

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 20

White Paper

The Role of Layer 4-7 Services in Scaling
Applications for the Cloud-Computing Data Center

Cloud computing is increasing demands on applications and the application-delivery
infrastructure must change to meet the challenge

Abstract

Cloud-computing applications are characterized by stateful access, with differentiated service levels, charged to

the end user using the pay-per-use pricing model. Implicit in this model is the assumption that a cloud application

is always on . Scaling the cloud delivery model to an Internet scale (millions of users) is a challenge that next-

generation Layer 4-7 infrastructure needs to overcome.

Scaling a cloud application involves scaling three mechanisms: location (mobility), replication, and load balancing.

Virtualization was an early catalyst for cloud computing because it substantially lowered the cost of replication and

mobility of a prepackaged application. It does not, however, solve the load-balancing problem. Load balancing

involves scaling the address, name space, transport, session, identity, and business logic of the application.

Clustering enables scaling of application business logic but leaves the rest of the problem to a proxy infrastructure.

Traditional data center proxy infrastructure (Layer 4-7) is stateless and focuses on transport-level session and

content management. The state management in these proxies is limited to cookies that hold bare-minimum

identity of the application server. Further, this state is not shared across a network overlay of proxies to enable an

application for multi-data center applications or to distribute the processing to edges. For example, a load balancer

does not a play any role in user customization in a data center application such as encryption of private data in the

response. Not having this function in the proxy infrastructure means the data center has to incur a higher cost of

development of the core application and is not able to use existing proxy infrastructure to deploy this function.

In the cloud-computing model, waiting for the application developers to add marginal functions to a cloud

application (for example, user customization) will derail the business model. Adding functions to a cloud

application need to become the focus of proxy infrastructures in a cloud data center. To play this role, a load

balancer needs to extract intelligence from metadata and integrate with infrastructure in the data center at layers

higher in the Open Systems Interconnection (OSI) stack than Layer 2 or Layer 3.

The current thinking in cloud computing is to disaggregate the load-balancer function and assimilate it into the

switching infrastructure, hypervisor, and the virtual machine itself. One way to assimilate this function is to extend

its footprint at the edge, offload stateless functions into the upstream switching and routing infrastructure, and

subsume stateful functions that are currently part of the application server. In other words, convert the proxy

infrastructure into a control-plane function with a distributed data plane. The evolution and eventual integration of

the control plane into a cloud manager is a topic of discussion for thought leaders in the industry today.

This white paper discusses the challenges in scaling a cloud application and the role Layer 4-7 services can

expect to play to scale application services in a cloud data center.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 20

Evolution to the Cloud

The dominant model for application delivery today, the web application model, was triggered by advancement in

technologies that enabled platform-independent representation of input and output of an application. Having a

platform-independent representation of application data enabled creation of the browser, which over time

extended itself beyond simple rendering of mark-up text to a mini-run-time interpreter for fourth-generation

languages such as JavaScript. Code migration from back-end server to the browser enabled an application to

initiate multidomain data-access connections and enhanced the application interactivity afforded by asynchronous

interactions with the back-end web server. HTML 5.0, which is now supported by Internet Explorer and Firefox,

enables standard browsers to render rich-media graphics and support models of interaction that are currently

possible only with proprietary technologies such as JavaFX, Silverlight, and Flash. These technologies, which

were initially greeted as a security hazard, are today looked upon as a building block to deliver fully functional

applications resident on a server cluster - in other words, cloud computing. The ultimate goal of cloud computing is

having a stateless client with varying sizes of caches and a changeable identity accessing applications resident

across WAN distances in a stateful manner. This concept is not new - it has been the preferred application-

delivery model since the advent of Web 1.0.

The evolution to the cloud started with a client-server model of the late 1980s when applications were resident on

a server within a Domain Name System (DNS) domain. What has changed is that the data center is the new

server, and it is located several DNS recursions and WAN hops away. The economic factors that led the industry

away from mainframe to client-server computing continue to be in effect and, in fact, have been catalyzed by the

widespread use of virtualization in data centers. However, simply hosting an application in virtual machines is not

cloud computing. The critical difference is the application composition. Virtualization has not changed the

distribution, composition, or invocation of the application. In other words, virtualization has not changed the

usage model of the application, nor has it changed the run-time model of the application - what it has done

is changed the management model of the infrastructu re of an application. In contrast, cloud computing aims

to make the application itself the infrastructure by offering the application components as services (Platform as a

Service [PaaS]). The application itself transforms into coarse-grained (or lightweight) services that can reside

anywhere (mobility or location), can be invoked from anywhere (Internet scale), and can reside on any device. The

management of these services is governed by a service-level agreement (SLA) between the cloud and the end

user, and a substantial portion of the management function is delegated to the end user.

Like all disruptive innovations of the past in the data center, cloud computing too arrived unexpectedly.

Virtualization - that is, a continuation of a prior trend toward server consolidation - created a bigger problem that it

solved. The ratio of administrator to (virtual) machines rose to a level such that administrators themselves started

to ask for automation. This advance to automation of a virtual data center is now serving as a catalyst to the

creation of cloud data centers and cloud applications. It is now widely accepted that the road to cloud computing

goes through a virtual data center. The debate has shifted to how best to design the next-generation data center

where the design center is the data and not the application. Shifting the design center has wide ramifications on

the architecture, organization, and operational model of the data center. Table 1 lists the important differences

between virtual data centers and cloud data centers from an application perspective.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 20

Table 1. Differences Between Three-Tier Data Center, Virtual Data Center, and Cloud Data Center from Application
Perspective

Application
Characteristic

Traditional Three-Tier Data Center Virtual Data Center Cloud Data Center (Public or Private)

Development model ● Structured data model with logic
implemented as components
bundled with the execution
environment

● Same as three-tier data center ● This unstructured data model has
logic implemented as services on
top of the data store, composed
into an end-user application by the
user

● The application is written to a PaaS
that integrates multiple disparate
data models and offers a single
large data table with name=value
pairs

● Logic executes on input/output card
containers, and the end user
selects the view

Deployment model ● Separate model (data) from the
view (presentation) from the
controller

● Results in a three-tier data center

● Same as three-tier, but affords co-
location of three tiers on a single
physical server (through isolation)

● Model differs by data center

● Unstructured data is stored in a
data store, indexes to which are
stored in Relational Database
Management Systems (RDBMS),
and data is exposed using batch
jobs. In other words, data is the
design center of the data center
optimized for querying

● Applications are lightweight
services that are deployed using a
developer portal onto a cluster, and
presentation is an end user-
customized template that is fetched
upon access

Execution model ● Fine-grained distribution across
tiers of data center with fine-grained
access to data

● Application servers: Optimize
connection management across
tiers; are enhanced using proxies

● Same as three-tier but affords
mobility of execution environment
across physical server boundaries
(migration)

● Enables elasticity of execution
environment modular support of
operating system

● Users have coarse-grained access
to data in batches

● Services work off shared storage

● Application servers are
disaggregated into pools of Java
Virtual Machines (JVMs) running
Plain Old Java Objects (POJO) files

● Session management of the
application server is separated out
as a session manager

● The proxy layer queues requests
and is not in the path of responses

Access model ● Optimized for browser and desktop

● Centered on synchronous HTTP
access to data over a portal

● Same as three-tier; however,
intravirtual machine traffic needs to
be redirected for proxy function
processing

● This model supports asynchronous
access and cache synchronization,
in addition to portal access

● The access controller is the session
manager

● Proxy exists only to negotiate
network topology

Security model ● Focused on transport security,
identity management, and
sandboxing of execution
environments

● Same as three-tier; however,
intravirtual machine traffic is not
subject to security policies

● This model is a work in progress

● A private cloud is posturing as a
security model, but in reality it is not

Management model ● Separation of roles into server
administrator, network
administrator, and storage
administrator, each with its own
models

● Cross-function management done
using workflows

● Forces a convergence of
management models because of
virtualization

● Server administrator subsuming
network administrator role because
80 percent of the traffic stays inside
a data center

● Support for a self-service model
creates the “user” as an additional
administrator

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 20

The important point to note is how little effect virtualization has on the application itself. The effect of virtualization

has primarily been on the resource-management portion of the execution, deployment, and management model of

the application. Introducing elasticity into these models enables an application to scale in location and replication

dimension. The third dimension for scalability is elastic load balancing.

Why Cloud?

Cloud computing is gaining acceptance because it offers something to every stakeholder in the IT ecosystem. It

appeals to IT vendors because it offers them revenue growth even as it reduces their cost of operations. It appeals

to value-added resellers (VARs) and distributors because it has built-in support for syndication (PaaS). It appeals

to developers because it preserves their skill set by not reinventing a new language (such as Web 2.0) and offers

tools for migration of their current applications to a cloud. Finally, it appeals to the end user because cloud

services are priced as a utility (pay per use). Success of Apple’s iPhone iTunes and AppStore, Netflix, and

Amazon Web Services (AWS) are examples that validate the compelling economics that are accelerating the

industry’s march to cloud computing. However, getting there is not easy.

The concept of cloud computing is deceptively simple. All variations of the cloud-computing model call for a

fundamental shift in the way the IT industry develops, markets, and distributes its products. The cloud application

architecture calls for refactoring of all layers in an application stack - from the physical network to packaging of an

application, to its delivery. The critical challenge to this refactoring is the lack of scalability. Cloud applications

require orders-of-magnitude increases in the scalability of an application, with concomitant increases in its

availability.

Increasing scalability of an application requires identification of the critical shared resource and increasing its

bandwidth through scaling the properties of the critical shared resources such as address, name space, transport,

identity, and business logic. At every layer of an application stack, we have critical shared resources, and if we are

to have faith in our layering (that is, the critical resource is isolated in a layer), then we could attain scalability

goals through scaling of the shared resource. Table 2 identifies some of the critical shared resource in the layers

of the cloud application stack. It highlights their limitations and estimates the scalability requirements in a cloud-

computing environment.

Table 2. Application Scalability Requirements for Cloud Computing

Layers in Application Stack … Are limited today to … For Cloud Computing They Need to Scale to ...

User interface ● Limited to desktop bitmapped display ● To any device with or without display

Presentation data format ● Limited to HTML 4.0 and proprietary solutions such
as JavaFX, Microsoft Silverlight, and Adobe Flash
(Air); this model constrained the development of
applications for the browser

● HTML 5 open standard, which is supported by IE 8
and FF

Note: Rich graphics will no longer have plug-ins. The
web applications will not be the same again.

Application logic ● Limited to thousands of simultaneous users ● Scale to millions of users

Note: Cloud computing signals the rebirth of high-
performance computing (HPC) and parallel computing.

Operating system services ● Monolithic kernel

● Services limited to kernel space

● Support for user space services, but support is
kludgy

● Resource name space limited to an instance of the
OS and sometimes to a process space

● Exokernel (Xen) or Hybrid Kernel (VMware)

● Services scaled to data center domain

Note: The name space must be extended to include
the entire application domain, which can potentially
straddle a data center boundary.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 20

Layers in Application Stack … Are limited today to … For Cloud Computing They Need to Scale to ...

Delivery services ● Server load balancing (SLB) (proxy)-based traffic
redirection with limited intelligence

● State limited to cookies

Note: All users are equal, and services are not
differentiated.

Note: Content-delivery networks (CDNs) are used only
for content distribution.

Note: There are no application-specific proxies.

● Distributed data paths with a single control plane;
the system scales with the number of data paths

● To enforce differentiated access based on cloud
state such as type of user, type of access, type of
device, etc.

Note: CDNs are used extensively for applications and
content.

Note: There are numerous application-specific proxies,
such as for Google AppEngine, Nirvanix, and Amazon
EC2.

Fabric services ● Storage services abstraction limited to file system
and database

● Load balancing limited to LAN traffic flows

Note: I/O is between two network stacks on two OSs
between two endpoints.

Note: The network is configured to remove redundant
paths between endpoints.

Note: Quality of service (QoS) is enforced on packets
on the network and defined at network stack-layer
granularity.

Note: I/O is an application process to a server process,
increasing the use of direct memory access (DMA) and
Cisco® Remote Data Memory Access (RDMA).

Note: The network is configured to increase the
number of paths between endpoints.

Note: QoS is enforced at flow level and defined at
thread-level granularity.

Note: Storage services abstraction includes
unstructured blobs and tables.

Note: Load balancing includes LAN traffic flows, I/O
accesses, and jobs.

The important point from Table 2 is that scalability affects the critical business metric in a cloud-computing

business model; that is, average revenue per user (ARPU). In other words, any product or technology that

undermines the scalability or reduces the availability is highly unlikely to be deployed in a cloud data center.

Fortunately, cloud application architecture is layered and interlayer communication is accomplished using open

standards. Each layer of the architecture has a multiplicity of instantiations and is scaled independently of the

other layers.

Scalability Is Not Easy

Scaling a system means there is no drop in its performance as the number of users increases. The naïve way of

scaling a system (dynamically) is to add capacity upon demand. This model is a close cousin of the widely used

static capacity planning (over-provisioning). In a cloud infrastructure, however, the business value of the added

capacity is a new factor that needs to be included in the capacity-planning equation. If the additional demand has

no business value, the system should not allocate more capacity. If it did, the cloud-computing business model will

fail. The artifact that ties business value of a customer to the infrastructure operations is the SLA. In a cloud-

computing environment, the system should scale as prescribed by the SLA that the data center has in place for

that user. In other words, the system should remember the user or store the “state” of the user.

Scaling “state” is the biggest challenge to scaling any system. The web application architectures of the Web 1.0

era circumvented this challenge by eliminating the state (dumb browser), but quickly found that the application is

not very useful when it does not store state. The state was brought back into the architecture through kludges

such as session cookies. State is scaled through two mechanisms, replication and sharing. To be useful,

replicated state is refreshed through complicated coherency mechanisms. These coherency mechanisms,

however, are not very scalable. The alternative to replicated state is to share a single copy of the state, thereby

removing the refresh problem but introducing a complicated access-control mechanism to prevent thrashing. The

good news is that access mechanisms are more amenable to scaling than coherency mechanisms.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 20

Scaling the access mechanisms of an application to Internet scale (millions of users) involves scaling its location

(mobility and distribution), its replication (provisioning and resource management), and its load balancing

(instance resource optimization). Cloud computing adds a new dimension to scaling: self-service management. A

cloud application offers self-management to its users. Scaling an administrative system to a million users as they

set their preferences and change SLAs is a critical challenge in scaling cloud computing. In fact, this dimension

has ramifications on the traditional three dimensions in that this dimension nullifies the concept of standard

configuration. In a cloud application, the configuration of the application is determined by the end user, and the

system has to support mechanisms that allow the user to change the configuration. In other words, all users are

super-users for their application and its underlying infrastructure.

Table 3 describes the critical best practices along the four scalability dimensions in a cloud application. The

important point to note is how the load-balancing dimension is disaggregated by the type of resource to which it is

optimizing the access. Also noteworthy is how the user as an additional administrator is being handled through

changes in the cloud-delivery models.

Table 3. Scalability Dimensions and Best Practices

Scalability Dimension Infrastructure Best Practices

Location (mobility)
● Organization of an application is transparent

to the end users

● Components of the application can be co-
located or distributed

Location-independent packaging; for example:

● Component-level packaging for application servers

● Virtual appliances

Asynchronous communication; for example:

● Components engage in non-blocking communication using messaging

Distributed execution

● Components are executed in parts and results collated to create response for end users

Replication (provisioning and resource
management)
● Execution infrastructure is transparent to

the end users

● Infrastructure can be local to client, remote
on a server, and mobile

● FAST Virtualization

● Replication (CDN, caching, and prepositioning)

● Redundancy

Use (load balancing) Location load balancing

● DNS load balancing

Transport load balancing

● Proxy-based SLB and gateways

Session load balancing

● Server affinity

● Virtual worker and real worker

Compute load balancing

● Hypervisor

Self-service management ● Multitenancy

● Private clouds

● Virtual private clouds

As the load balancer is disaggregated, it is important to stay within the scope of the function. Disaggregation does

not mean aggregation of adjacent functions. There is often some confusion between scope of load balancing and

resource management. Load balancing optimizes the use of an instance of a resource, whereas resource usage

concerns itself with optimal size of the portfolio of the resources or capacity available to meet demand. Separation

of these two dimensions and disciplines is important for cloud computing. If a load balancer subsumes the role of

a resource manager, it leads to suboptimal load balancing and resource management. It leads to augmentation of

capacity to meet a demand whose economic value does not justify such an augmentation. In other words, load

balancing operates within a constraint of fixed capacity and tries to optimize the usage of that fixed capacity.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 20

Augmenting existing capacity is a business function that should be implemented in a controller that enforces an

SLA. The load balancer is not the best location to place that function.

Revisiting the four dimensions of Table 2 from an application-delivery perspective shows that load balancing is the

most relevant dimension. There are two types of load balancing: transactional and computational. Another way of

characterizing the difference is to call one request load balancing and other response load balancing . In the

early days of Web 1.0, content was mostly static and thus the request load balancing was the dominant method of

load balancing. With the advent of dynamic content, the application response time is increasingly correlated with

the optimizations in response load balancing. In Web 2.0, the order of response substantially determines the

interactive experience of a web user.

Both types of load balancing involve scaling the location, name space, transport, session, customization, and the

logic instance of the application. Several products and technologies interplay to enable optimal load balancing.

SLB and adjacent Layer 4-7 services are but a small part of this group of products, as illustrated in Figure 1.

Figure 1 illustrates a typical cloud-storage transaction. Notice that the role of the traditional SLB is that of a

request load balancer. It is not expected to play a major role in the session management of the transaction, nor is

it expected to be in the path of the response. It is definitely not expected to participate in the resource

management of the cloud infrastructure. The critical role of an SLB in Figure 1 is to multiplex requests and help

the application negotiate the topology of the physical network.

Figure 1. Typical Cloud Storage-Delivery Application

Cloud computing in essence is explicitly dividing the request load-balancing function from the response load-

balancing function. This transaction pattern of a cloud complicates the bookkeeping logic in a traditional load

balancer. In a more sophisticated cloud service provider, the request itself is a dummy request to fetch the URL on

which the real request is sent. The real URL is not behind a versatile interface processor (VIP) and thus the SLB is

not in the data path of the real request. In general, the bookkeeping logic of a cloud-computing SLB is expected to

get more complicated. Further, cloud-computing applications are forcing the architects to revisit old and forgotten

ideas such as content and protocol negotiation over HTTP, availability of alternatives in content format and

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 20

location, content prepositioning (in addition to caching and replication), and URL rewrite-based session

management.

Virtualization Is Not a Panacea

Virtualization is the new resource manager in the data center. The dynamics afforded by virtualization is an

assumption in the architecture of a cloud data center; in fact, virtualization is the critical enabler of the “elasticity”

feature of a data center. However, virtualization has its limitations. The five biggest drawbacks of virtualization

follow:

● Its (perceived) lack of security

● Its application-packaging model

● Oversubscription on intra-node bandwidth in a compute-intensive cluster

● Its lack of extension framework

● Layer 2 confinement

These shortcomings undermine the critical selling point of the cloud: economies of scale.

Adoption of clouds in the enterprise is hindered by a lack of confidence in the security of enterprise data in a

virtual environment. One way to view virtualization is as three functional blocks: isolation, migration, and

application programming interfaces (API; management stations of virtual infrastructure are a reference

implementation of these APIs). Several groups have demonstrated attacks on the isolation block of the virtualized

environment. The approach is to co-locate a malicious virtual machine with the target virtual machine. Co-location

enables the malicious virtual machine to guess network identity of the target and cause denial of service (DoS) or

severe disruption in operations of the target virtual machine. The attacks are invisible to external physical security

devices because the intra-virtual machine traffic does not leave the physical host. Data centers can experience a

spectrum of security lapses from DoS to outright data stealing. The migration block in virtualization sends machine

state across an unprotected network. During migration, the data on the network is unencrypted and carried over

encrypted transport using super-user privileges. The acknowledged constraint of intra-Layer 2 migration is actually

serving as a security mechanism. The API block is perhaps the most vulnerable of the three blocks. The

programming model of the API converts virtualized resources into serializable objects. A malicious management

station or human error can usurp the identity of a legitimate management station and cause major disruptions. For

example, it could use the patch update API to update a secure virtual machine with software that creates

vulnerability.

Taking the traditional component-level view of virtualization - that is, the virtual machine, hypervisor, virtual

network, and a management station - also validates the security concern in virtualization. Each of these

components has been a target of successful attacks from hackers.

Another deficiency of virtualization is the packaging and delivery of the application. Virtualization has standardized

the packaging of an application in the form of a virtual machine. Increasing the size of the application package by

including run-time components is a well-understood practice. The JVM started this practice by including the

language run time with the application. As long as an application (such as DNS, Dynamic Host Configuration

Protocol [DHCP], and Lightweight Directory Access Protocol [LDAP]) fits into this packaging model, it will benefit

from virtualization. The problem is that most of the current server-side enterprise applications are delivered as

components that rely heavily on their run-time containers. Cloud computing is changing this packaging further to

the point that components now rely on services in a data center. The services are delivered as components with

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 20

their own containers. This reality is the main reason why virtualization in an enterprise stalls at 30 percent of the

servers and 10 percent of the applications.

The third deficiency of virtualization is the architecture of the virtual network. Two virtual machines co-located on a

physical host do not take advantage of the advancements in the physical network. In fact, they operate on a fixed-

bandwidth network with implied oversubscription that is directly proportional to the number of virtual machines on

the physical host. This oversubscription makes the virtual infrastructure unsuitable for the compute-intensive

applications that are the early adopters of cloud computing. To get any performance parity with physical

infrastructure requires refactoring of the application into small virtual machines with local data. The cost of

refactoring an application nullifies the main value proposition of the cloud, that is, economies of scale.

The fourth weakness of virtualization is its lack of extension mechanisms. The design decision to have a thin

hypervisor (and sometimes proprietary too) means that all extensions to a virtual infrastructure need to be

implemented as virtual machines. The problem with this model is that infrastructure services deployed as virtual

machines compete for computational resources with the applications and are vulnerable to all the threats that a

virtual machine faces. If the virtual server hosting a DNS service virtual machine crashes, the data center loses

not only the application but also the critical network service required to activate the virtual server.

Finally, virtualization confines itself to a Layer 2 boundary. In a cloud data center where the average number of

servers is increasing at a 20- to 25-percent rate every year, this shortcoming leads to multiple virtualization

domains with their own management. A typical Layer 2 network today cannot support more than 4000 servers,

also meaning that a typical cloud cannot offer elasticity beyond 4000 servers worth of compute capacity.

It is for these reasons that successful cloud vendors such as Google and SalesForce.com do not use

virtualization.

Figure 2 illustrates the gap between what is required for a cloud data center and what is offered by today’s virtual

data center. The gap is an opportunity for new products and technologies and offers an avenue for evolution of

existing products and technologies.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 20

Figure 2. Gap Between Cloud Data Center and Virtual Data Center

Elements of Cloud Architecture

The leading edge of software engineering has shifted from enterprise Java to social networking software. An

important difference between the two is increasing use of events (as opposed to threads) technologies in an

application design. Events enable an application to communicate (and therefore scale) across multiple nodes

without loss of real-time interaction. It uses code replication to reduce code mobility, uses data caching to reduce

data query and transfer, and encourages the use of parallelism over concurrency. In its essence, cloud application

is a fusion of HPC distributed computing technologies with enterprise Java and .NET technologies.

This shift away from Java container-based architecture to cloud architecture will affect application packaging and

its run-time infrastructure. Java container had abstracted all network services and bundled them with the language

run time. Consolidating all these functions into an Out-of-Policy (OOP) language led to the creation of multiple

frameworks, which over time sunk under its own weight. In fact, the Web 2.0 trend was nothing more than creation

of lightweight containers for web programming. Cloud is the next point in this evolution away from heavy enterprise

Java containers to lightweight run-time containers that run in parallel to analyze large datasets.

It would be wrong, however, to think that the cloud is creating its own container and run-time environment for

applications. In fact, the cloud - through its adoption of virtualization - is borrowing heavily from the Java and OOP

world. Specifically, the cloud abides by the design principles of encapsulation (isolation block) and inheritance

(provisioning). The current state of the art in the world of virtualization also includes implementation of the

dependency injection (templates and cloning) and inversion of control patterns (orchestration and vCenter alerts

and alarms) in the virtual infrastructure - essentially creating a programmable infrastructure. This endeavor at

lightening of the application container will effect a migration of some functions back into the cloud infrastructure. It

remains to be seen if the functions migrate out of the virtual infrastructure and into the physical infrastructure, and

more importantly, if it does eliminate the need for an operating system.

Figure 3 illustrates the evolving cloud architecture that is being implemented at various pioneering cloud service

providers. What stand out in the cloud architecture is the diminishing role for a language container (JVM or

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 20

Common Language Runtime [CLR]), a growing role for large data-access mechanisms, and incorporation of social

networking technologies into the mainstream application. Some of the communication functions of the language

container are now encapsulated in a communication bus that enables horizontal component communication. The

cloud architecture enables a developer to build applications that can analyze petabytes of data and generate

kilobytes of reports in formats consumable by desktop-productivity applications.

Large data analysis was the vulnerable point of language containers. In the cloud architecture, that function is

subsumed by newer data-analytics technologies such as Map/Reduce. By continuing to offer language run-time

containers and the supporting presentation technologies, the cloud in essence scales a traditional enterprise

application by a few orders of magnitude, even as it preserves the user interface of the application.

Figure 3. Cloud Architecture and Services for Application

To enable migration of an enterprise application into the cloud, the cloud infrastructure needs to expose services

to the applications that traditionally were deployed in the data center independent of the application server. These

services include network services (Layer 2-7) and non-container application infrastructure services such as

naming, directory, description, messaging, etc. For example, the cloud infrastructure needs to offer a firewall

service that an application developer could incorporate at design time and the cloud administrator or cloud user

could provision at run time. How will the developer know which service to incorporate at design time? The cloud

infrastructure will need to be service-oriented architecture (SOA)-enabled, meaning that when a service is

deployed in the cloud infrastructure, the service registers with a directory and the directory is available at “well-

known” locations inside a cloud. All cloud-enabled applications will find, bind, and query the registry for the service

and configure their run time based on its availability. Another example of service would be VIP- or DNS-based

TCP load balancing. A web application queries the cloud infrastructure for, say, a load-balancing service. The

directory gives the address (URL) of the service to the application and the application uses the URL to create a

public VIP - without human intervention.

To generalize - what is missing in the cloud infrastructure is the mechanism and policy that enables an application

developer to incorporate functions into the application at design time that at run time query, discover, select, and

bind to a service that is substantially similar to the one available on an enterprise physical network. In addition,

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 20

what is missing is the mechanism and policy to enable a cloud administrator to set the policy for provisioning,

management, and setting QoS of the service in substantially the same manner as the administrator does today.

What is clear from these two examples follows:

● Separation of concerns between a network and compute infrastructure undermines the cloud model.

● The language container that hosts the business logic needs to play the role of an operating system and

offer a container-dependent interface to these new cloud infrastructure services.

● There needs to be a hierarchy of controllers in the cloud data center that enforces policies at various levels

of the cloud stack. As a collective, these controllers are responsible for the SLA fulfillment in the cloud.

Regulating access to a resource - which itself could be a function exposed as service - is the job of a controller. An

avenue for further research is to ascertain if this controller is a monolith or distributed. There are advantages to

having a centralized controller, but it may not scale to the Internet scale that is a basic requirement for a cloud

data center. A distributed controller with well-defined peering interfaces might be the best implementation path for

the near future. Whatever the architecture of the controller, it should be independent of any programming

language run time.

The controller - whether distributed or consolidated - would have to offer a single view of the cloud data center

control plane. Figure 4 illustrates the various control points in a cloud data center, where the controller needs an

agent or has a part distributed. A hierarchy of controllers that communicate over an open protocol and advertise

the capabilities of the services for which they are responsible, starting at the lowest level of a node in a cluster to

the highest level of a cloud, will enable a single view of the control plane. The best way to describe the controller

hierarchy is to describe its critical functions by controller type (Table 4).

Table 4. Controller Hierarchy and Its Function

Controller Function

Node controller Hypervisor interface

Cluster controller Work in progress (WIP)

Cloud controller API to internal MOS

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 20

Figure 4. Typical Cloud-Controller Hierarchy and Their Locations on Network

Another way to describe the controller is to identify what it does not do. The controller is not in line and as such

does not perform translations of addresses, names, protocols, or languages. It serves more a an information bus

that facilitates communication between multiple devices, an integration point for a data center management

system, or as a managed Layer 4-7 service object server.

Cloud Service Models

Network computing has three service models: batch computing, code mobility, and remote computing. In batch

computing, program and data reside on the client machine and are sent to the infrastructure for computation; the

results of the computation are sent back. In code mobility the program resides on the infrastructure and is sent to

the client to operate on local data. In remote computing, the program and data reside on the infrastructure and the

client gets the results of the computing.

Cloud computing is a new business model that also uses network computing. Not surprisingly, the industry has

defined three service models: infrastructure as a service (IaaS; batch computing), platform as a service (PaaS;

code mobility), and software as a service (SaaS; remote computing). These service models appeal to some

applications more than others. IaaS appeals to large data-computing applications oriented toward science,

engineering, and analytics. PaaS appeals to thin-client computing applications such as those oriented toward

desktop-productivity computing. Finally, SaaS appeals to easily deployed applications oriented to business

processes and workflows. Table 5 lists the three service models and the main stakeholders.

Table 5. Cloud Service Models, Target Applications, and Main Stakeholders

Type of Cloud Main Pain Point Addressed Target Applications Thought Leaders

IaaS ● Bidirectional scalability
(elasticity), availability, and
manageability

● HPC applications

● Engineering applications

● AWS and GoGrid

PaaS ● Interoperability for an application
across OSs

● Productivity applications ● Google and Force.com

SaaS ● Anytime, anywhere access ● Workflow and BPM applications ● Salesforce.com

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 20

● Managing license cost

Each of these cloud service models has distinct requirements from a Layer 4-7 service perspective. The IaaS

service model is the least disruptive to SLB evolution. In an IaaS, the SLB is offered to the end customer as a

service and charge is by throughput (MBps). It is the PaaS and SaaS service models that are disruptive to SLB

evolution.

To remain relevant as a mandatory building block for data centers as they adopt the cloud service and delivery

models, current deficiencies of SLB need to be overcome in future generations of the product category. These

deficiencies fall into five main categories:

● Lack of true network (Layer 1-3) virtualization

● Lack of support for newer high-availability models

● Lack of integration with data center resource-management framework

● Lack of semantic understanding beyond a flow

● Lack of footprint in the server (real or virtual) (leading to inability to offer service to east-west traffic)

The next section discusses these shortcomings of an SLB from the perspective of the three cloud service models.

Shortcomings of SLB for Cloud Data Center

SLB does not truly virtualize the underlying networ k. Today one can pass LAN and storage area network

(SAN) traffic through a single physical interface (Layer 1) and the hypervisor allows a virtual MAC and host-bus-

adapter (HBA) addresses to be associated with the physical interface. SLB has not kept up with these

advancements in network virtualization, and it continues to offer its services over an Ethernet-only interface. Not

having a role in the traffic management of SAN limits the usefulness of a SLB to TCP connection load balancing.

Technologies and standards are being developed that extend a network-interface-card (NIC) interface from

confines of the physical server closer to the switch port. An SLB can take advantage of these advances to offer

better traffic management to both LAN and SAN traffic into and out of a server. Creating a point of indirection

using the VIP artifact means that SLB continues to propagate the hierarchical network that is being designed out

of a cloud data center network. Cloud data center networks are increasingly adopting flat topologies, which

increase the number of nonroutable IP addresses in a data center. However, the SLB in its standard deployment

cannot load balance to a nonroutable IP address. It is for this reason that Stateful Network Address Translation

(SNAT) with Dynamic Source Routing (DSR) is being explored as the deployment of choice in data centers.

A first step in virtualization of the network is to implement concurrency in the switch fabric, which enables isolation

for higher layers. One could argue that VLAN can be considered as an isolation mechanism and that multiple

VLANs are allowed on a switch port. However, lack of concurrency inside a switch fabric relegates the VLAN

mechanism to access isolation only; that is, there is no way to regulate the bandwidth consumed by a VLAN. What

is needed is technology that enables an external control plane to slice the switch fabric and determine the

priorities of the packets in virtual input queues and virtual output queues. Offering an API to this mechanism will

enable Layer 4-7 devices - including servers - to implement QoS that supports a customer SLA. In other words,

the control plane of a switch would itself run on top of a hypervisor that supports multiple virtual control planes.

Each control plane programs its Forwarding Information Base (FIB) into the line card. Incoming packets are

classified not only by their tuples but also by the virtual switch for which they are destined.

SLB does not play a role in the newer high-availabi lity models in a data center. The bar for high availability in

a cloud data center is set much higher than for a standard data center. The focus is on high availability from the

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 20

perspective of the user of a service. If a server goes down, it is expected to be transparent to the end user and not

require a re-login. At the transport level, this reality means live migration of the TCP session from one server to

another. Applying this standard to high availability for an SLB requires that SLB too migrate a live connection from

one SLB to another.

SLB lacks integration mechanisms, preventing it fro m integrating with the data center manager. Cloud has

a management that is centered on “self-service” for the customer and automation for the administrator. To fit into

this management model, the SLB has to offer its control plane as a web service that an external entity can

instantiate (virtualize) and use. Every mechanism inside the SLB needs to be converted into an object and offered

as a managed object. Today’s SLB lacks severely in this dimension. The embedded software of an SLB has

remained untouched by the wave of creating objects for control and data that swept the application space in the

1990s and 2000s. This lack of integration functions threatens to design-out the SLB from a cloud data center

architecture.

SLB has no mechanism to extract intelligence beyond flow. SLB is an optimized packet processor with

connection management bookkeeping and limited content intelligence. For it to be a “must-have” in the cloud data

center, it needs to develop a mechanism to extract intelligence beyond the knowledge of a flow. The most sought-

after intelligence in the proxy infrastructure is the identity of a user and facilitation of the propagation of that

identity to various requesting services.

SLB does not have a footprint on the server. SLB does not have a footprint in the networking stack or

integration with the hypervisor on the server side. Lack of a footprint is the main contributor to the limited

intelligence available in the SLB. Distribution of the SLB across all the stakeholders in a transaction will enable the

SLB to make intelligent forwarding decisions.

Anecdotal quotes on SLB shortcomings in a cloud data center follow:

● SLB does not virtualize the network (from an application perspective): ◦ There is no virtual session, so failover causes the user to log in if a server fails. ◦ There is no independent data-plane bookkeeping; that is, there is no hypervisor that schedules a flow on

the data plane; connection tables are not exposed over the API for the application to manage. ◦ SLB does not participate in I/O Virtualization (IOV). ◦ SLB cannot migrate a TCP session; failover is disruptive.

● SLB does not integrate with CDNs; it does not participate in content refresh or content prepositioning.

● Network insertion creates static paths.

● Inline insertion constrains cluster servers to a Layer 2 segment.

● SLB does not support clustering.

● SLB does not have active-active inline mode.

● The role of SLB is diminished when a response is returned directly to the client (dominant model in the

cloud).

● SLB does not understand semantics beyond a flow boundary.

● SLB does not expose an interface for integration with the cloud-controller hierarchy.

● Latency overhead causes server CPU underuse (reason behind disaggregation).

● SLB cannot correlate two sessions in an application context; for example, Web 2.0.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 16 of 20

● SLB was originally developed for a short request-response traffic pattern.

● SLB was originally developed for insertion into north-south traffic. It has a limited role in east-west traffic,

and does not offer any traffic management or engineering for east-west traffic (dominant traffic pattern in

the cloud).

● SLB offers one-ended optimization; it lacks a host (or guest) footprint to offer two-ended optimization

services.

● SLB has no resource reservation mechanisms (because latency overhead causes server CPU underuse).

● SLB is not aware of user identity (and therefore no has role in identity propagation).

● SLB supports the Cloud Application Access Profile (the session is treated equally if accessed over public

network, private network, or mobile network).

● SLB has no role in SLA enforcement.

● SLB does not integrate with the hypervisor.

● SLB has a significant overlap with the virtualization infrastructure manager (high-availability function,

scaling function, and health-check function are usurped by virtualization).

The New Role of Layer 4 -7 Services in Application-Delivery Infrastructure in the Cloud

The evolution of Layer 4-7 services in a data center faces several cross-currents:

● Changes in data center traffic pattern

● Expected changes in physical network architecture

● Increasing traffic volume on the virtual network

Changing Traffic Patterns

The cloud application exhibits a traffic pattern that is different from a typical production data center. Only 20

percent of the traffic in a cloud is of the type in-out (north-south), and most of the traffic is intra-cloud (east-west).

In other words, 80 percent of the packets switched inside a data center remain inside a data center, yet the SLB is

designed for the 20 percent of the traffic that enters and leaves the data center. Analyzing the data center traffic

by duration reveals that short-duration traffic is deeper in the data center server tiers, whereas the long-duration

traffic is at the edge of the data center. However, today’s SLB was designed to handle a short-duration mostly

read traffic pattern. Further, the type of traffic observed at the application server (80 percent) is mostly

synchronous read/write of very short duration (1 msec), whereas the type of traffic observed at the web server (20

percent) is mostly long-lived with intermittent transfer. The median flow size for in/out traffic is 100 MB, and the

average number of concurrent flows observed on a server in a cluster is 10.

In summary, the kinds of traffic patterns that SLB was designed for are no longer found at the edge of a

data center but deep in its server tiers. Today, the SLB does not proxy traffic deeper in the server tiers, keeping

the SLB from offering advanced Layer 4-7 services. The evolution of the SLB and the Layer 4-7 services that it

offers will seek to plug this discrepancy between design center and the use case.

Expected Changes in Physical Network Architecture

The data center network has traditionally been designed as an inverted tree with core, aggregation, and

distribution (access) tiers. Higher tiers have excess switching bandwidth, whereas the lower tiers are

oversubscribed. This scenario worked well for a traditional three-tier data center where the ratio of the traffic within

a tier to intra-tier was less than 1. In other words, the bisectional traffic in a three-tier data center is lower than

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 17 of 20

in/out traffic. In a cloud data center, however, the traffic bottleneck is not at the edge of a data center but at its

bisection (middle). Several efforts are underway in industry to fundamentally change the data center network

architecture away from the inverted tree to a HPC style fat tree. A fat-tree data center network increases the

bisectional bandwidth of the data center by allocating non-blocking links to east-west traffic and blocking links to

north-south traffic. Essentially, it removes the explicit traffic engineering that is implemented in today’s network

design, thereby enabling the network to support any traffic matrix.

SLB deployment in a one- or two-arm mode at the cor e of the inverted tree keeps it from offering its

services to the traffic in the bisection of a cloud . In other words, most of the traffic does not pass through an

SLB in a cloud data center. The next-generation SLB will need to offer its services to the traffic that traverses the

bisection of a data center network. Opportunity exists for the SLB in a cloud to lower the cost of the data center

network by efficiently redirecting east-west traffic - thereby requiring fewer non-blocking links. One way to achieve

this requirement is to insert a shim layer into the east-west traffic, which redirects relevant traffic to an external

SLB. This method is similar to inline insertion (albeit virtually) in the east-west data path. The shim layer runs on

the virtual machine that is hosting the application being serviced by SLB or on the NIC of the server hardware.

Increasing Traffic Volume on the Virtual Network

The virtual-network traffic is switched by a soft switch that is found in the hypervisor of a virtual infrastructure. This

traffic does not leave the physical confines of a server and is not visible to an outside SLB. For virtual

environments, a better way would be to intercept the traffic transparently by adding functions to the hypervisor.

The hypervisor is always in the data path for all east-west and north-south traffic within a virtual server. Distributing

the SLB functions into a transparent proxy for north-south traffic and intercepting the Layer 7 hypervisor in line with

SmartNIC offload will not only enable SLB to offer its services to east-west traffic but also lower the end-to-end

latency for the web transaction. Figure 5 illustrates the distribution of functions among all stakeholders in an end-

to-end web transaction.

Figure 5. Distribution of SLB Functions Among Elements Involved in Web Transaction

Another way to look at the distribution of functions is to classify the functions into a transparent mode function vs.

an intercepting function. To lower the latency, the SLB has to limit the number of times it intercepts a flow.

Migrating all transparent functions (per packet operations) into a upstream switch and terminating functions in to

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 18 of 20

the hypervisor (with acceleration functions in the NIC to bypass the hypervisor) reduces the overall cost of the SLB

infrastructure for the cloud service provider and improves end-to-end latency for the end user.

Table 6 lists the most frequently deployed SLB functions, their classifications, and their new locations.

Table 6. Layer 4-7 Services in Cloud and Role and Location of SLB and ADC

Layer 4-7 Services in Cloud Classification SLB and Analog Digital Converter
(ADC) Role

Distribution of the Functions in
Cloud

Hardware VIP and other redirection Per packet Terminate first-time inbound
connection and select session
manager

SLB and ADC devices as proxies in
DMZ

Secure Sockets Layer (SSL)
acceleration

Per flow First terminate or redirect HTTP to
Secure HTTP (HTTPS) on session
manager

SLB and ADC devices as proxies in
DMZ

Authentication Per flow Redirect to authentication agent, which
is mostly on session manager but can
also be part of SLB infrastructure

Authenticating agent outside the DMZ
and not in the same VLAN as servers
or VIP

Distributed DoS (DDoS) Per flow

URL Rewrite Per flow

Compression and encryption Per packet

Caching Per flow

Persistence (session, file
extension, etc.)

Per flow

Global server load balancing
(GSLB)

Per flow

Content prepositioning Per flow

Firewall (web) Per flow

Firewall (Layer 2) Per packet

What is clear from Table 7 is that SLB functions need to be distributed among the critical elements involved in a

web transaction: browser, proxy, server network stack, and server application stack. The approach to insertion of

SLB functions into the elements will determine the future of Layer 4-7 services.

Table 7. Elasticity Requirements for SLB by Cloud Service Model

Cloud Service Model Critical Resource That Needs to Be Shared and Role of
Load Balancer

Load-Balancing Function for Critical Resource

IaaS ● Virtual-machine host is the critical resource and cost to
the IaaS provider

● Load balancer is a service in itself that is offered as part
of the package

● Load balancer should have a virtual infrastructure
footprint

● Its provisioning is managed by cloud provisioning
system

● Load balancer should support synchronous and stateful
interface for configuration and polling

● Load balancer should have mechanism to interpret
cloud provisioning systems policies

PaaS ● Business logic of the application is the shared resource.
Shared over an API, it is often referred to as multi-
tenancy

● The API calls to representational state transfer (REST)
or Simple Object Access Protocol SOAP interfaces
would need a Layer 7 load balancer

● Load balancer should have Layer 7 load balancer that
proxies the authentication system and propagates
identity

● Load balancer should proxy for virtual services

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 19 of 20

SaaS ● Access to the service is the critical resource being
shared

● This role is the traditional one played by a load balancer
today

● Load balancer should offer higher throughput and
higher SSL TPS rates

Elasticity in Load Balancing

Management of the cloud has evolved from application of optimal configuration to automated provisioning of

resources based on an SLA. This increased sophistication of the cloud management system (CMS) requires that a

resource register itself with the provisioning system and be provisionable by the CMS. In other words, any

resource that is not registered with the CMS is outside the cloud fabric and therefore not really cloud-enabled. This

change in the cloud data center requires that all Layer 4-7 services be accessible over an API. Any discussion on

the future of load balancing in a data center necessitates an estimation of the growth (a bet) on these clouds

personalities.

From the application load-balancing point of view, the SLB will have to offer an integration stack that integrates its

control plane with the nearest cloud controller. Today the SLB has a closed control plane and offers its services

over an Ethernet interface. Today we map a URL request to a page on a specific server. In a cloud data center,

we have to map a URL request to a controller responsible for infrastructure where this URL resides.

Figure 6 shows the application workloads that are gaining traction in a public cloud. It is important to note that

there is rapid change in the affinity of an application to the cloud. In a span of 6 months, the remote storage

application lost its dominant cloud application status to web applications. Another point to note is that clouds are

increasingly being accepted for mission-critical revenue-generating applications. The early adopters of cloud were

scientific computing and disaster recovery, but lately, they are revenue-generating web front ends for brick-and-

mortar companies. The final point to note is that the leading applications consume primarily the PaaS and SaaS

service models. The early adopters such as batch computing and remote storage consumed primarily the IaaS

service model.

Figure 6. Public Cloud Workloads Study; Source: The 451 Group

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 20 of 20

Table 8 lists the elements of an application-delivery infrastructure and their elasticity requirements.

Table 8. Elasticity Requirements of Application-Delivery Infrastructure

Elements of Application-
Delivery Infrastructure

Elasticity Requirements for Cloud Computing

Location ● Independent of data center

● Integration with public clouds for spillover and surge protection

● Integration at compute and storage levels; for example, content could be prepositioned

Name space ● Path resolution based on rule matches

Transport ● Multiple data paths controlled by a single control plane

● Transport profiles do not assume flat bandwidth; existence of low-latency paths

● Transport-level protocol translation

● Support for intermittent clients

Session ● Single session per user with properties including security policies, application ACLs, and host affinity; ACLs
include time of day (or cloud front)

● Transparent failover of sessions

Customization ● Support for user customization on a per-user basis; it is not cost-effective to change the core application

Application logic ● Adaptive clustering

Focusing on delivery services in Table 1, the first scalability limitation that we experience is the number of data

paths that are controlled by a single control path in an SLB. In other words, in today’s SLB, the policy definition

point and policy enforcement point have a one-to-one relationship and are packaged as a single appliance.

Addition of new services to this package entails adding higher-layer services to the control plane and packet and

flow-level services to the data plane.

Elasticity is a big feature of the cloud - about as big as its pay-per-use pricing model. It is the ability to expand and

contract capacity based on policy.

In the delivery services layer, the functions that need to be expanded or contracted all exist in the data plane.

Table 3 lists the functions of the delivery services layer that need to be “elasticized”.

The second scalability limitation is evident from Table 2. Today’s data-plane functions are based on static maps

that are cached in the data path. These maps are configured on the device control plane and have zero to no

integration with external directory systems. To bring elasticity into the data plane, the maps would have to be

created on a per-user basis.

Conclusion

Data centers are evolving to adopt a cloud service model. Whether the deployment model is public or private, the

challenges that face application architectures are the same. To overcome these challenges, infrastructure used by

the applications needs to evolve to support the cloud service models. Of the three models - PaaS, IaaS, and

SaaS - IaaS and PaaS are expected to guide the evolution of Layer 4-7 services. The critical dimension of

evolution for Layer 4-7 services embodied in an SLB is the programmatic dimension. SLB will have to expose all of

its functions as managed objects to an external cloud manager to enable scaling of applications in the cloud

computing data center.

© 2011 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 21 of 20

Printed in USA C11-675038-00 06/11

	The Role of Layer 4-7 Services in Scaling Applications for the Cloud-Computing Data Center
	Abstract
	Evolution to the Cloud
	Why Cloud?
	Scalability Is Not Easy
	Virtualization Is Not a Panacea
	Elements of Cloud Architecture
	Cloud Service Models
	Shortcomings of SLB for Cloud Data Center
	The New Role of Layer 4 -7 Services in Application-Delivery Infrastructure in the Cloud
	Changing Traffic Patterns
	Expected Changes in Physical Network Architecture
	Increasing Traffic Volume on the Virtual Network
	Elasticity in Load Balancing
	Conclusion

