

DYNAMIC MULTIPOINT VPN HUB AND SPOKE INTRODUCTION

NOVEMBER 2004

What is Dynamic Multipoint VPN ?

- Dynamic Multipoint VPN (DMVPN) is a combination of GRE, NHRP, and IPsec
- NHRP allows the peers to have dynamic addresses (ie: Dial and DSL) with GRE / IPsec tunnels
- Backbone is a hub and spoke topology
- Allows direct spoke to spoke tunneling by auto leveling to a partial mesh

Site-to-Site, DMVPN: mGRE/IPsec/NHRP Integration, Only HUB address Is Known

Cisco.com

DMVPN is a partial dynamic mesh

Spoke: all the devices that contact a central router called "hub"

Node: any hub or a spoke

Cisco.com

 This presentation concentrate on hub and spoke to explain how DMVPN works

DMVPN

- A GRE tunnel is a simple non-negotiated tunnel; GRE only needs tunnel endpoints
- GRE encapsulate frames or packets into an other IP packet + IP header
- GRE has only 4 to 8 bytes of overhead
- GRE tunnels exist in two main flavors:

Point-to-point (GRE)

Point-to-multipoint (mGRE)

GRE multipoint and DMVPN

A GRE interface definition includes

- An IP address
- A tunnel source
- A tunnel destination
- An optional tunnel key

interface Tunnel 0
 ip address 10.0.0.1 255.0.0.0
 tunnel source Dialer1
 tunnel destination 172.16.0.2
 tunnel key 1

• An mGRE interface definition includes

An IP address	interface Tunnel 0
	ip address 10.0.0.1 255.0.0.0
A tunnel source	tunnel source Dialer1
	tunnel mode gre multipoint
A tunnel key	tunnel key 1

mGRE interfaces do not have a tunnel destination

Terminology Pause

- The tunnel address is the ip address defined on the tunnel interface
- The Non-Broadcast Multiple Access (NBMA) address is the ip address used as tunnel source (or destination)
- Example... on router A, one configures

```
interface Ethernet0/0
    ip address 172.16.0.1 255.255.255.0
interface Tunnel0
    ip address 10.0.0.1 255.0.0.0
    tunnel source Ethernet0/0
    [...]
10.0.0.1 is router A's tunnel address
172.16.0.1 is router A's NBMA address
```

mGRE Tunnels

Cisco.com

• Single tunnel interface (mp)

Non-Broadcast Multi-Access (NBMA) Network Multiple (dynamic) tunnel destinations Multicast/broadcast support

Next Hop Resolution Protocol (NHRP)

VPN IP to NBMA IP address mapping

GRE Encapsulation

DMVPN GRE Interfaces

- In DMVPN, the hub must have a point to mGRE
- Spokes can have a point to point GRE interface or an mGRE interface
- This presentation will use mGRE everywhere for consistency
- Note that point-to-point GRE interfaces prevent spoke to spoke direct tunneling

mGRE Talking to a Peer

- Because mGRE tunnels do not have a tunnel destination defined, they can not be used alone
- NHRP tells mGRE where to send the packets to
- NHRP is defined in RFC 2332

- NHRP is a layer two resolution protocol and cache like ARP or Reverse ARP (Frame Relay)
- It is used in DMVPN to map a tunnel IP address to an NBMA address
- Like ARP, NHRP can have static and dynamic entries
- NHRP has worked fully dynamically since Release 12.2(13)T

How mGRE Uses NHRP

- When a packet is routed, it is passed to the mGRE interface along with a next-hop
- The next-hop is the tunnel address of a remote peer
- mGRE looks up the NHRP cache for the next-hop address and retrieves the NBMA address of the remote peer
- mGRE encapsulates the packet into a GRE/IP payload
- The new packet destination is the NMBA address
- Multicast packets are only sent to specific remote peers identified in the NHRP configuration

mGRE/NHRP Path

Cisco.com

DMVPN Hub and Spoke, 11/04

- mGRE uses NHRP, but how does NHRP work?
- This presentation will introduce a network topology and illustrate the associated NHRP commands

NHRP Registration Dynamically Addressed Spokes

Cisco.com

 In order to configure an mGRE interface to use NHRP, the following command is necessary:

ip nhrp network-id <id>

- Where <id> is a unique number (same on hub and all spokes)
- <id> has nothing to do with tunnel key
- The network ID defines an NHRP domain
 Several domains can co-exist on the same router

Populating the NHRP Cache

- Three ways to populate the NHRP cache:
 - Manually add static entries
 - Hub learns via registration requests
 - Spokes learn via resolution requests
- We will now study "static" and "registration"
- "Resolution" is for spoke to spoke

Initial NHRP Caches

Cisco.com

- Initially, the hub has an empty cache
- The spoke has one static entry mapping the hub's tunnel address to the hub's NBMA address:

ip nhrp map 10.0.0.1 172.17.0.1

Multicast traffic must be sent to the hub

ip nhrp map multicast 172.17.0.1

The Spokes Must Register To The Hub

Cisco.com

 In order for the spokes to register themselves to the hub, the hub must be declared as a Next Hop Server (NHS):

ip nhrp nhs 10.0.1

ip nhrp holdtime 3600 (optional)

ip nhrp registration no-unique (optional)

Spokes control the cache on the hub

Registration Process

- The spokes send Registration-requests to the hub
- The request contains the spoke's Tunnel and NBMA addresses as well as the hold time and some flags
- The hub creates an entry in its NHRP cache
- The entry will be valid for the duration of the hold time defined in the registration
- The NHS returns a registration reply (acknowledgement)

Multicast Packets from the Hub

Cisco.com

- The hub must also send multicast traffic to all the spokes that registered to it
- This must be done dynamically (possible since Release 12.2(13)T)
- This is not the default

ip nhrp map multicast dynamic

NHRP Registration Request

DMVPN Hub and Spoke, 11/04

NHRP Registration Reply

NHRP Functionality

Cisco.com

Address mapping/resolution

Static NHRP mapping

Next Hop Client (NHC) registration with Next Hop Server (NHS)

Packet Forwarding

Resolution of VPN to NBMA mapping

- Routing: IP destination → Tunnel IP next-hop
- NHRP: Tunnel IP next-hop → NBMA address

- The spoke needs to advertise its private network to the hub
- Can use BGP, EIGRP, OSPF, RIP or ODR; however, this presentation will focus on EIGRP
- Must consider several caveats

- Spoke has all it needs to send hellos immediately:
 - **Tunnel is defined**
 - Static NHRP entry to hub is present
 - NHRP entry is marked for multicast
- So the spoke never waits...

- With its basic tunnel definition, the hub cannot send anything (including hellos) to anyone
- It must wait NHRP for registrations to arrive
- As soon as the spokes have registered, the NHRP is marked "Multicast" due to

ip nhrp map multicast dynamic

 The hub sends hellos to all the registered spokes simultaneously

Hub sending EIGRP hello

192.168.0.1/24 **NHRP** Table Physical: 172.17.0.1 Tunnel0: 10.0.0.1 10.0.0.11 -> 172.16.1.1 (dynamic, mcast, hold=3600, no-unique) IP IP GRE **EIGRP** hello s=10.0.0.1, s=172.17.0.1, d=224.0.0.10 d=172.16.1.1 Physical: (dynamic)172.16.1.1 Tunnel0: 10.0.0.11 **EIGRP** neighbor Spoke A 10.0.0.1 192.168.1.1/24 NHRP rapie 10.0.0.1 -> 172.17.0.1 (static, mcast)

DMVPN Hub and Spoke, 11/04

- The default bandwidth of a GRE tunnel is 9Kbps
- This has no influence on the traffic but...
- EIGRP will take ½ the interface bandwidth maximum (4.5 Kbps) – this is too low

bandwidth 1000

Spoke EIGRP configuration

- Nothing special on the spoke
- EIGRP stub should be considered

Hub EIGRP Configuration

Cisco.com

- There are many options...
- If you want a spoke to see other spokes:

no ip split-horizon eigrp 1

- Summarization is to be considered
- Setting the bandwidth is crucial in the hub to spoke direction
- Best-practice: Set the bandwidth the same on all nodes

- GRE/NHRP can build a fully functional overlay network
- GRE is insecure; ideally, it must be protected
- The good old crypto map configuration is rather cumbersome; DMVPN introduced tunnel protection
- Still need to define an IPsec security level

Cisco.com

• A transform set must be defined:

crypto ipsec transform-set ts esp-sha-hmac esp-3des mode transport

• An IPsec profile replaces the crypto map

crypto ipsec profile prof

set transform-set ts

The IPsec profile is like a crypto map without "set peer" and "match address"

Protecting the tunnel

• The profile must be applied on the tunnel

tunnel protection ipsec profile prof

- Internally Cisco IOS® Software will treat this as a dynamic crypto map and it derives the localaddress, set peer and match address parameters from the tunnel parameters and the NHRP cache
- This must be configured on the hub and spoke tunnels

Relation Between GRE, NHRP and IPsec

Cisco.com

 For each NHRP cache unique NBMA address, Cisco IOS Software will create an internal crypto map that protects

GRE traffic

From tunnel source (NBMA) address

To NHRP entry NBMA address

 The SAs will be negotiated as soon as the cache entry is created (static and resolved)

Relationship (cont'd.)

• NHRP registration will be triggered

When the Tunnel interface comes up/up

When the tunnel source address changes

When IPsec finishes negotiating the phase 2 related to the tunnel protection

When the registration timer expires

NHRP Registration Dynamically Addressed Spokes

Building Hub-and-Spoke tunnels NHRP Registration

DMVPN Hub and Spoke, 11/04

CISCO SYSTEMS