

Deploying IP Multicast

Session RST-2261

RST-2261 12735_05_2006_X2

© 2006 Cisco Systems, Inc. All rights reserved.

Agenda

- Basic Multicast Engineering
 - -Which Mode: ASM, SSM, Bidir?
 - -PIM Configuration Steps
 - -RP Engineering
 - -QoS Notes
- Advanced Multicast Engineering
 - -Addressing for Admin. Scoped Zones
 - -Scoping Using Auto-RP, Listener, and Boundaries
 - –Load Balance via RP
 - -SSM Mapping

Basic Multicast Engineering

Which Mode: ASM, SSM, Bidir?

PIM Sparse Mode Categories

Any Source Multicast (ASM)

- -Original (Classic) PIM-SM
- -Supports both Shared and Source Trees

Single Source Multicast (SSM)

aka Source Specific Multicast

-Supports only Source Trees

•No need for RP's, RP Failover, etc.

Bidirectional PIM (Bidir)

-Supports only Shared Trees

Any Source Multicast (ASM)

• Classic (original) PIMv2 Sparse Mode – Defined in RFC 2362

- Requires a Rendezvous Point (RP)
 - -RP and Shared Tree used for Source Discovery
 - -Need some form of RP Failover mechanism
 - -Shared to Source Tree switchover complexities

General Purpose Multicast

-Generally works well for most limited multicast applications.

Source-Specific Multicast (SSM)

- Well suited for One-to-Many Model.
 - Examples: IPTV, Stock Tickers
- Hosts responsible for learning (S,G) information.
 - Host uses IGMPv3 to join specific (S,G) instead of (*,G).
- Last-hop router sends (S,G) join toward source
 - No RPs or Shared Trees.
 - Eliminates possibility of Capt. Midnight Content Jammers.
 - •Only specified (S,G) flow is delivered to host.
 - Eliminates need for MSDP.

Simplifies address allocation.

 Different content sources can use same group without fear of interfering with each other.

SSM Example

RST-2261 12735_05_2006_X2

Cisco Public

SSM Example

RST-2261 12735_05_2006_X2

SSM – Summary

- Uses Source Trees only.
 - Hosts are responsible for source & group discovery.
 - Hosts must use IGMPv3 to signal which (S,G) to join.
- Solves multicast address allocation problems.
 - Flows differentiated by **both** source and group.
 - Content providers can use same group ranges.
 - Since each (S,G) flow is unique.
- Helps prevent certain DoS attacks
 - "Bogus" source traffic:
 - Can't consume network bandwidth.
 - •Not received by host application.

So where is SSM?

- Dependant on IGMPv3
 - Microsoft supports IGMPv3 in Windows XP natively
 - -Many IPTV STB's are adding support.

Workaround

-Static Source Mapping

•Router maps IGMPv2 Joins in SSM range to wellknown sources via DNS or static configuration

SSM Mapping

- Allows only for one, or more, sources per Group
- Router maps group to source (sources)
 - -Uses either DNS or static internal database
 - •DNS method allows content providers to provide the mapping
 - •DNS Method independent from network operators

SSM Mapping – DNS Example

Bidirectional (Bidir) PIM

Bidirectional PIM (Bidir)

- Many-to-Any State problem.
 - Large number of sources creates huge (S,G) state problem.
- Bidir PIM:
 - Use a *bidirectional* Shared Tree to deliver traffic *from* sources to the RP and all other receivers.

Benefits:

- Data and Control Planes decoupled
- Less state in routers
 - •Only (*, G) state is used. (No Source Trees.)
 - Source traffic follows the Shared Tree.
 - » Flows up the Shared Tree to reach the RP.
 - » Flows down the Shared Tree to reach all other receivers.

Bidirectional Shared-Trees

- -Contrary to SM (*,G) RPF rules
 - Traffic often accepted on outgoing interfaces.
 - Care must be taken to avoid multicast loops
- -Requires a Designated Forwarder (DF)
 - •Election based on the routing metric to the RP
 - •1 DF per RP per vlan
 - •Responsible for forwarding traffic up Shared Tree
 - » DF's will accept data on the interfaces in their OIL.
 - » Then send it out all other interfaces. (Including the IIF.)

Bidir PIM – Example

Bidir PIM – Example

Bidir PIM – Summary

- Drastically reduces network mroute state
 - -Eliminates ALL (S,G) state in the network
 - •SPT's between sources to RP eliminated.
 - •Source traffic flows both up and down Shared Tree.
 - -Allows Many-to-Any applications to scale.
 - •Permits virtually an unlimited number of sources.
- Reduces protocol complexity.
 - -No Source Registration.
 - -No SPT-Switchover.

Which Mode – ASM, SSM, Bidir

Use SSM

- -For One-to-Many applications
 - •Eliminates need for RP Engineering.
 - Greatly simplifies network.

Use Bidir

- -For Many-to-Many | Few applications
 - •Drastically reduces total (S,G) state in network.

•Use ASM (Classic PIM-SM)

-For all other general purpose applications

Some Generic Configuration Notes

PIM Configuration Steps

- Enable Multicast Routing on every router
- Configure every interface for PIM
- Highly consider Anycast-RP & MSDP
- Configure the RP for ASM/Bidir Groups
 - -Using Auto-RP or BSR
 - •Configure certain routers as Candidate RP(s)
 - •All other routers automatically learn elected RP
 - -Static RP addressing
 - •RP address must be configured on every router

Configure PIM on Every Interface

Classic Partial Multicast Cloud Mistake #1

Configure PIM on Every Router

Classic Partial Multicast Cloud Mistake #2

Group Mode vs. Interface Mode

• Group & Interface mode are independent.

- -Interface Mode
 - •Determines how the interface operates when sending/receiving multicast traffic.
- -Group Mode
 - •Determines whether the group is Sparse or Dense.

Group mode is controlled by local RP info

- -Local RP Information
 - •Stored in the Group-to-RP Mapping Cache
 - May be statically configured or learned via Auto-RP or BSR
- -If RP info exists, Group = Sparse
- -If RP info does not exist, Group = Dense
 - •Trivia moment; if dm-fallback is enabled there will be a default 0.0.0.0 RP address
- -Mode Changes are automatic.
 - •i.e. if RP info is lost, Group falls back to Dense.

Configuring Interface Mode

- Interface Mode Configuration Commands
 - -Enables multicast forwarding on the interface.
 - -Controls the *interface's* mode of operation.
 - ip pim sparse-mode
 - •Interface mode is set to Sparse mode operation.
 - » Auto-RP groups can be an exception.
 - ip pim sparse-dense-mode
 - Interface mode is determined by the Group mode.
 - » If Group is Dense, interface operates in Dense mode.
 - » If Group is Sparse, interface operates in Sparse mode.
 - ip pim dense-mode

Interface mode is set to Dense mode operation.

IGMP "static-join" vs. "join-group"

ip igmp join-group <group-address>

- -Populates IGMP cache
- -Sends IGMP report
- -Results in
 - •PIM RPT join from the DR (may not be this router)
 •CPU receives data, *usually a bad thing*
- ip igmp static-group <group-address>
 - -Populates IGMP cache
 - -Results in
 - •PIM RPT join ONLY IF configured on the DR
 - •No CPU impact, *usually a good thing*

IGMP join-group

IGMP static-group

ip igmp static-group on DR

ip igmp static-group on non-DR

RP Engineering – RP Configuration Methods

RP Configuration Methods

- Anycast-RP's
- Static
- Auto-RP
- •BSR

Anycast RP—Overview

Anycast RP—Overview

Static RP's

Hard-coded RP address

- -When used, must be configured on every router
- -All routers must have the same RP configuration
- -RP fail-over not possible
 - •Exception: If Anycast RPs are used. Group can never fall back into Dense mode.

Static RP's

- RP selection behavior when using static RP
 - Static RPs match on the highest IP address, not longest match of the ACL
 - If a dynamically learnt Group/RP and a static RP entry match, the dynamically learnt RP will be selected.
 - If a dynamically learnt Group/RP and static RP entry(s) with override match, the highest IP addressed static RP will be selected.
- Easy to avoid conflicts, do not engineer overlapped Group/RP ranges, exception being Anycast-RPs.
Auto-RP Overview

RST-2261 12735_05_2006_X2

Auto-RP Overview

RST-2261 12735_05_2006_X2

RP Engineering – Avoiding Dense Mode Fallback

Avoiding DM *Flooding*

Use global command

ip pim autorp listener \rightarrow Recommended

- -Added support for Auto-RP Environments.
 - Modifies interface behavior.
 - » Forces interfaces to always use DM for Auto-RP groups.

» Use only if Auto-RP is to be used.

- -Available 12.3(4)T, 12.2(28)S, 12.1(26)E
- •Use with interface command.

ip pim sparse-mode \rightarrow Recommended

- •Prevents DM Flooding.
- •Does not prevent DM Fallback!

Avoiding DM *Flooding*

 Prior to "listener" in IOS 12.3(4)T, 12.2(28)S, 12.1(26)E

-Must use ip pim sparse-dense mode interface command to support Auto-RP.

Use RP-of-last-resort

 Assign local Loopback as RP-of-last-resort on each router.

•Example*

```
ip pim rp-address <local_loopback> 10
access-list 10 deny 224.0.1.39
access-list 10 deny 224.0.1.40
access-list 10 permit any
```

* see Static RP slides for notes on selection of RP with Static RPs

New IOS global command

no ip pim dm-fallback \rightarrow Recommended

- Totally prevents DM Fallback!!
 - -No DM Flooding since all state remains in SM
- Default RP Address = 0.0.0.0 [nonexistent]
 - -Used if all RP's fail.
 - •Results in loss of Shared Tree.
 - •All SPT's remain active.
- Available 12.3(4)T, 12.2(28)S(not available on 6500/7600)

RP Engineering – General RP Recommendations

General RP Recommendations

- Use combined Anycast-RP & Auto-RP with autorp listener:
 - When rapid RP failover is critical
 - When dynamic Group/RP cache required
 - When Admin scoping is required
- Pros
 - Fastest RP Convergence
 - Most flexible and easy to maintain
- Cons
 - No Group/RP cache until a MA packet is received
 - Admin scoping can greatly increase complexity
 - Requires use of MSDP between RP's

General RP Recommendations

- Use combined Anycast-RP with Static:
 - When rapid RP failover is critical
 - When valid Group/RP cache is critical at all times
 - No requirement for dynamic Group/RP cache
- Pros
 - Fastest RP Convergence method
 - With override option, Group/RP cache can not be impacted via Auto-RP or BSR
 - Required when connecting to Internet
- Cons
 - Manual Group/RP configuration change on routers
 - Requires use of MSDP between RP's

Use Auto-RP with autorp listener

- -When minimum configuration is desired and/or
- -When maximum flexibility is desired

Pros

- -Most flexible method
- -Easiest to maintain

Cons

–Increased RP Failover times vs Anycast-RP inclusive configurations

-No Group/RP cache until a MA packet is received

General RP Recommendations

•Use BSR:

- -When dynamic Group/RP cache is required and
- -When maximum interoperability is needed

Pros

-Interoperates with all Vendors

•Cons

- -Some methods greatly increase configuration
- -Does not support Admin. Scoping

QoS Notes

QoS Notes

- IP Multicast is UDP
 - Turn off WRED or minimize the window
 •no congestion control

Jitter

-Sensitive for real time streams; i.e. audio, video

Financial data

- Data can be retransmitted however it quickly becomes "stale"
- Requires knowledge of the traffic

-UDP Multicast needs to be in separate threshold or queue

Advanced Multicast Engineering

Admin. Scoped Zones

Level1: Campus Scope

RST-2261 12735_05_2006_X2

Level2: Regional Scope

RST-2261 12735_05_2006_X2

Level3: Enterprise Scope

Level 4: Internet Global Scope

Administratively-Scoped Zones

• Used to limit:

- High-BW sources to local site
- Control sensitive multicast traffic
- Simple scoped zone example:
 - 239.193.0.0/16 = Campus Scope
 - 239.194.0.0/16 = Region Scope
 - 239.195.0.0/16 = Organization-Local (Enterprise) Scope
 - 224.1.0.0 238.255.255.255 = Global scope (Internet) zone
 - High-BW sources use Site-Local scope
 - •Low-Med. BW sources use Org.-Local scope
 - Internet-wide sources use Global scope

Administratively Scoped Address Range

RST-2261 12735 05 2006 X2

Scope Relative Addresses – RFC 2365

Top 256 Addresses of every Admin. Scope Range.

Last Octet	Offset	Description
.255	0	SAP Session Announcement Protocol (SDR)
.254	1	MADCAP Protocol
.253	2	SLPv2 Protocol
.252	3	MZAP Protocol
.251	4	Multicast Discovery of DNS Services
.250	5	SSDP
.249	6	DHCPv4
.248	7	AAP
.247	8	MBUS
	9 - 255	Unassigned

Scope Relative Example – Local Scope

RST-2261 12735 05 2006 X2

© 2006 Cisco Systems, Inc. All rights reserved.

Example Scope Address Assignments

Adding a Additional Scopes

RST-2261 12735_05_2006_X2

Address Ranges to Avoid

239.128.0.0/24

239.0.0/24

Avoid ranges that map to a MAC address of 0x0100-5E00-00xx!

- -i.e. 239.128.0/24 & 239.0.0/24
- These addresses are always flooded by Layer 2 switches!

Enterprise Scope Relative Range

RST-2261 12735 05 2006 X2

Adding Bidir Ranges to each Scope

- Subdivide each scope's address range into Bidir and ASM ranges.
 - Keep ASM range at the upper end of the address range.
 - Keeps Scope-Relative multicast in ASM mode.

Adding Private SSM Space

70

Avoid Overlapping Group Ranges

Avoiding Overlapping Group Ranges

-Can't use "deny" clause in C-RP ACL's

Implies "Dense-mode Override"

ip pim send-rp-announce loopback0 scope 16 group-list 10
access-list 10 deny 239.0.0.0 0.255.255.255
access-list 10 permit 224.0.0.0 15.255.255.255

-Must only use "permit" clauses

```
ip pim send-rp-announce loopback0 scope 16 group-list 10
access-list 10 permit 224.0.0.0 0.255.255.255
access-list 10 permit 225.0.0.0 0.255.255.255
...
access-list 10 permit 238.0.0.0 0.255.255.255
```

Avoid Overlapping Group Ranges

72
Admin Scoping using Anycast-RP with Static RP Configuration

•Concept:

- •One set of Anycast RP's per physical zone.
- •MSDP peer only between a zone's RP's
- Static RP to populate Group/RP cache

•Advantages:

Fast RP failure over

•Never lose Group/RP cache

•No need for special C-RP filters at boundaries

• Disadvantages:

 Changing address range allocation is a configuration change on all routers within the zone

• These Zones typically are defined as:

- -Enterprise
- -Region
- -Campus

Zones

Enterprise

- -IP Multicast streams needed to be sourced at any Enterprise Site for receivers located across the enterprise.
 - •Enterprise traffic does not exit the Enterprise boundary
 - •Regions and Campuses receive Enterprise traffic

Region

- -IP Multicast streams that have sources/receivers only within *that* region.
 - Region traffic does not exit the Region boundary
 - Campuses within this Region receives this Region's traffic

Campus

Local source/receivers only

» Campus traffic does not exit this Campus boundary

The role of Group/RP cache

- Why is control of Group/RP cache so Important?
 - -Group mode is determined by Group/RP cache
 - •Did we have a hit for the Group in Group/RP cache?
 - •Is the Group Dense or Sparse?
 - •Given the group Mode
 - » What operations are supported by the interfaces?

The role of Group/RP cache

- -If the interfaces are Sparse operation . . .
 - Dense mode groups' traffic have no way out of the router
 - » Exception IGMP report will populate the OIL
- –In PIM-SM, control of IP Multicast traffic flows depends on Group/RP cache hits.
 - If no Group/RP cache hit, then group mode is Dense. Thus no PIM joins/registers and no flow outside of the router.
 - •"no Group/RP cache hit" . . . you can not use what you don't know!

Internet with a capital "I"

Internet with a capital "I"

82

Internet with a capital "I"

Summary configuration points

- -Boundary statements
 - In a perfect world, not needed
 - <u>However</u>, use boundary commands for catching misconfigurations

-MSDP filters

•Must use MSDP filters when the router is the RP for more than one scope.

 In a perfect world of separate RPs (routers) for each different scope, not needed

-No special Dense mode group handling

Interfaces are in Sparse mode operation

Implementing Scoping using Auto-RP, Autorp listener, and Boundary Configuration

•Concept:

- •One set of Anycast RP's per physical zone.
- •MSDP peer only between a zone's RP's
- Auto-RP to populate Group/RP cache
- •Control Auto-RP packets to control Group/RP cache
 - ip multicast boundary access-list [filter-autorp | in | out]
 - » Match access-list ACEs to C-RP ACEs
 - » Interface command

•Advantages:

- Fast RP failure over
- Less configuration to modify the group range
 - » Change ACL on C-RP routers
 - » Change ACL on Boundary routers

• Disadvantages:

- •Can lose Group/RP cache, must wait for MA packet
 - » Mitigated by using the "interval" option in the rp-senddiscovery command

Need for special boundary filtering at scope boundaries

•By using:

- -Auto-RP/autorp listener
- -Anycast-RP (including MSDP)
- -Sparse Mode interface configuration

•We can achieve a relatively fast convergence.

Multicast Boundary Command

- ip multicast boundary <acl> [filter-autorp]
- -New 'filter-autorp' option
 - Filters contents of Auto-RP packets
 - » Filters both Announcement and Discovery messages
 - »C-RP/MA entries that match "deny" ACE are removed from packet
 - •Prevents C-RP/MA information from crossing the edge of a scoped zone.
 - •Greatly simplifies Administratively-Scoped Zone support using Auto-RP.
 - •Available in 12.0(22)S, 12.1(26)E, 12.2(18)SXD 12.2(12).

- How 'filter-autorp' option works:
 - For each RP Entry in Auto-RP packet:
 - If group-range in RP-Entry 'intersects' any 'denied' group-range in the Multicast Boundary ACL,
 - Delete the RP Entry from Auto-RP packet.
 - If resulting Auto-RP packet is non-empty,
 - Forward across multicast boundary.
 - Usually the MA packet is non-empty
- Simple method to ensure success
 - Always match Auto-RP Group-Range ACLs to Multicast Boundary ACLs.
 - Never use overlapping Auto-RP group ranges.

Internet with a capital "I"

94

Load Splitting via Group Range

Utilize bandwidth on both Wan links

A Solution

- -Configure Bidir PIM
- -Use 2 RP sets, one set for each Data Center
- -Use Phantom RP
- Engineer LAN's DF and "best metric" RP on same router

A simple configuration

- -Easy to support
- -Easy to troubleshoot

Common configuration to all routers

interface Loopback1

description *** Anycast-RP Grp A *** ip address 88.88.88.1 255.255.255.252 ip pim sparse-mode ip ospf network point-to-point

interface Ethernet0/0 ip address 9.9.9.1 255.255.255.0 ip pim query-interval 1 ip pim sparse-mode

interface Loopback1 description *** Anycast-RP Grp A *** ip address 88.88.88.1 255.255.255.248 ip pim sparse-mode ip ospf network point-to-point

interface Ethernet0/0 ip address 9.9.9.2 255.255.255.0 ip pim query-interval 1 ip pim sparse-mode

Interface Ethernet0/0	RP 88.88.88.1	DF Winner 8.8.8.1		Interface Ethernet0/0	RP 88.88.88.1	DF Winner 9.9.9.1
Grp a Souce/ Receiver	DFa	RPb	_ 		DFa	Grp a Souce/ Receiver
Grp b Souce/ Receiver	DFb	RPb	• • • • • • • • •	RPa	DFk	Grp b Souce/ Receiver

Interface	RP	DF Winner
Ethernet0/0	77.77.77.1	8.8.8.2

Interface	RP	DF Winner
Ethernet0/0	77.77.77.1	9.9.9.2

RST-2261 12735_05_2006_X2

102

- Used when the Corporate Standard is SSM globally
 - Provides interim configuration for non-IGMPv3 hosts
- No RPs to configure
 - -Simplifies control plane across routers
- Simple configuration on LHRs
 - -SSM mapping is configured only on the LHRs
 - -Same configurations on all LHRs
- SSM mapping was first introduced in 12.3(2)T

- Enable SSM range
 ip pim [vrf vrf-name] ssm {default | range
 access-list}
- Enable SSM mapping
 ip igmp [vrf vrf-name] ssm-map enable
- Disable DNS option:
 no ip igmp [vrf vrf-name] ssm-map query dns
- Create map and ACL
 ip igmp ssm-map [vrf vrf-name] static
 access-control-list source-address
 access-list access-list-number {deny | permit}
 source [source-wildcard] [log]

Configuration on all routers

ip pim ssm range 64

access-list 64 permit 239.232.0.0 0.0.255.255

SSM mapping configurations on LHR

ip igmp ssm-map enable

no ip igmp ssm-map query dns ip igmp ssm-map static 12 33.11.1.106

access-list 12 permit 239.232.1.1

SSM mapping for MoH

Router# show ip igmp group 239.232.1.1 detail Interface: Vlan20 Group: 239.232.1.1 Flags: SSM Uptime: 00:25:52 Group mode: INCLUDE Last reporter: 0.0.0.0 CSR Grp Exp: 00:02:56 Group source list: (C - Cisco Src Report, U - URD, R -Remote, S - Static, V - Virtual, M - SSM Mapping) Source Address Uptime v3 Exp CSR Exp Fwd Flags 33.11.1.106 00:25:52 stopped 00:02:56 Yes CM

Router# show ip mroute 239.232.1.1

(33.11.1.106, 239.232.1.1), 00:07:37/00:02:34, flags: sTI Incoming interface: Ethernet0/0, RPF nbr 11.11.2.1 Outgoing interface list: Ethernet1/0, Forward/Sparse, 00:07:37/00:02:34

Summary - SSM mapping for MoH

Advantages

- -SSM Mapping provides compliance for IGMPv2 hosts in a SSM environment
- -SSM Mapping avoids more complex solutions for IP Multicast, i.e. GRE tunnels, RP configurations, etc.

Disadvantages

- -SSM Mapping is static
- -Configuration on the LHRs

More Information

- White Papers
- Web and Mailers
- Cisco Press
 RTFB

CCO Multicast page:

http://www.cisco.com/go/ipmulticast

Questions:

cs-ipmulticast@cisco.com Customer Support Mailing List:

tac@cisco.com

RTFB = "Read the Fine Book"

Multicast Bedtime Stories

Recommended Reading

- Continue your Cisco Networkers learning experience with further reading from Cisco Press
- Check the Recommended Reading flyer for suggested books

Available Onsite at the Cisco Company Store

CCIE Professional Development Routing TCP/IP Volume L Second Edition

A detailed examination of interior routing protocols

ciscopress.com

Jeff Doyle, CCIE[®] No. 1919 Jennifer Carroll, CCIE No. 1402

Complete Your Online Session Evaluation

- Win fabulous prizes; Give us your feedback
- Receive ten Passport Points for each session evaluation you complete
- Go to the Internet stations located throughout the Convention Center to complete your session evaluation
- Drawings will be held in the World of Solutions
 - Tuesday, June 20 at 12:15 p.m.
 - Wednesday, June 21 at 12:15 p.m.
 - Thursday, June 22 at 12:15 p.m. and 2:00 p.m.

CISCO SYSTEMS

Appendix

- Configuring SSM
- Configuring SSM Mapping
- Configuring Bidir
- Configuring Combined Auto-RP & Anycast-RP
- Administrative Scoping Example
- Configuring Admin. Scoping with Auto-RP
- Configuring Admin. Scoping with Anycast-RP

Configuring SSM

Global command

ip pim ssm {default | <acl>}

- -Defines SSM address range
 - •Default range = 232.0.0/8
 - •Use ACL for other ranges

–Prevents Shared Tree Creation

- •(*, G) Joins never sent or processed
- •PIM Registers never sent or processed
- -Available in IOS versions
 - •12.1(5)T, 12.2, 12.0(15)S, 12.1(8)E

SSM Mapping Configuration

Enabling SSM mapping on the router

ip igmp ssm-map enable

For static mapping:

ip igmp ssm-map static <acl-1> <source-1 IP address>

ip igmp ssm-map static <acl-2> <source-2 IP address>

For DNS mapping (existing commands):

ip domain-server <ip address>

ip domain-name <domain.com>

To disable DNS mapping

no ip igmp ssm-map query dns

DNS Record Format: 3.2.1.232 IN A 172.23.20.70

Configuring Bidir PIM (Auto-RP Example)

Define Candidate RP and groups / modes it is willing to serve

ip pim send-rp-announce Loopback0 scope 10 group-list 45 bidir ip pim send-rp-announce Loopback1 scope 10 group-list 46 ! Two loopbacks needed due to a nature of ACLs (permit, deny) ip pim send-rp-discovery scope 10

access-list 45 permit 224.0.0.0 0.255.255.255
access-list 45 permit 227.0.0.0 0.255.255.255
! 224/8 and 227/8 will be PIM Bidir groups
access-list 45 deny 225.0.0.0 0.255.255.255
! 225/8 will be a PIM Dense Mode group

access-list 46 permit 226.0.0.0 0.255.255.255 ! 226/8 will be a PIM Sparse Mode group

Bidir PIM – Phantom RP

Question: Does a Bidir RP even have to physically exist? Answer: No. It can just be a phantom address.

Bidir PIM – Phantom RP

Router "E" forwards traffic onto core LAN segment.

Bidir PIM – Phantom RP

Router "F" forwards traffic on down the Shared Tree ala normal PIM-SM.

RP doesn't even have to physically exist.

RST-2261 12735_05_2006_X2

Phantom RP on Point-to-Point Core

Static Route Method

Phantom RP on Point-to-Point Core

Netmask Method

124

Combining Auto-RP and Anycast-RP

Configuration Steps

- 1. Enable Auto-RP
 - Newer IOS images
 - » Use ip pim autorp listener global command and configure ip pim sparse-mode on all interfaces.
 - Older IOS images
 - » Configure ip pim sparse-dense-mode on all interfaces.

2. Configure Auto-RP Mapping Agents

ip pim send-rp-discovery interface Loopback0 scope 32

Combining Auto-RP and Anycast-RP

Configuration Steps

- 3. Block DM Fallback
 - Newer IOS images
 - » Use no ip pim dm-fallback
 - Older IOS images
 - » Configure RP-of-last-Resort

ip pim rp-address <local_loopback> 10
access-list 10 deny 224.0.1.39
access-list 10 deny 224.0.1.40
access-list 10 permit any

- 4. Configure Anycast RP's for desired group range.
- 5. Configure Anycast RP's as Auto-RP C-RP's

ip pim send-rp-discovery Loopback0 scope 32 group-list 10

– Loopback0 = Anycast RP Address

RST-2261 12735_05_2006_X2 » Anycast-RP's will announce Anycast-RP address via Auto-RP © 2006 Cisco Systems, Inc. All rights reserved.

Example Auto-RP and Anycast-RP

Example Auto-RP and Anycast-RP

CISCO SYSTEMS