

IP Multicast Security

RST-2262 12696_05_2006_X2

© 2006 Cisco Systems, Inc. All rights reserved.

1

Objectives

- Not a cookbook of recipes!
- Learn what makes multicast different from unicast
- Learn about tools (router functions) available Means and goal,

Tools developed for unicast

Multicast specific tools

With example stubs

Agenda

- Introduction
- Control Plane Security
- Access Control
- Admission Control
- AAA
- Firewalls
- IPsec

Introduction

Security Goals ... (Why We Want "Security")

• Keep network running under

Mis-configuration, Malfunction, Attacks

- Manage resources
- Control multicast application/service

Sender / Receiver

Authorization / Subscription

Account for

Resource utilization, service participation

No simple 1:1 mapping between goals and means. Wide range of tools in products.

... and Means What "Tools" Provide Security

- Service Control and Enforcement
- AAA

Authentication, Authorization and Accounting

"Privacy"

Closed user groups (scopes), VPN / VRF

• NAT ?

not security!

Just collocated in firewalls

Multicast Control and Enforcement

RST-2262 12696_05_2006_X2

7

Multicast / Unicast Security Comparison

Network

Replication Per application state Receiver built trees Scoped addresses

Application

Typical not "TCP like"

Unidirectional or multidirectional

Protocols

Similar

Common use of link scope multicast

Multicast / Unicast Security Comparison

Think Multicast !!! ... if you want multicast security...

CAN DO MORE / MUST DO MORE

Multicast vs. Unicast Per-Application State

• Unicast:

State grows when network topology grows.

CPU is active when network topology changes.

No impact by user activity

Design network (only) for bandwidth

Topology change triggered activity

• Multicast:

All of unicast

State grows when user starts application CPU active when application state changes Design for number of application/sources

Multicast vs. Unicast State and Replication in Routers and Switches

- "ingress" state per application/sender
- "egress" state per receiver branch
- HW limits: 5000 ... >100,000
- SW limits: >> 100,000
- Throughput limits

Unicast: Ingress Packet Rate Multicast: Egress Packet Rate

• ROUTERS AND SWITCHES

Multicast vs. Unicast Replication in Routers and Switches

- Example: Inhibit Source -> A traffic
- Unicast: can filter anywhere on path
- Multicast
 - Switch or router
 - **Receiver:**
 - **MUST filter after last replication**
 - **Egress filtering!**
 - Sources:
 - **MUST filter before first replication**
 - **Ingress filtering!**

Multicast vs. Unicast Receiver Side Explicit Join Based Traffic Forwarding (1)

- Attacks from sources to hosts:
- Unicast: No implicit protection. Main reason for Firewalls.
- Multicast: implicit protection
- ASM:

Sources can attack groups No independent host attacks

• SSM:

No attacks by unwanted sources Traffic stops at first-hop router

Multicast vs. Unicast Receiver Side Explicit Join Based Traffic Forwarding (2)

- Attacks from sources to network:
- Even without receivers
- PIM-SM:

(S,G) and (*,G) on FHR and RP State attack!

• Bidir-PIM:

No state attack – just traffic ! RP as attackable as unicast (*,G/M) towards RP. Note: IOS IPv4 multicast still creates (*,G) state due to legacy implementation (except cat6k/c7600).

Multicast vs. Unicast Receiver Side Explicit Join Based Traffic Forwarding (3)

• Attacks from receivers!

Receivers create state No equivalent in unicast.

- 1. Attack against content: receive content unauthorized
- 2. Attack against bandwidth: Overload network bandwidth. Shared bandwidth: attack against other receivers
- 3. Attack against routers/switches: Overload state tables Increase convergence times

Cisco Public

Multicast vs. Unicast Receiver Side Explicit Join Based Traffic Forwarding (4)

Unicast

Can only (well) filter packets "ip access-group <acl>"

Multicast

Can stop traffic forwarding by filtering at control plan

Receiver side filtering stops traffic at source

"ip multicast boundary" ...

Multicast vs. Unicast Scoped Addresses

• Unicast:

rfc1918 addresses Reuse of host addresses "privacy" for hosts

• Multicast:

IPv4: 239.0.0.0 / 8 addresses

IPv6: 16 scopes in architecture

Geographic form of access control for applications.

No per source/receiver control

Reuse of ASM group addresses

Example scoped Address architecture with IPv4 multicast

Multicast vs. Unicast Application Side Difference- Unicast/TCP

"Admission" control – unicast

Relies on congestion control

- Up to 30 times oversubscription
- Works!

Time-statistical multiplexing

95% TCP (or like TCP)!

Reliability by retransmission

Sender rate adoption

WRED, DPI, ... in network

• Non-real-time / best-effort service

Multicast vs. Unicast Application Side Difference – Multicast/PGM

• PGM

Multicast equivalent of TCP

FEC/NAK retransmission

PGM-CC (congestion control)

Match sender rate to slowest receiver. WRED/TCP compatible

Multicast problem

Penalization by slowest receiver!

Fate sharing between receivers

... Ignore too slow receivers

Best with enterprise apps ?

Multicast vs. Unicast Application Side Difference - Multicast/Large-Block-FEC

- ALC with large-block FEC (Tornado/Raptor/..) codec
- Sustain arbitrary packet loss and still decode content
- Just discard packets at every hop under congestion
 Use even less-than-best-effort class (scavenger)

Multicast vs. Unicast Application Side Difference- Real-Time Traffic

Congestion and real-time traffic

Small % of today's unicast traffic Large % of today's multicast traffic !!!.

Temporary "congestion"/BER caused packet loss (short-block) FEC (MPEG) retransmissions (TCP, PGM)

 Longer term "congestion"/oversubscription: Over-provisioning / Diffserv bandwidth allocation.
 Sender codec rate adaptation

Per-flow admission control (Intserv)

Oversubscription with Real-Time Traffic

- Consider link filled with real-time traffic E.g.: 100Mbps link, 4Mbps TV
- Can fit up to 25 Flows
- What happens when 26th flow is put onto link ?

All 26 flows become useless

Problem for unicast (VOD) and multicast (broadcast)

But solutions can differ

Multicast vs. Unicast Sender codec-rate Adoption

Unicast Audio/Video:

Sender (encoder/transcoder): Reduce bit rate / lower quality due to congestion.

Used with "Internet AV" streaming.

Multicast / "Simulcast" Audio/Video:

No third-party receiver penalizing:

Send different BW encodings

Receivers choose BW/encoding by joining to specific group/channel.

Less-granular than unicast

receives Receives Receives 2 Mbps 6 Mbps_{Pub}6 Mbps₂₃

Multicast vs. Unicast Application Side Difference – Intserv Admission Control

• Intserv:

per flow (admission) control

• Unicast:

Source side enforcement! No need for network enforcement

• Multicast:

Network enforcement! Block forwarding at replication points!

• Mechanisms:

RSVP (unicast), CLI (mcast)

Multicast vs. Unicast Summary

• Unicast:

MUST protect hosts AND network nodes against attackers sending traffic

Multicast

Protect routers/switches against too much state

ASM: MUST protect applications against unwanted sources.

PIM-SM add. control plane protection (DR/RP)

Per flow admission control

Can control application participation and traffic flow due to explicit (*,G), (S,G) easier

Control Plane Security

Control Plane Security

- IGMP / MLD / PIM (RP/DR) / MSDP / AutoRP / SAP
- Spoof function (RP, DR, BSR, MA, MSDP-peer)

DoS network, participants

- Create administrative boundaries
- Overload router (control plane) CPU
- Create non-permitted state

Covered in access-control section

• Memory (SW) and hardware (state) overload Covered in admission-control section

Filter for Control Plane Packets Non-Multicast Specific

- ip receive access-list <ext-acl>
- Filter applied to "received" packets

Unicast to router interface addresses

IP Broadcast

Packets with router alert option

Packets for joined IP multicast traffic

Link local scope groups ("show ip int").

Groups with "L" flag set

• If not available – replace with per-interface ACL!

Filter for Control Plane Packets Non-Multicast Specific

• Not incoming interface specific!

Can not filter per-subscriber or user vs. backbone interfaces

• Usage guideline / examples:

Positive list of required control plane packets

Protects against unknown stuff the router may accept without the admin knowing

Negative list of unwanted protocols. E.g.:

Unicast PIM packets (not RP / candidate-BSR)!

Unicast IGMP packets (non UDLR use)

TCP packets to port 639 (MSDP) from non-MSDP peer sources (if MSDP running)

MQC – Modular QoS CLI Policing (Rate-Limiting) and Shaping of Packets

- MQC: IPv4/IPv6 infrastructure in IOS not multicast specific – multi purpose
- Police received multicast control plane packets
 Protection against DoS attacks by large amounts of control plane packets
- Police received data packets

Enforce SLA bandwidth (e.g.: video flows)

For aggregate multicast traffic or individual flows

• Not security related:

Queue outbound multicast data packets according to diffserv classes

Shape outbound multicast data packets to control burstyness

Tag packets with DSCP bits according to application->Diffserv policies

MQC – Modular QoS CLI Three Tier CLI Hierarchy

- As required
 Define ACLs for reqd. objects
- **1.** Traffic classification

identify traffic and assign to classes

2. Define the Diffserv policy

Assign classes to a policy

Define the Diffserv treatment for each class

3. Attach the Diffserv policy to a logical/physical interface

The point of application of a QOS policy

ip access-group extended mc-control-acl
 permit ip any 224.0.0.0 0.0.0.255

class-map match-all mc-control-class match access-group mc-control-acl

policy-map mc-control-policy class mc-control-class police rate 4000000 bps burst 2500000 conform-action transmit exceed-action drop

interface Serial0
ip address 192.168.2.2 255.255.255.0
service-policy input mc-control-policy

 Example: Rate-limit aggregate of all multicast control packet into router to 4 Mbps (~5000 packets/sec @ 100 byte packets) – 5 sec burst.

MQC – Modular QoS CLI Three Ways to Use MQC

Explicit service policies on interfaces

standard case

Microflow-policing

Automatic creation of service policies for individual flows

CoPP - Control Plane Policing

Apply to control plane packets (policing only)

Same rules as for ip receive acl

Control-Plane

Establishes context like "Interface", but allows only MQC commands afterwards

Interface Filtering and Rate-Limiting on Control Packets

```
ip access-list extended no-control-in
 deny pim any any ! Protect CPU against unwanted protocols
 deny ospf any any ! Run on router !
 permit igmp any host 224.0.0.22 ! Only IGMPv3
 deny iqmp any any
 permit ip any any
access-list 101 permit any host 255.255.255.255 ! E.g.: DHCP requests
access-list 101 permit any 224.0.0.0 0.0.0.255 ! E.g.: IGMP memberships
Access-list 101 permit any host 192.189.1.1 ! Interface addr of router
Interface ethernet 0
                                            ! User facing
ip access-group no-control-in in
 ip iqmp version 3
 ip iqmp limit 2
                                            ! Allow 2 STBs
 rate-limit input access-group control-packets 8000 1500 200
    conform-action transmit exceed-action drop
```

• Full throttle paranoia: HW-filter unwanted control packets, and HW-rate limit required ones (e.g.: DHCP, IGMP). Limit IGMP state.

Per-interface filter because of backbone interfaces

Per-interface rate-limiting to isolate amongst multiple users

IGMP/MLD Packets

- IPv6: MLD uses ICMPv6 protocol type packets
- IPv4: IGMP is a protocol type:

PIMv1, IGMPv1,v2,v3, mrinfo, DVMRP, mtrace

IOS: all these protocols enabled (if multicast is)

Bad ?:

PIMv1 – legacy protocol behavior Mrinfo - eavesdropping (use SNMP) DVMRP – flood & prune

Good:

mtrace – multicast equiv. Of traceroute

IGMP/MLD Protocol Packets

- Bad: Unicast IGMP packets for IGMP/UDLR
- Good: "Normal" = Multicast IGMP packets:

Attacks must originate on the same subnet

Link local multicast, not routed!

Memberships: Only with IGMPv3

Forged query packets

Lower version: inhibit SSM, leave-latency

Bursts: response storms

• Forged (multicast) membership reports

Not a problem !?

IGMP/MLD Protocol Packets The L3 vs. L2 Problem

Forged queries:

Need inhibit that other hosts receive it!

Forget membership reports Forge IP address of other host Router can not validate identity of hosts !

- L2 per-port control required for these
- Per-LAN vs. per port access/admission control

© 2006 Cisco Systems, Inc. All rights reserved
IGMP Packets Example Extended ACL for Various IGMP Packets

```
ip access-list extended control-packets
 deny iqmp any any pim ! No PIMv1
 deny iqmp any any dvmrp ! No DVMRP packets
 deny iqmp any any host-query ! Do not use with redundant routers !
 permit igmp any host 224.0.0.22 ! IGMPv3 membership reports
 permit igmp any any 14 ! Mtrace responses
 permit igmp any any 15 ! Mtrace gueries
 permit igmp any 224.0.0.0 15.255.255.255 host-guery ! IVMPv1/v2/v3 gueries
 permit igmp any 224.0.0.0 15.255.255.255 host-report ! IGMPv1/v2 reports
 permit igmp any 224.0.0.0 15.255.255.255 7 ! IGMPv2 leave messages
 deny iqmp any any ! Implicitly deny unicast IGMP here!
 permit ip any any ! Likely deny any on control plane!
ip receive access-list control-packets
interface ethernet 0
 ip access-group control-packets in ! Could put filter here too
```

- <u>http://www.iana.org/assignments/igmp-type-numbers</u>
- Numeric 'port' <n> = IGMP type number 0x1<n>

PIM Packets – Multicast

- Multicast PIM Control Packets :
 - Hello, Join/Prune, Assert, Bootstrap, DF-elect All are link local multicast (TTL=1) All are multicast to All-PIM-Routers (224.0.0.13)
- Attacks must originate on the same subnet Forged Join/Prune, Hello, Assert packet.

PIM Packets – Unicast

RST-2262

• Unicast PIM Control Packets :

Register: Unicast from DR to RP. **Register-Stop:** Unicast from RP to DR. C-RP-Advertisement: Unicast from C-RP to BSR.

Attacks can originate from anywhere!

PIM Packets – Auto-RP

- IOS: AutoRP/BSR always enabled, non-configurable
- Auto-RP PIM Control Packets :

C-RP-Announce: Multicast (224.0.1.39) to all MA's. Discovery: Multicast (224.0.1.40) to all Routers. *Normally Dense mode flooded!*

• Attacks can originate from anywhere!

PIM Neighbor Control

Must receive Hellos to establish PIM neighbor

DR election, failover

Accept / Send PIM Join/Prune/Assert

• Use ip pim neighbor filter to inhibit neighbors

Filters all PIM packets from non-allowed sources

Hellos, J/P, BSR, ... !

RST-2262 12696_05_2006_X2

AutoRP Control RP Announce Filter

• ip pim rp-announce-filter

Configure on MA which router (IP-addr) is accepted as C-RP for which group ranges / group-mode

Auto-RP Control Constrain Auto-RP Messages

AutoRP packets:

224.0.1.39 (RP-announce), 224.0.1.40 (RP-discover)

RST-2262 12696_05_2006_X2

BSR Control Constrain BSR Messages

ip pim bsr-border

Filters messages (multicast) from BSR

no ACL possible (hop by hop forwarded)

RST-2262 12696_05_2006_X2

Protection Against Attacks on Access Networks

Attacks by hosts (multicast)

PIM Hellos – become DR – no traffic forwarded to LAN PIM joins – receive traffic (should use IGMP / filtered) AutoRP RP-discovery or BSR bootstrap

Announce fake RP, bring down SM/Bidir service

Attacks by hosts (unicast)

Send register/register-stop

Inject fake traffic

BSR announce packets – announce fake RP

• Hosts should never do PIM !

Protection Against Attacks on Access Networks

- ip pim multicast boundary filter AutoRP (not PIM) -
- ip pim rp-address override not using AutoRP / BSR
- Non-redundant access-network

ip pim announce-filter acl-none Multicast only: need to add filtering on RP/BSR

ip access-group acl-deny-all-pim in

Redundant access-networks

Allow PIM from redundant neighbor. Need L2 mechanisms to inhibit forged packets !

Add ip pim bsr-border - group-mapping attacks

PIM Control Plane Missing Simplifications / Improvements

- Disable AutoRP operations on router
- Disable BSR operations on router
- Disable RP operations on router Functions not running can not be attacked
- And/Or:
- Authentication for PIM / AutoRP messages
 Differentiate PIM / AutoRP messages from forged
 Without knowledge of IP addresses of legal peers
 Possible with IPsec for multicast (later slides)
 Not easy to configure yet though

MSDP MD5 Password Authentication

Protect MSDP peering against spoofed packets

Protects against spoofed sourced packets

Partial protect against man-in-middle

Uses RFC2385 TCP authentication header
 Defined for BGP

Actually independent of BGP

RST-2262 12696_05_2006_X2

SAP / SDP / SDR

- ip sap listen
- Receive SAP/SDP messages

"Just" for show ip sap output

Not used / required by router otherwise

except legacy ip multicast rate-limit function

- Dos against router CPU / memory
- Recommendation

Do no enable!

unless considered important to troubleshoot

If enabled, use CoPP to rate-limit

Other Control Plane Security Features

• ip multicast mrinfo-filter <std-acl>

Limit mrinfo answers to specific requesters

Access Control Includes Scoping

Access Control Overview

- Control which ASM groups and SSM channels systems (hosts or subscribers) can send and/or receive traffic for
- ip access-group / ipv6 traffic-filter
- ip pim accept-register / ipv6 pim pim accept-register
- ip igmp access-group / ipv6 mld access-group
- Ip multicast group-range / ipv6 multicast group-range
- ip multicast boundary / ipv6 multicast boundary

Packet Filter Based Access Control

ip access-group [in|out] / ipv6 traffic-filter [in|out]

- HW installed on most platforms (costs HW filter)
- Filters before multicast routing no state creation
- Best for ingress egress filtering best at multicast routing

RST-2262

12696 05 2006 X2

Host Receiver Side Access Control

ip igmp access-group / ipv6 mld access-group

 Filter group/channels in IGMP/MLD membership reports Controls entries into IGMP/MLD cache Extended ACL semantics like multicast boundary Deny only effective if protocol = ip IGMPv2/MLDv1 reports: source = 0.0.0.0 / 0::0

PIM-SM Source Control

ip pim accept-register / ipv6 pim accept-register

- Unwanted source traffic hits first-hop router
- First-hop router creates (S,G) state and sends Register
- RP rejects Register, sends back a Register-Stop.
- RP-based (central) access control for (S,G) in PIM-SM
- Extended-Acl: which source can send to which group
- Imperfect:
 - (S,G) state on FHR still created
 - (S,G) traffic still to local and downstream rcvrs.

Disabling Multicast Groups

- ip multicast group-range <std-acl> (future)
- ipv6 multicast group-range <std-acl> (12.4T)
- Disable all operations for groups denied by <acl>
 Drop / ignore group in all control packets.
 PIM, IGMP, MLD, MSDP.
 No IGMP/MLD (cache), PIM, MRIB/MFIB state.

Drop all data packets.

HW-discarding platform dependent

Interface / Protocol Level Access Control Overview

- IPv4: per-interface either or all of A, B, C (one each)
 - A: ip multicast boundary <std-acl> [filter-autorp]
 - Group scope boundaries

Semantic filtering of AutoRP messages

- B: ip multicast boundary <ext-acl> in
- **C**: ip multicast-boundary <ext-acl> out

Extended form for access-control, SSM scopes

- IPv6: per-interface one config of A
 - A: ipv6 multicast boundary scope <n>

Scoping simple due to IPv6 architecture

No B, C options (yet)

Interface / Protocol Level Access Control IPv4 Scope Boundaries

No equivalent for BSR (yet)

239.193.0/16

Interface / Protocol Level Access Control IPv6 Scope Boundaries

Interface ethernet 1 ipv6 multicast boundary scope 7

- Scope addresses fixed by architecture
- Boundary for scope <n> always also filters scope 2..<n-1> addresses.

Larger scope may not cut through smaller scope.

• ACL for scope implicitly defined:

Interface / Protocol Level Access Control Shape and Structure of Scopes

• Scopes must be convex.

Traffic between source/receivers must not cross scope boundary. Property of topology AND metric

Scopes contained in larger scopes?

Only mandatory in IPv6 arch Scope expanding ring search Smaller scopes subset of larger scopes (IPv4, historical)

Recommendations IPv4

Define IPv4 scopes as non-overlapping ranges.

Picture: Non-convex scope

Interface / Protocol Level Access Control Location of Scope Boundaries

SUPPORTED

NOT SUPPORTED

• IPv6 arch: scope boundaries cut through router !

draft-ietf-ipngwg-addr-arch-v3-11.txt

• IOS / IOS-XR:

ALWAYS for link-local scope

NEVER for larger scopes

Scope boundaries only cut through links!

Interface / Protocol Level Access Control Filtering Rules (1)

- Filter IGMP/PIM messages and create filtered state
- OIF ("out") case:

Discard IGMP/PIM "join" for egress denied (*,G)/(S,G) state. Do not create state.

• IIF ("in") cases:

(1) Force OIF of mroute state to NULL if state denied on RPFinterface. No joins sent on RPF-interface

(2) Directly connected traffic: discarded state with NULL OF list. Also inhibits PIM-SM registering.

Interface / Protocol Level Access Control Filtering Rules (2)

- PIM-DM: Do not flood on egress boundary. Send prune on ingress boundary
- PIM-SM/SSM/DM: State creation by directly connected sources.

Not Catalyst-6500/Cisco-7600 (IPv4). Boundary-acl also filters packets.

• Bidir-PIM: May not inhibit upstream traffic with multicast boundary

For Bidir-PIM groups, use "ip multicast boundary" AND "ip access group".

Picture: Boundaries and Bidir problem

Interface / Protocol Level Access Control AutoRP Filtering

Domain Boundary

Access-list standard internet-boundary deny host 224.0.1.39 deny host 224.0.1.40 deny 239.0.0.0 0.255.255.255

Interface ethernet 0
ip multicast boundary internet-boundary

Scope boundary – use filter-autorp

 Group ranges intersecting denied ranges in ACL are removed from RP-Discovery/Announce messages at boundary

Access-list standard region deny 239.193.0.0 0.255.255.255

Interface / Protocol Level Access Control Separate In/Out Filtering

- ip multicast boundary <ext-acl> in IIF only - To inhibit traffic received on the interface
- ip multicast boundary <ext-acl> out

OIF only – Inhibit replication to the interface

Extended ACL

Can filter each (*,G) and (S,G) state differently Support SSM per-channel filtering.

- Inbound traffic must be permitted by both ip multicast boundary acl and ip multicast boundary ext-acl in
- Outbound traffic must be permitted by both ip multicast boundary acl and ip multicast boundary ext-acl out

Interface / Protocol Level Access Control Semantics of Extended ACLs

ineffective for ip multicast boundary

[1], [2] Deny only effective with protocol "ip" (all packets of a (S,G)/(*,G)

[3] Can filter only routable groups!

- Reuse ACL with ip access-group
- [4] Src = 0.0.0.0 = *

deny (*,G) joins / IGMPv2 memberships, but permit (S,G)

Interface / Protocol Level Access Control Example: interdomain (*,G) Filter

Interface / Protocol Level Access Control Example: Subscriber Interfaces

- *ip multicast boundary ext-acl out* supersedes *ip igmp access-group ext-acl*
- Use ip multicast boundary in/out independent of host or router subscriber
- Consider ip access-group ext-acl in
- Rule of thumb:

Output: State based control

Input: State {+ packet} control

Interface / Protocol Level Access Control Example: Alternative SSM Scopes [(S/M, G/M)]

- IPv6: 16 scopes for both ASM and SSM!
- IPv4: Only global scope SSM (232.0.0.0/8).
- Cisco recommendation, add ranges: 239.232.0.0/16 – admin scoped SSM Not supported by all vendors
- SSM (S/M, G/M) scopes:

A/M = loopback of MVPN-PE

232.x.0.0 = MVPN Default & Data-MDTs

Use (S/M,G/M) scope filter on P links facing Internet-PE (non-MVPN)

Result:

Full Internet SSM transit Protected MVPN service

Cisco Public

69

Access Control Recommended Interdomain MSDP SA Filter

```
! domain-local applications
access-list 111 deny ip any host 224.0.2.2
access-list 111 deny
                     ip any host 224.0.1.3 ! Rwhod
access-list 111 deny
                     ip any host 224.0.1.24 ! Microsoft-ds
access-list 111 deny
                     ip any host 224.0.1.22 ! SVRLOC
access-list 111 deny
                     ip any host 224.0.1.2 ! SGI-Dogfight
access-list 111 deny
                     ip any host 224.0.1.35 ! SVRLOC-DA
access-list 111 deny
                     ip any host 224.0.1.60 ! hp-device-
!-- auto-rp groups
access-list 111 denv
                     ip any host 224.0.1.39
access-list 111 deny
                     ip any host 224.0.1.40
!-- scoped groups
access-list 111 deny ip any 239.0.0.0 0.255.255.255
!-- loopback, private addresses (RFC 1918)
access-list 111 deny ip 10.0.0.0 0.255.255.255 any
access-list 111 deny ip 127.0.0.0 0.255.255.255 any
access-list 111 deny ip 172.16.0.0 0.15.255.255 any
access-list 111 deny ip 192.168.0.0 0.0.255.255 any
access-list 111 permit ip any any
!-- Default SSM-range. Do not do MSDP in this range
access-list 111 deny ip any 232.0.0.0 0.255.255.255
access-list 111 permit ip any any
```

http://www.cisco.com/warp/public/105/49.html

RST-2262 12696_05_2006_X2

Admission Control

Admission Control Goals

Protect router from control plane overload

State (HW, memory), CPU

DoS not to affect non-multicast services

Resource allocation

Per subscriber (VRF, interface)

DoS not to affect multicast to other subs.

Limit subscriber resources to SLA

Call admission control

Protect bandwidth resources (interfaces, subnets) from congestion

Content / Subscriber based policies
Admission Control Goals and Means (Tools)

GOALS			
Protect router from control plane overload			
Fair/SLA based router resource allocation			
Bandwidth based Call admission control		\backslash	
Router global control plane CoPP	\neg		Ì 🗸 Ì
Per VRF, interface, neighbor control plane Mroute-limits, MQC rate limiters, MSDP limits (PIM-SM only)		•	•
Per interface state limits igmp / mld / multicast(pim)	W	•	W
Per interface limits with costs	•	•	
RSVP for bandwidth limits	F		
MEANS		-	-

Admission Control Global / per-VRF Route Limits

ip multicast route-limit <limit> [<threshold>]

No state created beyond <limit>

State triggering packets still punted, but discarded

Syslog warnings created beyond <threshold>

RST-2262 12696_05_2006_X2

Admission Control MSDP Control Plane

- ip msdp sa-limit <peer> <limit>
- Limit #SA states accepted from MSDP peer
- Simple recommendations:

Small limit from stub-neighbor (customer)

Large limit (max #SA in Internet) from transit customer

If you are transit ISP yourself

Enterprise MSDP speaker

Max #SA that won't overload router

State / Call Admission Control Terminology

- 1 Call = 1 (TV/radio/market) program / flow
- 1 State ~= 1 Call ?

SSM: 1 (S,G) state = 1 call ASM/PIM-SM: 1 call = (*,G) + 1 or more some (S,G)

- Limit state = DoS protection
- Limit calls = service management
- Admission:

hop by hop – permit/deny call for whole branch of the tree

Admission Control Host Receiver Side Admission Control

ip igmp limit <n> [except <ext-acl>]
ipv6 mld limit <n> [except <ext-acl>]

- Always per interface
- Global command sets per-interface default
- Counts entries in IGMP cache

```
ip access-list extended channel-guides
  permit ip any host 239.255.255.254 ! SDR announcements
  deny ip any any
ip igmp limit 1 except channel-guides
interface ethernet 0
  ip igmp limit 2 except channel-guides
```

Example Usage of igmp Limit Admission Control on Agg-DSLAM Link

- 1. 300 SDTV channels
- 2. 4Mbps each
- Gbps link to DSLAM
 500 Mbps for TV rest for Internet etc.
- 4. 500Mbps/4Mbps = 125 IGMP states

IGMP/MLD = Receiver side only No PIM

Per Interface mroute Limits

- ip multicast limit
 [rpf | out | connected] <ext-acl> <max>
- Per interface mroute state (PIM/IGMP)
- Input: Rpf, connected = (S,G) with S connected
- Output: Out
- Multiple limits allowed per interface
- Each establishes one limiter
- Input / Output state accounted against first limiter permitting state in <ext-acl>

Multicast Egress/Replication states, accounted Against s1, s2 egress (out)

79

Per Interface mroute Limits

- Control plane similar to ip multicast boundary Same IIF,OIF PIM, IGMP filtering if flow denied
- Denied input multicast boundary creates OIF=0 flow state Protect best against unwanted packets
- Denied input multicast limit does not create state Protect against state creation!

Use CoPP to protect against unwanted packets

- Limits state, not calls (*,G) and (S,G) counted !
- Emulate boundary with multicast limit! ip multicast boundary <ext-acl> out ip multicast limit out <not-ext-acl> 0 Need to invert <ext-acl>

Example Use of per Interface mroute Limits Admission Control on Agg-DSLAM Link

Bandwidth Based CAC

- ip multicast limit cost <ext-acl> <multiplier>
- Cost (<multiplier>) of states in ip multicast limit
- Global configuration, multiple possible
- Use first limit cost with <ext-acl> permitting state
- Usage

Set multipliers to Mbps/kbps of flows

Set up address plan to include bandwidth

Allow to add flows later without changing config 239.1.X.Y -> X = bandwidth in Mbps (2..20), Y flow PIM-SM: count only (*,G): (multiplier=0 for S,G...)

Multicast Call Admission Control : Cost Factor for per-interface Mroute State Limits

Most Simple Recipe for Running IP Multicast ?

Secure Best-Effort SSM Multicast

- Best effort no business critical application running
- Secure protect to be ~comparable to unicast
- Simple config run without monitoring ?!

```
ip multicast-routing
ip pim ssm default
no ip dm-fallback
ip multicast route-limit 1000 900
ip igmp limit 100
! All interfaces
interface ethernet 0
ip pim sparse-mode
```


AAA¹ Integration for IP Multicast

¹ Authentication, Authorization, Accounting

RST-2262 12696_05_2006_X2

© 2006 Cisco Systems, Inc. All rights reserved.

Service Edge and Multicast AAA Integration

- Subscriber and Content Provider Edge interfaces
- Access/admission-control CLI is authorization
- AAA integration:

Add authentication driven authorization and accounting

Service Edge Without AAA Support

- Assume single subscriber per interface
- Configure discussed CLI commands, like:

ip access-group / ipv6 traffic-filter

ip igmp access-group / ipv6 mld access-group

ip multicast boundary [in | out]

ip pim neighbor filter

ip igmp limit / ipv6 mld limit

ip multicast limit [rpf | out]

• ... to provide subscriber based access and admission control

AAA models for IP Multicast

Authentication

By interface By subscriber (PPP links)

Authorization

Manual (previous slide)

Radius/Tacacs provisioning Join/Membership authorization (*FUTURE*)

Accounting

Dynamic accounting via Radius Netflow support for IP multicast Polling of MIB counter Application level (e.g.: STB)

Not usually considered to be part of AAA

AAA Models Radius/Tacacs Provisioning

Consider manual global CLI configs

```
! Basic Service
ip access-list standard basic-service
permit 239.192.1.0 0.0.0.255 ! Basic service channels
!Premium Service
ip access-list standard premium-service
permit 239.192.1.0 0.0.0.255 ! Basic service channels
permit 239.192.2.0 0.0.0.255 ! Premium service channels
! Premium Plus Service
ip access-list standard premium-plus-service
permit 239.192.1.0 0.0.0.255 ! Basic service channels
permit 239.192.2.0 0.0.0.255 ! Premium service channels
permit 239.192.3.0 0.0.0.255 ! Premium service channels
permit 239.192.3.0 0.0.0.255 ! Premium service channels
permit 239.192.3.0 0.0.0.255 ! Premium Plus service channels
```

```
Ip access-list standard all-groups permit 224.0.0.0 15.255.255.255
```

AAA Models Radius/Tacacs Provisioning

• **PPPoX** interface support with AAA

User-ID based authentication. Not specific to multicast. Radius server dependent: reuse profiles

Multicast AAA

aaa authorization multicast default [method3 | method4] Trigger Radius authentication after first IGMP/MLD join. Authenticates user via interface name

AAA Models Authentication with Radius Provisioning

RST-2262 12696_05_2006_X2

AAA Models Changing User Profiles from Radius/Tacacs Provisioning

AAA Receiver Accounting

 aaa accounting multicast default [start-stop | stop-only] [broadcast] [method1] [method2] [method3] [method4]

Set global parameters for accounting

• ipv6 multicast aaa account receive access-list [throttle seconds]

Enable accounting on interface

- Generate Radius acct. records for multicast flows When first joined on an interface (START)
 When stopped being forwarded on interface (STOP)
 FUTURE: Periodically, with counters
- Avoid many accounting record during zapping Send START record only throttle-seconds after join

AAA Receiver Accounting

RST-2262 12696_05_2006_X2

AAA Models *FUTURE* Per Join/Membership Authorization

Allows dynamic AAA server based policies

More flexible and expensive than provisioning based Frequently changing policies (PPV,...)

Admission control: With tracking of existing memberships

Scalability via cache-timeout in AAA server replies

Potential to combine models:

Whitelist: AAA provisioning permits always allowed services

Greylist: per join/membership authorization only invoked for requests not permitted by whitelist

```
E.g.: PPV, ..
```

Maximizes scalability

AAA Models *FUTURE* Per Join/Membership Authorization

Firewalls

Firewalls and Multicast Overview

Firewall function is not NAT

Firewall and NAT often collocated

IOS: Source NAT and limited src/grp NAT

• IOS Firewall: specific firewall feature set

No multicast support requirements identified Coexistence good enough!

• Firewall devices/appliances: (PIX, ..) Add IP multicast routing to device And similar access control as IOS

Cisco IOS Firewall

Unicast

Mostly to avoid unwanted "receiving"/"external connections" Identify TCP/UDP/RTP/.. Flows by examining control plane flows (TCP, RTSP, FTP, HTML, ..)

Dynamic permitting flows based on policies

Ignores multicast traffic (passes through)

Multicast

No important control plane driven multicast flow setup identified / required by customers (so far)

Use multicast access-control to permit multicast applications:

ip multicast boundary, ...

Safe because (you should know this now):

Multicast flows stateful, explicit join

Full control of flows with existing control mechanisms

PIX Firewalls Overview

• PIX Firewall pre v7.0

IGMPv2 proxy routing only (for edge PIX)

• PIX Firewall v7.0

PIX is full IGMP/PIM router

Full features (ported from IOS)

Not all functions tested yet / supported

Obsoletes solutions like

GRE tunnels through PIX

Third-party DVMRP-only firewall

PIX Multicast Feature SUMMARY (Incomplete)

- Multicast Support in PIXOS 7.0
- IGMP Support

Stub multicast routing – IGMP Proxy Agent

IGMPv2, access group, limits

PIM Support

PIM Sparse Mode, Bidirectional, SSM

DR Priority

Accept Register Filter

Multicast Source NAT

• 515, 525, 535 and ASA platforms

PIX Multicast Candidate Future Features

• Planned Multicast Support in PIXOS 7.2

Multicast Boundary with autorp filter

PIM Neighbor filters

PIM Bidir Neighbor filters

• Future Support ?

IGMPv3/SSM

IPv6 Multicast

Stateful MSDP inspection

MSDP

• FSWM 3.1 will support multicast similar to PIXOS 7.0

IPsec and Multicast

Multicast and IPsec concepts

IPsec p2p tunnel interfaces (12.3(14)T/12.3(2)T)

Permits to encrypt IP multicast traffic avoids RPF issues with crypto-map based IPsec

• "Secure Multicast" (12.4(6)T)

Transparent "tunnel mode" en/decryption

Inhibits need for overlay network

Allows to apply IPsec to both multicast data traffic and control plane traffic (e.g.: PIM)

GDOI--Key distribution mechanism (RFC3547) Manual keying still available

Legacy behavior for IPsec multicast

- Not supported for multicast, broken!
- Security associations (SA) Rtr1/Rtr3 and Rtr2/Rtr3.
- "tunnel mode" (unicast) encapsulated Rtr3->Rtr1, Rtr3->Rtr1
- Broken because (lots of reasons):

Rtr1/Rtr2 do not see Rtr3 as PIM neighbors, but Rtr4

Sending PIM joins to Rtr4 ineffective, Replication on Rtr3 ineffective, ...

Would require hacks/NBMA mode interaction on Rtr3, etc...

Working P2P tunneling multicast with IPsec Tunnels with explicit tunnel interfaces

GRE tunnel Rtr1/Rtr3 and Rtr2/Rtr4

Apply IPsec encryption only to GRE (unicast) traffic

Used by (for example) DMVPN solution

Also scales: Hub (Rtr3) can use single multipoint tunnel interface to support hundreds/thousands of spokes

Working P2P tunneling multicast with IPsec Use tunnels with explicit tunnel interfaces

New: IPsec tunnel interface

Looks like GRE tunnel to IP multicast

Does not replace GRE for DMVPN

GRE beneficial for NHRP operations

Scalability of multipoint GRE

Beneficial for few IPsec tunnels, forwarding performance and interoperability with 3rd party IPsec equipment.
Secure multicast How to use multicast in core ?

 IPsec "Tunnel mode": changes (S,G) – creates multicast overlay problem -> requires MVPN signaling or similar

Header preservation can avoid this

 Need SA for multicast packets between source/receiver routers "group of nodes")

Manual keying group membership / scaling issues -> GDOI !

IPsec Tunnel Mode: IP Header Preservation

IPSec packet

Preservation copies/maintains Source, Destination, options, DSCP, ... Not maintained: IP header protocol type (obviously!)

Secure multicast Encrypt with multicast across core

- In IOS images with "Secure Multicast" feature support, multicast packets receive "Header Preservation" in tunnel mode
- Can now successfully use crypto-maps (no tunnel interfaces required) to pass multicast encrypted across core
- Use with:

MVPN: en/decrypt on PE or CE routers !

Non-MVPN: E.g.: Enterprise, unsecure backbone links, ...

Dynamic group SA keying - GDOI

 Single/manual configured key between all encrypting/decrypting routers

How to manage keys, membership? Re-keying ?

GDOI: Dynamic Group-SA protocol (RFC3547)

Group-key equivalent to PKI (p2p SA)

Client-Server protocol:

Encrypting/decrypting nodes (routers/host) = clients

Server: Key server, managing members

IOS implements both client and server side

Scalable/dynamic re-keying: Can use multicast to distribute updated keys !

GDOI example

• Each router Registers with the Key Server. The Key Server authenticates the router, performs an authorization check, and downloads the policy and keys to the router.

Each VPN CPE

- Registers to the GDOI key server to "receive" IPsec SAs
- Encrypts/Decrypts packets matching the SA
- Receives re-key messages, either to refresh the IPsec SAs or eject a member

RS1-2202 12696_05_2006_X2

113

Application Scenario: Integration of GDOI with DMVPN

Benefit: Using Secure Multicast / GDOI functionality in DMVPN network, the delay from IPSec negotiation is eliminated

Note : Multicast traffic will be still forwarded to Hub for any spoke to spoke even with this deployment.

1. DMVPN Hub and spokes are configured as Group Member (GM)

- 2. All Group members register with the Key Server (KS)
- 3. A spoke to hub tunnel is established using NHRP
- 4. Spoke sends a NHRP resolution request to the Hub for any spoke-spoke Communication
- 5. Upon receiving NHRP resolution reply from the hub, the spoke sends traffic directly to other spokes with group key encryption

Secure PIM Control Traffic with IPSec

Encrypt/Authenticate PIM Packets

Crypto map for 224.0.0.13 (PIM Control Messages) Use either IPSec options Hash Functions: MD5, SHA1 Security Protocols: Authentication Header(AH), Encapsulating Security Payload (ESP) Encryption Algorithms: DES, 3DES, AES Recommended IPSec Mode: Transport Recommended Key method: Manual ? IPSec AH recommended in PIM IETF drafts

Secure PIM Control Traffic Example

```
access-list 106 permit ip 0.0.0.0 255.255.255.255 host 224.0.0.13
```

```
crypto ipsec transform-set pimts ah-sha-hmac
mode transport
```

```
crypto map pim-crypto 10 ipsec-manual
set peer 224.0.0.13
set session-key inbound ah 404 bcbcbcbcbcbcbcaaaa
set session-key outbound ah 404 bcbcbcbcbcbcbcaaaa
set transform-set pimts
match address 106
interface Ethernet0/0
crypto map pim-crypto
```

Secure multicast summary Key Application Scenarios

Key Use Case	Customer	Features
Encryption of IP packets sent over Satellite Links	Organizations who wish to secure video communications through use of BB satellite	Hardware Acceleration support Native Multicast Encryption
Secured Multicast VPN	MPLS VPN Service Provider customer who wish to have multicast services between multiple sites of a customer VPN	Security for mVPN packets DoS protection for mVPN PE CE-CE protection for Multicast
Reduce delays in Spoke-Spoke DMVPN network	DMVPN Enterprise customers who are deploying voice and wish to reduce the delays in setting up voice calls between spokes	GDOI with DMVPN Instant spoke-spoke connectivity
Secure PIM Control Traffic	Enterprise financial customers who wish to secure PIM control traffic in their network	PIM control packets encryption

Conclusion

Conclusion Multicast and Security

Multicast is different from unicast !

Why ? Remember ? ... states, replication, joins, unidirectional..

Rich framework of IOS CLI commands for control

Centered around controlling protocol operations, states (multicast) or policing packets (MQC, CoPP, - same as unicast)

Can well provide "protected" service/sla

No "simple" protocol security against DoS (-> IPsec)

- PIX with "full" (PIM) IP multicast routing
- Emerging solutions with multicast

AAA, IPsec (protect PIM or multicast data)

Recommended Reading

- Continue your Cisco Networkers learning experience with further reading from Cisco Press
- Check the Recommended Reading flyer for suggested books

CCIE Professional Development Routing TCP/IP Volume L Second Edition

A detailed examination of interior routing protocols

ciscopress.com

Jeff Doyle, CCIE[®] No. 1919 Jennifer Carroll, CCIE No. 1402

Complete Your Online Session Evaluation

- Win fabulous prizes; Give us your feedback
- Receive ten Passport Points for each session evaluation you complete
- Go to the Internet stations located throughout the Convention Center to complete your session evaluation
- Drawings will be held in the World of Solutions

Tuesday, June 20 at 12:15 p.m.

Wednesday, June 21 at 12:15 p.m.

Thursday, June 22 at 12:15 p.m. and 2:00 p.m.

CISCO SYSTEMS