CISCO SYSTEMS

Optimizing the Service Provider Network for Voice, Video, and Data

Santiago Alvarez

saalvare@cisco.com

Internet Technologies Division December 2005

Provider Network. 12/05

Agenda

- Introduction
- Designing the edge
- Designing the backbone
- Summary and references

Differentiated Services Architecture

Provider Network. 12/05

© 2005 Cisco Systems, Inc. All rights reserved.

Per–Hop Behaviors

- Expedited Forwarding (EF)
 - Building block for low delay/ jitter/loss
 - Served at a certain rate with short/empty queues

Assured Forwarding (AF)

- High probability of delivery if profile is not exceeded
- Four classes and three levels of drop precedence
- Specific resources (BW, buffer space) allocated to each class at each node
- Best Effort (BE)

PHB Recommended Codepoints for IP

MPLS Label Header for Packet Media

Label	20 bits
EXP	Experimental Field, 3 bits
S	Bottom of Stack, 1 Bit
TTL	Time to Live, 8 Bits

- Can be used over other Layer 2 technologies
- Contains all information needed at forwarding time
- One 32-bit word per label

Traditional Enterprise Network

- SP sells Layer 2 service
- Point-to-point SLA from SP
- Enterprise WAN likely to get congested
- IP QoS required for VVD integration
- SP not involved in IP QoS

Enterprise Network with IP Service

- SP sells Layer 3 service
- Point-to-Cloud SLA from SP
- Enterprise WAN likely to get congested
- QoS required for VVD integration
- SP involved in IP QoS

Enterprise Network with Layer-2 Service

- Enterprise may continue with Layer 2 services
- SP needs to consolidate Layer 2 and Layer 3 services
- Layer 2 and Layer 3 SLAs with same IP/MPLS network

Cisco IOS IP SLAs

- Point-to-cloud guarantees for conforming traffic
- Any site can transmit up to ICR into the cloud
- Any site can receive up to ECR from the cloud

ECR – Egress Committed Rate ICR – Ingress Committed Rate

Cisco IOS IP SLAs (Cont'd.)

- SLA typically includes between 3 and 5 classes (real time, video, business, bulk, BE)
- Real-time traffic gets fixed bandwidth allocation
- Data traffic gets variable bandwidth allocation with minimum guarantee
- Frequently, bandwidth allocations defined as percentage of sub-rate (e.g. PVC CIR, shaped rate)
- Additional classes not visible to customer may exist at the edge (e.g. management/control traffic)

Where is the SP Edge?

- Managed vs. unmanaged IP service
- Trust boundary implications
- Different QoS design options
- Edge QoS policies offloaded to CE for managed IP

Traffic Leaving Enterprise Network

- Output QoS policy on CE controlled by SP
- SP enforces SLA using the output QoS policy on CE
- Output policy uses queuing, dropping and optionally, shaping
- Elaborate traffic classification or mapping of existing markings
- Slow links require LFI / cRTP

- Output QoS policy on CE not controlled by SP
- SP enforces SLA using input QoS policy on PE
- Input policy uses policing and marking
- Elaborate traffic classification or mapping of existing markings on PE

Traffic Leaving Enterprise Network

Provider Network, 12/05

Traffic Leaving Service Provider Network

- SP enforces SLA using the output QoS policy on PE
- Output policy uses queuing, dropping and optionally, shaping
- Slow links require LFI / cRTP
- No input QoS policy on CE needed

- SP enforces SLA using the output QoS policy on PE
- Output policy uses queuing, dropping and optionally, shaping
- Slow links require LFI / cRTP
- Input QoS policy on CE irrelevant

Traffic Leaving Service Provider Network

Layer 2 SLAs

- FR / ATM customers receive traditional SLA
- FR / ATM / Ethernet access network may enforce SLA
- Pay-as-you-grow services can be implemented for PPP / HDLC
- Service is typically unmanaged

Traffic Leaving Enterprise Network

- SP enforces SLA on access network preferably
- Drop precedence may be marked for FR / ATM / Ethernet
- Ethernet may support multiple classes
- PE may mark traffic after encapsulation
- No elaborate traffic classification or mapping of existing IP markings

- SP enforces SLA using input QoS policy on PE
- Input policy uses policing and marking
- Drop precedence may be marked for FR / ATM / Ethernet
- Ethernet may support multiple classes
- PE may mark traffic after encapsulation
- No Elaborate traffic classification or mapping of existing markings on PE

Traffic Leaving Enterprise Network

Traffic Leaving Service Provider Network

- SP enforces SLA on access network preferably
- Access network should serve packets according to their marking (class / drop precedence) where applicable
- SP enforces SLA using the output QoS policy on PE
- Output policy uses queuing, dropping and optionally, shaping

Traffic Leaving Service Provider Network

Now the Easy Part...

- QoS complexity resides at the edge
- Backbone is service agnostic
- Backbone is customer agnostic
- Backbone only deals with classes
- Over-provisioning sometimes touted as best alternative

Limitations of Over-Provisioning

- Expensive
- DOS attacks
- Failures conditions
- Planning mistakes
- Unexpected traffic demand

Benefits of DiffServ in the Backbone

- Less bandwidth required
- Over-provisioning control per class
- Low maintenance design
- Low complexity design
- Can be tied to advanced traffic mgmt in control plane (MPLS TE)

Backbone QoS Design Recommendations

- Subset of classes may be used
- Typically, 2 or 3 classes (real time, business, BE)

Traffic through Backbone Node

- SP implements SLA using output QoS policy
- Output policy uses queuing and dropping

Traffic through Backbone Node

Provider Network. 12/05

Further Enhancing the SLA with MPLS TE

- Bandwidth optimization
- Stronger point-to-point guarantees
- Quick restoration (FRR)
- Bandwidth protection during failures

Summary

- IP QoS can provide more sophisticated SLAs than traditional Layer 2 services
- Service Providers can use converged network to implement Layer 3 and Layer 2 services with QoS
- MPLS TE can be used for enhanced SLAs
- Edge QoS design much more elaborate
- Multiple options for edge design (e.g. classes, managed vs. unmanaged, sub-rate)
- Backbone QoS design simple

References

• QoS

http://www.cisco.com/go/qos

• MPLS

http://www.cisco.com/go/mpls

Cisco IOS Software Release 12.4T New Feature
Documentation

http://www.cisco.com/warp/public/732/releases/release124/124t/

Account teams have internal test result and detailed designs

CISCO SYSTEMS