and application-modifying.
Performance management is typically based on
profiling more suitable to linear programmatic
applications. Service-oriented information
architectures demand proactive management tools
that provide full visibility across applications,
components, services, and dynamic processes in an
integrated production environment.

Requirements for APM in Production
Management

Multi-Dimensional View
Tidal Intersperse views the world “horizontally”

as well as “vertically,” giving system managers
the ability to understand the composition of the
application and integration principles underlying
SOA applications. While traditional tools provide
visibility only within a vertical application silo,
Intersperse tools also instrument and monitor the
integration between applications and components.
Figure 2 shows a typical business workflow such
as order processing that has been integrated

~

~

~

~

�

White Paper

by encapsulating applications as services. The
figure illustrates the limited visibility offered
by traditional management tools versus the
comprehensive view of the data, application, and
integration tiers created by Tidal Intersperse.

Context-Aware
Because process flow is dynamic in a service-

oriented architecture, system managers must
be able to grasp and simplify the complexity of
composite applications. Tidal Intersperse allows
users to view components and services in multiple
business contexts. For example, the same inventory
management application might be used as a service
in the context of an order processing process, a
purchasing process, or an accounting process. Tidal
Intersperse provides for context awareness starting
at the design phase. System architects can map
predicted process flows into unlimited different
views to aid system managers, line-of-business
analysts, and other stakeholders in monitoring,
managing, and analyzing system behavior and
performance.

Non-Invasive
Other management products are really profiling

tools, using a range of techniques, most typically
byte-code instrumentation, to extract management
data from the managed region. Byte-code
instrumentation was originally designed for the
development environment, and it causes a number of
problems when deployed on production applications.
It degrades performance by bloating the byte-code,
and it sometimes alters VM configuration, causing
side effects from loss of VM tuning to full-blown
application failure. Byte-code instrumentation
can also block other dynamic applications that use
byte- code generation, including some persistence

techniques, aspect-oriented programming tools,
debugging and logging tools.

Tidal Intersperse is ideal for production
environments because it allows users to easily
and non-invasively instrument and monitor
components and services. Intersperse does
not depend upon invasive instrumentation for
high-level application monitoring, rather it uses
management data that is automatically available in
the J2EE and .NET environments. It also has the
ability to deep-dive into specific problem areas by
dynamically turning on byte-code instrumentation
when an issue is identified. This helps provide
detailed diagnostics when issues arise, while
keeping overhead low in a normal state. The lower
dependence on instrumentation means there is
minimal performance impact and minimal risk of
causing application failure or interfering with other
applications and tools.

Tidal Intersperse: Management
Technology for Java, .NET and SOA
Environment

Tidal Intersperse is the first of a new generation
of tools created specifically for production
management of J2EE, .NET and SOA applications
and processes. Tidal Intersperse is multi-
dimensional, context-aware, and non-invasive. It
ensures the continuity of vital automated business
processes by managing and monitoring all relevant
tiers, their constituent components, and the
interrelationships between those components.

Tidal Intersperse is built around the Java
Management Extensions (JMX), the Java industry
standard created by the Java Community Process
to address the management needs of service-
oriented architectures. JMX leverages the dynamic,

Fig. 2: Network, Data, or Application Visibility vs. SOA Visibility

App Server Management View

Web Server

App Server App Server

Database System Database System Database DatabaseSystem

App Server

Process Server

Services

RDBMS Management View

NSM View

Intersperse View

Legacy
Packaged

Application

Web Server

App Server App Server

Database System Database System Database DatabaseSystem

App Server

Process Server

Services

Legacy
Packaged

Application

�

Tidal Intersperse

Application Performance Management for J2EE, .NET,
and SOA Web Applications

flexible, and portable nature of Java technology to
manage components, applications, and services
that interoperate dynamically across heterogeneous
networks and platforms.

Tidal Intersperse has three main components:

Intersperse Console: A Java graphical user
front-end for displaying application events,
status, behavior, and configuration, and for
analyzing and tuning applications in real time.
Intersperse Console is a standalone, integrated
collection of control panels, object browsers,
dashboards, event and status monitors, and
real-time graphs and displays. Nearly all aspects
of the console are user-configurable, from the
overall collection to the aesthetic details of
individual dashboards and graphs. Wizards are
used extensively to guide the user through the
configuration and instrumentation process.

 A read-only web interface is also available for
day-to-day monitoring purposes.

Intersperse Agents: J2EE and .NET compliant
components that are deployed in the target ap-
plications servers to instrument the application
and to mediate between the target applications
and the Intersperse Server. The Tidal Inter-
sperse agent architecture is standards-based and
non-intrusive. Typically, even fairly extensive
MBean and WMI monitoring and instrumenta-
tion add no more than a few percentage points of
performance overhead to the original applica-

~

~

tion. Object and method byte codes are used only
for method invocation analysis1.

Intersperse Server: J2EE server components
containing the process and monitoring logic to
implement standard and user-defined monitors,
events, and actions. Intersperse Server connects
to the agents under its command to retrieve
instrumentation and structural information
in the target applications and containers. The
server also connects to the database to store and
categorize events for later use by the console.

Tidal Intersperse gives users the ability to:

Discover
Tidal Intersperse automatically discovers

and instruments components and services
across a variety of common SOA platforms. Tidal
Intersperse’s powerful discovery features use agents
to automatically detect and display a complex
application’s internal structure and configuration,
giving visibility into an application’s object
attributes and relationships.

Map
Tidal Intersperse maps components in their

business contexts and aggregates them into relevant
multi-dimensional business metrics. Application
mapping allows users to graphically define different
logical views of an application’s status, events,
objects, relationships, etc., and to supplement
predefined views and relationships with custom
versions tailored to specific user types, applications,
and business process models. Maps correlate lower-
level operational and structural aspects such as
database connectivity, heap memory usage, thread
deadlocks, and object attribute values to business
process-level issues such as service level agreement
(SLA) shortfalls or order fulfillment workflow
problems.

The mapping step greatly simplifies system
management in the production environment. Often
when complex production applications fail, the
system architects or developers are called away from
other projects to diagnose problems. By capturing
the designers’ knowledge of critical areas when
the system is deployed, maps enable operations
people to better manage the system without tapping
developers.

Monitor
Tidal Intersperse’s real-time monitoring system

provides views of important statistics, a robust
event-driven notification system, and vital alerts.
Configurable dashboards graphically display
metrics such as CPU utilization, disk space usage,

~

1 Performance overhead is especially difficult to guarantee or predict exactly, and some tuning may be required to minimize

long-term impact under final deployment conditions. Tidal Intersperse is an ideal tool to help with this tuning.

Application Servers

Intersperse Console

Intersperse Server Third-party Monitoring

Reporting

WebSphere

WebLogic

JBoss

Oracle

Netweaver

.NET

Tomcat

(Thick client or Web)

Unix / Linux / Windows (Tivoli, Openview, ...)

Oracle, MSSQL, Sybase, mySQL

Intersperse
Agent

Fig. �: Architecture of Tidal Intersperse

�

White Paper

component execution time, number of successful
invocations, and other statistics. Tidal Intersperse’s
rule-based service level agreement (SLA) and event
definition features allow users to specify complex
state- and trend-based alert and action rules simply
and graphically in a single tool.

Analyze
Robust analysis capability allows Tidal

Intersperse users to effectively triage performance
incidents and assign them to the right team for
resolution. Powerful tools for trend analysis,
graphical drill down, impact diagrams, call trace
visualization and SQL statement tracing further
help root cause system problems and quickly hone in
on the source of the issue.

Control
Tidal Intersperse streamlines application

management by automatically correcting error
conditions, which can deliver first level response
to many incidents reliably and quickly. A rich set of
corrective actions is available for any event reported
by the system, ranging from changing configuration,
enabling and disabling components, running scripts,
to collecting more instrumentation data for further
analysis. Tidal Intersperse users can also employ
this ability to manually control components state,
settings and data collection.

A Web Application Management
Scenario using Tidal Intersperse

Let’s look at how a JMX based APM tool such
as Intersperse would be used with the on-line
order processing system (Figure 4). In the service-
oriented architecture, applications such as sales
order entry, customer account management, order
management, inventory management, and accounts
receivable are encapsulated as services that can call
each other at will to complete the order processing
task.

Deployment
Setting up system management with Tidal

Intersperse is simple. Let’s say that the order
processing system is implemented as Web services
hosted in an application server such as BEA
WebLogic. All Tidal Intersperse components are
supplied as standard Java application archives
(war, ear, and jar files). They would be deployed
into the application server just like any other Java
components. Tidal Intersperse might be deployed
either during development or when the application
goes into production.

Setup for System Management
When Tidal Intersperse is deployed, an

Intersperse Agent automatically uses the JMX API
to traverse the J2EE object hierarchy and discover
all Java components: EJBs, servlets, connectors,
portal elements, etc. It builds a “replica” that is
used by Tidal Intersperse to present views of the
component tree that can be navigated by server,
server group (cluster), or J2EE component type.
Initial discovery typically takes 10-20 minutes,
depending on the number of objects in the system,
clustering, etc. Once the replica is built, Tidal
Intersperse periodically checks for new components
and automatically updates the component list.

Next, the components are organized into
relevant contexts that will be used to manage the
system. A system architect, developer, or other
person knowledgeable about the application uses
the drag-and- drop mapping tool to create a set of
operational views that can be shared with other
users. For example, a developer’s view might
include a number of individual components while an
operations manager’s view would include only high-
level information such as overall performance of the
whole process and status that’s relevant to service-
level agreements (SLAs) with vendors or customers.

Tidal Intersperse enables developers to configure
common views such as disk space, CPU utilization,
and queue status that are defined by industry best
practices. Based on his or her knowledge of the
system and likely points of failure, a developer might
also set up a view that just shows information such
as DB-related elements or JDBC connection pools.
Developers or operations managers also create views
for different business stakeholders such as line-
of-business analysts or business process owners,
so that each stakeholder sees only the information
relevant to their job.

Once views are set up, it is easy for developers
or operations managers to define events, alerts,
and actions to monitor and manage system health
and performance. Tidal Intersperse has a number
of built-in monitoring points. For example, every
component has default characteristics that can be
used for reporting or to trigger alerts and actions
- such as to notify users whether a system is up or
down, whether a resource is available, etc. Users
can set up additional alerts driven by events such
as available memory or JDBC connections reaching
defined thresholds, status changes such as a
component going off line, or failure to meet SLA
parameters.

�

Tidal Intersperse

Application Performance Management for J2EE, .NET,
and SOA Web Applications

Fig. �: A Service-Oriented Architecture for Order Processing

Services

App Server

Database

Web Server Process Server

System SystemDatabase SystemDatabase Database

Legacy
Packaged

Application

App Server App Server

Place
Online
Order

Kicks-off
Process

Integrated
Process
Executes

Virtual, SOA-Driven
Integration Environment

Once events are defined, they can be tied to
actions, allowing Tidal Intersperse to correct
problem situations automatically. Any event can be
tied to any object function in the application, or an
operating system command line operation can be
defined as a threshold crossing action. So threshold
events might be tied to actions such as automatically
increasing the number of JDBC connections or the
frequency of garbage collection.

Day-to-Day Management
In everyday use, an operations manager might

keep the Intersperse Console open on his or her
desktop to monitor the status of various resources,
or use the dashboard to watch performance trends.
In a service-driven enterprise, order processing
might be one of several processes that use the
same underlying applications, so the operations
manager might be watching several managed
views at the same time. If potential problems arise,
Tidal Intersperse alerts operations staff via e-mail,
pager, or other channels. For planning and analysis
purposes, Tidal Intersperse generates basic reports
on system status and trends, or integrates with
standard reporting tools such as Actuate and Crystal
Reports.

The beauty of Tidal Intersperse is that it
corrects most problem conditions in the course of
day-to-day system management, before they affect
operations. Because of the rich system of events and
actions created during system setup, by the time
the IT team is alerted to a threshold event, Tidal
Intersperse will have already taken action to correct
the situation. For instance, exceeding a threshold
on memory consumption could automatically start
a garbage collector to free memory. If Web servers
are problematic, Tidal Intersperse can start and

stop them, or launch more Web servers to scale for
throughput. The situation is corrected before users
are affected, leaving operations staff to deal with
the problem area at their leisure.

Dealing with System Failure
While traditional management tools rely

on device-centric technologies or one-way
instrumentation such as BCI, Tidal Intersperse’s
JMX-based instrumentation is bi-directional and
object oriented, which greatly simplifies problem
resolution. Not only can Tidal Intersperse alert
users to potential problems, it also allows them to
interactively exercise object functionality in the
production environment to diagnose or correct
problems. For example, an application server might
have an alert defined when available memory drops
below a certain threshold. In response to the alert,
the operations manager can manually change
parameters to run garbage collection more often.

With event-driven alerting and fine-grained
control of the production environment, Tidal
Intersperse allows operations managers to head
off most failures before they happen. But let’s see
how Tidal Intersperse might be used in case of
catastrophic failure. In Figure 5, market conditions
have caused an unexpected and unprecedented
flood of orders that require special handling. As
the order volume increased, the system has frozen.
A service somewhere in the process flow is not
responding and other processes are coming to a halt
waiting for responses. By the time the operations
manager receives a message and looks at the
Intersperse Console, there are dozens of errors and
alerts showing.

At this point, the operations manager knows
only that there has been a cascade failure. With a
traditional profiling-type management product, the
manager would have no simple way to diagnose the
problem and prevent a future failure. Developers
might be called in to analyze system logs or stack
dumps. With Tidal Intersperse, the operations
manager can quickly use the root cause analysis
tool to trace back through the events and determine
the origin of the failure (Figure 6). In our scenario,
the operator finds that a JDBC connection pool not
heavily used in the normal flow of order processing
was emptied during the flood of special orders.
The JDBC issue impacted an EJB, which impacted
the Web service using the EJB, and the failure
eventually propagated across the entire order
handling process.

To correct the problem, the operator
interactively increases the size of the JDBC
connection pool and then sets new thresholds,

�

White Paper

alerts, and actions on that component to prevent
the problem from happening again. The problem is
solved quickly and painlessly.

Make the Proactive Choice
The next generation of enterprise information

systems are being built with service-oriented
architectures that enable complete process
integration across the enterprise and, eventually,
across whole business networks. Along with the
benefits of this integration come heightened
risks because of the greater scope, immediacy,
and complexity of these process-driven systems.
To fully reap the benefits and mitigate the risks,
businesses need a new kind of SOA management
tool that provides proactive, context-aware visibility
and control at all levels of the service-oriented
architecture.

Tidal Intersperse is the first and only
management tool designed to help master the
rapidly growing complexity of SOA business
systems. It gives developers, operators, and analysts
a comprehensive view of all relevant tiers, the
ability to proactively monitor and analyze system
performance in business contexts, and the control
to automatically or directly correct problems in
the production environment. As organizations
evolve their business systems to service-oriented
architectures, they cannot afford to be without Tidal
Intersperse.

About Tidal Software
Tidal Software is a leading provider of application

scheduling and performance management
software that radically simplifies IT operations by
automating and integrating performance and process
management. Tidal’s solution puts IT operations
management into the business process using new
levels of automation, visibility, and control over
systems. Tidal makes applications such as SAP®,
PeopleSoft®, and Oracle E-business Suite™ more
efficient, reliable, and secure to return greater
business value. Tidal also gives IT deep visibility into
and precise control over new SOA-based composite
solutions consisting of packaged applications and
custom components in Java and .NET. General Mills,
HP, ING Direct, Microsoft and T-Mobile are among the
Tidal customers who use Tidal to reduce operational
costs by running IT at higher efficiency rates and
containing overall data center footprints. Privately
held, Tidal is venture-backed by Kleiner Perkins
Caufield & Byers, Novus Ventures, Panorama Capital,
and VantagePoint Venture Partners.

For more information, contact Tidal Software
at 1-8��-��-TIDAL or visit www.tidalsoftware.com.

Fig. �: System Failure in SOA—How do you locate the root cause in a dynamic architecture?

Services

App Server

Database

Web Server Process Server

System SystemDatabase SystemDatabase Database

Legacy
Packaged

Application

App Server App Server

Order process freezes!
Problem with a service!

Fig. �: Root-Cause Analysis Pinpoints the Source of Failure—Intersperse Manager correlates data across the tiers,

enabling the operator to isolate the cause of the problem.

Services

App Server

Database

Web Server Process Server

System SystemDatabase SystemDatabase Database

Legacy
Packaged

Application

App Server App Server

A JDBC connection pool
issue impacted an EJB,
which impacted the Web
service using the EJB,
which impacted the
process itself!

Corporate Headquarters
2100 Geng Road, Suite 210, Palo Alto, CA 9��0�

1 (8��) �� TIDAL

EMEA Headquarters
Tidal Software Limited

Siena Court, The Broadway, Maidenhead, SL� 1NJ
United Kingdom
+�� 1�28 �09 020

 +�� 1�28 �09 120 (fax)

info@tidalsoftware.com

www.tidalsoftware.com

10��-D 01|09

© Tidal Software, Inc. 2009. All rights reserved. Tidal, the Tidal Software Logo, and Intersperse are trademarks of Tidal
Software, Inc. Oracle®, and PeopleSoft® are registered trademarks of Oracle Corporation and/or its affiliates. JavaTM is a
trademark of Sun Microsystems, Inc. in the United States and other countries. .NET™ and all variations of the Windows®
product family are trademarks or registered trademarks of Microsoft Corporation in the United States of America and in

several other countries. All other trademarks are those of their respective owners.

