

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 1 of 10

Executive Guide to Web Services Security

Abstract

Businesses are rapidly adopting Web services to provide new levels of integration between

applications. Compared to earlier data-communications techniques, Web services are faster and

cheaper to develop, quicker to deploy, and easier to adapt to emerging business needs.

Although these benefits are real, and more and more companies are adopting Web services for

that reason, the same characteristics that make Web services quicker and cheaper to deploy,

more robust, and more flexible than older methods also make them vulnerable to new kinds of

security risks and vulnerabilities.

This document discusses the special security challenges posed by the use of Web services and

how to secure networks against them.

Special Advantages, Special Risks

The great advantage of the Internet is that it is universally accessible. Because it consists of

thousands of freely communicating networks all over the world, the Internet provides a

communication infrastructure that reaches everyone: an infrastructure that a business can use

without significant new capital investment. Similarly, Internet standards define communication

protocols and data formats that enable anyone to make network connections and transmit data

and be able to assume that their messages will be received and understood. When someone

sends a message in a standard format using a standard protocol, the protocol helps ensure that

the message will be delivered correctly, and the data format helps ensure that the receiver will be

able to read it (Figure 1).

Figure 1. Messages Sent Using Standard Protocols

Unfortunately, these same advantages make Web services and other Internet technologies

uniquely vulnerable to attack. Because the Internet reaches everyone, anyone can use it: not just

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 2 of 10

honest people engaged in legitimate business, but vandals, criminals, and other abusers of the

network. The universal nature of the Internet enables these unscrupulous users to intercept

legitimate communications and connect to others’ systems. Similarly, the standardization of

Internet protocols and data formats enables them to read, understand, and even forge

communications between legitimate users (Figure 2).

Figure 2. Message Intercepted by Attacker

The openness of Extensible Markup Language (XML) and Web services lets you cost-effectively

conduct strategic operations with customers and partners. However, openness cuts both ways.

Although standards-based solutions claiming to solve “the security problem” are abundant, the

problem encompasses more than security. Securing your Web services must take into account

multiple connections to individual vendors, strategic partners, and customers (Figure 3). These

connections are revenue pipelines, so measures must help ensure security and enable rapid

customer acquisition. That is why standards are not enough.

Figure 3. Potential Attacks on Messages

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 3 of 10

Securing Web services to maximize their benefits requires the following:

● A discriminating approach to support of standards

● The ability to defend against new, potentially crippling XML threats while connected to

many different types of services and networks

● A scalable foundation that enables both rapid and repeated provisioning and optimizes the

Web services or service-oriented architecture (SOA) team to seize new business

opportunities.

Only when these three critical elements are incorporated into a Web services architecture or SOA

can enterprises reliably secure Web services and capture the flexibility and cost savings they

promise.

Making Sense of Standards

Choosing a Web services security solution that is standards based is appropriate, but only a

starting point. There are dozens of standards; some apply to specific industries, and some apply to

specific security technologies. Baseline functions and compatibility standards cannot adequately

protect all businesses and all Web services. In addition, malicious threats emerge and quickly

mutate, potentially mitigating the effectiveness of security measures to protect against a threat.

Companies of all sizes expend significant effort in creating services, so it is important that they

choose the standards that best support their needs. The answers to these questions can help you

begin:

● Which standards are most established and reliable? Which are just approved or still

emerging?

● Which standards are most beneficial to support for your company, partners, and

customers?

● Which standards are required for your industry in terms of compliance or operability?

● Which standards enable rapid deployment of new services and interoperability?

● Can emerging standards be easily added to your Web services architecture?

The standards described in Table 1 are commonly used in today’s Web services to facilitate rapid

deployment and interoperability. Organizations deploying Web services should incorporate

standards, ranging from HTTPS through XML Signature standards, yet keep their security plans

open enough to accommodate the future addition of Security Assertion Markup Language (SAML)

and Web Services Trust (WS-Trust) standards.

A Web service interface is an exposed, standards-based integration point for your applications. It

must be able to accommodate a wide range of security sophistication by partners and customers

who connect to it. The most widely deployed standard, Secure Sockets Layer (SSL), is a basic

security building block. Early Web services were secured only with two-way SSL. Today,

supporting only SSL in Web services significantly limits the service’s long-term function and overall

enterprise security.

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 4 of 10

Table 1. Well-Established and Emerging Standards for Web Services

Adoption Standard Standard Description

Today Trend

HTTPS An HTTP connection secured between the client and host
using SSL and Transport Layer Security (SSL/TLS), a
secure pipe that helps ensure the confidentiality of the
information transmitted over the public Internet

Very high Stable

XML A text markup language for interchange of structured data Very high Stable

XML Schema A language for describing the structure and constraining the
contents of XML documents

High Growing

Simple Object Access
Protocol (SOAP)

A standard that defines application-level structure for
messages

Moderate Growing

Web Services
Definition Language
(WSDL)

Effectively the URL for a specific Web service; expressed in
XML, a WSDL definition describes how to access a Web
service and what operations it will perform

Moderate Growing

Web Services Security
(WS-Security)

A mechanism for incorporating security information into
SOAP messages

Moderate Growing

XML Encryption A process for encrypting and decrypting parts of XML
documents; a subset of the standard is used by WS-Security
to maximize interoperability

Moderate Growing

XML Signature A mechanism for validating the origin and integrity of XML
documents; a subset is used by WS-Security to maximize
interoperability

High Growing

SAML A framework for exchanging authentication and authorization
information

Moderate Growing

WS-Trust A standard for creating networks of federated trust Low Growing

Which Standard Fits Your Needs?

Today, SSL secures HTTP connections (HTTPS) and information in transit. This approach is

important, but not enough. Relying only on HTTPS creates three problems:

● The Web service must undertake considerable private key and certificate management.

● Message confidentiality and integrity cannot be guaranteed.

● No auditable record of the message, session, or security is enforced.

Additional standards should be included in Web services security architecture, too. For example,

an increasing number of Web services and Web applications are written using SOAP. SOAP

specifies how to encode HTTP headers and XML files so applications running on different systems

can successfully pass information back and forth. Web services designed to communicate with

partners and customers increasingly use SOAP so they can communicate with programs

anywhere.

Web services applications must be able to verify XML digital signatures and quickly encrypt and

decrypt messages. Applications using this feature are most efficiently deployed on dedicated

infrastructure to optimize performance.

The WS-Security specification provides a way to help ensure that messages remain confidential,

have not been tampered with, and are actually from senders asserting to have sent them. WS-

Security specifies the use of XML Signature and XML Encryption within SOAP, enabling the

application developer to insert a security token that identifies the original sender and optionally

captures information about intermediate destinations of the XML message. Security tokens can be

as simple as a name, IP address, and password; more complex, such as a Public Key

Infrastructure (PKI) certificate; or as comprehensive as a SAML assertion.

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 5 of 10

SAML is used for user identity assertions and for asserting actions performed by various elements

of an enterprise infrastructure. For example, if a Web services security gateway performs the

necessary authentication, authorization, encryption, digital signature, and other security functions,

it can insert a SAML token that is accepted by a Web service, asserting that it can accept and

process the message.

You should regularly and rigorously test your implementations of whatever standards you decide to

support. Standards continue to evolve, and their implementation can vary considerably. Consider,

for example, PKI: It predates Web services by 10 years, and the standards for PKI still require

significant interoperability efforts.

Trust and Threats in the Web Services Paradigm

The openness of XML and Web services lets you cost effectively conduct strategic operations with

customers and partners. Openness works both ways, however. Widespread use of XML and Web

services makes it significantly easier for outside, uninvited parties to integrate systems and invade

applications. The results can range from annoying service glitches, to privacy breaches, to

catastrophic system failures and data loss.

Determining who to trust and creating a comprehensive XML defense model is vital. Your Web

services architecture must be flexible enough to manage different levels of defenses and security

sophistication among your connection partners.

Malicious Intent or Human Error?

As systems become more connected to each other over the Internet, the number and severity of

attacks rises.

New XML and Web services expose critical corporate assets to customers and business partners.

For example, worms and viruses have the potential to create disastrous business conditions.

Combining easy access with human-readable data formats and open integration standards creates

an almost irresistible attraction for malicious hackers. Malicious Web services threats typically fall

into one of three categories:

● Identity threats, which are new XML versions of traditional identity threats such as

authentication attacks and eavesdropping

● Content-borne threats, which are attacks with elements in the actual XML payload, such as

XML viruses

● XML denial-of-service (XDoS) attacks, which are new, application-level versions of network-

level DoS attacks

In addition, inexperienced developers often err, producing situations that resemble outside attacks

but that are in fact, simply accidents. These mistakes, though benign, still entail downtime, require

IT remediation, and can disrupt revenue-generating services.

Defending Against Identity Attacks

Traditional identity threats (Table 2) include authorization and authentication attacks, where

hackers steal identities, attempt to spoof the service itself, or attempt to use permitted access to

reach restricted resources. Eavesdropping attacks enable a hacker to read and potentially alter

messages flowing between you and your business partners. In attacks such as these, an attacker

can either access your system or redirect and collect messages between you, your customers, and

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 6 of 10

partners. The use of standards such as WS-Security and SSL can reduce the likelihood of identity

attacks.

Table 2. Traditional Internet Threats Relevant for Web Services

Attack Countermeasure

● Request authentication attack: An attacker pretends to
be a particular authorized user so the service will grant
the attacker the same access and privileges as that
authorized user. The attacker can then use the service
and any information or other resources it provides,
using these privileges.

● Response authentication attack: An attacker can also
pose as the service, rather than as the user. For
instance, if a legitimate user sends a request to a valid
service, but an attacker is eavesdropping, the attacker
can then pose as the legitimate service and can
request confidential information or payments. Phishing
is a variant of this type of attack.

● Prove the identity of each user of a system. Many
systems demand usernames and passwords to
authenticate requests, but this method may not be very
secure. A more secure solution is to use a
cryptographic technology such as SSL to establish a
secure connection between the user and the service
and then exchange digital certificates to help ensure
that each party is who it claims to be.

● Authorization attack: An authenticated user obtains
access that he or she should not have to services,
data, or other resources. If the service allows the
access, the attacker can then collect all accessible
confidential data, access sensitive systems, enter
dangerous commands, and so on. For example,
attackers often use compromised machines to launch
attacks on other systems, covering their tracks by using
someone else’s systems to do their work.

● A service that controls access to many different
resources should implement a well-designed
authorization strategy to help ensure that each
authenticated user has access to just the appropriate
resources and no others.

● Confidentiality attack: An attacker eavesdrops on a
transmission and obtains a copy of the authorization.
The attacker then has copies of any confidential
information in the authorization: Social Security
numbers, account numbers, addresses and phone
numbers, private health and medical information, and
so on. Confidentiality threats are serious matters; they
can result in identity theft, embezzlement, fraud,
leakage of trade secrets, and many other serious
problems.

● Cryptographic tools provide the most effective
protection against loss of confidentiality, enabling
networks to transmit sensitive data in an encoded form
that is useless to attackers. An attacker who succeeds
in intercepting an encrypted message gains nothing
because the message is unreadable without the keys
needed to decode it.

● Encryption technologies such as SSL enable systems
to encrypt individual messages, or to encrypt
communications channels so that every bit of data that
passes from one system to another is encrypted. The
most secure solutions use both methods, encrypting
data channels so that no outsiders can eavesdrop on
communications, and encrypting the individual
messages so that they are unreadable even by
unauthorized insiders.

● Data integrity attack: If anyone involved in the process
of generating, transmitting, or receiving data alters it
improperly, the transaction can be fraudulent and
dangerous. It might be altered to order the wrong
product, or to send it to the wrong address, or to bill the
wrong party. Attacks that rely on altered or malicious
data are called data integrity threats. There are many
ways to launch a data integrity attack: for instance, an
attacker may forge a message or intercept and change
a legitimate one. For example, the Code Red worm
relied on data that was simply too big for the target
servers to handle properly.

● The simplest, most effective technique for protecting
data integrity is the use of cryptographic tools to protect
the data channels and the contents of messages, as
explained in the discussion of confidentiality.
Cryptographic tools also provide techniques such as
digital signatures, which can help guarantee that a
message cannot be altered without the receiver’s
knowing about it. Content-analysis tools can also use
technologies such as document type definitions (DTDs)
and XML Schemas to analyze the contents of
messages to determine whether they meet certain
requirements.

● Replay attack: An attacker improperly and continuously
resends a legitimate, intercepted or copied request to a
service. For example, an attacker who managed to
capture a valid purchase order could repeat the order
over and over, essentially vandalizing a company’s
sales process.

● The straightforward way to protect against replay
attacks is to attach a serial number or identifier to each
message and compare each new incoming message to
help ensure that no message is used more than once.

Defending Against Content-Borne Attacks

An excellent feature of the Web is its use of standard ports for all communications: generally port

80 for all HTTP traffic. Port 80 is typically opened to the world, while other ports, such as FTP, are

guarded more closely. However, viruses and malicious content can be included in innocuous

legitimate content and tunneled through port 80 to reach inside an organization. Content-borne

attacks are generally intended to affect the actual applications that run Web services after

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 7 of 10

tunneling unnoticed through the security infrastructure. Content-borne attacks are also known as

XML viruses or XML worms.

Two examples of content-borne XML exploits are Sequential Query Language (SQL) injection

attacks and buffer overflow attacks. SQL injection is the practice of inserting malicious SQL

statements into XML to disrupt back-end systems. If a Web service connected to a database does

not validate SQL, an incoming XML message containing rogue SQL statements could break out of

the expected database query and be used to obtain unauthorized information or destroy data

(Figure 4). In fact, SQL injection attacks are a subset of a broader class of attacks known as

command injection attacks. As when they use malicious SQL code to attack databases, hackers

attempt to tunnel UNIX commands inside XML to exploit any system that has a command-oriented

interface.

Figure 4. SQL Injection Attack

Like SQL and command injection attacks, a buffer overflow attack is aimed at the service endpoint

and preys on vulnerabilities there, such as a buffer without enough memory set aside to handle a

large variety of inputs: for example, a Web service designed to take in phone numbers.

Figure 5. Content Format

Another example of an XML virus or content-borne attack is a content format attack that exploits

vulnerabilities in the way that services read content formats (document types, element names,

attribute names, etc.) before they examine the actual content (Figure 5). Web services integration

relies on standards to structure interactions between parties. To exchange information,

applications format content in their requests and responses according to supported standards.

One such attack, entity expansion, exploits a capability in DTDs that allows the creation of custom

macros, or entities, that can be used throughout a document. By recursively defining a set of

custom entities at the top of a document, an adversary can overwhelm parsers that attempt to

completely resolve the entities by forcing them to iterate indefinitely on these recursive definitions.

Other attacks include insertion of extremely large element or attribute names into an XML

document in an attempt to overload a parser’s resources.

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 8 of 10

Protection against content attacks requires robust parsing and XML Schema validation

capabilities. Before passing content to a service, the security solution’s parser checks for abnormal

conditions such as unusually large element and attribute names. In addition, the parser should

either detect recursive entity definitions or expand entities only partially before signaling failure. A

good solution involves the use of schema validation in conjunction with a second, more

sophisticated pattern matcher that detects suspicious patterns such as SQL statements and

commands. Services should process only content that successfully passes through both validation

steps.

Defending Against XDoS Attacks

The third type of XML and Web services attacks are XDoS attacks (Figure 6). These attacks tend

to make services unusable for everyone. These attacks are difficult to distinguish from legitimate

traffic, making selectively servicing only legitimate requests difficult. New XDoS attacks have

similarly thorny issues. Defending against XDoS attacks requires detection of an attack based on a

combination of metrics that signify an attack, not just one metric viewed in isolation.

Figure 6. XDoS Attack

One of the first widespread XDoS attacks was the entity expansion attack, where unprivileged

users used completely correct entity declarations in an XML message to wreak havoc on

unprotected XML 1.0 standard–compliant parsers. When a vulnerable parser encountered such a

message, recursive entity declarations caused the parser to shut down with an out-of-memory

error or to use an inordinate amount of processor cycles. Inadvertent XDoS attacks can occur as

the result of simple human error, such as a programmer’s mistakenly sending 100 requests per

second instead of 10 or accidentally coding an infinite loop.

XDoS and certain authentication attacks can be detected only with configurable heuristics. For

example, there may be from three to eight indicators that XML traffic is actually an XDoS attack.

These signals are not generated only by traffic from outside the enterprise but also from the

response rate of Web services within the enterprise. You must be able to monitor those signals in

real time, over time, to help ensure that abnormalities are noticed and handled. A sophisticated

approach uses a graduated response to handling abnormalities, with actions ranging from alerts,

to throttling, and finally to IP blocking, all accompanied by secure, sophisticated logs that let

administrators trace events.

Making the Architecture Work

Choosing your supported standards and building an XML threat defense model are good first

steps. However, many architectures fall short when it comes to deploying a workable, repeatable

process. Many let you successfully secure a single Web service and program all the code

necessary for standards, threat defense, and security policy. However, as Web services are

connected to heterogeneous environments, they are subject to many requirements in addition to

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 9 of 10

security requirements. Services based on these “code-it-in” architectures quickly become

inefficient. All security processing must be done in the Web service itself. Each new Web service

requires new programming. Older services require reprogramming and upgrading to successfully

defend against new or evolved XML threats. All of these factors seriously impede your ability to

quickly provision new partners and revenue-generating services.

Instead, look for solutions that do the following:

● Let you securely connect Web services with internal or external business partners quickly,

reliably, transparently, and manageably

● Enable centrally defined coarse and fine-grained security policies (different users in

different groups can specify a scalable Web services security solution, and it will employ

intelligent policy coordination for consistent enforcement)

● Optimize the processes that your Web services team has to do all the time: create and

provision services and connections; create, approve, and record policies; migrate services

and policies between environments; and transactionally deploy policy

● Enable any-to-any integration for platform, protocol, and standards mediation with a deny-

by-default architecture that helps ensure that only trusted messages reach your services,

an approach that provides highly reliable security and extends the longevity of your Web

services architecture while reducing testing time in heterogeneous environments

● Provide detailed, configurable, and collaborative event and message logs that help you

instantly identify and anticipate issues such as the need to check an expired certificate

● Provide comprehensive, flexible support for failover, load balancing, and capacity planning

The Importance of Logging

Many of the problems that arise when deploying and scaling secure Web services can continue for

some time undetected, doing damage to the affected services the whole time. For example, after

an attacker has defeated an authentication or authorization scheme and gained access to

sensitive resources, the attacker can exploit those resources repeatedly. Similarly, after an

attacker discovers how to create a forged message that gets effective results, the attacker can

send it over and over. In addition, the task of debugging is much more complicated with encrypted

messages, which need to be considered as part of the troubleshooting process. Finally, in this era

of scrutiny and compliance, a secure record of the security enforced, the policy enforced, and the

messages themselves is crucial to compliance, and all these functions must be delivered through

searchable, policy-aware logs.

Logging is an important diagnostic and compliance tool for managers of business networks.

Services, and the gateways that protect them, must keep accurate logs of the kinds of traffic that

pass through them, and if possible the contents of the messages. By examining logs, network

administrators can quickly identify and diagnose potential problems and take steps to prevent or

correct damage. Logs are important in protecting services from XDoS attacks because the only

reliable way to identify the threat is to detect a sudden increase in the volume of messages from

one or a few addresses. Sophisticated security products, such as service gateways that perform

content analysis, can even examine logs and alert network managers to potential problems.

Conclusion

The growing adoption of Web services in business represents a great opportunity for those

businesses to improve their time-to-market with new services, lower the cost of business

White Paper

All contents are Copyright © 1992–2007 Cisco Systems, Inc. All rights reserved. This document is Cisco Public Information. Page 10 of 10

communication, and offer new services to customers and partners at modest cost. These benefits

are so compelling that even the threat of serious security breaches has not prevented the adoption

of Web services, but it has prevented businesses from enjoying the full benefit of those services.

An informed and comprehensive approach to threat prevention, detection, and correction is

essential before the full benefit of Web services can be realized.

Is there more to securing Web services than standards? Yes. Are there solutions that offer a more

comprehensive approach? Yes again. Variously called XML firewalls, secure Web services

gateways, or security gateways, new, dedicated products address the security risks, policies, and

standards associated with Web services and are optimized for the deep content inspection this

effort requires.

Cisco® provides the critical XML infrastructure products used by enterprises to realize the promise

of Web services. The Cisco ACE Application Control Engine Extensible Markup Language (XML)

Gateway enables businesses to secure, implement, and operate XML Web services more

efficiently and effectively, accelerating time-to-market for their products and gaining competitive

advantages in their businesses. For more information about the Cisco ACE XML Gateway, visit

http://www.cisco.com/go/ace.

Printed in USA C11-410359-00 6/07

http://www.cisco.com/go/ace

	Executive Guide to Web Services Security
	Abstract
	Special Advantages, Special Risks
	Making Sense of Standards
	Which Standard Fits Your Needs?

	Trust and Threats in the Web Services Paradigm
	Malicious Intent or Human Error?
	Defending Against Identity Attacks
	Defending Against Content-Borne Attacks
	Defending Against XDoS Attacks

	Making the Architecture Work
	The Importance of Logging

	Conclusion

