

CHAPTER 2

Cisco Catalyst Blade Switch 3030 for Dell Cisco IOS Commands

aaa accounting dot1x

Use the **aaa accounting dot1x** global configuration command to enable authentication, authorization, and accounting (AAA) accounting and to create method lists defining specific accounting methods on a per-line or per-interface basis for IEEE 802.1x sessions. Use the **no** form of this command to disable IEEE 802.1x accounting.

aaa accounting dot1x {name | default} start-stop {broadcast group {name | radius | tacacs+} [group {name | radius | tacacs+} ...] | group {name | radius | tacacs+} [group {name | radius | tacacs+} ...]}

no aaa accounting dot1x {name | default}

Syntax Description

name	Name of a server group. This is optional when you enter it after the broadcast group and group keywords.
default	Use the accounting methods that follow as the default list for accounting services.
start-stop	Send a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested-user process begins regardless of whether or not the start accounting notice was received by the accounting server.
broadcast	Enable accounting records to be sent to multiple AAA servers and send accounting records to the first server in each group. If the first server is unavailable, the switch uses the list of backup servers to identify the first server.
group	Specify the server group to be used for accounting services. These are valid server group names:
	• name—Name of a server group.
	• radius—List of all RADIUS hosts.
	• tacacs+—List of all TACACS+ hosts.
	The group keyword is optional when you enter it after the broadcast group and group keywords. You can enter more than optional group keyword.

radius	(Optional) Enable RADIUS authorization.
tacacs+	(Optional) Enable TACACS+ accounting.

Defaults

AAA accounting is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

This command requires access to a RADIUS server.

We recommend that you enter the **dot1x reauthentication** interface configuration command before configuring IEEE 802.1x RADIUS accounting on an interface.

Examples

This example shows how to configure IEEE 802.1x accounting:

```
Switch(config)# aaa new-model
Switch(config)# aaa accounting dot1x default start-stop group radius
```


The RADIUS authentication server must be properly configured to accept and log update or watchdog packets from the AAA client.

Command	Description
aaa authentication dot1x	Specifies one or more AAA methods for use on interfaces running IEEE 802.1x.
aaa new-model	Enables the AAA access control model. For syntax information, see the Cisco IOS Security Command Reference, Release 12.2 > Authentication, Authorization, and Accounting > Authentication Commands.
dot1x reauthentication	Enables or disables periodic reauthentication.
dot1x timeout reauth-period	Sets the number of seconds between re-authentication attempts.

aaa authentication dot1x

Use the **aaa authentication dot1x** global configuration command to specify the authentication, authorization, and accounting (AAA) method to use on ports complying with the IEEE 802.1x authentication. Use the **no** form of this command to disable authentication.

aaa authentication dot1x {default} method1

no aaa authentication dot1x {default}

Syntax Description

default	Use the listed authentication method that follows this argument as the default method when a user logs in.
method1	Enter the group radius keywords to use the list of all RADIUS servers for authentication.

Though other keywords are visible in the command-line help strings, only the **default** and **group radius** keywords are supported.

Defaults

No authentication is performed.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The *method* argument identifies the method that the authentication algorithm tries in the given sequence to validate the password provided by the client. The only method that is truly IEEE 802.1x-compliant is the **group radius** method, in which the client data is validated against a RADIUS authentication server.

If you specify **group radius**, you must configure the RADIUS server by entering the **radius-server host** global configuration command.

Use the **show running-config** privileged EXEC command to display the configured lists of authentication methods.

Examples

This example shows how to enable AAA and how to create an IEEE 802.1x-compliant authentication list. This authentication first tries to contact a RADIUS server. If this action returns an error, the user is not allowed access to the network.

```
Switch(config)# aaa new-model
Switch(config)# aaa authentication dot1x default group radius
```

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description
aaa new-model	Enables the AAA access control model. For syntax information, see the Cisco IOS Security Command Reference, Release 12.2 > Authentication, Authorization, and Accounting > Authentication Commands.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

aaa authorization network

Use the **aaa authorization network** global configuration command to the configure the switch to use user-RADIUS authorization for all network-related service requests, such as IEEE 802.1x per-user access control lists (ACLs) or VLAN assignment. Use the **no** form of this command to disable RADIUS user authorization.

aaa authorization network default group radius

no aaa authorization network default

Syntax Description

default group	Use the list of all RADIUS hosts in the server group as the default authorization
radius	list.

Defaults

Authorization is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **aaa authorization network default group radius** global configuration command to allow the switch to download IEEE 802.1x authorization parameters from the RADIUS servers in the default authorization list. The authorization parameters are used by features such as per-user ACLs or VLAN assignment to get parameters from the RADIUS servers.

Use the **show running-config** privileged EXEC command to display the configured lists of authorization methods.

Examples

This example shows how to configure the switch for user RADIUS authorization for all network-related service requests:

Switch(config) # aaa authorization network default group radius

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description
show running-config	Displays the current operating configuration. For syntax information, select
	Cisco IOS Configuration Fundamentals Command Reference, Release
	12.2 > File Management Commands > Configuration File Management
	Commands.

action

Use the **action** access-map configuration command to set the action for the VLAN access map entry. Use the **no** form of this command to return to the default setting.

action {drop | forward}

no action

Syntax Description

drop	Drop the packet when the specified conditions are matched.
forward	Forward the packet when the specified conditions are matched.

Defaults

The default action is to forward packets.

Command Modes

Access-map configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You enter access-map configuration mode by using the vlan access-map global configuration command.

If the action is **drop**, you should define the access map, including configuring any access control list (ACL) names in match clauses, before applying the map to a VLAN, or all packets could be dropped.

In access-map configuration mode, use the **match** access-map configuration command to define the match conditions for a VLAN map. Use the **action** command to set the action that occurs when a packet matches the conditions.

The drop and forward parameters are not used in the **no** form of the command.

Examples

This example shows how to identify and apply a VLAN access map *vmap4* to VLANs 5 and 6 that causes the VLAN to forward an IP packet if the packet matches the conditions defined in access list *al2*:

```
Switch(config)# vlan access-map vmap4
Switch(config-access-map)# match ip address al2
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
Switch(config)# vlan filter vmap4 vlan-list 5-6
```

You can verify your settings by entering the show vlan access-map privileged EXEC command.

Command	Description			
access-list {deny permit}	Configures a standard numbered ACL. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.			
ip access-list	Creates a named access list. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.			
mac access-list extended	Creates a named MAC address access list.			
match (class-map configuration)	Defines the match conditions for a VLAN map.			
show vlan access-map	Displays the VLAN access maps created on the switch.			
vlan access-map	Creates a VLAN access map.			

archive download-sw

Use the **archive download-sw** privileged EXEC command to download a new image from a TFTP server to the switch and to overwrite or keep the existing image.

archive download-sw {/force-reload | /imageonly | /leave-old-sw | /no-set-boot | /no-version-check | overwrite | /reload | /safe} source-url

Syntax Description

/force-reload	Unconditionally force a system reload after successfully downloading the software image.					
/imageonly	Download only the software image but not the HTML files associated with the embedded device manager. The HTML files for the existing version are deleted only if the existing version is being overwritten or removed.					
/leave-old-sw	Keep the old software version after a successful download.					
/no-set-boot	Do not alter the setting of the BOOT environment variable to point to the new software image after it is successfully downloaded.					
/no-version-check	Download the software image without checking the compatibility of the stack protocol version on the image.					
/overwrite	Overwrite the software image in flash memory with the downloaded one.					
/reload	Reload the system after successfully downloading the image unless the configuration has been changed and not been saved.					
/safe	Keep the current software image; do not delete it to make room for the no software image before the new image is downloaded. The current image deleted after the download.					
source-url	The source URL alias for a local or network file system. These options are supported:					
	• The syntax for the local flash file system on the switch: flash:					
	• The syntax for the FTP: <pre>ftp:[[//username[:password]@location]/directory]/image-name.tar</pre>					
	 The syntax for an HTTP server: http://[[username:password]@]{hostname host-ip}[/directory]/image-name.tar 					
	 The syntax for a secure HTTP server: https://[[username:password]@]{hostname host-ip}[/directory]/image-name.tar 					
	• The syntax for the Remote Copy Protocol (RCP): rcp:[[//username@location]/directory]/image-name.tar					
	• The syntax for the TFTP: tftp:[[//location]/directory]/image-name.tar					
	The <i>image-name</i> .tar is the software image to download and install on the switch.					

Defaults

The current software image is not overwritten with the downloaded image.

Both the software image and HTML files are downloaded.

The new image is downloaded to the flash: file system.

The BOOT environment variable is changed to point to the new software image on the flash: file system.

Image names are case sensitive; the image file is provided in tar format.

Compatibility of the stack protocol version on the image to be downloaded is checked with the version on the switch stack.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The /imageonly option removes the HTML files for the existing image if the existing image is being removed or replaced. Only the Cisco IOS image (without the HTML files) is downloaded.

Using the /safe or /leave-old-sw option can cause the new image download to fail if there is insufficient flash memory. If leaving the software in place prevents the new image from fitting in flash memory due to space constraints, an error results.

If you used the **/leave-old-sw** option and did not overwrite the old image when you downloaded the new one, you can remove the old image by using the **delete** privileged EXEC command. For more information, see the "delete" section on page 2-55.

Use the **/overwrite** option to overwrite the image on the flash device with the downloaded one.

If you specify the command *without* the **/overwrite** option, the download algorithm verifies that the new image is not the same as the one on the switch flash device. If the images are the same, the download does not occur. If the images are different, the old image is deleted, and the new one is downloaded.

After downloading a new image, enter the **reload** privileged EXEC command to begin using the new image, or specify the **/reload** or **/force-reload** option in the **archive download-sw** command.

Examples

This example shows how to download a new image from a TFTP server at 172.20.129.10 and overwrite the image on the switch:

Switch# archive download-sw /overwrite tftp://172.20.129.10/test-image.tar

This example shows how to download only the software image from a TFTP server at 172.20.129.10 to the switch:

 ${\tt Switch \# \ archive \ download-sw \ /image only \ tftp://172.20.129.10/test-image.tar}$

This example shows how to keep the old software version after a successful download:

Switch# archive download-sw /leave-old-sw tftp://172.20.129.10/test-image.tar

Command	Description
archive tar	Creates a tar file, lists the files in a tar file, or extracts the files from a tar file.
archive upload-sw	Uploads an existing image on the switch to a server.
delete	Deletes a file or directory on the flash memory device.

archive tar

Use the **archive tar** privileged EXEC command to create a tar file, list files in a tar file, or extract the files from a tar file.

archive tar {/create destination-url flash:/file-url} | {/table source-url} | {/xtract source-url flash:/file-url [dir/file...]}

Syntax Description

/create destination-url flash:/file-url

Create a new tar file on the local or network file system.

For *destination-url*, *specify the* destination URL alias for the local or network file system and the name of the tar file to create. These options are supported:

- The syntax for the local flash file system: flash:
- The syntax for the FTP: ftp:[[//username[:password]@location]/directory]/tar-filename.tar
- The syntax for an HTTP server: http://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar
- The syntax for a secure HTTP server: https://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar
- The syntax for the Remote Copy Protocol (RCP) is:
 rcp:[[//username@location]/directory]/tar-filename.tar
- The syntax for the TFTP: tftp:[[//location]/directory]/tar-filename.tar

The tar-filename.tar is the tar file to be created.

For **flash**:/file-url, specify the location on the local flash file system from which the new tar file is created.

An optional list of files or directories within the source directory can be specified to write to the new tar file. If none are specified, all files and directories at this level are written to the newly created tar file.

/table source-url

Display the contents of an existing tar file to the screen.

For *source-url*, specify the source URL alias for the local or network file system. These options are supported:

- The syntax for the local flash file system:
 - flash:
- The syntax for the FTP:

ftp:[[//username[:password]@location]/directory]/tar-filename.tar

- The syntax for an HTTP server: http://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar
- The syntax for a secure HTTP server: https://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar
- The syntax for the RCP: rcp:[[//username@location]/directory]/tar-filename.tar
- The syntax for the TFTP: tftp:[[//location]/directory]/tar-filename.tar

The *tar-filename*.tar is the tar file to display.

/xtract source-url flash:/file-url [dir/file...]

Extract files from a tar file to the local file system.

For *source-url*, specify *t*he source URL alias for the local file system. These options are supported:

- The syntax for the local flash file system: flash:
- The syntax for the FTP:

ftp:[[//username[:password]@location]/directory]/tar-filename.**tar**

- The syntax for an HTTP server: http://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar
- The syntax for a secure HTTP server: https://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar
- The syntax for the RCP: rcp:[[//username@location]/directory]/tar-filename.tar
- The syntax for the TFTP: tftp:[[//location]/directory]/tar-filename.tar

The *tar-filename*.tar is the tar file from which to extract.

For **flash**:/file-url [dir/file...], specify the location on the local flash file system into which the tar file is extracted. Use the dir/file... option to specify an optional list of files or directories within the tar file to be extracted. If none are specified, all files and directories are extracted.

Defaults

There is no default setting.

Command Modes

Privileged EXEC

Command History

Usage Guidelines

Filenames and directory names are case sensitive.

cbs30x0-lanbasek9-mz.122-25.SEE/info (219 bytes)

Image names are case sensitive.

info.ver (219 bytes)

Examples

This example shows how to create a tar file. The command writes the contents of the *new-configs* directory on the local flash device to a file named *saved.tar* on the TFTP server at 172.20.10.30:

Switch# archive tar /create tftp:172.20.10.30/saved.tar flash:/new-configs

This example shows how to display the contents of the cbs30x0-lanbasek9-tar.122-25.SEE.tar file that is in flash memory. The contents of the tar file appear on the screen:

```
Switch# archive tar /table flash:cbs30x0-lanbase-tar.122-25.SEE.tar info (219 bytes)

cbs30x0-lanbasek9-mz.122-25.SEE/ (directory)
cbs30x0-lanbasek9-mz.122-25.SEE (610856 bytes)
```

This example shows how to display only the *cbs30x0-lanbasek9-tar.122-25.SEE/html* directory and its contents:

```
Switch# archive tar /table flash:cbs30x0-lanbasek9-tar.122-25.SEE.tar cbs30x0-lanbasek9-tar.122-25.SEE/html
cbs30x0-lanbasek9-mz.122-25.SEE/html/ (directory)
cbs30x0-lanbasek9-mz.122-25.SEE/html/const.htm (556 bytes)
cbs30x0-lanbasek9-mz.122-25.SEE/html/xhome.htm (9373 bytes)
cbs30x0-lanbasek9-mz.122-25.SEE/html/menu.css (1654 bytes)
<output truncated>
```

This example shows how to extract the contents of a tar file on the TFTP server at 172.20.10.30. This command extracts just the *new-configs* directory into the root directory on the local flash file system. The remaining files in the *saved.tar* file are ignored.

Switch# archive tar /xtract tftp://172.20.10.30/saved.tar flash:/ new-configs

Command	Description
archive download-sw	Downloads a new image from a TFTP server to the switch.
archive upload-sw	Uploads an existing image on the switch to a server.

archive upload-sw

Use the archive upload-sw privileged EXEC command to upload an existing switch image to a server.

archive upload-sw [/version version_string] destination-url

Syntax Description

/version version_string	(Optional) Specify the specific version string of the image to be uploaded.
destination-url	The destination URL alias for a local or network file system. These options are supported:
	• The syntax for the local flash file system on the switch: flash:
	• The syntax for the FTP: <pre>ftp:[[//username[:password]@location]/directory]/image-name.tar</pre>
	 The syntax for an HTTP server: http://[[username:password]@]{hostname host-ip}[/directory]/image-name.tar
	 The syntax for a secure HTTP server: https://[[username:password]@]{hostname host-ip}[/directory]/image-name.tar
	 The syntax for the Remote Copy Protocol (RCP): rcp:[[//username@location]/directory]/image-name.tar
	• The syntax for the TFTP: tftp:[[//location]/directory]/image-name.tar
	The <i>image-name</i> .tar is the name of software image to be stored on the server.

Defaults

Uploads the currently running image from the flash: file system.

Command Modes

Privileged EXEC

Command History

Release	Modification		
12.2(25)SEE	This command was introduced.		

Usage Guidelines

Use the upload feature only if the HTML files associated with the embedded device manager have been installed with the existing image.

The files are uploaded in this sequence: the Cisco IOS image, the HTML files, and info. After these files are uploaded, the software creates the tar file.

Image names are case sensitive.

Examples

This example shows how to upload the currently running image to a TFTP server at 172.20.140.2: Switch# archive upload-sw tftp://172.20.140.2/test-image.tar

Command	Description
archive download-sw	Downloads a new image to the switch.
archive tar	Creates a tar file, lists the files in a tar file, or extracts the files from a tar file.

auto qos voip

Use the **auto qos voip** interface configuration command to automatically configure quality of service (QoS) for voice over IP (VoIP) within a QoS domain. Use the **no** form of this command to return to the default setting.

auto qos voip {cisco-phone | cisco-softphone | trust}

no auto qos voip [cisco-phone | cisco-softphone | trust]

Syntax Description	cisco-phon	e

cisco-phone	Identify this port as connected to a Cisco IP Phone, and automatically configure QoS for VoIP. The QoS labels of incoming packets are trusted only when the telephone is detected.
cisco-softphone	Identify this port as connected to a device running the Cisco SoftPhone, and automatically configure QoS for VoIP.
trust	Identify this port as connected to a trusted switch or router, and automatically configure QoS for VoIP. The QoS labels of incoming packets are trusted. For nonrouted ports, the CoS value of the incoming packet is trusted. For routed ports, the DSCP value of the incoming packet is trusted.

Defaults

Auto-QoS is disabled on the port.

When auto-QoS is enabled, it uses the ingress packet label to categorize traffic, to assign packet labels, and to configure the ingress and egress queues as shown in Table 2-1.

Table 2-1 Traffic Types, Packet Labels, and Queues

	VoIP Data Traffic	VoIP Control Traffic	Routing Protocol Traffic	STP ¹ BPDU ² Traffic	Real-Time Video Traffic	All Other T	raffic
DSCP ³	46	24, 26	48	56	34	_	
CoS ⁴	5	3	6	7	3	_	
CoS-to-Ingress Queue Map	2, 3, 4, 5, 6, 7 (queue 2)				0, 1 (queu	e 1)	
CoS-to-Egress Queue Map	5 (queue 1)	3, 6, 7 (queue 2	2)		4 (queue 3)	2 (queue 3)	0, 1 (queue 4)

- 1. STP = Spanning Tree Protocol
- 2. BPDU = bridge protocol data unit
- 3. DSCP = Differentiated Services Code Point
- 4. CoS = class of service

Table 2-2 shows the generated auto-QoS configuration for the ingress queues.

Table 2-2 Auto-QoS Configuration for the Ingress Queues

Ingress Queue	Queue Number	CoS-to-Queue Map	Queue Weight (Bandwidth)	Queue (Buffer) Size
SRR ¹ shared	1	0, 1	81 percent	67 percent
Priority	2	2, 3, 4, 5, 6, 7	19 percent	33 percent

^{1.} SRR = shaped round robin. Ingress queues support shared mode only.

Table 2-3 shows the generated auto-QoS configuration for the egress queues.

Table 2-3 Auto-QoS Configuration for the Egress Queues

Egress Queue	Queue Number	CoS-to-Queue Map	Queue Weight (Bandwidth)	Queue (Buffer) Size for Gigabit-Capable Ports	Queue (Buffer) Size for 10/100 Ethernet Ports
Priority (shaped)	1	5	10 percent	16 percent	10 percent
SRR shared	2	3, 6, 7	10 percent	6 percent	10 percent
SRR shared	3	2, 4	60 percent	17 percent	26 percent
SRR shared	4	0, 1	20 percent	61 percent	54 percent

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use this command to configure the QoS appropriate for VoIP traffic within the QoS domain. The QoS domain includes the switch, the interior of the network, and edge devices that can classify incoming traffic for QoS.

Auto-QoS configures the switch for VoIP with Cisco IP Phones on switch and routed ports and for VoIP with devices running the Cisco SoftPhone application. These releases support only Cisco IP SoftPhone Version 1.3(3) or later. Connected devices must use Cisco Call Manager Version 4 or later.

To take advantage of the auto-QoS defaults, you should enable auto-QoS before you configure other QoS commands. You can fine-tune the auto-QoS configuration *after* you enable auto-QoS.

The switch applies the auto-QoS-generated commands as if the commands were entered from the command-line interface (CLI). An existing user configuration can cause the application of the generated commands to fail or to be overridden by the generated commands. These actions occur without warning. If all the generated commands are successfully applied, any user-entered configuration that was not overridden remains in the running configuration. Any user-entered configuration that was overridden can be retrieved by reloading the switch without saving the current configuration to memory. If the generated commands fail to be applied, the previous running configuration is restored.

If this is the first port on which you have enabled auto-QoS, the auto-QoS-generated global configuration commands are executed followed by the interface configuration commands. If you enable auto-QoS on another port, only the auto-QoS-generated interface configuration commands for that port are executed.

When you enable the auto-QoS feature on the first port, these automatic actions occur:

- QoS is globally enabled (**mls qos** global configuration command), and other global configuration commands are added.
- When you enter the **auto qos voip cisco-phone** interface configuration command on a port at the edge of the network that is connected to a Cisco IP Phone, the switch enables the trusted boundary feature. The switch uses the Cisco Discovery Protocol (CDP) to detect the presence or absence of a Cisco IP Phone. When a Cisco IP Phone is detected, the ingress classification on the port is set to trust the QoS label received in the packet. When a Cisco IP Phone is absent, the ingress classification is set to not trust the QoS label in the packet. The switch configures ingress and egress queues on the port according to the settings in Table 2-2 and Table 2-3.
- When you enter the **auto qos voip cisco-softphone** interface configuration command on a port at the edge of the network that is connected to a device running the Cisco SoftPhone, the switch uses policing to decide whether a packet is in or out of profile and to specify the action on the packet. If the packet does not have a DSCP value of 24, 26, or 46 or is out of profile, the switch changes the DSCP value to 0. The switch configures ingress and egress queues on the port according to the settings in Table 2-2 and Table 2-3.
- When you enter the **auto qos voip trust** interface configuration command on a port connected to the interior of the network, the switch trusts the CoS value for nonrouted ports or the DSCP value for routed ports in ingress packets (the assumption is that traffic has already been classified by other edge devices). The switch configures the ingress and egress queues on the port according to the settings in Table 2-2 and Table 2-3.

You can enable auto-QoS on static, dynamic-access, and voice VLAN access, and trunk ports. When enabling auto-QoS with a Cisco IP Phone on a routed port, you must assign a static IP address to the IP phone.

When a device running Cisco SoftPhone is connected to a switch or routed port, the switch supports only one Cisco SoftPhone application per port.

After auto-QoS is enabled, do not modify a policy map or aggregate policer that includes *AutoQoS* in its name. If you need to modify the policy map or aggregate policer, make a copy of it, and change the copied policy map or policer. To use the new policy map instead of the generated one, remove the generated policy map from the interface, and apply the new policy map.

To display the QoS configuration that is automatically generated when auto-QoS is enabled, enable debugging before you enable auto-QoS. Use the **debug auto qos** privileged EXEC command to enable auto-QoS debugging. For more information, see the **debug auto qos** command.

To disable auto-QoS on a port, use the **no auto qos voip** interface configuration command. Only the auto-QoS-generated interface configuration commands for this port are removed. If this is the last port on which auto-QoS is enabled and you enter the **no auto qos voip** command, auto-QoS is considered disabled even though the auto-QoS-generated global configuration commands remain (to avoid disrupting traffic on other ports affected by the global configuration). You can use the **no mls qos** global configuration command to disable the auto-QoS-generated global configuration commands. With QoS disabled, there is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

Examples

This example shows how to enable auto-QoS and to trust the QoS labels received in incoming packets when the switch or router connected to the port is a trusted device:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# auto qos voip trust

You can verify your settings by entering the **show auto qos interface** *interface-id* privileged EXEC command.

Command	Description
debug auto qos	Enables debugging of the auto-QoS feature.
mls qos cos	Defines the default CoS value of a port or assigns the default CoS to all incoming packets on the port.
mls qos map {cos-dscp dscp1 dscp8 dscp-cos dscp-list to cos}	Defines the CoS-to-DSCP map or the DSCP-to-CoS map.
mls qos queue-set output buffers	Allocates buffers to a queue-set.
mls qos srr-queue input bandwidth	Assigns shaped round robin (SRR) weights to an ingress queue.
mls qos srr-queue input buffers	Allocates the buffers between the ingress queues.
mls qos srr-queue input cos-map	Maps CoS values to an ingress queue or maps CoS values to a queue and to a threshold ID.
mls qos srr-queue input dscp-map	Maps DSCP values to an ingress queue or maps DSCP values to a queue and to a threshold ID.
mls qos srr-queue input priority-queue	Configures the ingress priority queue and guarantees bandwidth.
mls qos srr-queue output cos-map	Maps CoS values to an egress queue or maps CoS values to a queue and to a threshold ID.
mls qos srr-queue output dscp-map	Maps DSCP values to an egress queue or maps DSCP values to a queue and to a threshold ID.
mls qos trust	Configures the port trust state.
queue-set	Maps a port to a queue-set.
show auto qos	Displays auto-QoS information.
show mls qos interface	Displays QoS information at the port level.
srr-queue bandwidth shape	Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.
srr-queue bandwidth share	Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.

boot boothlpr

Use the **boot boothlpr** global configuration command to load a special Cisco IOS image, which when loaded into memory, can load a second Cisco IOS image into memory and launch it. This variable is used only for internal development and testing. Use the **no** form of this command to return to the default setting.

boot boothlpr filesystem:/file-url

no boot boothlpr

Syntax Description

filesystem:	Alias for a flash file system. Use flash: for the system board flash device.
Ifile-url	The path (directory) and name of a bootable helper image.

Defaults

No helper image is loaded.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Filenames and directory names are case sensitive.

This command changes the setting of the BOOTHLPR environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the boot environment variables.

boot config-file

Use the **boot config-file** global configuration command to specify the filename that Cisco IOS uses to read and write a nonvolatile copy of the system configuration. Use the **no** form of this command to return to the default setting.

boot config-file flash:/file-url

no boot config-file

yntax		

flash:/file-url	The path	(directory)	and name	of the configuration file.

Defaults

The default configuration file is flash:config.text.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Filenames and directory names are case sensitive.

This command changes the setting of the CONFIG_FILE environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the boot environment variables.

boot enable-break

Use the **boot enable-break** global configuration command to enable interrupting the automatic bootup process. Use the **no** form of this command to return to the default setting.

boot enable-break

no boot enable-break

Syntax Description

This command has no arguments or keywords.

Defaults

Disabled. The automatic bootup process cannot be interrupted by pressing the Break key on the console.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When you enter this command, you can interrupt the automatic bootup process by pressing the Break key on the console after the flash file system is initialized.

Despite the setting of this command, you can interrupt the automatic bootup process at any time by pressing the MODE button on the switch front panel.

This command changes the setting of the ENABLE_BREAK environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the bootup environment variables.

boot helper

Use the **boot helper** global configuration command to dynamically load files during bootloader initialization to extend or patch the functionality of the bootloader. Use the **no** form of this command to return to the default.

boot helper filesystem:/file-url ...

no boot helper

Syntax Description

filesystem:	Alias for a flash file system. Use flash: for the system board flash device.
Ifile-url	The path (directory) and a list of loadable files to dynamically load during
	loader initialization. Separate each image name with a semicolon.

Defaults

No helper files are loaded.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

This variable is used only for internal development and testing.

Filenames and directory names are case sensitive.

This command changes the setting of the HELPER environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the bootup environment variables.

boot helper-config-file

Use the **boot helper-config-file** global configuration command to specify the name of the configuration file to be used by the Cisco IOS helper image. If this is not set, the file specified by the CONFIG_FILE environment variable is used by all versions of Cisco IOS that are loaded. Use the **no** form of this command to return to the default setting.

boot helper-config-file filesystem:/file-url

no boot helper-config file

Syntax Description

filesystem:	Alias for a flash file system. Use flash: for the system board flash device.
Ifile-url	The path (directory) and helper configuration file to load.

Defaults

No helper configuration file is specified.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

This variable is used only for internal development and testing.

Filenames and directory names are case sensitive.

This command changes the setting of the HELPER_CONFIG_FILE environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the bootup environment variables.

boot manual

Use the **boot manual** global configuration command to enable manually booting the switch during the next bootup cycle. Use the **no** form of this command to return to the default setting.

boot manual

no boot manual

Syntax Description

This command has no arguments or keywords.

Defaults

Manual booting up is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The next time you reboot the system, the switch is in bootloader mode, which is shown by the *switch*: prompt. To boot up the system, use the bootloader command, and specify the name of the bootable image.

This command changes the setting of the MANUAL_BOOT environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the boot environment variables.

boot private-config-file

Use the **boot private-config-file** global configuration command to specify the filename that Cisco IOS uses to read and write a nonvolatile copy of the private configuration. Use the **no** form of this command to return to the default setting.

boot private-config-file filename

no boot private-config-file

ntax		

filename	The name	of the	private	configuration	file.

Defaults

The default configuration file is *private-config*.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Filenames are case sensitive.

Examples

This example shows how to specify the name of the private configuration file to be *pconfig*:

Switch(config)# boot private-config-file pconfig

Command	Description
show boot	Displays the settings of the boot environment variables.

boot system

Use the **boot system** global configuration command to specify the Cisco IOS image to load during the next bootup cycle. Use the **no** form of this command to return to the default setting.

boot system filesystem:/file-url ...

no boot system

Syntax Description

filesystem:	Alias for a flash file system. Use flash: for the system board flash device.
Ifile-url	The path (directory) and name of a bootable image. Separate image names with a semicolon.

Defaults

The switch attempts to automatically boot up the system by using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Filenames and directory names are case sensitive.

If you are using the **archive download-sw** privileged EXEC command to maintain system images, you never need to use the **boot system** command. The **boot system** command is automatically manipulated to load the downloaded image.

This command changes the setting of the BOOT environment variable. For more information, see Appendix A, "Cisco Catalyst Blade Switch 3030 for Dell Bootloader Commands."

Command	Description
show boot	Displays the settings of the boot environment variables.

channel-group

Use the **channel-group** interface configuration command to assign an Ethernet port to an EtherChannel group, to enable an EtherChannel mode, or both. Use the **no** form of this command to remove an Ethernet port from an EtherChannel group.

 $channel-group \ \it{channel-group-number} \ mode \ \{active \mid \{auto \ [non-silent]\} \mid \{desirable \ [non-silent]\} \mid on \mid passive\}$

no channel-group

PAgP modes:

 $channel-group \ \mathit{channel-group-number} \ mode \ \{\{auto \ [non-silent]\} \ | \ \{desirable \ [non-silent]\}\}$

LACP modes:

channel-group *channel-group-number* **mode** { **active** | **passive**}

On mode:

channel-group channel-group-number mode on

Syntax Description

channel-group-number	Specify the channel group number. The range is 1 to 48.
mode	Specify the EtherChannel mode.
active	Unconditionally enable Link Aggregation Control Protocol (LACP).
	Active mode places a port into a negotiating state in which the port initiates negotiations with other ports by sending LACP packets. A channel is formed with another port group in either the active or passive mode.
auto	Enable the Port Aggregation Protocol (PAgP) only if a PAgP device is detected.
	Auto mode places a port into a passive negotiating state in which the port responds to PAgP packets it receives but does not start PAgP packet negotiation. A channel is formed only with another port group in desirable mode. When auto is enabled, silent operation is the default.
desirable	Unconditionally enable PAgP.
	Desirable mode places a port into an active negotiating state in which the port starts negotiations with other ports by sending PAgP packets. An EtherChannel is formed with another port group that is in the desirable or auto mode. When desirable is enabled, silent operation is the default.
non-silent	(Optional) Use in PAgP mode with the auto or desirable keyword when traffic is expected from the other device.
on	Enable on mode.
	In on mode, a usable EtherChannel exists only when both connected port groups are in the on mode.
passive	Enable LACP only if a LACP device is detected.
	Passive mode places a port into a negotiating state in which the port responds to received LACP packets but does not initiate LACP packet negotiation. A channel is formed only with another port group in active mode.

Defaults

No channel groups are assigned.

No mode is configured.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

For Layer 2 EtherChannels, you do not have to create a port-channel interface first by using the **interface port-channel** global configuration command before assigning a physical port to a channel group. Instead, you can use the **channel-group** interface configuration command. It automatically creates the port-channel interface when the channel group gets its first physical port if the logical interface is not already created. If you create the port-channel interface first, the *channel-group-number* can be the same as the *port-channel-number*, or you can use a new number. If you use a new number, the **channel-group** command dynamically creates a new port channel.

You do not have to disable the IP address that is assigned to a physical port that is part of a channel group, but we strongly recommend that you do so.

You create Layer 3 port channels by using the **interface port-channel** command followed by the **no switchport** interface configuration command. You should manually configure the port-channel logical interface before putting the interface into the channel group.

After you configure an EtherChannel, configuration changes that you make on the port-channel interface apply to all the physical ports assigned to the port-channel interface. Configuration changes applied to the physical port affect only the port where you apply the configuration. To change the parameters of all ports in an EtherChannel, apply configuration commands to the port-channel interface, for example, spanning-tree commands or commands to configure a Layer 2 EtherChannel as a trunk.

If you do not specify **non-silent** with the **auto** or **desirable** mode, silent is assumed. The silent mode is used when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. A example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port prevents that port from ever becoming operational. However, it allows PAgP to operate, to attach the port to a channel group, and to use the port for transmission. Both ends of the link cannot be set to silent.

In the **on** mode, an EtherChannel exists only when a port group in the **on** mode is connected to another port group in the **on** mode.

You should use care when using the **on** mode. This is a manual configuration, and ports on both ends of the EtherChannel must have the same configuration. If the group is misconfigured, packet loss or spanning-tree loops can occur.

Do not configure an EtherChannel in both the PAgP and LACP modes. EtherChannel groups running PAgP and LACP can coexist on the same switch. Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate.

If you set the protocol by using the **channel-protocol** interface configuration command, the setting is not overridden by the **channel-group** interface configuration command.

Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x authentication on an EtherChannel port, an error message appears, and IEEE 802.1x authentication is not enabled.

Do not configure a secure port as part of an EtherChannel or an EtherChannel port as a secure port.

For a complete list of configuration guidelines, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

Do not enable Layer 3 addresses on the physical EtherChannel ports. Do not assign bridge groups on the physical EtherChannel ports because it creates loops.

Examples

This example shows how to configure an EtherChannel. It assigns two static-access ports in VLAN 10 to channel 5 with the PAgP mode **desirable**:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable
Switch(config-if-range)# end
```

This example shows how to configure an EtherChannel on a single switch in the stack. It assigns two static-access ports in VLAN 10 to channel 5 with the LACP mode **active**:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/1 -2
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode active
Switch(config-if-range)# end
```

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description
channel-protocol	Restricts the protocol used on a port to manage channeling.
interface port-channel	Accesses or creates the port channel.
show etherchannel	Displays EtherChannel information for a channel.
show lacp	Displays LACP channel-group information.
show pagp	Displays PAgP channel-group information.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

channel-protocol

Use the **channel-protocol** interface configuration command to restrict the protocol used on a port to manage channeling. Use the **no** form of this command to return to the default setting.

channel-protocol {lacp | pagp}

no channel-protocol

Syntax Description

lacp	Configure an EtherChannel with the Link Aggregation Control Protocol (LACP).
pagp	Configure an EtherChannel with the Port Aggregation Protocol (PAgP).

Defaults

No protocol is assigned to the EtherChannel.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **channel-protocol** command only to restrict a channel to LACP or PAgP. If you set the protocol by using the **channel-protocol** command, the setting is not overridden by the **channel-group** interface configuration command.

You must use the **channel-group** interface configuration command to configure the EtherChannel parameters. The **channel-group** command also can set the mode for the EtherChannel.

You cannot enable both the PAgP and LACP modes on an EtherChannel group.

PAgP and LACP are not compatible; both ends of a channel must use the same protocol.

Examples

This example shows how to specify LACP as the protocol that manages the EtherChannel:

Switch(config-if)# channel-protocol lacp

You can verify your settings by entering the **show etherchannel** [channel-group-number] **protocol** privileged EXEC command.

Command	Description
channel-group	Assigns an Ethernet port to an EtherChannel group.
show etherchannel protocol	Displays protocol information the EtherChannel.

class

Use the **class** policy-map configuration command to define a traffic classification match criteria (through the **police**, **set**, and **trust** policy-map class configuration commands) for the specified class-map name. Use the **no** form of this command to delete an existing class map.

class class-map-name

no class class-map-name

Syntax Description

class-map-name	Name of the class map.
----------------	------------------------

Defaults

No policy map class-maps are defined.

Command Modes

Policy-map configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Before using the **class** command, you must use the **policy-map** global configuration command to identify the policy map and to enter policy-map configuration mode. After specifying a policy map, you can configure a policy for new classes or modify a policy for any existing classes in that policy map. You attach the policy map to a port by using the **service-policy** interface configuration command.

After entering the **class** command, you enter policy-map class configuration mode, and these configuration commands are available:

- exit: exits policy-map class configuration mode and returns to policy-map configuration mode.
- **no**: returns a command to its default setting.
- **police**: defines a policer or aggregate policer for the classified traffic. The policer specifies the bandwidth limitations and the action to take when the limits are exceeded. For more information, see the **police** and **police** aggregate policy-map class commands.
- set: specifies a value to be assigned to the classified traffic. For more information, see the set
 command.
- **trust**: defines a trust state for traffic classified with the **class** or the **class-map** command. For more information, see the **trust** command.

To return to policy-map configuration mode, use the **exit** command. To return to privileged EXEC mode, use the **end** command.

The **class** command performs the same function as the **class-map global configuration command**. Use the **class** command when a new classification, which is not shared with any other ports, is needed. Use the **class-map** command when the map is shared among many ports.

Examples

This example shows how to create a policy map called *policy1*. When attached to the ingress direction, it matches all the incoming traffic defined in *class1*, sets the IP Differentiated Services Code Point (DSCP) to 10, and polices the traffic at an average rate of 1 Mb/s and bursts at 20 KB. Traffic exceeding the profile is marked down to a DSCP value gotten from the policed-DSCP map and then sent.

```
Switch(config) # policy-map policy1
Switch(config-pmap) # class class1
Switch(config-pmap-c) # set dscp 10
Switch(config-pmap-c) # police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c) # exit
```

You can verify your settings by entering the show policy-map privileged EXEC command.

Command	Description
class-map	Creates a class map to be used for matching packets to the class whose name you specify.
police	Defines a policer for classified traffic.
policy-map	Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.
set	Classifies IP traffic by setting a DSCP or IP-precedence value in the packet.
show policy-map	Displays quality of service (QoS) policy maps.
trust	Defines a trust state for the traffic classified through the class policy-map configuration command or the class-map global configuration command.

class-map

Use the **class-map** global configuration command to create a class map to be used for matching packets to the class name you specify and to enter class-map configuration mode. Use the **no** form of this command to delete an existing class map and to return to global configuration mode.

class-map [match-all | match-any] class-map-name

no class-map [match-all | match-any] class-map-name

Syntax Description

match-all	(Optional) Perform a logical-AND of all matching statements under this class map. All criteria in the class map must be matched.
match-any	(Optional) Perform a logical-OR of the matching statements under this class map. One or more criteria must be matched.
class-map-name	Name of the class map.

Defaults

No class maps are defined.

If neither the match-all or match-any keyword is specified, the default is match-all.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use this command to specify the name of the class for which you want to create or modify class-map match criteria and to enter class-map configuration mode.

The **class-map** command and its subcommands are used to define packet classification, marking, and aggregate policing as part of a globally named service policy applied on a per-port basis.

After you are in quality of service (QoS) class-map configuration mode, these configuration commands are available:

- description: describes the class map (up to 200 characters). The show class-map privileged EXEC command displays the description and the name of the class-map.
- exit: exits from QoS class-map configuration mode.
- match: configures classification criteria. For more information, see the match (class-map configuration) command.
- **no**: removes a match statement from a class map.
- rename: renames the current class map. If you rename a class map with a name that is already used, the message A class-map with this name already exists appears.

To define packet classification on a physical-port basis, only one **match** command per class map is supported. In this situation, the **match-all** and **match-any** keywords are equivalent.

Only one access control list (ACL) can be configured in a class map. The ACL can have multiple access control entries (ACEs).

Examples

This example shows how to configure the class map called *class1* with one match criterion, which is an access list called *103*:

```
Switch(config)# access-list 103 permit any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# exit
```

This example shows how to delete the class map class1:

Switch(config) # no class-map class1

You can verify your settings by entering the **show class-map** privileged EXEC command.

Command	Description
class	Defines a traffic classification match criteria (through the police , set , and trust policy-map class configuration commands) for the specified class-map name.
match (class-map configuration)	Defines the match criteria to classify traffic.
policy-map	Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.
show class-map	Displays QoS class maps.

clear dot1x

Use the **clear dot1x** privileged EXEC command to clear IEEE 802.1x information for the switch or for the specified port.

clear dot1x {all | interface interface-id}

Syntax Description

all	Clear all IEEE 802.1x information for the switch.
interface interface-id	Clear IEEE 802.1x information for the specified interface.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can clear all the information by using the **clear dot1x all** command, or you can clear only the information for the specified interface by using the **clear dot1x interface** *interface-id* command.

Examples

This example shows how to clear all IEEE 8021.x information:

Switch# clear dot1x all

This example shows how to clear IEEE 8021.x information for the specified interface:

Switch# clear dot1x interface gigabithethernet0/1

You can verify that the information was deleted by entering the show dot1x privileged EXEC command.

Command	Description
show dot1x	Displays IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.

clear eap sessions

Use the **clear eap sessions** privileged EXEC command to clear Extensible Authentication Protocol (EAP) session information for the switch or for the specified port.

clear eap sessions [credentials name [interface interface-id] | interface interface-id | method name | transport name] [credentials name | interface interface-id | transport name] ...

Syntax Description

credentials name	Clear EAP credential information for the specified profile.
interface interface-id	Clear EAP information for the specified interface.
method name	Clear EAP information for the specified method.
transport name	Clear EAP transport information for the specified lower level.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can clear all counters by using the **clear eap sessions** command, or you can clear only the specific information by using the keywords.

Examples

This example shows how to clear all EAP information:

Switch# clear eap

This example shows how to clear EAP-session credential information for the specified profile:

Switch# clear eap sessions credential type1

You can verify that the information was deleted by entering the **show dot1x** privileged EXEC command.

Command	Description
show eap	Displays EAP registration and session information for the switch or for the specified port

clear errdisable interface

Use the **clear errdisable interface** privileged EXEC command on the switch stack or on a standalone switch to re-enable a VLAN that was error disabled.

clear errdisable interface interface-id vlan [vlan-list]

Syntax Description

vlan list	(Optional) Specify a list of VLANs to be re-enabled. If a vlan-list is not
	specified, then all VLANs are re-enabled.

Command Default

No default is defined

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(37)SE	This command was introduced.

Usage Guidelines

You can re-enable a port by using the **shutdown** and **no shutdown** interface configuration commands, or you can clear error disable for VLANs by using the **clear errdisable interface** command.

Examples

This example shows how to re-enable all VLANs that were error-disabled on port Gi4/0/2.

Switch# clear errdisable interface GigabitEthernet4/0/2 vlan

Command	Description
errdisable detect cause	Enables error-disabled detection for a specific cause or all causes.
errdisable recovery	Configures the recovery mechanism variables.
show errdisable detect	Displays error-disabled detection status.
show errdisable recovery	Display error-disabled recovery timer information.
show interfaces status err-disabled	Displays interface status of a list of interfaces in error-disabled state.

clear ipc

Use the **clear ipc** privileged EXEC command to clear Interprocess Communications Protocol (IPC) statistics.

clear ipc {queue-statistics | statistics}

Syntax Description

queue-statistics	Clear the IPC queue statistics.
statistics	Clear the IPC statistics.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)xx	This command was introduced.

Usage Guidelines

You can clear all statistics by using the **clear ipc statistics** command, or you can clear only the queue statistics by using the **clear ipc queue-statistics** command.

Examples

This example shows how to clear all statistics:

Switch# clear ipc statistics

This example shows how to clear only the queue statistics:

Switch# clear ipc queue-statistics

You can verify that the statistics were deleted by entering the **show ipc rpc** or the **show ipc session** privileged EXEC command.

Command	Description
show ipc {rpc session}	Displays the IPC multicast routing statistics.

clear I2protocol-tunnel counters

Use the **clear l2protocol-tunnel counters** privileged EXEC command to clear the protocol counters in protocol tunnel ports.

clear l2protocol-tunnel counters [interface-id]

•	_			
Vuntav	Hac	Crin	Sti O	n
Syntax	DES	GIID	uu	ш

interface-id	(Optional) Specify interface (physical interface or port channel) for which
	protocol counters are to be cleared.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)xx	This command was introduced.

Usage Guidelines

Use this command to clear protocol tunnel counters on the switch or on the specified interface.

Examples

This example shows how to clear Layer 2 protocol tunnel counters on an interface:

 ${\tt Switch\#\ clear\ 12protocol-tunnel\ counters\ gigabitethernet0/3}$

Command	Description
show l2protocol-tunnel	Displays information about ports configured for Layer 2 protocol tunneling.

clear ip dhcp snooping

Use the **clear ip dhcp snooping** privileged EXEC command on the switch stack or on a standalone switch to clear the DHCP snooping binding database, the DHCP snooping binding database agent statistics, or the DHCP snooping statistics counters.

clear ip dhcp snooping {binding $\{* \mid ip\text{-}address \mid interface interface\text{-}id \mid vlan vlan\text{-}id\} \mid database statistics | statistics}$

Syntax Description

binding	Clear the DHCP snooping binding database.	
*	Clear all automatic bindings.	
ip-address	Clear the binding entry IP address.	
interface interface-id	Clear the binding input interface.	
vlan vlan-id	Clear the binding entry VLAN.	
database statistics	Clear the DHCP snooping binding database agent statistics.	
statistics	Clear the DHCP snooping statistics counter.	

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(37)SE	The command was introduced.
12.2(44)SE	The *, <i>ip-address</i> , interface <i>interface-id</i> , and vlan <i>vlan-id</i> keywords were introduced.

Usage Guidelines

When you enter the **clear ip dhcp snooping database statistics** command, the switch does not update the entries in the binding database and in the binding file before clearing the statistics.

Examples

This example shows how to clear the DHCP snooping binding database agent statistics:

Switch# clear ip dhcp snooping database statistics

You can verify that the statistics were cleared by entering the **show ip dhcp snooping database** privileged EXEC command.

This example shows how to clear the DHCP snooping statistics counters:

Switch# clear ip dhcp snooping statistics

You can verify that the statistics were cleared by entering the **show ip dhcp snooping statistics** user EXEC command.

Command	Description
ip dhcp snooping	Enables DHCP snooping on a VLAN.
show ip dhcp snooping binding	Displays the status of DHCP snooping database agent.
show ip dhcp snooping statistics	Displays the DHCP snooping statistics.

clear lacp

Use the **clear lacp** privileged EXEC command to clear Link Aggregation Control Protocol (LACP) channel-group counters.

clear lacp {channel-group-number counters | counters}

Syntax Description

channel-group-number	(Optional) Channel group number. The range is 1 to 48.
counters Clear traffic counters.	

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification	
12.2(25)SEE	This command was introduced.	

Usage Guidelines

You can clear all counters by using the **clear lacp counters** command, or you can clear only the counters for the specified channel group by using the **clear lacp** *channel-group-number* **counters** command.

Examples

This example shows how to clear all channel-group information:

Switch# clear lacp counters

This example shows how to clear LACP traffic counters for group 4:

Switch# clear lacp 4 counters

You can verify that the information was deleted by entering the **show lacp counters** or the **show lacp 4 counters** privileged EXEC command.

Command	Description	
show lacp	Displays LACP channel-group information.	

clear mac address-table

Use the **clear mac address-table** privileged EXEC command to delete from the MAC address table a specific dynamic address, all dynamic addresses on a particular interface, or all dynamic addresses on a particular VLAN. This command also clears the MAC address notification global counters.

clear mac address-table {**dynamic** [**address** *mac-addr* | **interface** *interface-id* | **vlan** *vlan-id*] | **notification**}

Syntax Description

dynamic	Delete all dynamic MAC addresses.	
dynamic address mac-addr	(Optional) Delete the specified dynamic MAC address.	
dynamic interface interface-id	(Optional) Delete all dynamic MAC addresses on the specified physical port or port channel.	
dynamic vlan vlan-id	(Optional) Delete all dynamic MAC addresses for the specified VLAN. The range is 1 to 4094.	
notification	Clear the notifications in the history table and reset the counters.	

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to remove a specific MAC address from the dynamic address table:

Switch# clear mac address-table dynamic address 0008.0070.0007

You can verify that the information was deleted by entering the **show mac address-table** privileged EXEC command.

Command	Description
mac address-table notification	Enables the MAC address notification feature.
show mac address-table	Displays the MAC address table static and dynamic entries.
show mac address-table notification	Displays the MAC address notification settings for all interfaces or the specified interface.
snmp trap mac-notification	Enables the Simple Network Management Protocol (SNMP) MAC address notification trap on a specific interface.

clear mac address-table move update

Use the **clear mac address-table move update** privileged EXEC command to clear the mac address-table-move update-related counters.

clear mac address-table move update

Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to clear the mac address-table move update related counters.

Switch# clear mac address-table move update

You can verify that the information was cleared by entering the **show mac address-table move update** privileged EXEC command.

Command	Description
mac address-table move update {receive transmit}	Configures MAC address-table move update on the switch.
show mac address-table move update	Displays the MAC address-table move update information on the switch.

clear pagp

Use the **clear pagp** privileged EXEC command to clear Port Aggregation Protocol (PAgP) channel-group information.

clear pagp {channel-group-number counters | counters}

Syntax Description

channel-group-number	(Optional) Channel group number. The range is 1 to 48.
counters	Clear traffic counters.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can clear all counters by using the **clear pagp counters** command, or you can clear only the counters for the specified channel group by using the **clear pagp** *channel-group-number* **counters** command.

Examples

This example shows how to clear all channel-group information:

Switch# clear pagp counters

This example shows how to clear PAgP traffic counters for group 10:

Switch# clear pagp 10 counters

You can verify that information was deleted by entering the show pagp privileged EXEC command.

Command	Description
show pagp	Displays PAgP channel-group information.

clear port-security

Use the **clear port-security** privileged EXEC command to delete from the MAC address table all secure addresses or all secure addresses of a specific type (configured, dynamic, or sticky) on the switch or on an interface.

clear port-security {all | configured | dynamic | sticky} [[address mac-addr | interface
 interface-id] [vlan {vlan-id | {access | voice}}]]

Syntax Description

all	Delete all secure MAC addresses.
configured	Delete configured secure MAC addresses.
dynamic	Delete secure MAC addresses auto-learned by hardware.
sticky	Delete secure MAC addresses, either auto-learned or configured.
address mac-addr	(Optional) Delete the specified dynamic secure MAC address.
interface interface-id	(Optional) Delete all the dynamic secure MAC addresses on the specified physical port or VLAN.
vlan	(Optional) Delete the specified secure MAC address from the specified VLAN. Enter one of these options after you enter the vlan keyword:
	• <i>vlan-id</i> —On a trunk port, specify the VLAN ID of the VLAN on which this address should be cleared.
	 access—On an access port, clear the specified secure MAC address on the access VLAN.
	• voice—On an access port, clear the specified secure MAC address on the voice VLAN.
	Note The voice keyword is available only if voice VLAN is configured on a port and if that port is not the access VLAN.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to clear all secure addresses from the MAC address table:

Switch# clear port-security all

This example shows how to remove a specific configured secure address from the MAC address table:

Switch# clear port-security configured address 0008.0070.0007

This example shows how to remove all the dynamic secure addresses learned on a specific interface:

Switch# clear port-security dynamic interface gigabitethernet0/1

This example shows how to remove all the dynamic secure addresses from the address table:

Switch# clear port-security dynamic

You can verify that the information was deleted by entering the **show port-security** privileged EXEC command.

Command	Description
switchport port-security	Enables port security on an interface.
switchport port-security mac-address mac-address	Configures secure MAC addresses.
switchport port-security maximum value	Configures a maximum number of secure MAC addresses on a secure interface.
show port-security	Displays the port security settings defined for an interface or for the switch.

clear spanning-tree counters

Use the clear spanning-tree counters privileged EXEC command to clear the spanning-tree counters.

clear spanning-tree counters [interface interface-id]

~		D	
1	ntax	Descri	ntion
\mathbf{c}	ymuan	DUSCII	puon

interface interface-id	(Optional) Clear all spanning-tree counters on the specified interface. Valid
	interfaces include physical ports, VLANs, and port channels. The VLAN
	range is 1 to 4094. The port-channel range is 1 to 48.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If the *interface-id* is not specified, spanning-tree counters are cleared for all interfaces.

Examples

This example shows how to clear spanning-tree counters for all interfaces:

Switch# clear spanning-tree counters

Command	Description
show spanning-tree	Displays spanning-tree state information.

clear spanning-tree detected-protocols

Use the **clear spanning-tree detected-protocols** privileged EXEC command to restart the protocol migration process (force the renegotiation with neighboring switches) on all interfaces or on the specified interface.

clear spanning-tree detected-protocols [interface interface-id]

Syntax Description

interface interface-id	(Optional) Restart the protocol migration process on the specified interface.
	Valid interfaces include physical ports, VLANs, and port channels. The
	VLAN range is 1 to 4094. The port-channel range is 1 to 48.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

A switch running the rapid per-VLAN spanning-tree plus (rapid-PVST+) protocol or the Multiple Spanning Tree Protocol (MSTP) supports a built-in protocol migration mechanism that enables it to interoperate with legacy IEEE 802.1D switches. If a rapid-PVST+ switch or an MSTP switch receives a legacy IEEE 802.1D configuration bridge protocol data unit (BPDU) with the protocol version set to 0, it sends only IEEE 802.1D BPDUs on that port. A multiple spanning-tree (MST) switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (Version 3) associated with a different region, or a rapid spanning-tree (RST) BPDU (Version 2).

However, the switch does not automatically revert to the rapid-PVST+ or the MSTP mode if it no longer receives IEEE 802.1D BPDUs because it cannot learn whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. Use the **clear spanning-tree detected-protocols** command in this situation.

Examples

This example shows how to restart the protocol migration process on a port:

Switch# clear spanning-tree detected-protocols interface gigabitethernet0/1

Command	Description
show spanning-tree	Displays spanning-tree state information.
spanning-tree link-type	Overrides the default link-type setting and enables rapid spanning-tree changes to the forwarding state.

clear vmps statistics

Use the **clear vmps statistics** privileged EXEC command to clear the statistics maintained by the VLAN Query Protocol (VQP) client.

clear vmps statistics

Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to clear VLAN Membership Policy Server (VMPS) statistics:

Switch# clear vmps statistics

You can verify that information was deleted by entering the **show vmps statistics** privileged EXEC command.

Command	Description
show vmps	Displays the VQP version, reconfirmation interval, retry count, VMPS IP
	addresses, and the current and primary servers.

clear vtp counters

Use the **clear vtp counters** privileged EXEC command to clear the VLAN Trunking Protocol (VTP) and pruning counters.

clear vtp counters

Syntax Description

This command has no arguments or keywords.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to clear the VTP counters:

Switch# clear vtp counters

You can verify that information was deleted by entering the **show vtp counters** privileged EXEC command.

Command	Description
show vtp	Displays general information about the VTP management domain, status, and counters.

define interface-range

Use the **define interface-range** global configuration command to create an interface-range macro. Use the **no** form of this command to delete the defined macro.

define interface-range macro-name interface-range

no define interface-range macro-name interface-range

Syntax Description

macro-name	Name of the interface-range macro; up to 32 characters.
interface-range	Interface range; for valid values for interface ranges, see "Usage Guidelines."

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The macro name is a 32-character maximum character string.

A macro can contain up to five ranges.

All interfaces in a range must be the same type; that is, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs, but you can combine multiple interface types in a macro.

When entering the *interface-range*, use this format:

- type {first-interface} {last-interface}
- You must add a space between the first interface number and the hyphen when entering an *interface-range*. For example, **gigabitethernet 0/1 2** is a valid range; **gigabitethernet 0/1-2** is not a valid range

Valid values for type and interface:

- vlan vlan-id, where the VLAN ID is 1 to 4094
 - VLAN interfaces must have been configured with the **interface vlan** command (the **show running-config** privileged EXEC command displays the configured VLAN interfaces). VLAN interfaces not displayed by the **show running-config** command cannot be used in *interface-ranges*.
- port-channel port-channel-number, where port-channel-number is from 1 to 48
- **gigabitethernet** module/{first port} {last port}

For physical interfaces:

- module is always 0.
- the range is type **0**/number number (for example, **gigabitethernet 0/1 2**).

When you define a range, you must enter a space before the hyphen (-), for example:

gigabitethernet0/1 - 2

You can also enter multiple ranges. When you define multiple ranges, you must enter a space after the first entry before the comma (,). The space after the comma is optional, for example:

gigabitethernet 0/3, gigabitethernet 0/6-7

gigabitethernet0/3 - 4, gigabitethernet0/6 - 7

Examples

This example shows how to create a multiple-interface macro:

Switch(config)# define interface-range macro1 gigabitethernet0/1 - 2

Command	Description
interface range	Executes a command on multiple ports at the same time.
show running-config	Displays the current operating configuration, including defined macros. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

delete

Use the **delete** privileged EXEC command to delete a file or directory on the flash memory device.

delete [/force] [/recursive] filesystem:/file-url

Syntax Description

/force	(Optional) Suppress the prompt that confirms the deletion.	
/recursive	(Optional) Delete the named directory and all subdirectories and the files contained in it.	
filesystem:	Alias for a flash file system.	
	The syntax for the local flash file system: flash:	
Ifile-url	The path (directory) and filename to delete.	

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If you use the **/force** keyword, you are prompted once at the beginning of the deletion process to confirm the deletion.

If you use the **/recursive** keyword without the **/force** keyword, you are prompted to confirm the deletion of every file.

The prompting behavior depends on the setting of the **file prompt** global configuration command. By default, the switch prompts for confirmation on destructive file operations. For more information about this command, see the *Cisco IOS Command Reference*, *Release 12.2*.

.

Examples

This example shows how to remove the directory that contains the old software image after a successful download of a new image:

Switch# delete /force /recursive flash:/old-image

You can verify that the directory was removed by entering the **dir** *filesystem*: privileged EXEC command.

Command	Description
archive download-sw	Downloads a new image to the switch and overwrites or keeps the existing
	image.

deny (MAC access-list configuration)

Use the **deny** MAC access-list configuration command to prevent non-IP traffic from being forwarded if the conditions are matched. Use the **no** form of this command to remove a deny condition from the named MAC access list.

{deny | permit} {any | host src-MAC-addr | src-MAC-addr mask} {any | host dst-MAC-addr | dst-MAC-addr mask} [type mask | aarp | amber | cos cos | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp]

no {deny | permit} {any | host src-MAC-addr | src-MAC-addr mask} {any | host dst-MAC-addr | dst-MAC-addr mask} [type mask | aarp | amber | cos cos | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp]

Syntax Description

any	Keyword to specify to deny any source or destination MAC address.
host src MAC-addr src-MAC-addr mask	Define a host MAC address and optional subnet mask. If the source address for a packet matches the defined address, non-IP traffic from that address is denied.
host dst-MAC-addr dst-MAC-addr mask	Define a destination MAC address and optional subnet mask. If the destination address for a packet matches the defined address, non-IP traffic to that address is denied.
type mask	(Optional) Use the Ethertype number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet.
	The type is 0 to 65535, specified in hexadecimal.
	The <i>mask</i> is a mask of <i>don't care</i> bits applied to the Ethertype before testing for a match.
aarp	(Optional) Select Ethertype AppleTalk Address Resolution Protocol that maps a data-link address to a network address.
amber	(Optional) Select EtherType DEC-Amber.
cos cos	(Optional) Select a class of service (CoS) number from 0 to 7 to set priority. Filtering on CoS can be performed only in hardware. A warning message reminds the user if the cos option is configured.
dec-spanning	(Optional) Select EtherType Digital Equipment Corporation (DEC) spanning tree.
decnet-iv	(Optional) Select EtherType DECnet Phase IV protocol.
diagnostic	(Optional) Select EtherType DEC-Diagnostic.
dsm	(Optional) Select EtherType DEC-DSM.
etype-6000	(Optional) Select EtherType 0x6000.
etype-8042	(Optional) Select EtherType 0x8042.
lat	(Optional) Select EtherType DEC-LAT.
lavc-sca	(Optional) Select EtherType DEC-LAVC-SCA.

Isap lsap-number mask	(Optional) Use the LSAP number (0 to 65535) of a packet with 802.2 encapsulation to identify the protocol of the packet.	
	mask is a mask of don't care bits applied to the LSAP number before testing for a match.	
mop-console	(Optional) Select EtherType DEC-MOP Remote Console.	
mop-dump	(Optional) Select EtherType DEC-MOP Dump.	
msdos	(Optional) Select EtherType DEC-MSDOS.	
mumps	(Optional) Select EtherType DEC-MUMPS.	
netbios	(Optional) Select EtherType DEC- Network Basic Input/Output System (NETBIOS).	
vines-echo	(Optional) Select EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems.	
vines-ip	(Optional) Select EtherType VINES IP.	
xns-idp	(Optional) Select EtherType Xerox Network Systems (XNS) protocol suite (0 to 65535), an arbitrary Ethertype in decimal, hexadecimal, or octal.	

Though visible in the command-line help strings, appletalk is not supported as a matching condition.

To filter IPX traffic, you use the *type mask* or **lsap** *lsap mask* keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS terminology are listed in Table 2-4.

Table 2-4 IPX Filtering Criteria

IPX Encapsulation Type			
Cisco IOS Name	Novel Name	Filter Criterion	
arpa	Ethernet II	Ethertype 0x8137	
snap	Ethernet-snap	Ethertype 0x8137	
sap	Ethernet 802.2	LSAP 0xE0E0	
novell-ether	Ethernet 802.3	LSAP 0xFFFF	

Defaults

This command has no defaults. However, the default action for a MAC-named ACL is to deny.

Command Modes

MAC-access list configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You enter MAC-access list configuration mode by using the **mac access-list extended** global configuration command.

If you use the **host** keyword, you cannot enter an address mask; if you do not use the **host** keyword, you must enter an address mask.

When an access control entry (ACE) is added to an access control list, an implied **deny-any-any** condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

For more information about named MAC extended access lists, see the software configuration guide for this release.

Examples

This example shows how to define the named MAC extended access list to deny NETBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is denied.

Switch(config-ext-macl) # deny any host 00c0.00a0.03fa netbios.

This example shows how to remove the deny condition from the named MAC extended access list:

Switch(config-ext-macl)# no deny any 00c0.00a0.03fa 0000.0000.0000 netbios.

This example denies all packets with Ethertype 0x4321:

Switch(config-ext-macl)# deny any any 0x4321 0

You can verify your settings by entering the show access-lists privileged EXEC command.

Command	Description
mac access-list extended	Creates an access list based on MAC addresses for non-IP traffic.
permit (MAC access-list configuration)	Permits non-IP traffic to be forwarded if conditions are matched.
show access-lists	Displays access control lists configured on a switch.

dot1x

Use the **dot1x** global configuration command to globally enable IEEE 802.1x authentication. Use the **no** form of this command to return to the default setting.

dot1x {critical {eapol | recovery delay milliseconds} | {guest-vlan supplicant} |
 system-auth-control}

no dot1x { critical {eapol | recovery delay} | {guest-vlan supplicant} | system-auth-control}

Though visible in the command-line help strings, the **credentials** name keywords are not supported.

Syntax Description

critical {eapol recovery delay milliseconds}	Configure the inaccessible authentication bypass parameters. For more information, see the dot1x critical (global configuration) command.
guest-vlan supplicant	Enable optional guest VLAN behavior globally on the switch.
system-auth-control	Enable IEEE 802.1x authentication globally on the switch.

Defaults

IEEE 802.1x authentication is disabled, and the optional guest VLAN behavior is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You must enable authentication, authorization, and accounting (AAA) and specify the authentication method list before globally enabling IEEE 802.1x authentication. A method list describes the sequence and authentication methods to be used to authenticate a user.

Before globally enabling IEEE 802.1x authentication on a switch, remove the EtherChannel configuration from the interfaces on which IEEE 802.1x authentication and EtherChannel are configured.

If you are using a device running the Cisco Access Control Server (ACS) application for IEEE 802.1x authentication with EAP-Transparent LAN Services (TLS) and with EAP-MD5, make sure that the device is running ACS Version 3.2.1 or later.

You can use the **guest-vlan supplicant** keywords to enable the optional IEEE 802.1x guest VLAN behavior globally on the switch. For more information, see the **dot1x guest-vlan** command.

Examples

This example shows how to globally enable IEEE 802.1x authentication on a switch:

Switch(config) # dot1x system-auth-control

This example shows how to globally enable the optional guest VLAN behavior on a switch:

Switch(config)# dot1x guest-vlan supplicant

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x critical (global configuration)	Configures the parameters for the inaccessible authentication bypass feature on the switch.
dot1x guest-vlan	Enables and specifies an active VLAN as an IEEE 802.1x guest VLAN.
dot1x port-control	Enables manual control of the authorization state of the port.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x auth-fail max-attempts

Use the **dot1x auth-fail max-attempts** interface configuration command to configure the maximum allowable authentication attempts before a port is moved to the restricted VLAN. To return to the default setting, use the **no** form of this command.

dot1x auth-fail max-attempts max-attempts

no dot1x auth-fail max-attempts

Syntax Description

max-attempts	Specify a maximum number of authentication attempts allowed before a port
	is moved to the restricted VLAN. The range is 1 to 3, the default value is 3.

Defaults

The default value is 3 attempts.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If you reconfigure the maximum number of authentication attempts allowed by the VLAN, the change takes effect after the re-authentication timer expires.

Examples

This example shows how to set 2 as the maximum number of authentication attempts allowed before the port is moved to the restricted VLAN on port 3:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/3
Switch(config-if)# dot1x auth-fail max-attempts 2
Switch(config-if)# end
Switch(config)# end
```

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x auth-fail vlan [vlan id]	Enables the optional restricted VLAN feature.
dot1x max-reauth-req [count]	Sets the maximum number of times that the switch restarts the authentication process before a port changes to the unauthorized state.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x auth-fail vlan

Use the **dot1x auth-fail vlan** interface configuration command to enable the restricted VLAN on a port. To return to the default setting, use the **no** form of this command.

dot1x auth-fail vlan vlan-id

no dot1x auth-fail vlan

Syntax	

vlan-id

Specify a VLAN in the range of 1 to 4094.

Defaults

No restricted VLAN is configured.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can configure a restricted VLAN on ports configured as follows:

- single-host (default) mode
- auto mode for authorization

You should enable re-authentication. The ports in restricted VLANs do not receive re-authentication requests if it is disabled. To start the re-authentication process, the restricted VLAN must receive a link-down event or an Extensible Authentication Protocol (EAP) logoff event from the port. If a host is connected through a hub, the port might never receive a link-down event when that host is disconnected, and, as a result, might not detect any new hosts until the next re-authentication attempt occurs.

If the supplicant fails authentication, the port is moved to a restricted VLAN, and an EAP *success* message is sent to the supplicant. Because the supplicant is not notified of the actual authentication failure, there might be confusion about this restricted network access. An EAP success message is sent for these reasons:

- If the EAP success message is not sent, the supplicant tries to authenticate every 60 seconds (the default) by sending an EAP-start message.
- Some hosts (for example, devices running Windows XP) cannot implement DHCP until they receive an EAP success message.

A supplicant might cache an incorrect username and password combination after receiving an EAP success message from the authenticator and re-use that information in every re-authentication. Until the supplicant sends the correct username and password combination, the port remains in the restricted VLAN.

Internal VLANs used for Layer 3 ports cannot be configured as restricted VLANs.

You cannot configure a VLAN to be both a restricted VLAN and a voice VLAN. If you do this, a syslog message is generated.

When a restricted VLAN port is moved to an unauthorized state, the authentication process restarts. If the supplicant fails the authentication process again, the authenticator waits in the held state. After the supplicant has correctly re-authenticated, all IEEE 802.1x ports are reinitialized and treated as normal IEEE 802.1x ports.

When you reconfigure a restricted VLAN as a different VLAN, any ports in the restricted VLAN are also moved, and the ports stay in their currently authorized state.

When you shut down or remove a restricted VLAN from the VLAN database, any ports in the restricted VLAN are immediately moved to an unauthorized state, and the authentication process restarts. The authenticator does not wait in a held state because the restricted VLAN configuration still exists. While the restricted VLAN is inactive, all authentication attempts are counted so that when the restricted VLAN becomes active, the port is immediately placed in the restricted VLAN.

The restricted VLAN is supported only in single host mode (the default port mode). For this reason, when a port is placed in a restricted VLAN, the supplicant's MAC address is added to the MAC address table, and any other MAC address that appears on the port is treated as a security violation.

Examples

This example shows how to configure a restricted VLAN on port 1:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# dot1x auth-fail vlan 40
Switch(config-if)# end
Switch#
```

You can verify your configuration by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x auth-fail max-attempts	Configures the number of authentication attempts allowed
[max-attempts]	before assigning a supplicant to the restricted VLAN.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x control-direction

Use the **dot1x control-direction** interface configuration command to enable the IEEE 802.1x authentication with the wake-on-LAN (WoL) feature and to configure the port control as unidirectional or bidirectional. Use the **no** form of this command to return to the default setting.

dot1x control-direction {both | in}

no dot1x control-direction

Syntax Description

both	Enable bidirectional control on port. The port cannot receive packets from or send packets to the host.
in	Enable unidirectional control on port. The port can send packets to the host but cannot receive packets from the host.

Defaults

The port is in bidirectional mode.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **both** keyword or the **no** form of this command to return to the default setting, bidirectional mode.

For more information about WoL, see the "Using IEEE 802.1x Authentication with Wake-on-LAN" section in the "Configuring IEEE 802.1x Port-Based Authentication" chapter in the software configuration guide.

Examples

This example shows how to enable unidirectional control:

 ${\tt Switch} \, ({\tt config-if}) \, \# \, \, \, \textbf{dot1x} \, \, \, \textbf{control-direction} \, \, \, \textbf{in} \, \,$

This example shows how to enable bidirectional control:

Switch(config-if) # dot1x control-direction both

You can verify your settings by entering the show dot1x all privileged EXEC command.

The **show dot1x all** privileged EXEC command output is the same for all switches except for the port names and the state of the port. If a host is attached to the port but is not yet authenticated, a display similar to this appears:

Supplicant MAC 0002.b39a.9275 AuthSM State = CONNECTING BendSM State = IDLE PortStatus = UNAUTHORIZED If you enter the **dot1x control-direction in** interface configuration command to enable unidirectional control, this appears in the **show dot1x all** command output:

ControlDirection = In

If you enter the **dot1x control-direction in** interface configuration command and the port cannot support this mode due to a configuration conflict, this appears in the **show dot1x all** command output:

ControlDirection = In (Disabled due to port settings)

Command	Description
show dot1x [all interface	Displays control-direction port setting status for the specified
interface-id]	interface.

dot1x critical (global configuration)

Use the **dot1x critical** global configuration command to configure the parameters for the inaccessible authentication bypass feature, also referred to as critical authentication or the authentication, authorization, and accounting (AAA) fail policy. To return to default settings, use the **no** form of this command.

dot1x critical {eapol | recovery delay milliseconds}

no dot1x critical {eapol | recovery delay}

Syntax Description

eapol	Specify that the switch sends an EAPOL-Success message when the switch puts the critical port in the critical-authentication state.
recovery delay milliseconds	Set the recovery delay period in milliseconds. The range is from 1 to 10000 milliseconds.

Defaults

The switch does not send an EAPOL-Success message to the host when the switch successfully authenticates the critical port by putting the critical port in the critical-authentication state.

The recovery delay period is 1000 milliseconds (1 second).

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **eapol** keyword to specify that the switch sends an EAPOL-Success message when the switch puts the critical port in the critical-authentication state.

Use the **recovery delay** *milliseconds* keyword to set the recovery delay period during which the switch waits to re-initialize a critical port when a RADIUS server that was unavailable becomes available. The default recovery delay period is 1000 milliseconds. A port can be re-initialized every second.

To enable inaccessible authentication bypass on a port, use the **dot1x critical** interface configuration command. To configure the access VLAN to which the switch assigns a critical port, use the **dot1x critical vlan** *vlan-id* interface configuration command.

Examples

This example shows how to set 200 as the recovery delay period on the switch:

Switch# dot1x critical recovery delay 200

You can verify your configuration by entering the show dot1x privileged EXEC command.

Command	Description
dot1x critical (interface configuration)	Enables the inaccessible authentication bypass feature, and configures the access VLAN for the feature.
show dot1x	Displays IEEE 802.1x status for the specified port.

dot1x critical (interface configuration)

Use the **dot1x critical** interface configuration command to enable the inaccessible-authentication-bypass feature, also referred to as critical authentication or the authentication, authorization, and accounting (AAA) fail policy. You can also configure the access VLAN to which the switch assigns the critical port when the port is in the critical-authentication state. To disable the feature or return to default, use the **no** form of this command.

dot1x critical [recovery action reinitialize | vlan vlan-id]

no dot1x critical [recovery | vlan]

Syntax Description

recovery action reinitialize	Enable the inaccessible-authentication-bypass recovery feature, and specify that the recovery action is to authenticate the port when an authentication server is available.
vlan vlan-id	Specify the access VLAN to which the switch can assign a critical port. The range is from 1 to 4094.

Defaults

The inaccessible-authentication-bypass feature is disabled.

The recovery action is not configured.

The access VLAN is not configured.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

To specify the access VLAN to which the switch assigns a critical port when the port is in the critical-authentication state, use the **vlan** *vlan-id* keywords. The specified type of VLAN must match the type of port, as follows:

- If the critical port is an access port, the VLAN must be an access VLAN.
- If the critical port is a private VLAN host port, the VLAN must be a secondary private VLAN.
- If the critical port is a routed port, you can specify a VLAN, but this is optional.

If the client is running Windows XP and the critical port to which the client is connected is in the critical-authentication state, Windows XP might report that the interface is not authenticated.

If the Windows XP client is configured for DHCP and has an IP address from the DHCP server, receiving an EAP-Success message on a critical port might not re-initiate the DHCP configuration process.

You can configure the inaccessible authentication bypass feature and the restricted VLAN on an IEEE 802.1x port. If the switch tries to re-authenticate a critical port in a restricted VLAN and all the RADIUS servers are unavailable, the switch changes the port state to the critical authentication state, and it remains in the restricted VLAN.

You can configure the inaccessible bypass feature and port security on the same switch port.

Examples

This example shows how to enable the inaccessible authentication bypass feature on port 1:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# dot1x critical
Switch(config-if)# end
Switch(config)# end
Switch#

You can verify your configuration by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x critical (global configuration)	Configures the parameters for the inaccessible authentication bypass feature on the switch.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x default

Use the **dot1x default** interface configuration command to reset the IEEE 802.1x parameters to their default values.

dot1x default

Syntax Description

This command has no arguments or keywords.

Defaults

These are the default values:

- The per-port IEEE 802.1x protocol enable state is disabled (force-authorized).
- The number of seconds between re-authentication attempts is 3600 seconds.
- The periodic re-authentication is disabled.
- The quiet period is 60 seconds.
- The retransmission time is 30 seconds.
- The maximum retransmission number is 2 times.
- The host mode is single host.
- The client timeout period is 30 seconds.
- The authentication server timeout period is 30 seconds.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to reset the IEEE 802.1x parameters on a port:

Switch(config-if)# dot1x default

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x fallback

Use the **dot1xfallback** interface configuration command on the switch stack or on a standalone switch to configure a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication. To return to the default setting, use the **no** form of this command.

dot1x fallback profile

no dot1x fallback

Syntax Description

profile	Specify a fallback profile for clients that do not support IEEE 802.1x
	authentication.

Defaults

No fallback is enabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(35)SE	This command was introduced.

Usage Guidelines

You must enter the **dot1x port-control** auto interface configuration command on a switch port before entering this command.

Examples

This example shows how to specify a fallback profile to a switch port that has been configured for IEEE 802.1x authentication:

Switch# configure terminal

Enter configuration commands, one per line. End with ${\tt CNTL/Z.}$

 ${\tt Switch(config)\#\ interface\ gigabitethernet1/0/3}$

Switch(config-if)# dot1x fallback profile1

Switch(config-fallback-profile)# exit

Switch(config)# end

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.
fallback profile	Create a web authentication fallback profile.
ip admission	Enable web authentication on a port
ip admission name proxy http	Enable web authentication globally on a switch

dot1x guest-vlan

Use the **dot1x guest-vlan** interface configuration command to specify an active VLAN as an IEEE 802.1x guest VLAN. Use the **no** form of this command to return to the default setting.

dot1x guest-vlan vlan-id

no dot1x guest-vlan

Syntax Description

vlan-id	Specify an active VLAN as an IEEE 802.1x guest VLAN. The range is 1
	to 4094.

Defaults

No guest VLAN is configured.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can configure a guest VLAN on one of these switch ports:

- A static-access port that belongs to a nonprivate VLAN.
- A private-VLAN port that belongs to a secondary private VLAN. All the hosts connected to the switch port are assigned to private VLANs, whether or not the posture validation was successful. The switch determines the primary private VLAN by using the primary- and secondary-private-VLAN associations on the switch.

For each IEEE 802.1x port on the switch, you can configure a guest VLAN to provide limited services to clients (a device or workstation connected to the switch) not running IEEE 802.1x authentication. These users might be upgrading their systems for IEEE 802.1x authentication, and some hosts, such as Windows 98 systems, might not be IEEE 802.1x-capable.

When you enable a guest VLAN on an IEEE 802.1x port, the switch assigns clients to a guest VLAN when it does not receive a response to its Extensible Authentication Protocol over LAN (EAPOL) request/identity frame or when EAPOL packets are not sent by the client.

The switch maintains the EAPOL packet history. If another EAPOL packet is detected on the interface during the lifetime of the link, the guest VLAN feature is disabled. If the port is already in the guest VLAN state, the port returns to the unauthorized state, and authentication restarts. The EAPOL history is reset upon loss of link.

Any number of non-IEEE 802.1x-capable clients are allowed access when the switch port is moved to the guest VLAN. If an IEEE 802.1x-capable client joins the same port on which the guest VLAN is configured, the port is put into the unauthorized state in the RADIUS-configured or user-configured access VLAN, and authentication is restarted.

Guest VLANs are supported on IEEE 802.1x ports in single-host or multiple-hosts mode.

You can configure any active VLAN except an Remote Switched Port Analyzer (RSPAN) VLAN, a primary private VLAN, or a voice VLAN as an IEEE 802.1x guest VLAN. The guest VLAN feature is not supported on internal VLANs (routed ports) or trunk ports; it is supported only on access ports.

After you configure a guest VLAN for an IEEE 802.1x port to which a DHCP client is connected, you might need to get a host IP address from a DHCP server. You can change the settings for restarting the IEEE 802.1x authentication process on the switch before the DHCP process on the client times out and tries to get a host IP address from the DHCP server. Decrease the settings for the IEEE 802.1x authentication process (**dot1x timeout quiet-period** and **dot1x timeout tx-period** interface configuration commands). The amount to decrease the settings depends on the connected IEEE 802.1x client type.

The switch supports *MAC* authentication bypass. When it is enabled on an IEEE 802.1x port, the switch can authorize clients based on the client MAC address when IEEE 802.1x authentication times out while waiting for an EAPOL message exchange. After detecting a client on an IEEE 802.1x port, the switch waits for an Ethernet packet from the client. The switch sends the authentication server a RADIUS-access/request frame with a username and password based on the MAC address. If authorization succeeds, the switch grants the client access to the network. If authorization fails, the switch assigns the port to the guest VLAN if one is specified. For more information, see the "Using IEEE 802.1x Authentication with MAC Authentication Bypass" section in the "Configuring IEEE 802.1x Port-Based Authentication" chapter of the software configuration guide.

Examples

This example shows how to specify VLAN 5 as an IEEE 802.1x guest VLAN:

```
Switch(config-if) # dot1x guest-vlan 5
```

This example shows how to set 3 as the quiet time on the switch, to set 15 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request, and to enable VLAN 2 as an IEEE 802.1x guest VLAN when an IEEE 802.1x port is connected to a DHCP client:

```
Switch(config-if)# dot1x timeout quiet-period 3
Switch(config-if)# dot1x timeout tx-period 15
Switch(config-if)# dot1x guest-vlan 2
```

This example shows how to enable the optional guest VLAN behavior and to specify VLAN 5 as an IEEE 802.1x guest VLAN:

```
Switch(config)# dot1x guest-vlan supplicant
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# dot1x guest-vlan 5
```

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x	Enables the optional guest VLAN supplicant feature.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x host-mode

Use the **dot1x host-mode** interface configuration command to allow a single host (client) or multiple hosts on an IEEE 802.1x-authorized port that has the **dot1x port-control** interface configuration command set to **auto**. Use the **no** form of this command to return to the default setting.

dot1x host-mode {multi-host | single-host}

no dot1x host-mode [multi-host | single-host]

Syntax Description

multi-host	Enable multiple-hosts mode on the switch.	
single-host	Enable single-host mode on the switch.	

Defaults

The default is single-host mode.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use this command to limit an IEEE 802.1x-enabled port to a single client or to attach multiple clients to an IEEE 802.1x-enabled port. In multiple-hosts mode, only one of the attached hosts needs to be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized (re-authentication fails or an Extensible Authentication Protocol over LAN [EAPOL]-logoff message is received), all attached clients are denied access to the network.

Before entering this command, make sure that the **dot1x port-control** interface configuration command is set to **auto** for the specified port.

Examples

This example shows how to enable IEEE 802.1x authentication globally, to enable IEEE 802.1x authentication on a port, and to enable multiple-hosts mode:

Switch(config)# dot1x system-auth-control Switch(config)# interface gigabitethernet0/1 Switch(config-if)# dot1x port-control auto Switch(config-if)# dot1x host-mode multi-host

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x initialize

Use the **dot1x initialize** privileged EXEC command to manually return the specified IEEE 802.1x-enabled port to an unauthorized state before initiating a new authentication session on the port.

dot1x initialize [interface interface-id]

Syntax Description

interface interface-id (Optional) Port to be initialized	nterface-id (Optional) Port to be in	nitialized.
---	--------------------------------------	-------------

Defaults

There is no default setting.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use this command to initialize the IEEE 802.1x state machines and to set up a fresh environment for authentication. After you enter this command, the port status becomes unauthorized.

There is not a **no** form of this command.

Examples

This example shows how to manually initialize a port:

 ${\tt Switch \#\ dot 1x\ initialize\ interface\ gigabitethernet0/2}$

You can verify the unauthorized port status by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
<pre>show dot1x [interface interface-id]</pre>	Displays IEEE 802.1x status for the specified port.

dot1x mac-auth-bypass

Use the **dot1x mac-auth-bypass** interface configuration command to enable the MAC authentication bypass feature. Use the **no** form of this command to disable MAC authentication bypass feature.

dot1x mac-auth-bypass [eap]

no dot1x mac-auth-bypass

Syntax Description

eap	(Optional) Configure the switch to use Extensible Authentication Protocol
	(EAP) for authentication.

Defaults

MAC authentication bypass is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Unless otherwise stated, the MAC authentication bypass usage guidelines are the same as the IEEE 802.1x authentication guidelines.

If you disable MAC authentication bypass from a port after the port has been authenticated with its MAC address, the port state is not affected.

If the port is in the unauthorized state and the client MAC address is not the authentication-server database, the port remains in the unauthorized state. However, if the client MAC address is added to the database, the switch can use MAC authentication bypass to re-authorize the port.

If the port is in the authorized state, the port remains in this state until re-authorization occurs.

If an EAPOL packet is detected on the interface during the lifetime of the link, the switch determines that the device connected to that interface is an IEEE 802.1x-capable supplicant and uses IEEE 802.1x authentication (not MAC authentication bypass) to authorize the interface.

Clients that were authorized with MAC authentication bypass can be re-authenticated.

For more information about how MAC authentication bypass and IEEE 802.1x authentication interact, see the "Understanding IEEE 802.1x Authentication with MAC Authentication Bypass" section and the "IEEE 802.1x Authentication Configuration Guidelines" section in the "Configuring IEEE 802.1x Port-Based Authentication" chapter of the software configuration guide.

Examples

This example shows how to enable MAC authentication bypass and to configure the switch to use EAP for authentication:

Switch(config-if) # dot1x mac-auth-bypass eap

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x max-reauth-req

Use the **dot1x max-reauth-req** interface configuration command to set the maximum number of times that the switch restarts the authentication process before a port changes to the unauthorized state. Use the **no** form of this command to return to the default setting.

dot1x max-reauth-req count

no dot1x max-reauth-req

Syntax Description

count	Number of times that the switch restarts the authentication process before the
	port changes to the unauthorized state. The range is 0 to 10.

Defaults

The default is 2 times.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Examples

This example shows how to set 4 as the number of times that the switch restarts the authentication process before the port changes to the unauthorized state:

Switch(config-if)# dot1x max-reauth-req 4

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x max-req	Sets the maximum number of times that the switch forwards an EAP frame (assuming that no response is received) to the authentication server before restarting the authentication process.
dot1x timeout tx-period	Sets the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x max-req

Use the **dot1x max-req** interface configuration command to set the maximum number of times that the switch sends an Extensible Authentication Protocol (EAP) frame from the authentication server (assuming that no response is received) to the client before restarting the authentication process. Use the **no** form of this command to return to the default setting.

dot1x max-req count

no dot1x max-req

Syntax Description

count	Number of times that the switch resends an EAP frame from the authentication
	server before restarting the authentication process. The range is 1 to 10.

Defaults

The default is 2 times.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Examples

This example shows how to set 5 as the number of times that the switch sends an EAP frame from the authentication server to the client before restarting the authentication process:

Switch(config-if)# dot1x max-req 5

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x timeout tx-period	Sets the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x pae

Use the **dot1x pae** interface configuration command to configure the port as an IEEE 802.1x port access entity (PAE) authenticator. Use the **no** form of this command to disable IEEE 802.1x authentication on the port.

dot1x pae authenticator

no dot1x pae

Syntax Description

This command has no arguments or keywords.

Defaults

The port is not an IEEE 802.1x PAE authenticator, and IEEE 802.1x authentication is disabled on the port.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **no dot1x pae** interface configuration command to disable IEEE 802.1x authentication on the port.

When you configure IEEE 802.1x authentication on a port, such as by entering the **dot1x port-control** interface configuration command, the switch automatically configures the port as an EEE 802.1x authenticator. After the **no dot1x pae** interface configuration command is entered, the Authenticator PAE operation is disabled.

Examples

This example shows how to disable IEEE 802.1x authentication on the port:

Switch(config-if)# no dot1x pae

You can verify your settings by entering the **show dot1x** or **show eap** privileged EXEC command.

Command	Description
show dot1x	Displays IEEE 802.1x statistics, administrative status, and operational status for the switch or for the specified port.
show eap	Displays EAP registration and session information for the switch or for the specified port.

dot1x port-control

Use the **dot1x port-control** interface configuration command to enable manual control of the authorization state of the port. Use the **no** form of this command to return to the default setting.

dot1x port-control {auto | force-authorized | force-unauthorized}

no dot1x port-control

Syntax Description

auto	Enable IEEE 802.1x authentication on the port and cause the port to change to the authorized or unauthorized state based on the IEEE 802.1x authentication exchange between the switch and the client.
force-authorized	Disable IEEE 802.1x authentication on the port and cause the port to transition to the authorized state without an authentication exchange. The port sends and receives normal traffic without IEEE 802.1x-based authentication of the client.
force-unauthorized	Deny all access through this port by forcing the port to change to the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the port.

Defaults

The default is force-authorized.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You must globally enable IEEE 802.1x authentication on the switch by using the **dot1x** system-auth-control global configuration command before enabling IEEE 802.1x authentication on a specific port.

The IEEE 802.1x standard is supported on Layer 2 static-access ports, voice VLAN ports, and Layer 3 routed ports.

The IEEE 802.1x standard is supported on Layer 2 static-access ports and voice VLAN ports.

You can use the **auto** keyword only if the port is not configured as one of these:

- Trunk port—If you try to enable IEEE 802.1x authentication on a trunk port, an error message appears, and IEEE 802.1x is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to trunk, an error message appears, and the port mode is not changed.
- Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable IEEE 802.1x authentication on a dynamic port, an error message appears, and IEEE 802.1x authentication is not enabled. If you try to change the mode of an IEEE 802.1x-enabled port to dynamic, an error message appears, and the port mode is not changed.

- Dynamic-access ports—If you try to enable IEEE 802.1x authentication on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and IEEE 802.1x authentication is not enabled. If you try to change an IEEE 802.1x-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
- EtherChannel port—Do not configure a port that is an active or a not-yet-active member of an EtherChannel as an IEEE 802.1x port. If you try to enable IEEE 802.1x authentication on an EtherChannel port, an error message appears, and IEEE 802.1x authentication is not enabled.
- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) destination ports—You can enable IEEE 802.1x authentication on a port that is a SPAN or RSPAN destination port. However, IEEE 802.1x authentication is disabled until the port is removed as a SPAN or RSPAN destination. You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

To globally disable IEEE 802.1x authentication on the switch, use the **no dot1x system-auth-control** global configuration command. To disable IEEE 802.1x authentication on a specific port or to return to the default setting, use the **no dot1x port-control** interface configuration command.

Examples

This example shows how to enable IEEE 802.1x authentication on a port:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# dot1x port-control auto

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x re-authenticate

Use the **dot1x re-authenticate** privileged EXEC command to manually initiate a re-authentication of the specified IEEE 802.1x-enabled port.

dot1x re-authenticate [interface interface-id]

Cumtou	Description	
SVIIIAX	Description	ı

interface interface-id	(Optional) Module and port number of the interface to re-authenticate.
------------------------	--

Defaults

There is no default setting.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can use this command to re-authenticate a client without waiting for the configured number of seconds between re-authentication attempts (re-autheriod) and automatic re-authentication.

Examples

This example shows how to manually re-authenticate the device connected to a port:

Switch# dot1x re-authenticate interface gigabitethernet0/1

Command	Description
dot1x reauthentication	Enables periodic re-authentication of the client.
dot1x timeout reauth-period	Sets the number of seconds between re-authentication attempts.

dot1x reauthentication

Use the **dot1x reauthentication** interface configuration command to enable periodic re-authentication of the client. Use the **no** form of this command to return to the default setting.

dot1x reauthentication

no dot1x reauthentication

Syntax Description

This command has no arguments or keywords.

Defaults

Periodic re-authentication is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You configure the amount of time between periodic re-authentication attempts by using the **dot1x timeout reauth-period** interface configuration command.

Examples

This example shows how to disable periodic re-authentication of the client:

Switch(config-if)# no dot1x reauthentication

This example shows how to enable periodic re-authentication and to set the number of seconds between re-authentication attempts to 4000 seconds:

```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period 4000
```

You can verify your settings by entering the **show dot1x** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x re-authenticate	Manually initiates a re-authentication of all IEEE 802.1x-enabled ports.
dot1x timeout reauth-period	Sets the number of seconds between re-authentication attempts.
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.

dot1x test eapol-capable

Use the **dot1x test eapol-capable** privileged EXEC command to monitor IEEE 802.1x activity on all the switch ports and to display information about the devices that are connected to the ports that support IEEE 802.1x.

dot1x test eapol-capable [interface interface-id]

Syntax D	escrip	tion
----------	--------	------

interface	interface-id	(Optional) Port to be quer	ied.

Defaults

There is no default setting.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

Use this command to test the IEEE 802.1x capability of the devices connected to all ports or to specific ports on a switch.

There is not a **no** form of this command.

Examples

This example shows how to enable the IEEE 802.1x readiness check on a switch to query a port. It also shows the response received from the queried port verifying that the device connected to it is IEEE 802.1x-capable:

 ${\tt switch\#\ dot1x\ test\ eapol-capable\ interface\ gigabitethernet1/0/13}$

 ${\tt DOT1X_PORT_EAPOL_CAPABLE:DOT1X:~MAC~00-01-02-4b-f1-a3~on~gigabitethernet1/0/13~is~EAPOL~capable}$

Command	Description
dot1x test timeout timeout	Configures the timeout used to wait for EAPOL response to an IEEE 802.1x readiness query.

dot1x test timeout

Use the **dot1x test timeout** global configuration command on the switch stack or on a standalone switch to configure the timeout used to wait for EAPOL response from a port being queried for IEEE 802.1x readiness.

dot1x test timeout timeout

Syntax Description

timeout	Time in seconds to wait for an EAPOL response. The range is from
	1 to 65535 seconds.

Defaults

The default setting is 10 seconds.

Command Modes

Global configuration

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

Use this command to configure the timeout used to wait for EAPOL response.

There is not a **no** form of this command.

Examples

This example shows how to configure the switch to wait 27 seconds for an EAPOL response:

Switch# dot1x test timeout 27

You can verify the timeout configuration status by entering the show run privileged EXEC command.

Command	Description
dot1x test eapol-capable [interface	Checks for IEEE 802.1x readiness on devices connected to
interface-id]	all or to specified IEEE 802.1x-capable ports.

dot1x timeout

Use the **dot1x timeout** interface configuration command to set IEEE 802.1x timers. Use the **no** form of this command to return to the default setting.

no dot1x timeout {quiet-period | reauth-period | server-timeout | supp-timeout | tx-period}

Syntax Description

quiet-period seconds	Number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 1 to 65535.
ratelimit-period seconds	Number of seconds that the switch ignores Extensible Authentication Protocol over LAN (EAPOL) packets from clients that have been successfully authenticated during this duration. The range is 1 to 65535.
reauth-period {seconds	Set the number of seconds between re-authentication attempts.
server}	The keywords have these meanings:
	• <i>seconds</i> —Sets the number of seconds from 1 to 65535; the default is 3600 seconds.
	• server —Sets the number of seconds as the value of the Session-Timeout RADIUS attribute (Attribute[27]).
server-timeout seconds	Number of seconds that the switch waits for the retransmission of packets by the switch to the authentication server. The range is 30 to 65535.
supp-timeout seconds	Number of seconds that the switch waits for the retransmission of packets by the switch to the IEEE 802.1x client. The range is 30 to 65535.
tx-period seconds	Number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before retransmitting the request. The range is 1 to 65535.

Defaults

These are the default settings:

reauth-period is 3600 seconds.

quiet-period is 60 seconds.

tx-period is 5 seconds.

supp-timeout is 30 seconds.

server-timeout is 30 seconds.

rate-limit is 1 second.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.
12.2(40)SE	The range for tx-period seconds is incorrect. The correct range is from 1 to 65535.

Usage Guidelines

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

The **dot1x timeout reauth-period** interface configuration command affects the behavior of the switch only if you have enabled periodic re-authentication by using the **dot1x reauthentication** interface configuration command.

During the quiet period, the switch does not accept or initiate any authentication requests. If you want to provide a faster response time to the user, enter a number smaller than the default.

When the **ratelimit-period** is set to 0 (the default), the switch does not ignore EAPOL packets from clients that have been successfully authenticated and forwards them to the RADIUS server.

Examples

This example shows how to enable periodic re-authentication and to set 4000 as the number of seconds between re-authentication attempts:

```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period 4000
```

This example shows how to enable periodic re-authentication and to specify the value of the Session-Timeout RADIUS attribute as the number of seconds between re-authentication attempts:

```
Switch(config-if)# dot1x reauthentication
Switch(config-if)# dot1x timeout reauth-period server
```

This example shows how to set 30 seconds as the quiet time on the switch:

```
Switch(config-if) # dot1x timeout quiet-period 30
```

This example shows how to set 45 seconds as the switch-to-authentication server retransmission time:

```
Switch(config) # dot1x timeout server-timeout 45
```

This example shows how to set 45 seconds as the switch-to-client retransmission time for the EAP request frame:

```
Switch(config-if) # dot1x timeout supp-timeout 45
```

This example shows how to set 60 as the number of seconds to wait for a response to an EAP-request/identity frame from the client before re-transmitting the request:

```
Switch(config-if) # dot1x timeout tx-period 60
```

This example shows how to set 30 as the number of seconds that the switch ignores EAPOL packets from successfully authenticated clients:

```
Switch(config-if) # dot1x timeout ratelimit-period 30
```

You can verify your settings by entering the **show dot1x** privileged EXEC command.

Command	Description
dot1x max-req	Sets the maximum number of times that the switch sends an EAP-request/identity frame before restarting the authentication process.
dot1x reauthentication	Enables periodic re-authentication of the client.
show dot1x	Displays IEEE 802.1x status for all ports.

duplex

Use the **duplex** interface configuration command to specify the duplex mode of operation for a port. Use the **no** form of this command to return the port to its default value.

duplex {auto | full | half}

no duplex

Syntax Description

auto	Enable automatic duplex configuration; port automatically detects whether it should run in full- or half-duplex mode, depending on the attached device mode.
full	Enable full-duplex mode.
half	Enable half-duplex mode (only for interfaces operating at 10 or 100 Mb/s). You cannot configure half-duplex mode for interfaces operating at 1000 or 10,000 Mb/s.

Defaults

The default is **auto** for Gigabit Ethernet ports.

The default is **full** for 100BASE-x (where -x is -BX, -FX, -FX-FE, or - LX) SFP modules.

Duplex options are not supported on the 1000BASE-x (where -x is -BX, -CWDM, -LX, -SX, or -ZX) SFP modules.

For information about which SFP modules are supported on your switch, see the product release notes.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

For Gigabit Ethernet ports, setting the port to **auto** has the same effect as specifying **full** if the attached device does not autonegotiate the duplex parameter.

Half-duplex mode is supported on Gigabit Ethernet interfaces if the duplex mode is **auto** and the connected device is operating at half duplex. However, you cannot configure these interfaces to operate in half-duplex mode.

Certain ports can be configured to be either full duplex or half duplex. Applicability of this command depends on the device to which the switch is attached.

If both ends of the line support autonegotiation, we highly recommend using the default autonegotiation settings. If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do use the **auto** setting on the supported side.

If the speed is set to **auto**, the switch negotiates with the device at the other end of the link for the speed setting and then forces the speed setting to the negotiated value. The duplex setting remains as configured on each end of the link, which could result in a duplex setting mismatch.

You can configure the duplex setting when the speed is set to auto.

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.

For guidelines on setting the switch speed and duplex parameters, see the "Configuring Interface Characteristics" chapter in the software configuration guide for this release.

Examples

This example shows how to configure an interface for full-duplex operation:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# duplex full

You can verify your setting by entering the show interfaces privileged EXEC command.

Command	Description
show interfaces	Displays the interface settings on the switch.
speed	Sets the speed on a 10/100/1000 Mb/s interface.

errdisable detect cause

Use the **errdisable detect cause** global configuration command to enable error-disabled detection for a specific cause or all causes. Use the **no** form of this command to disable the error-disabled detection feature.

errdisable detect cause {all | bpduguard | dhcp-rate-limit | dtp-flap | gbic-invalid | inline-power | 12ptguard | link-flap | loopback | pagp-flap | sfp-config-mismatch}

no errdisable detect cause {all | bpduguard |dhcp-rate-limit | dtp-flap | gbic-invalid | 12ptguard | inline-power | link-flap | pagp-flap | sfp-config-mismatch}

For the BPDU guard and port-security features, you can use this command to globally configure the switch to shut down just the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

When the per-VLAN error-disable feature is turned off and a BPDU guard violation occurs, the entire port is disabled. Use the **no** form of this command to disable the per-VLAN error-disable feature.

errdisable detect cause bpduguard shutdown vlan

no errdisable detect cause bpduguard shutdown vlan

Syntax Description

all	Enable error detection for all error-disabled causes.	
bpduguard shutdown vlan	Enable per-VLAN error-disable for BPDU guard.	
arp-inspection	Enable error detection for dynamic Address Resolution Protocol (ARP) inspection.	
dhcp-rate-limit	Enable error detection for DHCP snooping.	
dtp-flap	Enable error detection for the Dynamic Trunking Protocol (DTP) flapping.	
gbic-invalid	Enable error detection for an invalid Gigabit Interface Converter (GBIC) module.	
	Note This error refers to an invalid small form-factor pluggable (SFP) module.	
inline-power	Enable error detection for inline power.	
12ptguard	Enable error detection for a Layer 2 protocol-tunnel error-disabled cause.	
link-flap	Enable error detection for link-state flapping.	
loopback	Enable error detection for detected loopbacks.	
pagp-flap	Enable error detection for the Port Aggregation Protocol (PAgP) flap error-disabled cause.	
sfp-config-mismatch	Enable error detection on an SFP configuration mismatch.	

Command Default

Detection is enabled for all causes.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.
12.2(25)SEF2	This command was introduced.
12.2(37)SE	The Per-VLAN error-detection feature was added. The bpduguard , inline-power and sfp-config-mismatch keywords were added.

Usage Guidelines

A cause (**link-flap, dhcp-rate-limit**, and so forth) is the reason why the error-disabled state occurred. When a cause is detected on a port, the port is placed in an error-disabled state, an operational state that is similar to a link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down just the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you set a recovery mechanism for the cause by entering the **errdisable recovery** global configuration command for the cause, the port is brought out of the error-disabled state and allowed to retry the operation when all causes have timed out. If you do not set a recovery mechanism, you must enter the **shutdown** and then the **no shutdown** commands to manually recover a port from the error-disabled state.

Examples

This example shows how to enable error-disabled detection for the link-flap error-disabled cause:

Switch(config) # errdisable detect cause link-flap

This command shows how to globally configure BPDU guard for per-VLAN error disable:

 ${\tt Switch} \, ({\tt config}) \, \# \, \, \textbf{errdisable detect cause bpduguard shutdown vlan}$

You can verify your setting by entering the **show errdisable detect** privileged EXEC command.

Command	Description
show errdisable detect	Displays error-disabled detection information.
show interfaces status err-disabled	Displays interface status or a list of interfaces in the error-disabled state.
clear errdisable interface	Clears the error-disabled state from a port or VLAN that was error disabled by the per-VLAN error disable feature.

errdisable detect cause small-frame

Use the **errdisable detect cause small-frame** global configuration command on the switch stack or on a standalone switch to allow any switch port to be error disabled if incoming VLAN-tagged packets are small frames (67 bytes or less) and arrive at the minimum configured rate (the threshold). Use the **no** form of this command to return to the default setting.

errdisable detect cause small-frame

no errdisable detect cause small-frame

Syntax Description

This command has no arguments or keywords.

Defaults

This feature is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

This command globally enables the small-frame arrival feature. Use the **small violation-rate** interface configuration command to set the threshold for each port.

You can configure the port to be automatically re-enabled by using the **errdisable recovery cause small-frame** global configuration command. You configure the recovery time by using the **errdisable recovery interval** *global configuration command*.

Examples

This example shows how to enable the switch ports to be put into the error-disabled mode if incoming small frames arrive at the configured threshold:

Switch(config)# errdisable detect cause small-frame

You can verify your setting by entering the **show interfaces** privileged EXEC command.

Command	Description
errdisable recovery cause small-frame	Enables the recovery timer
errdisable recovery interval interval	Specifies the time to recover from the specified error-disabled state.

Command	Description
show interfaces	Displays the interface settings on the switch, including input and output flow control.
small violation-rate	Configures the rate (threshold) for incoming small frames to cause a port to be put into the error-disabled state.

errdisable recovery cause small-frame

Use the **errdisable recovery cause small-frame** global configuration command on the switch stack or on a standalone switch to enable the recovery timer for ports to be automatically re-enabled after they are error disabled by the arrival of small frames. Use the **no** form of this command to return to the default setting.

errdisable recovery cause small-frame

no errdisable recovery cause small-frame

Syntax Description

This command has no arguments or keywords.

Defaults

This feature is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

This command enables the recovery timer for error-disabled ports. You configure the recovery time by using the errdisable **recovery interval** *interval interface configuration command*.

Examples

This example shows how to set the recovery timer:

Switch(config) # errdisable recovery cause small-frame

You can verify your setting by entering the **show interfaces** user EXEC command.

Command	Description
errdisable detect cause small-frame	Allows any switch port to be put into the error-disabled state if an incoming frame is smaller than the configured minimum size and arrives at the specified rate (threshold).
show interfaces	Displays the interface settings on the switch, including input and output flow control.
small-frame violation-rate	Configures the size for an incoming (small) frame to cause a port to be put into the error-disabled state.

errdisable recovery

Use the **errdisable recovery** global configuration command to configure the recover mechanism variables. Use the **no** form of this command to return to the default setting.

errdisable recovery {cause {all | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | 12ptguard | inline-power | link-flap | loopback | pagp-flap | psecure-violation | security-violation | sfp-mismatch | udld | vmps} | {interval | interval | interval

no errdisable recovery {cause {all | bpduguard | channel-misconfig | dhcp-rate-limit | dtp-flap | gbic-invalid | l2ptguard | inline-power | link-flap | loopback | pagp-flap | psecure-violation | security-violation | sfp-mismatch | udld | vmps} | {interval | interval |

Syntax Description

cause	Enable the error-disabled mechanism to recover from a specific cause.	
all	Enable the timer to recover from all error-disabled causes.	
bpduguard	Enable the timer to recover from the bridge protocol data unit (BPDU) guard error-disabled state.	
channel-misconfig	Enable the timer to recover from the EtherChannel misconfiguration error-disabled state.	
dhcp-rate-limit	Enable the timer to recover from the DHCP snooping error-disabled state.	
dtp-flap	Enable the timer to recover from the Dynamic Trunking Protocol (DTP) flap error-disabled state.	
gbic-invalid	Enable the timer to recover from an invalid Gigabit Interface Converter (GBIC) module error-disabled state.	
	Note This error refers to an invalid small form-factor pluggable (SFP) error-disabled state.	
inline-power	Enable error detection for inline-power.	
12ptguard	Enable the timer to recover from a Layer 2 protocol tunnel error-disabled state.	
link-flap	Enable the timer to recover from the link-flap error-disabled state.	
loopback	Enable the timer to recover from a loopback error-disabled state.	
pagp-flap	Enable the timer to recover from the Port Aggregation Protocol (PAgP)-flap error-disabled state.	
psecure-violation	Enable the timer to recover from a port security violation disable state.	
security-violation	Enable the timer to recover from an IEEE 802.1x-violation disabled state.	
sfp-config-mismatch	Enable error detection on an SFP configuration mismatch.	
udld	Enable the timer to recover from the UniDirectional Link Detection (UDLD) error-disabled state.	

vmps		e the timer to recover from the VLAN Membership Policy Server (S) error-disabled state.	
interval interval	is 30 t	Specify the time to recover from the specified error-disabled state. The range is 30 to 86400 seconds. The same interval is applied to all causes. The default interval is 300 seconds.	
	Note	The error-disabled recovery timer is initialized at a random differential from the configured interval value. The difference between the actual timeout value and the configured value can be up to 15 percent of the configured interval.	

Though visible in the command-line help strings, the **ilpower**, **storm-control**, and **unicast-flood** keywords are not supported.

Defaults

Recovery is disabled for all causes.

The default recovery interval is 300 seconds.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.
12.2(25)SEF2	This command was introduced.
12.2(37)SE	The per-VLAN error-detection feature was added. The inline-power and sfp-mismatch keywords were added.

Usage Guidelines

A cause (**link-flap, bpduguard**, and so forth) is defined as the reason that the error-disabled state occurred. When a cause is detected on a port, the port is placed in the error-disabled state, an operational state similar to link-down state.

When a port is error-disabled, it is effectively shut down, and no traffic is sent or received on the port. For the BPDU guard and port-security features, you can configure the switch to shut down just the offending VLAN on the port when a violation occurs, instead of shutting down the entire port.

If you do not enable the recovery for the cause, the port stays in the error-disabled state until you enter the **shutdown** and the **no shutdown** interface configuration commands. If you enable the recovery for a cause, the port is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out.

Otherwise, you must enter the **shutdown** and then the **no shutdown** commands to manually recover a port from the error-disabled state.

Examples

This example shows how to enable the recovery timer for the BPDU guard error-disabled cause:

Switch(config)# errdisable recovery cause bpduguard

This example shows how to set the timer to 500 seconds:

Switch(config)# errdisable recovery interval 500

You can verify your settings by entering the show errdisable recovery privileged EXEC command.

Command	Description
show errdisable recovery	Displays error-disabled recovery timer information.
show interfaces status err-disabled	Displays interface status or a list of interfaces in error-disabled state.
clear errdisable interface	Clears the error-disabled state from a port or VLAN that was error disabled by the per-VLAN error disable feature.

exception crashinfo

Use the **exception crashinfo** global configuration command to configure the switch to create the extended crashinfo file when the Cisco IOS image fails. Use the **no** form of this command to disable this feature.

exception crashinfo

no exception crashinfo

Syntax Description

This command has no arguments or keywords.

Defaults

The switch creates the extended crashinfo file.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The basic crashinfo file includes the Cisco IOS image name and version that failed, and a list of the processor registers. The extended crashinfo file includes additional information that can help determine the cause of the switch failure.

Use the **no exception crashinfo** global configuration command to configure the switch to not create the extended crashinfo file.

Examples

This example shows how to configure the switch to not create the extended crashinfo file:

Switch(config) # no exception crashinfo

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description
show running-config	Displays the operating configuration, including defined macros.
	For syntax information, select Cisco IOS Configuration
	Fundamentals Command Reference, Release 12.2 > File
	Management Commands > Configuration File Management
	Commands.

fallback profile

Use the **fallback profile** global configuration command on the switch stack or on a standalone switch to create a fallback profile for web authentication. To return to the default setting, use the **no** form of this command.

fallback profile profile

no fallback profile

Syntax Description

profile	Specify the fallback profile for clients that do not support IEEE 802.1x
	authentication.

Defaults

No fallback profile is configured.

Command Modes

Global configuration

Command History

Release	Modification
12.2(35)SE	This command was introduced.

Usage Guidelines

The fallback profile is used to define the IEEE 802.1x fallback behavior for IEEE 802.1x ports that do not have supplicants. The only supported behavior is to fall back to web authentication.

After entering the **fallback profile** command, you enter profile configuration mode, and these configuration commands are available:

- ip: Create an IP configuration.
- access-group: Specify access control for packets sent by hosts that have not yet been authenticated.
- admission: Apply an IP admission rule.

Examples

This example shows how to create a fallback profile to be used with web authentication:

```
Switch# configure terminal
Switch(config)# ip admission name rule1 proxy http
Switch(config)# fallback profile profile1
Switch(config-fallback-profile)# ip access-group default-policy in
Switch(config-fallback-profile)# ip admission rule1
Switch(config-fallback-profile)# exit
Switch(config)# interface gigabitethernet 1/0/1
Switch(config-if)# dot1x fallback profile1
Switch(config-if)# end
```

You can verify your settings by entering the **show running-configuration** [**interface** *interface-id*] privileged EXEC command.

Command	Description
dot1x fallback	Configure a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication.
ip admission	Enable web authentication on a switch port
ip admission name proxy http	Enable web authentication globally on a switch
show dot1x [interface interface-id]	Displays IEEE 802.1x status for the specified port.
show fallback profile	Display the configured profiles on a switch.

flowcontrol

Use the **flowcontrol** interface configuration command to set the receive flow-control state for an interface. When flow control **send** is operable and on for a device and it detects any congestion at its end, it notifies the link partner or the remote device of the congestion by sending a pause frame. When flow control **receive** is on for a device and it receives a pause frame, it stops sending any data packets. This prevents any loss of data packets during the congestion period.

Use the **receive off** keywords to disable flow control.

flowcontrol receive {desired | off | on}

The switch can receive, but not send, pause frames.

Syntax Description

receive	Set whether the interface can receive flow-control packets from a remote device.
desired	Allow an interface to operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.
off	Turn off the ability of an attached device to send flow-control packets to an interface.
on	Allow an interface to operate with an attached device that is required to send flow-control packets or with an attached device that is not required to but can send flow-control packets.

Defaults

The default is **flowcontrol receive off**.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The switch does not support sending flow-control pause frames.

Note that the **on** and **desired** keywords have the same result.

When you use the **flowcontrol** command to set a port to control traffic rates during congestion, you are setting flow control on a port to one of these conditions:

- receive on or desired: The port cannot send pause frames, but can operate with an attached device that is required to or is able to send pause frames. The port can receive pause frames.
- **receive off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

Table 2-5 shows the flow control results on local and remote ports for a combination of settings. The table assumes that **receive desired** has the same results as using the **receive on** keywords.

Table 2-5 Flow Control Settings and Local and Remote Port Flow Control Resolution

Flow Control Settings		Flow Control Resolution	
Local Device	Remote Device	Local Device	Remote Device
send off/receive on	send on/receive on	Receives only	Sends and receives
	send on/receive off	Receives only	Sends only
	send desired/receive on	Receives only	Sends and receives
	send desired/receive off	Receives only	Sends only
	send off/receive on	Receives only	Receives only
	send off/receive off	Does not send or receive	Does not send or receive
send off/receive off	send on/receive on	Does not send or receive	Does not send or receive
	send on/receive off	Does not send or receive	Does not send or receive
	send desired/receive on	Does not send or receive	Does not send or receive
	send desired/receive off	Does not send or receive	Does not send or receive
	send off/receive on	Does not send or receive	Does not send or receive
	send off/receive off	Does not send or receive	Does not send or receive

Examples

This example shows how to configure the local port to not support flow control by the remote port:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# flowcontrol receive off

You can verify your settings by entering the **show interfaces** privileged EXEC command.

Command	Description
show interfaces	Displays the interface settings on the switch, including input and output flow control.

interface port-channel

Use the **interface port-channel** global configuration command to access or create the port-channel logical interface. Use the **no** form of this command to remove the port-channel.

interface port-channel port-channel-number

no interface port-channel port-channel-number

Syntax Description

port-channel-number

Port-channel number. The range is 1 to 48.

Defaults

No port-channel logical interfaces are defined.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

For Layer 2 EtherChannels, you do not have to create a port-channel interface first before assigning a physical port to a channel group. Instead, you can use the **channel-group** interface configuration command. It automatically creates the port-channel interface when the channel group gets its first physical port. If you create the port-channel interface first, the *channel-group-number* can be the same as the *port-channel-number*, or you can use a new number. If you use a new number, the **channel-group** command dynamically creates a new port channel.

You create Layer 3 port channels by using the **interface port-channel** command followed by the **no switchport** interface configuration command. You should manually configure the port-channel logical interface before putting the interface into the channel group.

Only one port channel in a channel group is allowed.

When using a port-channel interface as a routed port, do not assign Layer 3 addresses on the physical ports that are assigned to the channel group.

Do not assign bridge groups on the physical ports in a channel group used as a Layer 3 port-channel interface because it creates loops. You must also disable spanning tree.

Follow these guidelines when you use the **interface port-channel** command:

- If you want to use the Cisco Discovery Protocol (CDP), you must configure it only on the physical port and not on the port-channel interface.
- Do not configure a port that is an active member of an EtherChannel as an IEEE 802.1x port. If IEEE 802.1x is enabled on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.

For a complete list of configuration guidelines, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

Examples

This example shows how to create a port-channel interface with a port channel number of 5:

Switch(config) # interface port-channel 5

You can verify your setting by entering the **show running-config** privileged EXEC or **show etherchannel** *channel-group-number* **detail** privileged EXEC command.

Command	Description
channel-group	Assigns an Ethernet port to an EtherChannel group.
show etherchannel	Displays EtherChannel information for a channel.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

interface range

Use the **interface range** global configuration command to enter interface range configuration mode and to execute a command on multiple ports at the same time. Use the **no** form of this command to remove an interface range.

interface range { port-range | macro name }

no interface range { port-range | **macro** name }

Syntax Description

port-range	Port range. For a list of valid values for <i>port-range</i> , see the "Usage Guidelines" section.
macro name	Specify the name of a macro.

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When you enter interface range configuration mode, all interface parameters you enter are attributed to all interfaces within the range.

For VLANs, you can use the **interface range** command only on existing VLAN switch virtual interfaces (SVIs). To display VLAN SVIs, enter the **show running-config** privileged EXEC command. VLANs not displayed cannot be used in the **interface range** command. The commands entered under **interface range** command are applied to all existing VLAN SVIs in the range.

All configuration changes made to an interface range are saved to NVRAM, but the interface range itself is not saved to NVRAM.

You can enter the interface range in two ways:

- Specifying up to five interface ranges
- Specifying a previously defined interface-range macro

All interfaces in a range must be the same type; that is, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs. However, you can define up to five interface ranges with a single command, with each range separated by a comma.

Valid values for *port-range* type and interface:

- vlan vlan-ID, where VLAN ID is from 1 to 4094
- **gigabitethernet** module/{first port} {last port}, where module is always **0**

For physical interfaces:

- module is always 0
- the range is type **0**/number number (for example, **gigabitethernet0/1 2**)
- port-channel port-channel-number port-channel-number, where port-channel-number is from 1 to 48

Note

When you use the **interface range** command with port channels, the first and last port channel number in the range must be active port channels.

When you define a range, you must enter a space between the first entry and the hyphen (-):

```
interface range gigabitethernet0/1 -2
```

When you define multiple ranges, you must still enter a space after the first entry and before the comma (,):

```
gigabitethernet0/1 - 2, gigabitethernet0/11 - 12
interface range gigabitethernet0/1 - 2, gigabitethernet0/5 - 7
```

You cannot specify both a macro and an interface range in the same command.

You can also specify a single interface in *port-range*. The command is then similar to the **interface** *interface-id* global configuration command.

For more information about configuring interface ranges, see the software configuration guide for this release.

Examples

This example shows how to use the **interface range** command to enter interface-range configuration mode to apply commands to two ports:

```
Switch(config)# interface range gigabitethernet0/1 - 2
Switch(config-if-range)#
```

This example shows how to use a port-range macro *macro1* for the same function. The advantage is that you can reuse *macro1* until you delete it.

```
Switch(config)# define interface-range macro1 gigabitethernet0/1 - 2
Switch(config)# interface range macro macro1
Switch(config-if-range)#
```

Command	Description
define interface-range	Creates an interface range macro.
show running-config	Displays the configuration information currently running on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

interface vlan

Use the **interface vlan** global configuration command to create or access a dynamic switch virtual interface (SVI) and to enter interface configuration mode. Use the **no** form of this command to delete an SVI.

interface vlan vlan-id

no interface vlan vlan-id

Syntax Description

vlan-id	VLAN number. The range is 1 to 4094.

Defaults

The default VLAN interface is VLAN 1.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

VLANs are created the first time that you enter the **interface vlan** *vlan-id* command for a particular VLAN. The *vlan-id* corresponds to the VLAN-tag associated with data frames on an ISL or IEEE 802.1Q encapsulated trunk or the VLAN ID configured for an access port.

When you create an SVI, it does not become active until it is associated with a physical port.

If you delete an SVI by entering the **no interface vlan** *vlan-id* command, the deleted interface is no longer visible in the output from the **show interfaces** privileged EXEC command.

You cannot delete the VLAN 1 interface.

You can re-instate a deleted SVI by entering the **interface vlan** *vlan-id* command for the deleted interface. The interface comes back up, but the previous configuration is gone.

The interrelationship between the number of SVIs configured on a switch and the number of other features being configured might have an impact on CPU utilization due to hardware limitations. You can use the **sdm prefer** global configuration command to reallocate system hardware resources based on templates and feature tables. For more information, see the **sdm prefer** command.

Examples

This example shows how to create a new SVI with VLAN ID 23 and to enter interface configuration mode:

Switch(config)# interface vlan 23

Switch(config-if)#

You can verify your setting by entering the **show interfaces** and **show interfaces vlan** *vlan-id* privileged EXEC commands.

Command	Description
show interfaces vlan vlan-id	Displays the administrative and operational status of all interfaces or the specified VLAN.

ip access-group

Use the **ip access-group** interface configuration command to control access to a Layer 2 or Layer 3 interface. Use the **no** form of this command to remove all access groups or the specified access group from the interface.

ip access-group {access-list-number | name} {**in** | **out**}

no ip access-group [access-list-number | name] {**in** | **out**}

Syntax Description

access-list-number	The number of the IP access control list (ACL). The range is 1 to 199 or 1300 to 2699.
name	The name of an IP ACL, specified in the ip access-list global configuration command.
in	Specify filtering on inbound packets.
out	Specify filtering on outbound packets. This keyword is valid only on Layer 3 interfaces.

Defaults

No access list is applied to the interface.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.
12.2(44)SE	The out keyword was added.

Usage Guidelines

You can apply named or numbered standard or extended IP access lists to an interface. To define an access list by name, use the **ip access-list** global configuration command. To define a numbered access list, use the **access list** global configuration command. You can used numbered standard access lists ranging from 1 to 99 and 1300 to 1999 or extended access lists ranging from 100 to 199 and 2000 to 2699.

You can use this command to apply an access list to a Layer 2 or Layer 3 interface. However, note these limitations for Layer 2 interfaces (port ACLs):

- You can only apply ACLs in the inbound direction; the out keyword is not supported for Layer 2 interfaces.
- You can only apply one IP ACL and one MAC ACL per interface.
- Layer 2 interfaces do not support logging; if the log keyword is specified in the IP ACL, it is ignored.
- An IP ACL applied to a Layer 2 interface only filters IP packets. To filter non-IP packets, use the **mac access-group** interface configuration command with MAC extended ACLs.

You can use input port ACLs and VLAN maps on the same switch. However, a port ACL takes precedence over a VLAN map. When both an input port ACL and a VLAN map are applied, incoming packets received on ports with the port ACL applied are filtered by the port ACL. Other packets are filtered by the VLAN map.

You can use router ACLs, input port ACLs, and VLAN maps on the same switch. However, a port ACL takes precedence over a router ACL or VLAN map:

- When an input port ACL is applied to an interface and a VLAN map is applied to a VLAN that the interface is a member of, incoming packets received on ports with the ACL applied are filtered by the port ACL. Other packets are filtered by the VLAN map.
- When an input router ACL and input port ACLs exist in an switch virtual interface (SVI), incoming
 packets received on ports to which a port ACL is applied are filtered by the port ACL. Incoming
 routed IP packets received on other ports are filtered by the router ACL. Other packets are not
 filtered.
- When an output router ACL and input port ACLs exist in an SVI, incoming packets received on the ports to which a port ACL is applied are filtered by the port ACL. Outgoing routed IP packets are filtered by the router ACL. Other packets are not filtered.
- When a VLAN map, input router ACLs, and input port ACLs exist in an SVI, incoming packets
 received on the ports to which a port ACL is applied are only filtered by the port ACL. Incoming
 routed IP packets received on other ports are filtered by both the VLAN map and the router ACL.
 Other packets are filtered only by the VLAN map.
- When a VLAN map, output router ACLs, and input port ACLs exist in an SVI, incoming packets
 received on the ports to which a port ACL is applied are only filtered by the port ACL. Outgoing
 routed IP packets are filtered by both the VLAN map and the router ACL. Other packets are filtered
 only by the VLAN map.

You can apply IP ACLs to both outbound or inbound Layer 3 interfaces.

A Layer 3 interface can have one IP ACL applied in each direction.

You can configure only one VLAN map and one router ACL in each direction (input/output) on a VLAN interface.

For standard inbound access lists, after the switch receives a packet, it checks the source address of the packet against the access list. IP extended access lists can optionally check other fields in the packet, such as the destination IP address, protocol type, or port numbers. If the access list permits the packet, the switch continues to process the packet. If the access list denies the packet, the switch discards the packet. If the access list has been applied to a Layer 3 interface, discarding a packet (by default) causes the generation of an Internet Control Message Protocol (ICMP) Host Unreachable message. ICMP Host Unreachable messages are not generated for packets discarded on a Layer 2 interface.

For standard outbound access lists, after receiving a packet and sending it to a controlled interface, the switch checks the packet against the access list. If the access list permits the packet, the switch sends the packet. If the access list denies the packet, the switch discards the packet and, by default, generates an ICMP Host Unreachable message.

If the specified access list does not exist, all packets are passed.

Examples

This example shows how to apply IP access list 101 to inbound packets on a port:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 101 in
```

You can verify your settings by entering the **show ip interface**, **show access-lists**, or **show ip access-lists** privileged EXEC command.

Command	Description	
access list	Configures a numbered ACL. For syntax information, select Cis IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands	
ip access-list	Configures a named ACL. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.	
show access-lists	Displays ACLs configured on the switch.	
show ip access-lists	Displays IP ACLs configured on the switch. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.	
show ip interface	Displays information about interface status and configuration. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.	

ip address

Use the **ip address** interface configuration command to set an IP address for the Layer 2 switch or an IP address for each switch virtual interface (SVI) or routed port on the Layer 3 switch. Use the **no** form of this command to remove an IP address or to disable IP processing.

ip address ip-address subnet-mask [secondary]

no ip address [ip-address subnet-mask] [**secondary**]

Syntax Description

ip-address	IP address.
subnet-mask	Mask for the associated IP subnet.
secondary	(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.

Defaults

No IP address is defined.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If you remove the switch IP address through a Telnet session, your connection to the switch will be lost.

Hosts can find subnet masks using the Internet Control Message Protocol (ICMP) Mask Request message. Routers respond to this request with an ICMP Mask Reply message.

You can disable IP processing on a particular interface by removing its IP address with the **no ip address** command. If the switch detects another host using one of its IP addresses, it will send an error message to the console.

You can use the optional keyword **secondary** to specify an unlimited number of secondary addresses. Secondary addresses are treated like primary addresses, except the system never generates datagrams other than routing updates with secondary source addresses. IP broadcasts and ARP requests are handled properly, as are interface routes in the IP routing table.

If any router on a network segment uses a secondary address, all other devices on that same segment must also use a secondary address from the same network or subnet. Inconsistent use of secondary addresses on a network segment can very quickly cause routing loops.

When you are routing Open Shortest Path First (OSPF), ensure that all secondary addresses of an interface fall into the same OSPF area as the primary addresses.

If your switch receives its IP address from a Bootstrap Protocol (BOOTP) or a DHCP server and you remove the switch IP address by using the **no ip address** command, IP processing is disabled, and the BOOTP or the DHCP server cannot reassign the address.

A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software; however, the interrelationship between this number and the number of other features being configured might have an impact on CPU utilization due to hardware limitations. You can use the **sdm prefer** global configuration command to reallocate system hardware resources based on templates and feature tables. For more information, see the **sdm prefer** command.

Examples

This example shows how to configure the IP address for the Layer 2 switch on a subnetted network:

```
Switch(config)# interface vlan 1
Switch(config-if)# ip address 172.20.128.2 255.255.255.0
```

This example shows how to configure the IP address for a port on the Layer 3 switch:

```
Switch(config) # ip multicast-routing
Switch(config) # interface gigabitethernet0/1
Switch(config-if) # no switchport
Switch(config-if) # ip address 172.20.128.2 255.255.255.0
```

You can verify your settings by entering the show running-config privileged EXEC command.

Command	Description
show running-config	Displays the running configuration on the switch. For syntax information,
	select Cisco IOS Configuration Fundamentals Command Reference,
	Release 12.2 > File Management Commands > Configuration File
	Management Commands.

ip admission

Use the **ip admission** interface configuration command to enable web authentication. You can also use this command in fallback-profile mode. Use the **no** form of this command to disable web authentication.

ip admission rule

no ip admission

Syntax Description

rule	Apply an IP admission rule to the interface.	

Command Modes

Global configuration

Command History

Release	Modification
12.2(35)SE	This command was introduced.

Usage Guidelines

The **ip admission** command applies a web authentication rule to a switch port.

Examples

This example shows how to apply a web authentication rule to a switchport:

Switch# configure terminal
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip admission rule1

This example shows how to apply a web authentication rule to a fallback profile for use on an IEEE 802.1x enabled switch port.

Switch# configure terminal
Switch(config)# fallback profile profile1
Switch(config)# ip admission name rule1
Switch(config)# end

Command	Description
dot1x fallback	Configure a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication.
fallback profile	Enable web authentication on a port
ip admission name proxy http	Enable web authentication globally on a switch
show ip admission	Displays information about NAC cached entries or the NAC configuration. For more information, see the <i>Network Admission Control Software Configuration Guide</i> on Cisco.com.

ip admission name proxy http

Use the **ip admission name proxy http** global configuration command to enable web authentication. Use the **no** form of this command to disable web authentication.

ip admission name proxy http

no ip admission name proxy http

Syntax Description

This command has no arguments or keywords.

Defaults

Web authentication is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(35)SE	This command was introduced.

Usage Guidelines

The **ip admission name proxy http** command globally enables web authentication on a switch.

After you enable web authentication on a switch, use the **ip access-group in** and **ip admission** web-rule interface configuration commands to enable web authentication on a specific interface.

Examples

This example shows how to configure only web authentication on a switchport:

```
Switch# configure terminal
Switch(config) ip admission name http-rule proxy http
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# ip access-group 101 in
Switch(config-if)# ip admission rule
Switch(config-if)# end
```

This example shows how to configure IEEE 802.1x authentication with web authentication as a fallback mechanism on a switchport.

```
Switch# configure terminal
```

```
Switch(config)# ip admission name rule2 proxy http
Switch(config)# fallback profile profile1
Switch(config)# ip access group 101 in
Switch(config)# ip admission name rule2
Switch(config)# interface gigabitethernet1/0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x fallback profile1
Switch(config-if)# end
```

Command	Description
dot1x fallback	Configure a port to use web authentication as a fallback method for clients that do not support IEEE 802.1x authentication.
fallback profile	Create a web authentication fallback profile.
ip admission	Enable web authentication on a port
show ip admission	Displays information about NAC cached entries or the NAC configuration. For more information, see the <i>Network Admission Control Software Configuration Guide</i> on Cisco.com.

ip dhcp snooping

Use the **ip dhcp snooping** global configuration command to globally enable DHCP snooping. Use the **no** form of this command to return to the default setting.

ip dhcp snooping

no ip dhcp snooping

Syntax Description

This command has no arguments or keywords.

Defaults

DHCP snooping is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

For any DHCP snooping configuration to take effect, you must globally enable DHCP snooping.

DHCP snooping is not active until you enable snooping on a VLAN by using the **ip dhcp snooping vlan** *vlan-id* global configuration command.

Examples

This example shows how to enable DHCP snooping:

Switch(config)# ip dhcp snooping

You can verify your settings by entering the show ip dhcp snooping user EXEC command.

Command	Description
ip dhcp snooping vlan	Enables DHCP snooping on a VLAN.
show ip dhcp snooping	Displays the DHCP snooping configuration.
show ip dhcp snooping binding	Displays the DHCP snooping binding information.

ip dhcp snooping binding

Use the **ip dhcp snooping binding** privileged EXEC command on the switch stack or on a standalone switch to configure the DHCP snooping binding database and to add binding entries to the database. Use the **no** form of this command to delete entries from the binding database.

ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id expiry seconds

no ip dhcp snooping binding mac-address vlan vlan-id ip-address interface interface-id

This command is available only if your switch is running the IP services image.

Syntax Description

mac-address	Specify a MAC address.	
vlan vlan-id	Specify a VLAN number. The range is 1 to 4094.	
ip-address	Specify an IP address.	
interface interface-id	Specify an interface on which to add or delete a binding entry.	
expiry seconds	Specify the interval (in seconds) after which the binding entry is no longer valid. The range is 1 to 4294967295.	

Defaults

No default database is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(25)xx	This command was introduced.

Usage Guidelines

Use this command when you are testing or debugging the switch.

In the DHCP snooping binding database, each database entry, also referred to a binding, has an IP address, an associated MAC address, the lease time (in hexadecimal format), the interface to which the binding applies, and the VLAN to which the interface belongs. The database can have up to 8192 bindings.

Use the **show ip dhcp snooping binding** privileged EXEC command to display only the configured bindings. Use the **show ip source binding** privileged EXEC command to display the dynamically and statically configured bindings.

Examples

This example shows how to generate a DHCP binding configuration with an expiration time of 1000 seconds on a port in VLAN 1:

Switch# ip dhcp snooping binding 0001.1234.1234 vlan 1 172.20.50.5 interface gigabitethernet1/0/1 expiry 1000

You can verify your settings by entering the **show ip dhcp snooping binding** or the **show ip dhcp source binding** privileged EXEC command.

Command	Description
ip dhcp snooping	Enables DHCP snooping on a VLAN.
show ip dhcp snooping binding	Displays the dynamically configured bindings in the DHCP snooping binding database and the configuration information.
show ip source binding	Displays the dynamically and statically configured bindings in the DHCP snooping binding database.

ip dhcp snooping database

Use the **ip dhcp snooping database** global configuration command on the switch stack or on a standalone switch to configure the DHCP snooping binding database agent. Use the **no** form of this command to disable the agent, to reset the timeout value, or to reset the write-delay value.

ip dhcp snooping database {{flash[number]:/filename | ftp://user:password@host/filename |
 http://[[username:password]@]{hostname | host-ip}[/directory]/image-name.tar |
 rcp://user@host/filename | tftp://host/filename} | timeout seconds | write-delay seconds}

no ip dhcp snooping database [timeout | write-delay]

This command is available only if your switch is running the IP services image.

Syntax Description	flash[number]:/filename	Specify that the database agent or the binding file is in the flash memory.
		(Optional) Use the <i>number</i> parameter to specify the stack member number of the stack master. The range for <i>number</i> is 1 to 9.
	ftp://user:password@host/filename	Specify that the database agent or the binding file is on an FTP server.
	http://[[username:password]@] {hostname host-ip}[/directory] /image-name.tar	Specify that the database agent or the binding file is on an FTP server.
	rcp://user@host/filename	Specify that the database agent or the binding file is on a Remote Control Protocol (RCP) server.
	tftp://host/filename	Specify that the database agent or the binding file is on a TFTP server.
	timeout seconds	Specify (in seconds) how long to wait for the database transfer process to finish before stopping.
		The default is 300 seconds. The range is 0 to 86400. Use 0 to define an infinite duration, which means to continue trying the transfer indefinitely.
	write-delay seconds	Specify (in seconds) the duration for which the transfer should be delayed after the binding database changes. The default

Defaults

The URL for the database agent or binding file is not defined.

The timeout value is 300 seconds (5 minutes).

The write-delay value is 300 seconds (5 minutes).

Command Modes

Global configuration

is 300 seconds. The range is 15 to 86400.

Command History

Release	Modification
12.2(25)xx	This command was introduced.

Usage Guidelines

The DHCP snooping binding database can have up to 8192 bindings.

To ensure that the lease time in the database is accurate, we recommend that Network Time Protocol (NTP) is enabled and configured for these features:

- NTP authentication
- NTP peer and server associations
- NTP broadcast service
- NTP access restrictions
- NTP packet source IP address

If NTP is configured, the switch writes binding changes to the binding file only when the switch system clock is synchronized with NTP.

Because both NVRAM and the flash memory have limited storage capacities, we recommend that you store a binding file on a TFTP server. You must create an empty file at the configured URL on network-based URLs (such as TFTP and FTP) before the switch can first write bindings to the binding file at that URL.

Use the **ip dhcp snooping database flash**[number]:/filename command to save the DHCP snooping binding database in the stack master NVRAM. The database is not saved in a stack member NVRAM.

If you set the **ip dhcp snooping database timeout** command to 0 seconds and the database is being written to a TFTP file, if the TFTP server goes down, the database agent continues to try the transfer indefinitely. No other transfer can be initiated while this one is in progress. This might be inconsequential because if the server is down, no file can be written to it.

Use the **no ip dhcp snooping database** command to disable the agent.

Use the **no ip dhcp snooping database timeout** command to reset the timeout value.

Use the **no ip dhcp snooping database write-delay** command to reset the write-delay value.

Examples

This example shows how to store a binding file at an IP address of 10.1.1.1 that is in a directory called *directory*. A file named *file* must be present on the TFTP server.

Switch(config) # ip dhcp snooping database tftp://10.1.1.1/directory/file

This example shows how to store a binding file called *file01.txt* in the stack master NVRAM:

Switch(config) # ip dhcp snooping database flash:file01.txt

You can verify your settings by entering the **show ip dhcp snooping database** privileged EXEC command.

Command	Description
ip dhcp snooping	Enables DHCP snooping on a VLAN.
ip dhep snooping binding	Configures the DHCP snooping binding database.
show ip dhcp snooping database	Displays the status of DHCP snooping database agent.

ip dhcp snooping information option

Use the **ip dhcp snooping information option** global configuration command to enable DHCP option-82 data insertion. Use the **no** form of this command to disable DHCP option-82 data insertion.

ip dhcp snooping information option

no ip dhcp snooping information option

Syntax Description

This command has no arguments or keywords.

Defaults

DHCP option-82 data is inserted.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You must globally enable DHCP snooping by using the **ip dhcp snooping** global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled and a switch receives a DHCP request from a host, it adds the option-82 information in the packet. The option-82 information contains the switch MAC address (the remote ID suboption) and the port identifier, **vlan-mod-port**, from which the packet is received (circuit ID suboption). The switch forwards the DHCP request that includes the option-82 field to the DHCP server.

When the DHCP server receives the packet, it can use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or a circuit ID. Then the DHCP server echoes the option-82 field in the DHCP reply.

The DHCP server unicasts the reply to the switch if the request was relayed to the server by the switch. When the client and server are on the same subnet, the server broadcasts the reply. The switch inspects the remote ID and possibly the circuit ID fields to verify that it originally inserted the option-82 data. The switch removes the option-82 field and forwards the packet to the switch port that connects to the DHCP host that sent the DHCP request.

Examples

This example shows how to enable DHCP option-82 data insertion:

Switch(config) # ip dhcp snooping information option

You can verify your settings by entering the show ip dhcp snooping user EXEC command.

Command	Description
show ip dhcp snooping	Displays the DHCP snooping configuration.
show ip dhcp snooping binding	Displays the DHCP snooping binding information.

ip dhcp snooping information option allow-untrusted

Use the **ip dhcp snooping information option allow-untrusted** global configuration command on an aggregation switch to configure it to accept DHCP packets with option-82 information that are received on untrusted ports that might be connected to an edge switch. Use the **no** form of this command to return to the default setting.

ip dhcp snooping information option allow-untrusted

no ip dhcp snooping information option allow-untrusted

Syntax Description

This command has no arguments or keywords.

Defaults

The switch drops DHCP packets with option-82 information that are received on untrusted ports that might be connected to an edge switch.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You might want an edge switch to which a host is connected to insert DHCP option-82 information at the edge of your network. You might also want to enable DHCP security features, such as DHCP snooping, IP source guard, or dynamic Address Resolution Protocol (ARP) inspection, on an aggregation switch. However, if DHCP snooping is enabled on the aggregation switch, the switch drops packets with option-82 information that are received on an untrusted port and does not learn DHCP snooping bindings for connected devices on a trusted interface.

If the edge switch to which a host is connected inserts option-82 information and you want to use DHCP snooping on an aggregation switch, enter the **ip dhcp snooping information option allow-untrusted** command on the aggregation switch. The aggregation switch can learn the bindings for a host even though the aggregation switch receives DHCP snooping packets on an untrusted port. You can also enable DHCP security features on the aggregation switch. The port on the edge switch to which the aggregation switch is connected must be configured as a trusted port.

Do not enter the **ip dhcp snooping information option allow-untrusted** command on an aggregation switch to which an untrusted device is connected. If you enter this command, an untrusted device might spoof the option-82 information.

Examples

This example shows how to configure an access switch to not check the option-82 information in untrusted packets from an edge switch and to accept the packets:

Switch(config)# ip dhcp snooping information option allow-untrusted

You can verify your settings by entering the **show ip dhcp snooping** user EXEC command.

Command	Description
show ip dhcp snooping	Displays the DHCP snooping configuration.
show ip dhcp snooping binding	Displays the DHCP snooping binding information.

ip dhcp snooping information option format remote-id

Use the **ip dhcp snooping information option format remote-id** global configuration command on the switch to configure the option-82 remote-ID suboption. Use the **no** form of this command to configure the default remote-ID suboption.

ip dhcp snooping information option format remote-id [string ASCII-string | hostname]

no ip dhcp snooping information option format remote-id

Syntax Description

string ASCII-string	Specify a remote ID, using from 1 to 63 ASCII characters (no spaces).
hostname	Specify the switch hostname as the remote ID.

Defaults

The switch MAC address is the remote ID.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You must globally enable DHCP snooping by using the **ip dhcp snooping** global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled, the default remote-ID suboption is the switch MAC address. This command allows you to configure either the switch hostname or a string of up to 63 ASCII characters (but no spaces) to be the remote ID.

If the hostname exceeds 63 characters, it will be truncated to 63 characters in the remote-ID configuration.

Examples

This example shows how to configure the option- 82 remote-ID suboption:

Switch(config) # ip dhcp snooping information option format remote-id hostname

You can verify your settings by entering the show ip dhcp snooping user EXEC command.

Command	Description
ip dhcp snooping vlan information	Configures the option-82 circuit-ID suboption.
option format-type circuit-id string	
show ip dhcp snooping	Displays the DHCP snooping configuration.

ip dhcp snooping limit rate

Use the **ip dhcp snooping limit rate** interface configuration command to configure the number of DHCP messages an interface can receive per second. Use the **no** form of this command to return to the default setting.

ip dhcp snooping limit rate rate

no ip dhcp snooping limit rate

Syntax Description

rate	Number of DHCP messages an interface can receive per second. The range is 1 to
	2048.

Defaults

DHCP snooping rate limiting is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Normally, the rate limit applies to untrusted interfaces. If you want to configure rate limiting for trusted interfaces, keep in mind that trusted interfaces might aggregate DHCP traffic on multiple VLANs (some of which might not be snooped) in the switch, and you will need to adjust the interface rate limits to a higher value.

If the rate limit is exceeded, the interface is error-disabled. If you enabled error recovery by entering the **errdisable recovery dhcp-rate-limit** global configuration command, the interface retries the operation again when all the causes have timed out. If the error-recovery mechanism is not enabled, the interface stays in the error-disabled state until you enter the **shutdown** and **no shutdown** interface configuration commands.

Examples

This example shows how to set a message rate limit of 150 messages per second on an interface:

Switch(config-if) # ip dhcp snooping limit rate 150

You can verify your settings by entering the show ip dhcp snooping user EXEC command.

Command	Description
errdisable recovery	Configures the recover mechanism.
show ip dhcp snooping	Displays the DHCP snooping configuration.
show ip dhcp snooping binding	Displays the DHCP snooping binding information.

ip dhcp snooping trust

Use the **ip dhcp snooping trust** interface configuration command to configure a port as trusted for DHCP snooping purposes. Use the **no** form of this command to return to the default setting.

ip dhep snooping trust

no ip dhcp snooping trust

Syntax Description

This command has no arguments or keywords.

Defaults

DHCP snooping trust is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Configure as trusted ports those that are connected to a DHCP server or to other switches or routers. Configure as untrusted ports those that are connected to DHCP clients.

Examples

This example shows how to enable DHCP snooping trust on a port:

Switch(config-if)# ip dhcp snooping trust

You can verify your settings by entering the show ip dhcp snooping user EXEC command.

Command	Description
show ip dhcp snooping	Displays the DHCP snooping configuration.
show ip dhcp snooping binding	Displays the DHCP snooping binding information.

ip dhcp snooping verify

Use the **ip dhcp snooping verify** global configuration command to configure the switch to verify on an untrusted port that the source MAC address in a DHCP packet matches the client hardware address. Use the **no** form of this command to configure the switch to not verify the MAC addresses.

ip dhcp snooping verify mac-address

no ip dhcp snooping verify mac-address

Syntax Description

This command has no arguments or keywords.

Defaults

The switch verifies the source MAC address in a DHCP packet that is received on untrusted ports matches the client hardware address in the packet.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SE1	This command was introduced.
12.2(25)SEE	This command was introduced.

Usage Guidelines

In a service-provider network, when a switch receives a packet from a DHCP client on an untrusted port, it automatically verifies that the source MAC address and the DHCP client hardware address match. If the addresses match, the switch forwards the packet. If the addresses do not match, the switch drops the packet.

Examples

This example shows how to disable the MAC address verification:

Switch(config) # no ip dhcp snooping verify mac-address

You can verify your settings by entering the show ip dhep snooping user EXEC command.

Command	Description
show ip dhcp snooping	Displays the DHCP snooping configuration.

ip dhcp snooping vlan

Use the **ip dhcp snooping vlan** global configuration command to enable DHCP snooping on a VLAN. Use the **no** form of this command to return to the default setting.

ip dhcp snooping vlan vlan-range

no ip dhcp snooping vlan vlan-range

Syntax Description

vlan vlan-range	Specify a VLAN ID or a range of VLANs on which to enable DHCP snooping. The range is 1 to 4094.
	You can enter a single VLAN ID identified by VLAN ID number, a series of VLAN IDs separated by commas, a range of VLAN IDs separated by hyphens, or a range of VLAN IDs separated by entering the starting and ending VLAN IDs separated by a space.

Defaults

DHCP snooping is disabled on all VLANs.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You must first globally enable DHCP snooping before enabling DHCP snooping on a VLAN.

Examples

This example shows how to enable DHCP snooping on VLAN 10:

Switch(config)# ip dhcp snooping vlan 10

You can verify your settings by entering the show ip dhcp snooping user EXEC command.

Command	Description
show ip dhcp snooping	Displays the DHCP snooping configuration.
show ip dhcp snooping binding	Displays the DHCP snooping binding information.

ip dhcp snooping vlan information option format-type circuit-id string

Use the **ip dhcp snooping vlan information option format-type circuit-id string** interface configuration command on the switch to configure the option-82 circuit-ID suboption. Use the **no** form of this command to configure the default circuit-ID suboption.

ip dhcp snooping vlan vlan information option format-type circuit-id string ASCII-string

no ip dhcp snooping vlan vlan information option format-type circuit-id string

Syntax Description

vlan vlan	Specify the VLAN ID. The range is 1 to 4094.
stringASCII-string	Specify a circuit ID, using from 3 to 63 ASCII characters (no spaces).

Defaults

The switch VLAN and the port identifier, in the format vlan-mod-port, is the default circuit ID.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You must globally enable DHCP snooping by using the **ip dhcp snooping** global configuration command for any DHCP snooping configuration to take effect.

When the option-82 feature is enabled, the default circuit-ID suboption is the switch VLAN and the port identifier, in the format **vlan-mod-port**. This command allows you to configure a string of ASCII characters to be the circuit ID.

When configuring a large number of circuit IDs on a switch, consider the impact of lengthy character strings on the NVRAM or flash memory. If the circuit-ID configurations, combined with other data, exceed the capacity of the NVRAM or the flash memory, an error message appears.

Examples

This example shows how to configure the option-82 circuit-ID suboption:

Switch(config-if)# ip dhcp snooping vlan 250 information option format-type circuit-id string customerABC-250-0-0

You can verify your settings by entering the **show ip dhcp snooping** user EXEC command.

The **show ip dhcp snooping** user EXEC command only displays the global command output, including a remote-ID configuration. It does not display any per-interface, per-VLAN string that you have configured for the circuit ID.

Command	Description
ip dhcp snooping information option format remote-id	Configures the option-82 remote-ID suboption.
show ip dhcp snooping	Displays the DHCP snooping configuration.

ip igmp filter

Use the **ip igmp filter** interface configuration command to control whether or not all hosts on a Layer 2 interface can join one or more IP multicast groups by applying an Internet Group Management Protocol (IGMP) profile to the interface. Use the **no** form of this command to remove the specified profile from the interface.

ip igmp filter profile number

no ip igmp filter

Syntax Description

profile number	The IGMP profile nu	mber to be applied. The	range is 1 to 4294967295.

Defaults

No IGMP filters are applied.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can apply IGMP filters only to Layer 2 physical interfaces; you cannot apply IGMP filters to routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.

An IGMP profile can be applied to one or more switch port interfaces, but one port can have only one profile applied to it.

Examples

This example shows how to apply IGMP profile 22 to a port:

Switch(config)# interface gigabitethernet0/2
Switch(config-if)# ip igmp filter 22

You can verify your setting by using the **show running-config** privileged EXEC command and by specifying an interface.

Command	Description
ip igmp profile	Configures the specified IGMP profile number.
show ip dhcp snooping statistics	Displays the characteristics of the specified IGMP profile.
show running-config interface interface-id	Displays the running configuration on the switch interface, including the IGMP profile (if any) that is applied to an interface. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

ip igmp max-groups

Use the **ip igmp max-groups** interface configuration command to set the maximum number of Internet Group Management Protocol (IGMP) groups that a Layer 2 interface can join or to configure the IGMP throttling action when the maximum number of entries is in the forwarding table. Use the **no** form of this command to set the maximum back to the default, which is to have no maximum limit, or to return to the default throttling action, which is to drop the report.

ip igmp max-groups {number | action {deny | replace}}}

no ip igmp max-groups {number | action}

Syntax Description

number	The maximum number of IGMP groups that an interface can join. The range is 0 to 4294967294. The default is no limit.
action deny	When the maximum number of entries is in the IGMP snooping forwarding table, drop the next IGMP join report. This is the default action.
action replace	When the maximum number of entries is in the IGMP snooping forwarding table, replace the existing group with the new group for which the IGMP report was received.

Defaults

The default maximum number of groups is no limit.

After the switch learns the maximum number of IGMP group entries on an interface, the default throttling action is to drop the next IGMP report that the interface receives and to not add an entry for the IGMP group to the interface.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can use this command only on Layer 2 physical interfaces and on logical EtherChannel interfaces. You cannot set IGMP maximum groups for routed ports, switch virtual interfaces (SVIs), or ports that belong to an EtherChannel group.

Follow these guidelines when configuring the IGMP throttling action:

- If you configure the throttling action as **deny** and set the maximum group limitation, the entries that were previously in the forwarding table are not removed but are aged out. After these entries are aged out, when the maximum number of entries is in the forwarding table, the switch drops the next IGMP report received on the interface.
- If you configure the throttling action as replace and set the maximum group limitation, the entries
 that were previously in the forwarding table are removed. When the maximum number of entries is
 in the forwarding table, the switch replaces a randomly selected multicast entry with the received
 IGMP report.

• When the maximum group limitation is set to the default (no maximum), entering the **ip igmp** max-groups {deny | replace} command has no effect.

Examples

This example shows how to limit to 25 the number of IGMP groups that a port can join:

```
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# ip igmp max-groups 25
```

This example shows how to configure the switch to replace the existing group with the new group for which the IGMP report was received when the maximum number of entries is in the forwarding table:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip igmp max-groups action replace
```

You can verify your setting by using the **show running-config** privileged EXEC command and by specifying an interface.

Command	Description
show running-config interface	Displays the running configuration on the switch interface, including
interface-id	the maximum number of IGMP groups that an interface can join and
	the throttling action. For syntax information, select Cisco IOS
	Configuration Fundamentals Command Reference, Release 12.2 >
	File Management Commands > Configuration File Management
	Commands.

ip igmp profile

Use the **ip igmp profile** global configuration command to create an Internet Group Management Protocol (IGMP) profile and enter IGMP profile configuration mode. From this mode, you can specify the configuration of the IGMP profile to be used for filtering IGMP membership reports from a switchport. Use the **no** form of this command to delete the IGMP profile.

ip igmp profile profile number

no ip igmp profile profile number

Syntax Description

profile number The IGMP profile number being configured. The range is 1 to 42949672	profile number	The IGMP profile numb	er being configured.	. The range is 1 to 4294967295
---	----------------	-----------------------	----------------------	--------------------------------

Defaults

No IGMP profiles are defined. When configured, the default action for matching an IGMP profile is to deny matching addresses.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- deny: specifies that matching addresses are denied; this is the default condition.
- exit: exits from igmp-profile configuration mode.
- no: negates a command or resets to its defaults.
- **permit**: specifies that matching addresses are permitted.
- range: specifies a range of IP addresses for the profile. This can be a single IP address or a range
 with a start and an end address.

When entering a range, enter the low IP multicast address, a space, and the high IP multicast address.

You can apply an IGMP profile to one or more Layer 2 interfaces, but each interface can have only one profile applied to it.

Examples

This example shows how to configure IGMP profile 40 that permits the specified range of IP multicast addresses:

```
Switch(config)# ip igmp profile 40
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 233.1.1.1 233.255.255.255
```

You can verify your settings by using the **show ip igmp profile** privileged EXEC command.

Command	Description
ip igmp filter	Applies the IGMP profile to the specified interface.
show ip dhcp snooping statistics	Displays the characteristics of all IGMP profiles or the specified IGMP profile number.

ip igmp snooping

Use the **ip igmp snooping** global configuration command to globally enable Internet Group Management Protocol (IGMP) snooping on the switch or to enable it on a per-VLAN basis. Use the **no** form of this command to return to the default setting.

ip igmp snooping [vlan vlan-id]

no ip igmp snooping [vlan vlan-id]

Syntax Description

vlan vlan-id	(Optional) Enable IGMP snooping on the specified VLAN. The range is 1 to
	1001 and 1006 to 4094.

Defaults

IGMP snooping is globally enabled on the switch.

IGMP snooping is enabled on VLAN interfaces.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When IGMP snooping is enabled globally, it is enabled in all the existing VLAN interfaces. When IGMP snooping is globally disabled, it is disabled on all the existing VLAN interfaces.

 $VLAN\ IDs\ 1002$ to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Examples

This example shows how to globally enable IGMP snooping:

Switch(config) # ip igmp snooping

This example shows how to enable IGMP snooping on VLAN 1:

Switch(config) # ip igmp snooping vlan 1

You can verify your settings by entering the show ip igmp snooping privileged EXEC command.

Command	Description
ip igmp snooping report-suppression	Enables IGMP report suppression.
show ip igmp snooping	Displays the snooping configuration.
show ip igmp snooping groups	Displays IGMP snooping multicast information.
show ip igmp snooping mrouter	Displays the IGMP snooping router ports.
show ip igmp snooping querier	Displays the configuration and operation information for the IGMP querier configured on a switch.

ip igmp snooping last-member-query-interval

Use the **ip igmp snooping last-member-query-interval** global configuration command to enable the Internet Group Management Protocol (IGMP) configurable-leave timer globally or on a per-VLAN basis. Use the **no** form of this command to return to the default setting.

ip igmp snooping [vlan vlan-id] last-member-query-interval time

no ip igmp snooping [vlan vlan-id] last-member-query-interval

Syntax Descriptiont

vlan vlan-id	(Optional) Enable IGMP snooping and the leave timer on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.
time	Interval time out in seconds. The range is 100 to 5000 milliseconds.

Defaults

The default timeout setting is 1000 milliseconds.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When IGMP snooping is globally enabled, IGMP snooping is enabled on all the existing VLAN interfaces. When IGMP snooping is globally disabled, IGMP snooping is disabled on all the existing VLAN interfaces.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Configuring the leave timer on a VLAN overrides the global setting.

The IGMP configurable leave time is only supported on devices running IGMP Version 2.

The configuration is saved in NVRAM.

Examples

This example shows how to globally enable the IGMP leave timer for 2000 milliseconds:

Switch(config) # ip igmp snooping last-member-query-interval 2000

This example shows how to configure the IGMP leave timer for 3000 milliseconds on VLAN 1:

Switch(config) # ip igmp snooping vlan 1 last-member-query-interval 3000

You can verify your settings by entering the show ip igmp snooping privileged EXEC command.

Command	Description
ip igmp snooping	Enables IGMP snooping on the switch or on a VLAN.
ip igmp snooping vlan immediate-leave	Enables IGMP Immediate-Leave processing.
ip igmp snooping vlan mrouter	Configures a Layer 2 port as a multicast router port.
ip igmp snooping vlan static	Configures a Layer 2 port as a member of a group.
show ip igmp snooping	Displays the IGMP snooping configuration.

ip igmp snooping querier

Use the **ip igmp snooping querier** global configuration command to globally enable the Internet Group Management Protocol (IGMP) querier function in Layer 2 networks. Use the command with keywords to enable and configure the IGMP querier feature on a VLAN interface. Use the **no** form of this command to return to the default settings.

no ip igmp snooping querier [vlan vlan-id] [address | max-response-time | query-interval | tcn query { count | interval | interval | timer expiry | version]

Syntax Description

vlan vlan-id	(Optional) Enable IGMP snooping and the IGMP querier function on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.
address ip-address	(Optional) Specify a source IP address. If you do not specify an IP address, the querier tries to use the global IP address configured for the IGMP querier.
max-response-time response-time	(Optional) Set the maximum time to wait for an IGMP querier report. The range is 1 to 25 seconds.
query-interval interval-count	(Optional) Set the interval between IGMP queriers. The range is 1 to 18000 seconds.
tcn query[count count interval interval]	(Optional) Set parameters related to Topology Change Notifications (TCNs). The keywords have these meanings:
	• count <i>count</i> —Set the number of TCN queries to be executed during the TCN interval time. The range is 1 to 10.
	• interval —Set the TCN query interval time. The range is 1 to 255.
timer expiry	(Optional) Set the length of time until the IGMP querier expires. The range is 60 to 300 seconds.
version version	(Optional) Select the IGMP version number that the querier feature uses. Select 1 or 2.

Defaults

The IGMP snooping querier feature is globally disabled on the switch.

When enabled, the IGMP snooping querier disables itself if it detects IGMP traffic from a multicast-enabled device.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use this command to enable IGMP snooping to detect the IGMP version and IP address of a device that sends IGMP query messages, which is also called a *querier*.

By default, the IGMP snooping querier is configured to detect devices that use IGMP *Version 2* (IGMPv2) but does not detect clients that are using IGMP *Version 1* (IGMPv1). You can manually configure the **max-response-time** value when devices use IGMPv2. You cannot configure the **max-response-time** when devices use IGMPv1. (The value cannot be configured and is set to zero).

Non-RFC compliant devices running IGMPv1 might reject IGMP general query messages that have a non-zero value as the **max-response-time** value. If you want the devices to accept the IGMP general query messages, configure the IGMP snooping querier to run IGMPv1.

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

Examples

This example shows how to globally enable the IGMP snooping querier feature:

Switch(config) # ip igmp snooping querier

This example shows how to set the IGMP snooping querier maximum response time to 25 seconds:

Switch(config)# ip igmp snooping querier max-response-time 25

This example shows how to set the IGMP snooping querier interval time to 60 seconds:

Switch(config) # ip igmp snooping querier query-interval 60

This example shows how to set the IGMP snooping querier TCN query count to 25:

Switch(config)# ip igmp snooping querier tcn count 25

This example shows how to set the IGMP snooping querier timeout to 60 seconds:

Switch(config) # ip igmp snooping querier timeout expiry 60

This example shows how to set the IGMP snooping querier feature to version 2:

Switch(config)# ip igmp snooping querier version 2

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.

Command	Description
ip igmp snooping report-suppression	Enables IGMP report suppression.
show ip igmp snooping	Displays the IGMP snooping configuration.
show ip igmp snooping groups	Displays IGMP snooping multicast information.
show ip igmp snooping mrouter	Displays the IGMP snooping router ports.

ip igmp snooping report-suppression

Use the **ip igmp snooping report-suppression** global configuration command to enable Internet Group Management Protocol (IGMP) report suppression. Use the **no** form of this command to disable IGMP report suppression and to forward all IGMP reports to multicast routers.

ip igmp snooping report-suppression

no ip igmp snooping report-suppression

Syntax Description

This command has no arguments or keywords.

Defaults

IGMP report suppression is enabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

IGMP report suppression is supported only when the multicast query has IGMPv1 and IGMPv2 reports. This feature is not supported when the query includes IGMPv3 reports.

The switch uses IGMP report suppression to forward only one IGMP report per multicast router query to multicast devices. When IGMP router suppression is enabled (the default), the switch sends the first IGMP report from all hosts for a group to all the multicast routers. The switch does not send the remaining IGMP reports for the group to the multicast routers. This feature prevents duplicate reports from being sent to the multicast devices.

If the multicast router query includes requests only for IGMPv1 and IGMPv2 reports, the switch forwards only the first IGMPv1 or IGMPv2 report from all hosts for a group to all the multicast routers. If the multicast router query also includes requests for IGMPv3 reports, the switch forwards all IGMPv1, IGMPv2, and IGMPv3 reports for a group to the multicast devices.

If you disable IGMP report suppression by entering the **no ip igmp snooping report-suppression** command, all IGMP reports are forwarded to all the multicast routers.

Examples

This example shows how to disable report suppression:

Switch(config) # no ip igmp snooping report-suppression

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.

Command	Description
ip igmp snooping	Enables IGMP snooping on the switch or on a VLAN.
show ip igmp snooping	Displays the IGMP snooping configuration of the switch or the VLAN.

ip igmp snooping tcn

Use the **ip igmp snooping tcn** global configuration command to configure the Internet Group Management Protocol (IGMP) Topology Change Notification (TCN) behavior. Use the **no** form of this command to return to the default settings.

ip igmp snooping tcn {flood query count count | query solicit}

no ip igmp snooping ten {flood query count | query solicit}

Syntax Description

flood query count count	Specify the number of IGMP general queries for which the multicast traffic is flooded. The range is 1 to 10.
query solicit	Send an IGMP leave message (global leave) to speed the process of recovering from the flood mode caused during a TCN event.

Defaults

The TCN flood query count is 2.

The TCN query solicitation is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use **ip igmp snooping tcn flood query count** global configuration command to control the time that multicast traffic is flooded after a TCN event. If you set the TCN flood query count to 1 by using the **ip igmp snooping tcn flood query count** command, the flooding stops after receiving 1 general query. If you set the count to 7, the flooding of multicast traffic due to the TCN event lasts until 7 general queries are received. Groups are relearned based on the general queries received during the TCN event.

Use the **ip igmp snooping tcn query solicit** global configuration command to enable the switch to send the global leave message whether or not it is the spanning-tree root. This command also speeds the process of recovering from the flood mode caused during a TCN event.

Examples

This example shows how to specify 7 as the number of IGMP general queries for which the multicast traffic is flooded:

Switch(config) # no ip igmp snooping tcn flood query count 7

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.

Command	Description
ip igmp snooping	Enables IGMP snooping on the switch or on a VLAN.
ip igmp snooping ten flood	Specifies flooding on an interface as the IGMP snooping spanning-tree TCN behavior.
show ip igmp snooping	Displays the IGMP snooping configuration of the switch or the VLAN.

ip igmp snooping ten flood

Use the **ip igmp snooping tcn flood** interface configuration command to specify multicast flooding as the Internet Group Management Protocol (IGMP) snooping spanning-tree Topology Change Notification (TCN) behavior. Use the **no** form of this command to disable the multicast flooding.

ip igmp snooping ten flood

no ip igmp snooping ten flood

Syntax Description

This command has no arguments or keywords.

Defaults

Multicast flooding is enabled on an interface during a spanning-tree TCN event.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When the switch receives a TCN, multicast traffic is flooded to all the ports until two general queries are received. If the switch has many ports with attached hosts that are subscribed to different multicast groups, the flooding might exceed the capacity of the link and cause packet loss.

You can change the flooding query count by using the **ip igmp snooping tcn flood query count** count global configuration command.

Examples

This example shows how to disable the multicast flooding on an interface:

Switch(config)# interface gigabitethernet0/2
Switch(config-if)# no ip igmp snooping tcn flood

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.

Command	Description
ip igmp snooping	Enables IGMP snooping on the switch or on a VLAN.
ip igmp snooping ten	Configures the IGMP TCN behavior on the switch.
show ip igmp snooping	Displays the IGMP snooping configuration of the switch or the VLAN.

ip igmp snooping vlan immediate-leave

Use the **ip igmp snooping immediate-leave** global configuration command to enable Internet Group Management Protocol (IGMP) snooping immediate-leave processing on a per-VLAN basis. Use the **no** form of this command to return to the default setting.

ip igmp snooping vlan vlan-id immediate-leave

no ip igmp snooping vlan vlan-id immediate-leave

Syntax Description

vlan-id	Enable IGMP snooping and the Immediate-Leave feature on the specified
	VLAN. The range is 1 to 1001 and 1006 to 4094.

Defaults

IGMP immediate-leave processing is disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

You should configure the Immediate- Leave feature only when there is a maximum of one receiver on every port in the VLAN. The configuration is saved in NVRAM.

The Immediate-Leave feature is supported only with IGMP Version 2 hosts.

Examples

This example shows how to enable IGMP immediate-leave processing on VLAN 1:

Switch(config) # ip igmp snooping vlan 1 immediate-leave

You can verify your settings by entering the **show ip igmp snooping** privileged EXEC command.

Command	Description
ip igmp snooping report-suppression	Enables IGMP report suppression.
show ip igmp snooping	Displays the snooping configuration.
show ip igmp snooping groups	Displays IGMP snooping multicast information.
show ip igmp snooping mrouter	Displays the IGMP snooping router ports.
show ip igmp snooping querier	Displays the configuration and operation information for the IGMP querier configured on a switch.

ip igmp snooping vlan mrouter

Use the **ip igmp snooping mrouter** global configuration command to add a multicast router port or to configure the multicast learning method. Use the **no** form of this command to return to the default settings.

ip igmp snooping vlan vlan-id mrouter {interface interface-id | learn {cgmp | pim-dvmrp}}

no ip igmp snooping vlan vlan-id mrouter {interface interface-id | learn {cgmp | pim-dvmrp}}

Syntax Description	vlan-id	Enable IGMP snooping, and add the port in the specified VLAN as the multicast router port. The range is 1 to 1001 and 1006 to 4094.
	interface interface-id	Specify the next-hop interface to the multicast router. The keywords have these meanings:
		• fastethernet interface number—a Fast Ethernet IEEE 802.3 interface.
		• gigabitethernet <i>interface number</i> —a Gigabit Ethernet IEEE 802.3z interface.
		• port-channel <i>interface number</i> —a channel interface. The range is 0 to 48.
	learn {cgmp pim-dvmrp}	Specify the multicast router learning method. The keywords have these meanings:
		 cgmp—Set the switch to learn multicast router ports by snooping on Cisco Group Management Protocol (CGMP) packets.

Defaults

By default, there are no multicast router ports.

The default learning method is **pim-dvmrp**—to snoop IGMP queries and PIM-DVMRP packets.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

The CGMP learn method is useful for reducing control traffic.

The configuration is saved in NVRAM.

pim-dvmrp—Set the switch to learn multicast router ports by snooping on IGMP queries and Protocol-Independent Multicast-Distance Vector

Multicast Routing Protocol (PIM-DVMRP) packets.

Examples

This example shows how to configure a port as a multicast router port:

Switch(config)# ip igmp snooping vlan 1 mrouter interface gigabitethernet0/2

This example shows how to specify the multicast router learning method as CGMP:

Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp

You can verify your settings by entering the show ip igmp snooping privileged EXEC command.

Command	Description
ip igmp snooping report-suppression	Enables IGMP report suppression.
show ip igmp snooping	Displays the snooping configuration.
show ip igmp snooping groups	Displays IGMP snooping multicast information.
show ip igmp snooping mrouter	Displays the IGMP snooping router ports.
show ip igmp snooping querier	Displays the configuration and operation information for the IGMP querier configured on a switch.

ip igmp snooping vlan static

Use the **ip igmp snooping static** global configuration command to enable Internet Group Management Protocol (IGMP) snooping and to statically add a Layer 2 port as a member of a multicast group. Use the **no** form of this command to remove ports specified as members of a static multicast group.

ip igmp snooping vlan vlan-id static ip-address interface interface-id

no ip igmp snooping vlan vlan-id static ip-address interface interface-id

Syntax Description

vlan-id	Enable IGMP snooping on the specified VLAN. The range is 1 to 1001 and 1006 to 4094.	
ip-address	Add a Layer 2 port as a member of a multicast group with the specified group IP address.	
interface interface-id	Specify the interface of the member port. The keywords have these meanings:	
	• fastethernet interface number—a Fast Ethernet IEEE 802.3 interface.	
	• gigabitethernet <i>interface number</i> —a Gigabit Ethernet IEEE 802.3z interface.	
	• port-channel <i>interface number</i> —a channel interface. The range is 0 to 48.	

Defaults

By default, there are no ports statically configured as members of a multicast group.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in IGMP snooping.

The configuration is saved in NVRAM.

Examples

This example shows how to statically configure a host on an interface:

Switch(config)# ip igmp snooping vlan 1 static 0100.5e02.0203 interface gigabitethernet0/1 Configuring port gigabitethernet0/1 on group 0100.5e02.0203

You can verify your settings by entering the show ip igmp snooping privileged EXEC command.

Command	Description
ip igmp snooping report-suppression	Enables IGMP report suppression.
show ip igmp snooping	Displays the snooping configuration.
show ip igmp snooping groups	Displays IGMP snooping multicast information.
show ip igmp snooping mrouter	Displays the IGMP snooping router ports.
show ip igmp snooping querier	Displays the configuration and operation information for the IGMP querier configured on a switch.

ip snap forwarding

Use the **ip snap forwarding** global configuration command to enable forwarding of IP Version 4 (IPv4) and IP Version 6 (IPv6) frames with Subnetwork Access Protocol (SNAP) encapsulation. Use **no** form of this command to disable forwarding of these frames.

ip snap forwarding

no ip snap forwarding

Syntax Description

This command has no arguments or keywords.

Defaults

The switch does not forward IPv4 and IPv6 frames with SNAP encapsulation.

Command Modes

Global configuration

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

Use the **ip snap forwarding** global configuration command to enable forwarding of IPv4 and IPv6 frames with SNAP encapsulation.

If a switch that is joining the stack does not support forwarding of IPv4 and IPv6 frames with SNAP encapsulation, all the switches in the stack do not forward the IPv4 and IPv6 frames, and this forwarding feature is disabled.

Examples

This example shows how to enable forwarding of IPv4 and IPv6 frames with SNAP encapsulation:

Switch(config)# ip snap forwarding

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description	
show running-config	Displays the running configuration on the switch. For syntax	
	information, select Cisco IOS Configuration Fundamentals Command	
	Reference, Release 12.2 > File Management Commands >	
<u>. </u>	Configuration File Management Commands.	

ip source binding

Use the **ip source binding** global configuration command on the switch stack or on a standalone switch to configure static IP source bindings on the switch. Use the **no** form of this command to delete static bindings.

ip source binding mac-address vlan vlan-id ip-address interface interface-id

no source binding mac-address vlan vlan-id ip-address interface interface-id

This command is available only if your switch is running the IP services image.

Syntax Description

mac-address	Specify a MAC address.
vlan vlan-id	Specify a VLAN number. The range is from 1 to 4094.
ip-address	Specify an IP address.
interface interface-id	Specify an interface on which to add or delete an IP source binding.

Defaults

No IP source bindings are configured.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)xx	This command was introduced.

Usage Guidelines

A static IP source binding entry has an IP address, its associated MAC address, and its associated VLAN number. The entry is based on the MAC address and the VLAN number. If you modify an entry by changing only the IP address, the switch updates the entry instead creating a new one.

Examples

This example shows how to add a static IP source binding:

Switch(config)# ip source binding 0001.1234.1234 vlan 1 172.20.50.5 interface gigabitethernet1/0/1

This example shows how to add a static binding and then modify the IP address for it:

Switch(config)# ip source binding 0001.1357.0007 vlan 1 172.20.50.25 interface gigabitethernet1/0/1

Switch(config)# ip source binding 0001.1357.0007 vlan 1 172.20.50.30 interface gigabitethernet1/0/1

You can verify your settings by entering the show ip source binding privileged EXEC command.

Command	Description
ip verify source	Enables IP source guard on an interface.
show ip source binding	Displays the IP source bindings on the switch.
show ip verify source	Displays the IP source guard configuration on the switch or on a specific interface.

ip ssh

Use the **ip ssh** global configuration command to configure the switch to run Secure Shell (SSH) Version 1 or SSH Version 2. This command is available only when your switch is running the cryptographic (encrypted) software image. Use the **no** form of this command to return to the default setting.

ip ssh version [1 | 2]

no ip ssh version [1 | 2]

Syntax Description

(Optional) Configure the switch to run SSH Version 1 (SSHv1).
 (Optional) Configure the switch to run SSH Version 2 (SSHv1).

Defaults

The default version is the latest SSH version supported by the SSH client.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If you do not enter this command or if you do not specify a keyword, the SSH server selects the latest SSH version supported by the SSH client. For example, if the SSH client supports SSHv1 and SSHv2, the SSH server selects SSHv2.

The switch supports an SSHv1 or an SSHv2 server. It also supports an SSHv1 client. For more information about the SSH server and the SSH client, see the software configuration guide for this release.

A Rivest, Shamir, and Adelman (RSA) key pair generated by an SSHv1 server can be used by an SSHv2 server and the reverse.

Examples

This example shows how to configure the switch to run SSH Version 2:

Switch(config)# ip ssh version 2

You can verify your settings by entering the show ip ssh or show ssh privileged EXEC command.

Related	Commands
---------	-----------------

Command	Description
show ip ssh	Displays if the SSH server is enabled and displays the version and
	configuration information for the SSH server. For syntax information, select
	Cisco IOS Release 12.2 Configuration Guides and Command References >
	Cisco IOS Security Command Reference, Release 12.2 > Other Security
	Features > Secure Shell Commands.
show ssh	Displays the status of the SSH server. For syntax information, select Cisco IOS
	Release 12.2 Configuration Guides and Command References > Cisco IOS
	Security Command Reference, Release 12.2 > Other Security Features >
	Secure Shell Commands.

ip verify source

Use the **ip verify source** interface configuration command on the switch stack or on a standalone switch to enable IP source guard on an interface. Use the **no** form of this command to disable IP source guard.

ip verify source [port-security]

no ip verify source

Syntax Description

port-security	(Optional) Enable IP source guard with IP and MAC address filtering.
	If you do not enter the port-security keyword, IP source guard with IP address filtering is enabled.

Defaults

IP source guard is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(20)SE	This command was introduced.

Usage Guidelines

To enable IP source guard with source IP address filtering, use the **ip verify source** interface configuration command.

To enable IP source guard with source IP and MAC address filtering, use the **ip verify source port-security** interface configuration command.

To enable IP source guard with source IP and MAC address filtering, you must enable port security on the interface.

Examples

This example shows how to enable IP source guard with source IP address filtering:

Switch(config-if)# ip verify source

This example shows how to enable IP source guard with source IP and MAC address filtering:

Switch(config-if)# ip verify source port-security

You can verify your settings by entering the **show ip source binding** privileged EXEC command.

Command	Description
ip source binding	Configures static bindings on the switch.
show ip verify source	Displays the IP source guard configuration on the switch or on a specific interface.

ipv6 access-list

Use the **ipv6 access-list** global configuration command on the switch stack or on a standalone switch to define an IPv6 access list and to place the switch in IPv6 access list configuration mode. To remove the access list, use the **no** form of this command.

ipv6 access-list access-list-name

no ipv6 access-list access-list-name

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

access-list-name	Name of the IPv6 access list. Names cannot contain a space or quotation
	mark or begin with a numeric.

Defaults

No IPv6 access list is defined.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

The **ipv6** access-list command is similar to the **ip** access-list command, except that it is IPv6-specific.

IPv6 ACLs are defined by a unique name (IPv6 does not support numbered ACLs). An IPv4 ACL and an IPv6 ACL cannot share the same name.

See the **ipv6 access-list** and **permit** (**IPv6 access-list configuration**) commands for more information on filtering IPv6 traffic based on IPv6 option headers and optional, upper-layer protocol-type information. See the "Examples" section for an example of a translated IPv6 ACL configuration.

Every IPv6 ACL has implicit **permit icmp any any nd-na**, **permit icmp any any nd-ns**, and **deny ipv6 any any** statements as its last match conditions. The two **permit** conditions allow ICMPv6 neighbor discovery. To disallow ICMPv6 neighbor discovery and to deny **icmp any any nd-na** or **icmp any any nd-ns**, there must be an explicit **deny** entry in the ACL. For the implicit **deny ipv6 any any** statement to take effect, an IPv6 ACL must contain at least one entry.

The IPv6 neighbor discovery process makes use of the IPv6 network layer service; therefore, by default,

IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data-link layer protocol; therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Use the **ipv6 traffic-filter** interface configuration command with the *access-list-name* argument to apply an IPv6 ACL to an IPv6 interface. You can apply inbound and outbound IPv6 ACLs to Layer 3 physical interfaces or switch virtual interfaces for routed ACLs, but only inbound IPv6 ACLs to Layer 2 interfaces for port ACLs.

An IPv6 ACL applied to an interface with the **ipv6 traffic-filter** command filters traffic that is forwarded by the switch and does not filter traffic generated by the switch.

Examples

This example puts the switch in IPv6 access list configuration mode and configures the IPv6 ACL named list2 and applies the ACL to outbound traffic on an interface. The first ACL entry prevents all packets from the network FE80:0:0:2::/64 (packets that have the link-local prefix FE80:0:0:2 as the first 64 bits of their source IPv6 address) from leaving the interface. The second entry in the ACL permits all other traffic to leave the interface. The second entry is necessary because an implicit deny-all condition is at the end of each IPv6 ACL.

```
Switch(config)# ipv6 access-list list2
Switch(config-ipv6-acl)# deny FE80:0:0:2::/64 any
Switch(config-ipv6-acl)# permit any any
Switch(config-ipv6-acl)# exit
Switch(config)# interface gigabitethernet1/0/3
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter list2 out
```


IPv6 ACLs that rely on the implicit deny condition or specify a **deny any any** statement to filter traffic should contain **permit** statements for link-local addresses to avoid the filtering of protocol packets. Additionally IPv6 ACLs that use **deny** statements to filter traffic should also use a **permit any any** statement as the last statement in the list.

Command	Description
deny (IPv6 access-list configuration)	Sets deny conditions for an IPv6 access list.
ipv6 traffic-filter	Filters incoming or outgoing IPv6 traffic on an interface.
permit (IPv6 access-list configuration)	Sets permit conditions for an IPv6 access list.
show ipv6 access-list	Displays the contents of all current IPv6 access lists.

ipv6 mld snooping

Use the **ipv6 mld snooping** global configuration command on the switch stack or on a standalone switch without keywords to enable IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping globally or on the specified VLAN. Use the **no** form of this command to disable MLD snooping on the switch or switch stack or the VLAN.

ipv6 mld snooping [vlan vlan-id]

no ipv6 mld snooping [vlan vlan-id]

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

vlan vlan-id	(Optional) Enable or disable IPv6 MLD snooping on the specified VLAN.
	The VLAN ID range is 1 to 1001 and 1006 to 4094.

Defaults

MLD snooping is globally disabled on the switch.

MLD snooping is enabled on all VLANs. However, MLD snooping must be globally enabled before VLAN snooping will take place.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**} global configuration command and reload the switch.

When MLD snooping is globally disabled, it is disabled on all the existing VLAN interfaces. When you globally enable MLD snooping, it is enabled on all VLAN interfaces that are in the default state (enabled). VLAN configuration will override global configuration on interfaces on which MLD snooping has been disabled.

If MLD snooping is globally disabled, you cannot enable it on a VLAN. If MLD snooping is globally enabled, you can disable it on individual VLANs.

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750 or Catalyst 3560 switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples

This example shows how to globally enable MLD snooping:

Switch(config)# ipv6 mld snooping

This example shows how to disable MLD snooping on a VLAN:

Switch(config)# no ipv6 mld snooping vlan 11

You can verify your settings by entering the show ipv6 mld snooping user EXEC command.

Command	Description
sdm prefer	Configures an SDM template to optimize system resources based on how the switch is being used.
show ipv6 mld snooping	Displays MLD snooping configuration.

ipv6 mld snooping last-listener-query-count

Use the **ipv6 mld snooping last-listener-query-count** global configuration command on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery Mulitcast Address Specific Queries (MASQs) or that will be sent before aging out a client. Use the **no** form of this command to reset the query count to the default settings.

ipv6 mld snooping [vlan vlan-id] last-listener-query-count integer_value

no ipv6 mld snooping [vlan vlan-id] last-listener-query-count

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

vlan vlan-id	(Optional) Configure last-listener query count on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.
integer_value	The range is 1 to 7.

Command Default

The default global count is 2.

The default VLAN count is 0 (the global count is used).

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

In MLD snooping, the IPv6 multicast router periodically sends out queries to hosts belonging to the multicast group. If a host wants to leave a multicast group, it can silently leave or it can respond to the query with a Multicast Listener Done message (equivalent to an IGMP Leave message). When Immediate Leave is not configured (which it should not be if multiple clients for a group exist on the same port), the configured last-listener query count determines the number of MASQs that are sent before an MLD client is aged out.

When the last-listener query count is set for a VLAN, this count overrides the value configured globally. When the VLAN count is not configured (set to the default of 0), the global count is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples

This example shows how to globally set the last-listener query count:

Switch(config)# ipv6 mld snooping last-listener-query-count 1

This example shows how to set the last-listener query count for VLAN 10:

Switch(config) # ipv6 mld snooping vlan 10 last-listener-query-count 3

You can verify your settings by entering the **show ipv6 mld snooping [vlan** *vlan-id*] user EXEC command.

Command	Description
ipv6 mld snooping last-listener-query-interval	Sets IPv6 MLD snooping last-listener query interval.
sdm prefer	Configures an SDM template to optimize system resources based on how the switch is being used.
show ipv6 mld snooping querier	Displays MLD snooping configuration.

ipv6 mld snooping last-listener-query-interval

Use the **ipv6 mld snooping last-listener-query-interval** global configuration command on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping last-listener query interval on the switch or on a VLAN. This time interval is the maximum time that a multicast router waits after issuing a Mulitcast Address Specific Query (MASQ) before deleting a port from the multicast group. Use the **no** form of this command to reset the query time to the default settings.

ipv6 mld snooping [vlan vlan-id] last-listener-query-interval integer_value

no ipv6 mld snooping [vlan vlan-id] last-listener-query-interval

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

vlan vlan-id	(Optional) Configure last-listener query interval on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.
integer_value	Set the time period (in thousands of a second) that a multicast router to wait after issuing a MASQ before deleting a port from the multicast group. The range is 100 to 32,768. The default is 1000 (1 second),

Command Default

The default global query interval (maximum response time) is 1000 (1 second).

The default VLAN query interval (maximum response time) is 0 (the global count is used).

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

In MLD snooping, when the IPv6 multicast router receives an MLD leave message, it sends out queries to hosts belonging to the multicast group. If there are no responses from a port to a MASQ for a length of time, the router deletes the port from the membership database of the multicast address. The last listener query interval is the maximum time that the router waits before deleting a nonresponsive port from the multicast group.

When a VLAN query interval is set, this overrides the global query interval. When the VLAN interval is set at 0, the global value is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples

This example shows how to globally set the last-listener query interval to 2 seconds:

Switch(config)# ipv6 mld snooping last-listener-query-interval 2000

This example shows how to set the last-listener query interval for VLAN 1 to 5.5 seconds:

Switch(config)# ipv6 mld snooping vlan 1 last-listener-query-interval 5500

You can verify your settings by entering the **show ipv6 MLD snooping** [vlan vlan-id] user EXEC command.

Command	Description
ipv6 mld snooping last-listener-query-count	Sets IPv6 MLD snooping last-listener query count.
sdm prefer	Configures an SDM template to optimize system resources based on how the switch is being used.
show ipv6 mld snooping querier	Sets IPv6 MLD snooping last-listener query interval.

ipv6 mld snooping listener-message-suppression

Use the **ipv6 mld snooping listener-message-suppression** global configuration command on the switch stack or on a standalone switch to enable IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping listener message suppression. Use the **no** form of this command to disable MLD snooping listener message suppression.

ipv6 mld snooping listener-message-suppression

no ipv6 mld snooping listener-message-suppression

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Command Default

The default is for MLD snooping listener message suppression to be disabled.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6 {default | vlan**) global configuration command and reload the switch.

MLD snooping listener message suppression is equivalent to IGMP snooping report suppression. When enabled, received MLDv1 reports to a group are forwarded to IPv6 multicast routers only once in every report-forward time. This prevents the forwarding of duplicate reports.

Examples

This example shows how to enable MLD snooping listener-message-suppression:

Switch(config) # ipv6 mld snooping listener-message-suppression

This example shows how to disable MLD snooping listener-message-suppression:

Switch(config) # no ipv6 mld snooping listener-message-suppression

You can verify your settings by entering the **show ipv6 mld snooping** [**vlan** *vlan-id*] user EXEC command.

Description
Enables IPv6 MLD snooping.
Configures an SDM template to optimize system resources based on how the switch is being used.
Displays MLD snooping configuration.

ipv6 mld snooping robustness-variable

Use the **ipv6 mld snooping robustness-variable** global configuration command on the switch stack or on a standalone switch to configure the number of IP version 6 (IPv6) Multicast Listener Discovery (MLD) queries that the switch sends before deleting a listener that does not respond, or enter a VLAN ID to configure on a per-VLAN basis. Use the **no** form of this command to reset the variable to the default settings.

ipv6 mld snooping [vlan vlan-id] robustness-variable integer_value

no ipv6 mld snooping [vlan vlan-id] robustness-variable

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

vlan vlan-id	(Optional) Configure the robustness variable on the specified VLAN. The VLAN ID range is 1 to 1001 and 1006 to 4094.
integer_value	The range is 1 to 3.

Command Default

The default global robustness variable (number of queries before deleting a listener) is 2.

The default VLAN robustness variable (number of queries before aging out a multicast address) is 0, which means that the system uses the global robustness variable for aging out the listener.

Command Modes

Global configuration

Command History

Release	Modification	
12.2(25)SED	This command was introduced.	

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

Robustness is measured in terms of the number of MLDv1 queries sent with no response before a port is removed from a multicast group. A port is deleted when there are no MLDv1 reports received for the configured number of MLDv1 queries. The global value determines the number of queries that the switch waits before deleting a listener that does not respond and applies to all VLANs that do not have a VLAN value set.

The robustness value configured for a VLAN overrides the global value. If the VLAN robustness value is 0 (the default), the global value is used.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples

This example shows how to configure the global robustness variable so that the switch sends out three queries before it deletes a listener port that does not respond:

Switch(config)# ipv6 mld snooping robustness-variable 3

This example shows how to configure the robustness variable for VLAN 1. This value overrides the global configuration for the VLAN:

Switch(config)# ipv6 mld snooping vlan 1 robustness-variable 1

You can verify your settings by entering the **show ipv6 MLD snooping** [vlan vlan-id] user EXEC command.

Command	Description
ipv6 mld snooping last-listener-query-count	Sets IPv6 MLD snooping last-listener query count.
sdm prefer	Configures an SDM template to optimize system resources based on how the switch is being used.
show ipv6 mld snooping	Displays MLD snooping configuration.

ipv6 mld snooping tcn

Use the **ipv6 mld snooping tcn** global configuration commands on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) Topology Change Notifications (TCNs). Use the **no** form of the commands to reset the default settings.

ipv6 mld snooping tcn {flood query count integer_value | query solicit}

no ipv6 mld snooping ten {flood query count integer_value | query solicit}

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

flood query count	Set the flood query count, which is the number of queries that are sent before	
integer_value	forwarding multicast data to only those ports requesting to receive it. The range is 1 to 10.	
query solicit	Enable soliciting of TCN queries.	

Command Default

TCN query soliciting is disabled.

When enabled, the default flood query count is 2.

Command Modes

Global configuration

Command History

Release	Modification	
12.2(25)SED	This command was introduced.	

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

Examples

This example shows how to enable TCN query soliciting:

Switch(config)# ipv6 mld snooping tcn query solicit.

This example shows how to set the flood query count to 5:

Switch(config) # ipv6 mld snooping tcn flood query count 5.

You can verify your settings by entering the **show ipv6 MLD snooping [vlan** *vlan-id*] user EXEC command.

Command	Description
sdm prefer	Configures an SDM template to optimize system resources based on how the switch is being used.
show ipv6 mld snooping	Displays MLD snooping configuration.

ipv6 mld snooping vlan

Use the **ipv6 mld snooping vlan** global configuration command on the switch stack or on a standalone switch to configure IP version 6 (IPv6) Multicast Listener Discovery (MLD) snooping parameters on the VLAN interface. Use the **no** form of this command to reset the parameters to the default settings.

ipv6 mld snooping vlan vlan-id [immediate-leave | mrouter interface interface-id | static ipv6-multicast-address interface interface-id]

no ipv6 mld snooping vlan vlan-id [immediate-leave | mrouter interface interface-id | static ip-address interface interface-id]

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

vlan vlan-id	Specify a VLAN number. The range is 1 to 1001 and 1006 to 4094.
immediate-leave	(Optional) Enable MLD Immediate-Leave processing on a VLAN interface. Use the no form of the command to disable the Immediate Leave feature on the interface.
mrouter interface	(Optional) Configure a multicast router port. The no form of the command removes the configuration.
static ipv6-multicast-address	(Optional) Configure a multicast group with the specified IPv6 multicast address.
interface interface-id	Add a Layer 2 port to the group. The mrouter or static interface can be a physical port or a port-channel interface in the range of 1 to 48.

Command Default

MLD snooping Immediate-Leave processing is disabled.

By default, there are no static IPv6 multicast groups.

By default, there are no multicast router ports.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

You should only configure the Immediate-Leave feature when there is only one receiver on every port in the VLAN. The configuration is saved in NVRAM.

The **static** keyword is used for configuring the MLD member ports statically.

The configuration and the static ports and groups are saved in NVRAM.

When the IPv6 multicast router is a Catalyst 6500 switch and you are using extended VLANs (in the range 1006 to 4094), IPv6 MLD snooping must be enabled on the extended VLAN on the Catalyst 6500 switch in order for the Catalyst 3750 or Catalyst 3560 switch to receive queries on the VLAN. For normal-range VLANs (1 to 1005), it is not necessary to enable IPv6 MLD snooping on the VLAN on the Catalyst 6500 switch.

VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs and cannot be used in MLD snooping.

Examples

This example shows how to enable MLD Immediate-Leave processing on VLAN 1:

Switch(config) # ipv6 mld snooping vlan 1 immediate-leave

This example shows how to disable MLD Immediate-Leave processing on VLAN 1:

Switch(config) # no ipv6 mld snooping vlan 1 immediate-leave

This example shows how to configure a port as a multicast router port:

Switch(config) # ipv6 mld snooping vlan 1 mrouter interface gigabitethernet1/0/2

This example shows how to configure a static multicast group:

Switch(config)# ipv6 mld snooping vlan 2 static FF12::34 interface gigabitethernet1/0/2

You can verify your settings by entering the **show ipv6 mld snooping vlan** *vlan-id* user EXEC command.

Command	Description
ipv6 mld snooping	Enables IPv6 MLD snooping.
ipv6 mld snooping vlan	Configures IPv6 MLD snooping on the VLAN.
sdm prefer	Configures an SDM template to optimize system resources based on how the switch is being used.
show ipv6 mld snooping	Displays IPv6 MLD snooping configuration.

ipv6 traffic-filter

Use the **ipv6 traffic-filter** interface configuration command on the switch stack or on a standalone switch to filter IPv6 traffic on an interface. You can filter both incoming or outgoing IPv6 traffic on Layer 3 interfaces (router ACLs), but only incoming traffic on Layer 2 interfaces (port ACLs). Use the **no** form of this command to disable the filtering of IPv6 traffic on an interface.

ipv6 traffic-filter access-list-name {**in** | **out**}

no ipv6 traffic-filter access-list-name {in | out}

This command is available only if the switch stack is running the advanced IP services image and you have configured a dual IPv4 and IPv6 Switch Database Management (SDM) template on the switch.

Syntax Description

access-list-name	Specify an IPv6 access name.	
in	Specify incoming IPv6 traffic.	
out	Specify outgoing IPv6 traffic.	
	Note This keyword is not supported on Layer 2 interfaces.	

Defaults

Filtering of IPv6 traffic on an interface is not configured.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SED	This command was introduced.

Usage Guidelines

To configure the dual IPv4 and IPv6 template, enter the **sdm prefer dual-ipv4-and-ipv6** {**default | vlan**) global configuration command and reload the switch.

You can use the **ipv6 traffic-filter** command on physical interfaces (Layer 2 or Layer 3 ports), Layer 3 port channels, or switch virtual interfaces (SVIs).

The switch supports inbound and outbound filtering on Layer 3 interfaces (router ACLs), but only inbound filtering on Layer 2 ports (port ACLs).

If any port ACL (IPv4, IPv6, or MAC) is applied to an interface, that port ACL is used to filter packets, and any router ACLs attached to the SVI of the port VLAN are ignored.

This example filters inbound IPv6 traffic on an IPv6-configured interface as defined by the access list named *cisco*:

```
Switch (config)# interface gigabitethernet1/0/1
Switch(config-if)# no switchport
Switch(config-if)# ipv6 address 2001::/64 eui-64
Switch(config-if)# ipv6 traffic-filter cisco in
```

Command	Description	
ipv6 access-list	Defines an IPv6 access list and sets deny or permit conditions for the defined access list.	
show ipv6 access-list	Displays the contents of all current IPv6 access lists.	
show ipv6 interface	Displays the usability status of interfaces configured for IPv6.	

I2protocol-tunnel

Use the **l2protocol-tunnel** interface configuration command on the switch stack or on a standalone switch to enable tunneling of Layer 2 protocols on an access port, IEEE 802.1Q tunnel port, or a port channel. You can enable tunneling for Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), or VLAN Trunking Protocol (VTP) packets. You can also enable point-to-point tunneling for Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), or UniDirectional Link Detection (UDLD) packets. Use the **no** form of this command to disable tunneling on the interface.

12protocol-tunnel [cdp | stp | vtp] [point-to-point [pagp | lacp | udld]] | [shutdown-threshold [cdp | stp | vtp] [point-to-point [pagp | lacp | udld]]] | value | | [drop-threshold [cdp | stp | vtp] [point-to-point [pagp | lacp | udld]] | value |

no l2protocol-tunnel [cdp | stp | vtp] [point-to-point [pagp | lacp | udld]] | [shutdown-threshold [cdp | stp | vtp] [point-to-point [pagp | lacp | udld]]] | [drop-threshold [cdp | stp | vtp] [point-to-point [pagp | lacp | udld]]]

Syntax Description

12protocol-tunnel	Enable point-to-multipoint tunneling of CDP, STP, and VTP packets.
cdp	(Optional) Enable tunneling of CDP, specify a shutdown threshold for CDP, or specify a drop threshold for CDP.
stp	(Optional) Enable tunneling of STP, specify a shutdown threshold for STP, or specify a drop threshold for STP.
vtp	(Optional) Enable tunneling or VTP, specify a shutdown threshold for VTP, or specify a drop threshold for VTP.
point-to-point	(Optional) Enable point-to point tunneling of PAgP, LACP, and UDLD packets.
pagp	(Optional) Enable point-to-point tunneling of PAgP, specify a shutdown threshold for PAgP, or specify a drop threshold for PAgP.
lacp	(Optional) Enable point-to-point tunneling of LACP, specify a shutdown threshold for LACP, or specify a drop threshold for LACP.
udld	(Optional) Enable point-to-point tunneling of UDLD, specify a shutdown threshold for UDLD, or specify a drop threshold for UDLD.
shutdown-threshold	(Optional) Set a shutdown threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface is shut down.
drop-threshold	(Optional) Set a drop threshold for the maximum rate of Layer 2 protocol packets per second to be received before an interface drops packets.
value	Specify a threshold in packets per second to be received for encapsulation before the interface shuts down, or specify the threshold before the interface drops packets. The range is 1 to 4096. The default is no threshold.

Defaults

The default is that no Layer 2 protocol packets are tunneled.

The default is no shutdown threshold for the number of Layer 2 protocol packets.

The default is no drop threshold for the number of Layer 2 protocol packets.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

You must enter this command, with or without protocol types, to tunnel Layer 2 packets.

If you enter this command for a port channel, all ports in the channel must have the same configuration.

Layer 2 protocol tunneling across a service-provider network ensures that Layer 2 information is propagated across the network to all customer locations. When protocol tunneling is enabled, protocol packets are encapsulated with a well-known Cisco multicast address for transmission across the network. When the packets reach their destination, the well-known MAC address is replaced by the Layer 2 protocol MAC address.

You can enable Layer 2 protocol tunneling for CDP, STP, and VTP individually or for all three protocols.

In a service-provider network, you can use Layer 2 protocol tunneling to enhance the creation of EtherChannels by emulating a point-to-point network topology. When protocol tunneling is enabled on the service-provider switch for PAgP or LACP, remote customer switches receive the protocol data units (PDUs) and can negotiate automatic creation of EtherChannels.

To enable tunneling of PAgP, LACP, and UDLD packets, you must have a point-to-point network topology. To decrease the link-down detection time, you should also enable UDLD on the interface when you enable tunneling of PAgP or LACP packets.

You can enable point-to-point protocol tunneling for PAgP, LACP, and UDLD individually or for all three protocols.

PAgP, LACP, and UDLD tunneling is only intended to emulate a point-to-point topology. An erroneous configuration that sends tunneled packets to many ports could lead to a network failure.

Enter the **shutdown-threshold** keyword to control the number of protocol packets per second that are received on an interface before it shuts down. When no protocol option is specified with the keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a drop threshold on the interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value.

When the shutdown threshold is reached, the interface is error-disabled. If you enable error recovery by entering the **errdisable recovery cause l2ptguard** global configuration command, the interface is brought out of the error-disabled state and allowed to retry the operation again when all the causes have timed out. If the error recovery mechanism is not enabled for **l2ptguard**, the interface stays in the error-disabled state until you enter the **shutdown** and **no shutdown** interface configuration commands.

Enter the **drop-threshold** keyword to control the number of protocol packets per second that are received on an interface before it drops packets. When no protocol option is specified with a keyword, the threshold is applied to each of the tunneled Layer 2 protocol types. If you also set a shutdown threshold on the interface, the drop-threshold value must be less than or equal to the shutdown-threshold value.

When the drop threshold is reached, the interface drops Layer 2 protocol packets until the rate at which they are received is below the drop threshold.

The configuration is saved in NVRAM.

For more information about Layer 2 protocol tunneling, see the software configuration guide for this release.

This example shows how to enable protocol tunneling for CDP packets and to configure the shutdown threshold as 50 packets per second:

```
Switch(config-if)# 12protocol-tunnel cdp
Switch(config-if)# 12protocol-tunnel shutdown-threshold cdp 50
```

This example shows how to enable protocol tunneling for STP packets and to configure the drop threshold as 400 packets per second:

```
Switch(config-if)# 12protocol-tunnel stp
Switch(config-if)# 12protocol-tunnel drop-threshold stp 400
```

This example shows how to enable point-to-point protocol tunneling for PAgP and UDLD packets and to configure the PAgP drop threshold as 1000 packets per second:

```
Switch(config-if)# 12protocol-tunnel point-to-point pagp
Switch(config-if)# 12protocol-tunnel point-to-point udld
Switch(config-if)# 12protocol-tunnel drop-threshold point-to-point pagp 1000
```

Command	Description
12protocol-tunnel cos	Configures a class of service (CoS) value for all tunneled Layer 2 protocol packets.
show errdisable recovery	Displays error-disabled recovery timer information.
show l2protocol-tunnel	Displays information about ports configured for Layer 2 protocol tunneling, including port, protocol, class of service (CoS), and threshold.

I2protocol-tunnel cos

Use the **l2protocol-tunnel cos** global configuration command to configure class of service (CoS) value for all tunneled Layer 2 protocol packets. Use the **no** form of this command to return to the default setting.

12protocol-tunnel cos value

no l2protocol-tunnel cos

Syntax Description

value	Specify CoS priority value for tunneled Layer 2 protocol packets. If a CoS
	value is configured for data packets for the interface, the default is to use
	this CoS value. If no CoS value is configured for the interface, the default is
	5. The range is 0 to 7, with 7 being the highest priority.

Defaults

The default is to use the CoS value configured for data on the interface. If no CoS value is configured, the default is 5 for all tunneled Layer 2 protocol packets.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SE	This command was introduced.

Usage Guidelines

When enabled, the tunneled Layer 2 protocol packets use this CoS value.

The value is saved in NVRAM.

Examples

This example shows how to configure a Layer-2 protocol-tunnel CoS value of 7:

Switch(config)# 12protocol-tunnel cos 7

Command	Description
show l2protocol-tunnel	Displays information about ports configured for Layer 2 protocol tunneling, including CoS.

lacp port-priority

Use the **lacp port-priority** interface configuration command to configure the port priority for the Link Aggregation Control Protocol (LACP). Use the **no** form of this command to return to the default setting.

lacp port-priority priority

no lacp port-priority

Syntax		

priority	Port priority for LACP. The range is 1	to 65535.

Defaults

The default is 32768.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The **lacp port-priority** interface configuration command determines which ports are bundled and which ports are put in hot-standby mode when there are more than eight ports in an LACP channel group.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode.

In port-priority comparisons, a numerically *lower* value has a *higher* priority: When there are more than eight ports in an LACP channel-group, the eight ports with the numerically lowest values (highest priority values) for LACP port priority are bundled into the channel group, and the lower-priority ports are put in hot-standby mode. If two or more ports have the same LACP port priority (for example, they are configured with the default setting of 65535) an internal value for the port number determines the priority.

The LACP port priorities are only effective if the ports are on the switch that controls the LACP link. See the **lacp system-priority** global configuration command for determining which switch controls the link.

Use the **show lacp internal** privileged EXEC command to display LACP port priorities and internal port number values.

For information about configuring LACP on physical ports, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

This example shows how to configure the LACP port priority on a port:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# lacp port-priority 1000

You can verify your settings by entering the **show lacp** [channel-group-number] **internal** privileged EXEC command.

Command	Description
channel-group	Assigns an Ethernet port to an EtherChannel group.
lacp system-priority	Configures the LACP system priority.
show lacp [channel-group-number] internal	Displays internal information for all channel groups or for the specified channel group.

lacp system-priority

Use the **lacp system-priority** global configuration command to configure the system priority for the Link Aggregation Control Protocol (LACP). Use the **no** form of this command to return to the default setting.

lacp system-priority priority

no lacp system-priority

Syntax Description

priority	System priority for LACP.	The range is 1 to 65535.

Defaults

The default is 32768.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The **lacp system-priority** command determines which switch in an LACP link controls port priorities.

An LACP channel group can have up to 16 Ethernet ports of the same type. Up to eight ports can be active, and up to eight ports can be in standby mode. When there are more than eight ports in an LACP channel-group, the switch on the controlling end of the link uses port priorities to determine which ports are bundled into the channel and which ports are put in hot-standby mode. Port priorities on the other switch (the noncontrolling end of the link) are ignored.

In priority comparisons, numerically lower values have higher priority. Therefore, the system with the numerically lower value (higher priority value) for LACP system priority becomes the controlling system. If both switches have the same LACP system priority (for example, they are both configured with the default setting of 32768), the LACP system ID (the switch MAC address) determines which switch is in control.

The lacp system-priority command applies to all LACP EtherChannels on the switch.

Use the **show etherchannel summary** privileged EXEC command to see which ports are in the hot-standby mode (denoted with an H port-state flag in the output display).

For more information about configuring LACP on physical ports, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

Examples

This example shows how to set the LACP system priority:

Switch(config) # lacp system-priority 20000

You can verify your settings by entering the show lacp sys-id privileged EXEC command.

Command	Description
channel-group	Assigns an Ethernet port to an EtherChannel group.
lacp port-priority	Configures the LACP port priority.
show lacp sys-id	Displays the system identifier that is being used by LACP.

location (global configuration)

Use the **location** global configuration command to configure location information for an endpoint. Use the **no** form of this command to remove the location information.

location {admin-tag string | civic-location identifier id | elin-location string identifier id}

no location {admin-tag string | civic-location identifier id | elin-location string identifier id}

Syntax Description

admin-tag	Configure administrative tag or site information.
civic-location	Configure civic location information.
elin-location	Configure emergency location information (ELIN).
identifier id	Specify the ID for the civic location or the elin location. The ID range is 1 to 4095.
string	Specify the site or location information in alphanumeric format.

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

Release	Modification
12.2(40)SE	This command was introduced.

Usage Guidelines

After entering the **location civic-location identifier** *id* global configuration command, you enter civic location configuration mode. In this mode, you can enter the civic location and the postal location information.

Use the **no lldp med-tlv-select location** information interface configuration command to disable the location TLV. The location TLV is enabled by default. For more information, see the "Configuring LLDP and LLDP-MED" chapter of the software configuration guide for this release.

Examples

This example shows how to configure civic location information on the switch:

```
Switch(config) # location civic-location identifier 1
Switch(config-civic) # number 3550
Switch(config-civic) # primary-road-name "Cisco Way"
Switch(config-civic) # city "San Jose"
Switch(config-civic) # state CA
Switch(config-civic) # building 19
Switch(config-civic) # room C6
Switch(config-civic) # county "Santa Clara"
Switch(config-civic) # country US
Switch(config-civic) # end
```

You can verify your settings by entering the show location civic-location privileged EXEC command.

This example shows how to configure the emergency location information on the switch:

Switch (config) # location elin-location 14085553881 identifier 1

You can verify your settings by entering the show location elin privileged EXEC command.

Command	Description
location (interface configuration)	Configures the location information for an interface.
show location	Displays the location information for an endpoint.

location (interface configuration)

Use the **location** interface command to enter location information for an interface. Use the **no** form of this command to remove the interface location information.

location {additional-location-information $word \mid$ civic-location-id $id \mid$ elin-location-id id}

no location {additional-location-information word | civic-location-id id | elin-location-id id}

Syntax Description

additional-location-information	Configure additional information for a location or place.
civic-location-id	Configure global civic location information for an interface.
elin-location-id	Configure emergency location information for an interface.
id	Specify the ID for the civic location or the elin location. The ID range is 1 to 4095.
word	Specify a word or phrase that provides additional location information.

Defaults

This command has no default setting.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(40)SE	This command was introduced.

Usage Guidelines

After entering the **location civic-location-id** *id* interface configuration command, you enter civic location configuration mode. In this mode, you can enter the additional location information.

Examples

These examples show how to enter civic location information for an interface:

```
Switch(config-if)# int g1/0/1
Switch(config-if)# location civic-location-id 1
Switch(config-if)# end

Switch(config-if)# int g2/0/1
Switch(config-if)# location civic-location-id 1
Switch(config-if)# end
```

You can verify your settings by entering the **show location civic interface** privileged EXEC command.

This example shows how to enter emergency location information for an interface:

```
Switch(config)# int g2/0/2
Switch(config-if)# location elin-location-id 1
Switch(config-if)# end
```

You can verify your settings by entering the **show location elin interface** privileged EXEC command.

Command	Description
link state group	Configures the location information for an endpoint.
show location	Displays the location information for an endpoint.

link state group

Use the **link state group** interface configuration command to configure a port as a member of a link-state group. Use the **no** form of this command to remove the port from the link-state group.

link state group [number] {upstream | downstream}

no link state group [number] {upstream | downstream}

Syntax Description

number	(Optional) Specify the link-state group number. The default is 1.
upstream	Configure a port as an upstream port for a specific link-state group.
downstream	Configure a port as a downstream port for a specific link-state group.

Defaults

The default group is group 1.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **link state group** interface configuration command to configure a port as an upstream or downstream port for a specific link-state group. If the group number is omitted, the default group is assumed.

An interface can be an aggregation of ports (an EtherChannel) or a single physical port in access or trunk mode. Each downstream interface can be associated with one or more upstream interfaces. Upstream interfaces can be bundled together, and each downstream interface can be associated with a single group consisting of multiple upstream interfaces. These groups are referred to as link-state groups.

The link state of the downstream interfaces are dependent on the link state of the upstream interfaces in the associated link-state group. If all of the upstream interfaces in a link-state group are in a link-down state, then the associated downstream interfaces are forced into a link-down state. If any one of the upstream interfaces in the link-state group is in a link-up state, then the associated downstream interfaces are allowed to transition to, or remain in, a link-up state.

Follow these guidelines to avoid configuration problems:

- Do not configure an EtherChannel as a downstream interface.
- An interface that is defined as an upstream interface cannot also be defined as a downstream interface in the same or a different link-state group. The reverse is also true.
- You can configure only two link-state groups per switch.

This example shows how to configure the interfaces as **upstream** in group 2:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/15 - 1615
Switch(config-if)# link state group 2 upstream
Switch(config-if)# end
```


If the interfaces are part of an EtherChannel, you must specify the port channel name as part of the link state group, not the individual port members.

This example shows how to create a link-state group using ports in an EtherChannel:

```
Switch# configure terminal
Switch(config)# link state track 1
Switch(config)# interface P01
Switch(config-if)# link state group 1 upstream
Switch(config-if-range)# interface range gigabitethernet0/1, gigabitethernet0/3, gigabitethernet0/5
Switch(config-if)# link state group 1 downstream
Switch(config-if)# end
```

You can verify your settings by entering the show running-config privileged EXEC command.

Command	Description
link state track	Enables a link-state group.
show link state group	Displays the link-state group information.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.2 > Cisco IOS File Management Commands > Configuration File Commands.

link state track

Use the **link state track** global configuration command to enable a link-state group. Use the **no** form of this command to disable a link-state group.

link state track [number]

no link state track [number]

Syntax Description

number	(Optional) Specify the link-state group number. The group number can
	be 1 or 2, the default is 1.

Defaults

Link-state tracking is disabled for all groups.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how enable link-state group 2:

Switch(config) # link state track 2

You can verify your settings by entering the show running-config privileged EXEC command.

Command	Description
link state group	Configures an interface as a member of a link-state group.
show link state group	Displays the link-state group information.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference for Release 12.2 > Cisco IOS File Management Commands > Configuration File Commands.

logging event

Use the **logging event** interface configuration command to enable notification of interface link status changes. Use the **no** form of this command to disable notification.

logging event {bundle-status | link-status | spanning-tree | status | trunk status}

no logging event {bundle-status | link-status | spanning-tree | status | trunk status}

Syntax Description

bundle-status	Enable notification of BUNDLE and UNBUNDLE messages.
link-status	Enable notification of interface data link status changes.
spanning-tree	Enable notification of spanning-tree events.
status	Enable notification of spanning-tree state change messages.
trunk-status	Enable notification of trunk-status messages.

Defaults

Event logging is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to enable spanning-tree logging:

Switch(config-if) # logging event spanning-tree

logging file

Use the **logging file** global configuration command to set logging file parameters. Use the **no** form of this command to return to the default setting.

logging file filesystem:filename [max-file-size | nomax [min-file-size]] [severity-level-number | type]

no logging file filesystem:filename [severity-level-number | type]

Syntax Description

filesystem:filename	Alias for a flash file system. Contains the path and name of the file that contains the log messages.
	The syntax for the local flash file system: flash:
max-file-size	(Optional) Specify the maximum logging file size. The range is 4096 to 2147483647.
nomax	(Optional) Specify the maximum file size of 2147483647.
min-file-size	(Optional) Specify the minimum logging file size. The range is 1024 to 2147483647.
severity-level-number	(Optional) Specify the logging severity level. The range is 0 to 7. See the <i>type</i> option for the meaning of each level.
type	(Optional) Specify the logging type. These keywords are valid:
	• emergencies —System is unusable (severity 0).
	• alerts—Immediate action needed (severity 1).
	• critical —Critical conditions (severity 2).
	• errors —Error conditions (severity 3).
	• warnings—Warning conditions (severity 4).
	• notifications —Normal but significant messages (severity 5).
	• informational—Information messages (severity 6).
	• debugging —Debugging messages (severity 7).

Defaults

The minimum file size is 2048 bytes; the maximum file size is 4096 bytes.

The default severity level is 7 (debugging messages and numerically lower levels).

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The log file is stored in ASCII text format in an internal buffer on the switch. You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. If the switch fails, the log is lost unless you had previously saved it to flash memory by using the **logging file flash:** filename global configuration command.

After saving the log to flash memory by using the **logging file flash**: filename global configuration command, you can use the **more flash**: filename privileged EXEC command to display its contents.

The command rejects the minimum file size if it is greater than the maximum file size minus 1024; the minimum file size then becomes the maximum file size minus 1024.

Specifying a *level* causes messages at that level and numerically lower levels to be displayed.

Examples

This example shows how to save informational log messages to a file in flash memory:

Switch(config)# logging file flash:logfile informational

You can verify your setting by entering the show running-config privileged EXEC command.

Command	Description
show running-config	Displays the running configuration on the switch. For syntax
	information, select Cisco IOS Configuration Fundamentals Command
	Reference, Release 12.2 > File Management Commands > Configuration
	File Management Commands.

mac access-group

Use the **mac access-group** interface configuration command to apply a MAC access control list (ACL) to a Layer 2 interface. Use the **no** form of this command to remove all MAC ACLs or the specified MAC ACL from the interface. You create the MAC ACL by using the **mac access-list extended** global configuration command.

mac access-group {name} in

no mac access-group {name}

Syntax Description

name	Specify a named MAC access list.
in	Specify that the ACL is applied in the ingress direction. Outbound ACLs are not supported on Layer 2 interfaces.

Defaults

No MAC ACL is applied to the interface.

Command Modes

Interface configuration (Layer 2 interfaces only)

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can apply MAC ACLs only to ingress Layer 2 interfaces. You cannot apply MAC ACLs to Layer 3 interfaces.

On Layer 2 interfaces, you can filter IP traffic by using IP access lists and non-IP traffic by using MAC access lists. You can filter both IP and non-IP traffic on the same Layer 2 interface by applying both an IP ACL and a MAC ACL to the interface. You can apply no more than one IP access list and one MAC access list to the same Layer 2 interface.

If a MAC ACL is already configured on a Layer 2 interface and you apply a new MAC ACL to the interface, the new ACL replaces the previously configured one.

If you apply an ACL to a Layer 2 interface on a switch, and the switch has a VLAN map applied to a VLAN that the interface is a member of, the ACL applied to the Layer 2 interface takes precedence.

If you apply an ACL to a Layer 2 interface on a switch, and the switch has an input Layer 3 ACL or a VLAN map applied to a VLAN that the interface is a member of, the ACL applied to the Layer 2 interface takes precedence.

When an inbound packet is received on an interface with a MAC ACL applied, the switch checks the match conditions in the ACL. If the conditions are matched, the switch forwards or drops the packet, according to the ACL.

If the specified ACL does not exist, the switch forwards all packets.

For more information about configuring MAC extended ACLs, see the "Configuring Network Security with ACLs" chapter in the software configuration guide for this release.

This example shows how to apply a MAC extended ACL named macacl2 to an interface:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mac access-group macacl2 in

You can verify your settings by entering the **show mac access-group** privileged EXEC command. You can see configured ACLs on the switch by entering the **show access-lists** privileged EXEC command.

Command	Description
show access-lists	Displays the ACLs configured on the switch.
show link state group	Displays the MAC ACLs configured on the switch.
show running-config	Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

mac access-list extended

Use the **mac access-list extended** global configuration command to create an access list based on MAC addresses for non-IP traffic. Using this command puts you in the extended MAC access-list configuration mode. Use the **no** form of this command to return to the default setting.

mac access-list extended name

no mac access-list extended name

^		_			
Svn	tov	Des	cri	ntic	۱n
JVII	Lan	DCO	GI I	uu	,,,

name	Assign a name to the MAC	extended access list.

Defaults

By default, there are no MAC access lists created.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

MAC named extended lists are used with VLAN maps and class maps.

You can apply named MAC extended ACLs to VLAN maps or to Layer 2 interfaces; you cannot apply named MAC extended ACLs to Layer 3 interfaces.

Entering the **mac access-list extended** command enables the MAC access-list configuration mode. These configuration commands are available:

- **default**: sets a command to its default.
- **deny**: specifies packets to reject. For more information, see the deny (MAC access-list configuration) MAC access-list configuration command.
- exit: exits from MAC access-list configuration mode.
- no: negates a command or sets its defaults.
- **permit**: specifies packets to forward. For more information, see the permit (MAC access-list configuration) command.

For more information about MAC extended access lists, see the software configuration guide for this release.

This example shows how to create a MAC named extended access list named *mac1* and to enter extended MAC access-list configuration mode:

Switch(config) # mac access-list extended mac1
Switch(config-ext-macl) #

This example shows how to delete MAC named extended access list mac1:

Switch(config) # no mac access-list extended mac1

You can verify your settings by entering the **show access-lists** privileged EXEC command.

Command	Description
deny (MAC access-list configuration)	Configures the MAC ACL (in extended MAC-access list configuration mode).
permit (MAC access-list configuration)	
show access-lists	Displays the access lists configured on the switch.
vlan access-map	Defines a VLAN map and enters access-map configuration mode where you can specify a MAC ACL to match and the action to be taken.

mac address-table aging-time

Use the **mac address-table aging-time** global configuration command to set the length of time that a dynamic entry remains in the MAC address table after the entry is used or updated. Use the **no** form of this command to return to the default setting. The aging time applies to all VLANs or a specified VLAN.

mac address-table aging-time {0 | 10-1000000} [vlan vlan-id]

no mac address-table aging-time {0 | 10-1000000} [vlan vlan-id]

Syntax Description

0	This value disables aging. Static address entries are never aged or removed from the table.
10-1000000	Aging time in seconds. The range is 10 to 1000000 seconds.
vlan vlan-id	(Optional) Specify the VLAN ID to which to apply the aging time. The range is 1 to 4094.

Defaults

The default is 300 seconds.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If hosts do not send continuously, increase the aging time to record the dynamic entries for a longer time. Increasing the time can reduce the possibility of flooding when the hosts send again.

If you do not specify a specific VLAN, this command sets the aging time for all VLANs.

Examples

This example shows how to set the aging time to 200 seconds for all VLANs:

Switch(config) # mac address-table aging-time 200

You can verify your setting by entering the **show mac address-table aging-time** privileged EXEC command.

Command	Description
show mac address-table aging-time	Displays the MAC address table aging time for all VLANs or the specified VLAN.

mac address-table move update

Use the **mac address-table move update** global configuration command to enable the MAC address-table move update feature. Use the **no** form of this command to return to the default setting.

mac address-table move update {receive | transmit}

no mac address-table move update {receive | transmit}

Syntax Description

receive	Specify that the switch processes MAC address-table move update messages.
transmit	Specify that the switch sends MAC address-table move update messages to other switches in the network if the primary link goes down and the standby link comes up.

Command Modes

Global configuration.

Defaults

By default, the MAC address-table move update feature is disabled.

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The MAC address-table move update feature allows the switch to provide rapid bidirectional convergence if a primary (forwarding) link goes down and the standby link begins forwarding traffic.

You can configure the access switch to send the MAC address-table move update messages if the primary link goes down and the standby link comes up. You can configure the uplink switches to receive and process the MAC address-table move update messages.

Examples

This example shows how to configure an access switch to send MAC address-table move update messages:

```
Switch# configure terminal
Switch(conf)# mac address-table move update transmit
Switch(conf)# end
```

This example shows how to configure an uplink switch to get and process MAC address-table move update messages:

```
Switch# configure terminal
Switch(conf)# mac address-table move update receive
Switch(conf)# end
```

You can verify your settings by entering the **show mac address-table move update** privileged EXEC command.

Command	Description
clear mac address-table move update	Clears the MAC address-table move update global counters.
debug matm move update	Debugs the MAC address-table move update message processing.
show mac address-table move update	Displays the MAC address-table move update information on the switch.

mac address-table notification

Use the **mac address-table notification** global configuration command to enable the MAC address notification feature on the switch. Use the **no** form of this command to return to the default setting.

mac address-table notification [history-size value] | [interval value]

no mac address-table notification [history-size | interval]

Syntax Description

history-size value	(Optional) Configure the maximum number of entries in the MAC notification history table. The range is 0 to 500 entries.
interval value	(Optional) Set the notification trap interval. The switch sends the notification traps when this amount of time has elapsed. The range is 0 to 2147483647 seconds.

Defaults

By default, the MAC address notification feature is disabled.

The default trap interval value is 1 second.

The default number of entries in the history table is 1.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The MAC address notification feature sends Simple Network Management Protocol (SNMP) traps to the network management system (NMS) whenever a new MAC address is added or an old address is deleted from the forwarding tables. MAC notifications are generated only for dynamic and secure MAC addresses. Events are not generated for self addresses, multicast addresses, or other static addresses.

When you configure the **history-size** option, the existing MAC address history table is deleted, and a new table is created.

You enable the MAC address notification feature by using the **mac address-table notification** command. You must also enable MAC address notification traps on an interface by using the **snmp trap mac-notification** interface configuration command and configure the switch to send MAC address traps to the NMS by using the **snmp-server enable traps mac-notification** global configuration command.

This example shows how to enable the MAC address-table notification feature, set the interval time to 60 seconds, and set the history-size to 100 entries:

```
Switch(config)# mac address-table notification
Switch(config)# mac address-table notification interval 60
Switch(config)# mac address-table notification history-size 100
```

You can verify your settings by entering the **show mac address-table notification** privileged EXEC command.

Command	Description
clear mac address-table notification	Clears the MAC address notification global counters.
show mac address-table notification	Displays the MAC address notification settings on all interfaces or on the specified interface.
snmp-server enable traps	Sends the SNMP MAC notification traps when the mac-notification keyword is appended.
snmp trap mac-notification	Enables the SNMP MAC notification trap on a specific interface.

mac address-table static

Use the **mac address-table static** global configuration command to add static addresses to the MAC address table. Use the **no** form of this command to remove static entries from the table.

mac address-table static mac-addr vlan vlan-id interface interface-id

no mac address-table static mac-addr vlan vlan-id [interface interface-id]

Syntax Description

mac-addr	Destination MAC address (unicast or multicast) to add to the address table. Packets with this destination address received in the specified VLAN are forwarded to the specified interface.
vlan vlan-id	Specify the VLAN for which the packet with the specified MAC address is received. The range is 1 to 4094.
interface interface-id	Interface to which the received packet is forwarded. Valid interfaces include physical ports and port channels.

Defaults

No static addresses are configured.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination, the packet is forwarded to the specified interface:

 $\label{eq:switch} \textbf{Switch}(\texttt{config}) \mbox{\# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet0/1}$

You can verify your setting by entering the **show mac address-table** privileged EXEC command.

Command	Description
show mac address-table static	Displays static MAC address table entries only.

mac address-table static drop

Use the **mac address-table static drop** global configuration command to enable unicast MAC address filtering and to configure the switch to drop traffic with a specific source or destination MAC address. Use the **no** form of this command to return to the default setting.

mac address-table static mac-addr vlan vlan-id drop

no mac address-table static mac-addr vlan vlan-id

Syntax Description

mac-addr	Unicast source or destination MAC address. Packets with this MAC address are dropped.
vlan vlan-id	Specify the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094.

Defaults

Unicast MAC address filtering is disabled. The switch does not drop traffic for specific source or destination MAC addresses.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Follow these guidelines when using this feature:

- Multicast MAC addresses, broadcast MAC addresses, and router MAC addresses are not supported. Packets that are forwarded to the CPU are also not supported.
- If you add a unicast MAC address as a static address and configure unicast MAC address filtering, the switch either adds the MAC address as a static address or drops packets with that MAC address, depending on which command was entered last. The second command that you entered overrides the first command.

For example, if you enter the **mac address-table static** mac-addr **vlan** vlan-id **interface** interface-id global configuration command followed by the **mac address-table static** mac-addr **vlan** vlan-id **drop** command, the switch drops packets with the specified MAC address as a source or destination.

If you enter the **mac address-table static** *mac-addr* **vlan** *vlan-id* **drop** global configuration command followed by the **mac address-table static** *mac-addr* **vlan** *vlan-id* **interface** *interface-id* command, the switch adds the MAC address as a static address.

This example shows how to enable unicast MAC address filtering and to configure the switch to drop packets that have a source or destination address of c2f3.220a.12f4. When a packet is received in VLAN 4 with this MAC address as its source or destination, the packet is dropped:

Switch(config) # mac address-table static c2f3.220a.12f4 vlan 4 drop

This example shows how to disable unicast MAC address filtering:

Switch(config) # no mac address-table static c2f3.220a.12f4 vlan 4

You can verify your setting by entering the show mac address-table static privileged EXEC command.

Command	Description
show mac address-table static	Displays only static MAC address table entries.

macro apply

Use the **macro apply** interface configuration command to apply a macro to an interface or to apply and trace a macro configuration on an interface.

macro {apply | trace} macro-name [parameter {value}] [parameter {value}]
[parameter {value}]

Syntax Description

apply	Apply a macro to the specified interface.
trace	Use the trace keyword to apply a macro to an interface and to debug the macro.
macro-name	Specify the name of the macro.
parameter value	(Optional) Specify unique parameter values that are specific to the interface. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Defaults

This command has no default setting.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can use the **macro trace** *macro-name* interface configuration command to apply and show the macros running on an interface or to debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the interface.

When creating a macro that requires the assignment of unique values, use the **parameter** *value* keywords to designate values specific to the interface.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the **macro apply** *macro-name* ? command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the **show parser macro** user EXEC command.

Follow these guidelines when you apply a Cisco-default Smartports macro on an interface:

- Display all macros on the switch by using the **show parser macro** user EXEC command. Display the contents of a specific macro by using the **show parser macro** name *macro-name* user EXEC command.
- Keywords that begin with \$ mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the **parameter** value keywords.

The Cisco-default macros use the \$ character to help identify required keywords. There is no restriction on using the \$ character to define keywords when you create a macro.

When you apply a macro to an interface, the macro name is automatically added to the interface. You can display the applied commands and macro names by using the **show running-configuration interface** *interface-id* user EXEC command.

A macro applied to an interface range behaves the same way as a macro applied to a single interface. When you use an interface range, the macro is applied sequentially to each interface within the range. If a macro command fails on one interface, it is still applied to the remaining interfaces.

You can delete a macro-applied configuration on an interface by entering the **default interface** *interface-id* interface configuration command.

Examples

After you have created a macro by using the **macro name** global configuration command, you can apply it to an interface. This example shows how to apply a user-created macro called **duplex** to an interface:

```
Switch(config-if) # macro apply duplex
```

To debug a macro, use the **macro trace** interface configuration command to find any syntax or configuration errors in the macro as it is applied to an interface. This example shows how to troubleshoot the user-created macro called **duplex** on an interface:

```
Switch(config-if)# macro trace duplex
Applying command...`duplex auto'
%Error Unknown error.
Applying command...`speed nonegotiate'
```

Switch# show parser macro cisco-desktop

switchport port-security aging time 2

switchport port-security aging type inactivity

This example shows how to display the Cisco-default **cisco-desktop** macro and how to apply the macro and set the access VLAN ID to 25 on an interface:

```
Macro name : cisco-desktop
Macro type : default

# Basic interface - Enable data VLAN only
# Recommended value for access vlan (AVID) should not be 1
switchport access vlan $AVID
switchport mode access

# Enable port security limiting port to a single
# MAC address -- that of desktop
switchport port-security
switchport port-security maximum 1

# Ensure port-security age is greater than one minute
# and use inactivity timer
switchport port-security violation restrict
```

Command	Description
macro description	Adds a description about the macros that are applied to an interface.
macro global	Applies a macro on a switch or applies and traces a macro on a switch.
macro global description	Adds a description about the macros that are applied to the switch.
macro name	Creates a macro.
show parser macro	Displays the macro definition for all macros or for the specified macro.

macro description

Use the **macro description** interface configuration command to enter a description about which macros are applied to an interface. Use the **no** form of this command to remove the description.

macro description text

no macro description text

Syntax Description

description *text* Enter a description about the macros that are applied to the specified interface.

Defaults

This command has no default setting.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **description** keyword to associate comment text, or the macro name, with an interface. When multiple macros are applied on a single interface, the description text will be from the last applied macro.

This example shows how to add a description to an interface:

Switch(config-if)# macro description duplex settings

You can verify your settings by entering the **show parser macro description** privileged EXEC command.

Command	Description
macro apply	Applies a macro on an interface or applies and traces a macro on an interface.
macro global	Applies a macro on a switch or applies and traces a macro on a switch
macro global description	Adds a description about the macros that are applied to the switch.
macro name	Creates a macro.
show parser macro	Displays the macro definition for all macros or for the specified macro.

macro global

Use the **macro global** global configuration command to apply a macro to a switch or to apply and trace a macro configuration on a switch.

macro global {apply | trace} macro-name [parameter {value}] [parameter {value}]
[parameter {value}]

Syntax Description

apply	Apply a macro to the switch.
trace	Apply a macro to a switch and to debug the macro.
macro-name	Specify the name of the macro.
parameter value	(Optional) Specify unique parameter values that are specific to the switch. You can enter up to three keyword-value pairs. Parameter keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value.

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can use the **macro trace** *macro-name* global configuration command to apply and to show the macros running on a switch or to debug the macro to find any syntax or configuration errors.

If a command fails because of a syntax error or a configuration error when you apply a macro, the macro continues to apply the remaining commands to the switch.

When creating a macro that requires the assignment of unique values, use the **parameter** *value* keywords to designate values specific to the switch.

Keyword matching is case sensitive. All matching occurrences of the keyword are replaced with the corresponding value. Any full match of a keyword, even if it is part of a larger string, is considered a match and is replaced by the corresponding value.

Some macros might contain keywords that require a parameter value. You can use the **macro global apply** *macro-name* ? command to display a list of any required values in the macro. If you apply a macro without entering the keyword values, the commands are invalid and are not applied.

There are Cisco-default Smartports macros embedded in the switch software. You can display these macros and the commands they contain by using the **show parser macro** user EXEC command.

Follow these guidelines when you apply a Cisco-default Smartports macro on a switch:

- Display all macros on the switch by using the show parser macro user EXEC command. Display
 the contents of a specific macro by using the show parser macro name macro-name user EXEC
 command.
- Keywords that begin with \$ mean that a unique parameter value is required. Append the Cisco-default macro with the required values by using the **parameter** *value* keywords.

The Cisco-default macros use the \$ character to help identify required keywords. There is no restriction on using the \$ character to define keywords when you create a macro.

When you apply a macro to a switch, the macro name is automatically added to the switch. You can display the applied commands and macro names by using the **show running-configuration** user EXEC command.

You can delete a global macro-applied configuration on a switch only by entering the **no** version of each command contained in the macro.

Examples

After you have created a new macro by using the **macro name** global configuration command, you can apply it to a switch. This example shows how see the **snmp** macro and how to apply the macro and set the hostname to test-server and set the IP precedence value to 7:

```
Switch# show parser macro name snmp

Macro name : snmp

Macro type : customizable

#enable port security, linkup, and linkdown traps
snmp-server enable traps port-security
snmp-server enable traps linkup
snmp-server enable traps linkdown
#set snmp-server host
snmp-server host ADDRESS
#set SNMP trap notifications precedence
snmp-server ip precedence VALUE

Switch(config)# macro global apply snmp ADDRESS test-server VALUE 7
```

To debug a macro, use the **macro global trace** global configuration command to find any syntax or configuration errors in the macro when it is applied to a switch. In this example, the **ADDRESS** parameter value was not entered, causing the snmp-server host command to fail while the remainder of the macro is applied to the switch:

```
Switch(config)# macro global trace snmp VALUE 7
Applying command...'snmp-server enable traps port-security'
Applying command...'snmp-server enable traps linkup'
Applying command...'snmp-server enable traps linkdown'
Applying command...'snmp-server host'
%Error Unknown error.
Applying command...'snmp-server ip precedence 7'
```

Command	Description
macro apply	Applies a macro on an interface or applies and traces a macro on an interface.
macro description	Adds a description about the macros that are applied to an interface.
macro global description	Adds a description about the macros that are applied to the switch.
macro name	Creates a macro.
show parser macro	Displays the macro definition for all macros or for the specified macro.

macro global description

Use the **macro global description** global configuration command to enter a description about the macros that are applied to the switch. Use the **no** form of this command to remove the description.

macro global description text

no macro global description text

Syntax Description

description *text* Enter a description about the macros that are applied to the switch.

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **description** keyword to associate comment text, or the macro name, with a switch. When multiple macros are applied on a switch, the description text will be from the last applied macro.

This example shows how to add a description to a switch:

Switch(config)# macro global description udld aggressive mode enabled

You can verify your settings by entering the **show parser macro description** privileged EXEC command.

Command	Description
macro apply	Applies a macro on an interface or applies and traces a macro on an interface.
macro description	Adds a description about the macros that are applied to an interface.
macro global	Applies a macro on a switch or applies and traces a macro on a switch.
macro name	Creates a macro.
show parser macro	Displays the macro definition for all macros or for the specified macro.

macro name

Use the **macro name** global configuration command to create a configuration macro. Use the **no** form of this command to delete the macro definition.

macro name macro-name

no macro name macro-name

Syntax		

macro-name N	Vame of the	macro.
--------------	-------------	--------

Defaults

This command has no default setting.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

A macro can contain up to 3000 characters. Enter one macro command per line. Use the @ character to end the macro. Use the # character at the beginning of a line to enter comment text within the macro.

You can define mandatory keywords within a macro by using a help string to specify the keywords. Enter # macro keywords word to define the keywords that are available for use with the macro. You can enter up to three help string keywords separated by a space. If you enter more than three macro keywords, only the first three are shown.

Macro names are case sensitive. For example, the commands **macro name Sample-Macro** and **macro name sample-macro** will result in two separate macros.

When creating a macro, do not use the **exit** or **end** commands or change the command mode by using **interface** *interface-id*. This could cause commands that follow **exit**, **end**, or **interface** *interface-id* to execute in a different command mode.

The **no** form of this command only deletes the macro definition. It does not affect the configuration of those interfaces on which the macro is already applied. You can delete a macro-applied configuration on an interface by entering the **default interface** *interface-id* interface configuration command. Alternatively, you can create an *anti-macro* for an existing macro that contains the **no** form of all the corresponding commands in the original macro. Then apply the anti-macro to the interface.

You can modify a macro by creating a new macro with the same name as the existing macro. The newly created macro overwrites the existing macro but does not affect the configuration of those interfaces on which the original macro was applied.

Examples

This example shows how to create a macro that defines the duplex mode and speed:

```
Switch(config)# macro name duplex Enter macro commands one per line. End with the character '@'. duplex full speed auto a
```

This example shows how to create a macro with # macro keywords:

```
Switch(config)# macro name test
switchport access vlan $VLANID
switchport port-security maximum $MAX
#macro keywords $VLANID $MAX
a
```

This example shows how to display the mandatory keyword values before you apply the macro to an interface:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# macro apply test ?

WORD keyword to replace with a value e.g $VLANID,$MAX <cr>
Switch(config-if)# macro apply test $VLANID ?

WORD Value of first keyword to replace

Switch(config-if)# macro apply test $VLANID 2

WORD keyword to replace with a value e.g $VLANID,$MAX <cr>
Switch(config-if)# macro apply test $VLANID 2 $MAX ?

WORD Value of second keyword to replace
```

Command	Description
macro apply	Applies a macro on an interface or applies and traces a macro on an interface.
macro description	Adds a description about the macros that are applied to an interface.
macro global	Applies a macro on a switch or applies and traces a macro on a switch.
macro global description	Adds a description about the macros that are applied to the switch.
show parser macro	Displays the macro definition for all macros or for the specified macro.

match (access-map configuration)

Use the **match** access-map configuration command to set the VLAN map to match packets against one or more access lists. Use the **no** form of this command to remove the match parameters.

match {**ip** address {name | number} [name | number] [name | number]...} | {**mac** address {name} [name] [name]...}

no match {**ip address** {name | number} [name | number] [name | number]...} | {**mac address** {name} [name] [name]...}

Syntax Description

ip address	Set the access map to match packets against an IP address access list.
mac address	Set the access map to match packets against a MAC address access list.
name	Name of the access list to match packets against.
number	Number of the access list to match packets against. This option is not valid for MAC access lists.

Defaults

The default action is to have no match parameters applied to a VLAN map.

Command Modes

Access-map configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You enter access-map configuration mode by using the vlan access-map global configuration command.

You must enter one access list name or number; others are optional. You can match packets against one or more access lists. Matching any of the lists counts as a match of the entry.

In access-map configuration mode, use the **match** command to define the match conditions for a VLAN map applied to a VLAN. Use the **action** command to set the action that occurs when the packet matches the conditions.

Packets are matched only against access lists of the same protocol type; IP packets are matched against IP access lists, and all other packets are matched against MAC access lists.

Both IP and MAC addresses can be specified for the same map entry.

Examples

This example shows how to define and apply a VLAN access map *vmap4* to VLANs 5 and 6 that will cause the interface to drop an IP packet if the packet matches the conditions defined in access list *al2*.

```
Switch(config)# vlan access-map vmap4
Switch(config-access-map)# match ip address al2
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# vlan filter vmap4 vlan-list 5-6
```

You can verify your settings by entering the **show vlan access-map** privileged EXEC command.

Command	Description
access-list	Configures a standard numbered ACL. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.
action	Specifies the action to be taken if the packet matches an entry in an access control list (ACL).
ip access list	Creates a named access list. For syntax information, select Cisco IOS IP Command Reference, Volume 1 of 3:Addressing and Services, Release 12.2 > IP Services Commands.
mac access-list extended	Creates a named MAC address access list.
show vlan access-map	Displays the VLAN access maps created on the switch.
vlan access-map	Creates a VLAN access map.

match (class-map configuration)

Use the **match** class-map configuration command to define the match criteria to classify traffic. Use the **no** form of this command to remove the match criteria.

match {access-group acl-index-or-name | input-interface interface-id-list | ip dscp dscp-list | ip precedence ip-precedence-list}

no match {access-group acl-index-or-name | input-interface interface-id-list | ip dscp dscp-list | ip precedence ip-precedence-list}

Syntax Description

access-group acl-index-or-name	Number or name of an IP standard or extended access control list (ACL) or MAC ACL. For an IP standard ACL, the ACL index range is 1 to 99 and 1300 to 1999. For an IP extended ACL, the ACL index range is 100 to 199 and 2000 to 2699.
input-interface interface-id-list	Specify the physical ports to which the interface-level class map in a hierarchical policy map applies. This command can only be used in the child-level policy map and must be the only match condition in the child-level policy map. You can specify up to six entries in the list by specifying a port (counts as one entry), a list of ports separated by a space (each port counts as an entry), or a range of ports separated by a hyphen (counts as two entries).
ip dscp dscp-list	List of up to eight IP Differentiated Services Code Point (DSCP) values to match against incoming packets. Separate each value with a space. The range is 0 to 63. You also can enter a mnemonic name for a commonly-used value.
ip precedence ip-precedence-list	List of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7. You also can enter a mnemonic name for a commonly-used value

Defaults

No match criteria are defined.

Command Modes

Class-map configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The **match** command is used to specify which fields in the incoming packets are examined to classify the packets. Only the IP access group or the MAC access group matching to the Ether Type/Len are supported.

To define packet classification on a physical-port basis, only one **match** command per class map is supported. In this situation, the **match-all** and **match-any** keywords are equivalent.

For the match ip dscp dscp-list or the match ip precedence ip-precedence-list command, you can enter a mnemonic name for a commonly used value. For example, you can enter the match ip dscp af11 command, which is the same as entering the match ip dscp 10 command. You can enter the match ip precedence critical command, which is the same as entering the match ip precedence 5 command. For a list of supported mnemonics, enter the match ip dscp? or the match ip precedence? command to see the command-line help strings.

Use the **input-interface** *interface-id-list* keyword when you are configuring an interface-level class map in a hierarchical policy map. For the *interface-id-list*, you can specify up to six entries.

Examples

This example shows how to create a class map called *class2*, which matches all the incoming traffic with DSCP values of 10, 11, and 12:

```
Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# exit
```

This example shows how to create a class map called *class3*, which matches all the incoming traffic with IP-precedence values of 5, 6, and 7:

```
Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# exit
```

This example shows how to delete the IP-precedence match criteria and to classify traffic using acl1:

```
Switch(config)# class-map class2
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# no match ip precedence
Switch(config-cmap)# match access-group acl1
Switch(config-cmap)# exit
```

This example shows how to specify a list of physical ports to which an interface-level class map in a hierarchical policy map applies:

```
Switch(config) # class-map match-all class4
Switch(config-cmap) # match input-interface gigabitethernet0/1 gigabitethernet0/2
Switch(config-cmap) # exit
```

This example shows how to specify a range of physical ports to which an interface-level class map in a hierarchical policy map applies:

```
Switch(config) # class-map match-all class4
Switch(config-cmap) # match input-interface gigabitethernet0/1 - gigabitethernet0/5
Switch(config-cmap) # exit
```

You can verify your settings by entering the **show class-map** privileged EXEC command.

Command	Description
class-map	Creates a class map to be used for matching packets to the class whose name you specify.
show class-map	Displays quality of service (QoS) class maps.

mdix auto

Use the **mdix auto** interface configuration command to enable the automatic medium-dependent interface crossover (auto-MDIX) feature on the interface. When auto-MDIX is enabled, the interface automatically detects the required cable connection type (straight-through or crossover) and configures the connection appropriately. Use the **no** form of this command to disable auto-MDIX.

mdix auto

no mdix auto

Syntax Description

This command has no arguments or keywords.

Defaults

Auto-MDIX is enabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When you enable auto-MDIX on an interface, you must also set the interface speed and duplex to **auto** so that the feature operates correctly.

When auto-MDIX (and autonegotiation of speed and duplex) is enabled on one or both of connected interfaces, link up occurs, even if the cable type (straight-through or crossover) is incorrect.

Auto-MDIX is supported on all 10/100/1000 Mb/s interfaces and on 10/100/1000BASE-T small form-factor pluggable (SFP) module interfaces.

Examples

This example shows how to enable auto-MDIX on a port:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# speed auto
Switch(config-if)# duplex auto
Switch(config-if)# mdix auto
Switch(config-if)# end
```

You can verify the operational state of auto-MDIX on the interface by entering the **show controllers ethernet-controller** *interface-id* **phy** privileged EXEC command.

Command	Description
show controllers	Displays general information about internal registers of an interface,
ethernet-controller interface-id phy	including the operational state of auto-MDIX.

mls qos

Use the **mls qos** global configuration command to enable quality of service (QoS) for the entire switch. When the **mls qos** command is entered, QoS is enabled with the default parameters on all ports in the system. Use the **no** form of this command to reset all the QoS-related statistics and to disable the QoS features for the entire switch.

mls qos

no mls qos

Syntax Description

This command has no arguments or keywords.

Defaults

QoS is disabled. There is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed). Traffic is switched in pass-through mode (packets are switched without any rewrites and classified as best effort without any policing).

When QoS is enabled with the **mls qos** global configuration command and all other QoS settings are set to their defaults, traffic is classified as best effort (the DSCP and CoS value is set to 0) without any policing. No policy maps are configured. The default port trust state on all ports is untrusted. The default ingress and egress queue settings are in effect.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

QoS must be globally enabled to use QoS classification, policing, mark down or drop, queueing, and traffic shaping features. You can create a policy-map and attach it to a port before entering the **mls qos** command. However, until you enter the **mls qos** command, QoS processing is disabled.

Policy-maps and class-maps used to configure QoS are not deleted from the configuration by the **no mls qos** command, but entries corresponding to policy maps are removed from the switch hardware to save system resources. To re-enable QoS with the previous configurations, use the **mls qos** command.

Toggling the QoS status of the switch with this command modifies (reallocates) the sizes of the queues. During the queue size modification, the queue is temporarily shut down during the hardware reconfiguration, and the switch drops newly arrived packets for this queue.

Examples

This example shows how to enable QoS on the switch:

Switch(config) # mls qos

You can verify your settings by entering the **show mls qos** privileged EXEC command.

mls qos

Command	Description
show mls qos	Displays QoS information.

mls qos aggregate-policer

Use the **mls qos aggregate-policer** global configuration command to define policer parameters, which can be shared by multiple classes within the same policy map. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded. Use the **no** form of this command to delete an aggregate policer.

mls qos aggregate-policer aggregate-policer-name rate-bps burst-byte exceed-action {drop | policed-dscp-transmit}

no mls qos aggregate-policer aggregate-policer-name

Syntax Description

aggregate-policer-name	Name of the aggregate policer referenced by the police aggregate policy-map class configuration command.
rate-bps	Specify the average traffic rate in bits per second (b/s). The range is 8000 to 10000000000.
burst-byte	Specify the normal burst size in bytes. The range is 8000 to 1000000.
exceed-action drop	When the specified rate is exceeded, specify that the switch drop the packet.
exceed-action policed-dscp-transmit	When the specified rate is exceeded, specify that the switch change the Differentiated Services Code Point (DSCP) of the packet to that specified in the policed-DSCP map and then send the packet.

Defaults

No aggregate policers are defined.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Define an aggregate policer if the policer is shared with multiple classes.

Policers for a port cannot be shared with other policers for another port; traffic from two different ports cannot be aggregated for policing purposes.

The port ASIC device, which controls more than one physical port, supports256 policers (255 user-configurable policers plus 1 policer reserved for internal use). The maximum number of user-configurable policers supported per port is 63. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port (there is no guarantee that a port will be assigned to any policer).

You apply an aggregate policer to multiple classes in the same policy map; you cannot use an aggregate policer across different policy maps.

You cannot delete an aggregate policer if it is being used in a policy map. You must first use the **no police aggregate** *aggregate-policer-name* policy-map class configuration command to delete the aggregate policer from all policy maps before using the **no mls qos aggregate-policer** *aggregate-policer-name* command.

Policing uses a token-bucket algorithm. You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the *burst-byte* option of the **police** policy-map class configuration command or the **mls qos aggregate-policer** global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the *rate-bps* option of the **police** policy-map class configuration command or the **mls qos aggregate-policer** global configuration command. For more information, see the software configuration guide for this release.

Examples

This example shows how to define the aggregate policer parameters and how to apply the policer to multiple classes in a policy map:

```
Switch(config) # mls qos aggregate-policer agg_policer1 1000000 1000000 exceed-action drop
Switch(config) # policy-map policy2
Switch(config-pmap) # class class1
Switch(config-pmap-c) # police aggregate agg_policer1
Switch(config-pmap-c) # exit
Switch(config-pmap) # class class2
Switch(config-pmap-c) # set dscp 10
Switch(config-pmap-c) # police aggregate agg_policer1
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # trust dscp
Switch(config-pmap-c) # police aggregate agg_policer2
Switch(config-pmap-c) # exit
```

You can verify your settings by entering the **show mls qos aggregate-policer** privileged EXEC command.

Command	Description
police aggregate	Creates a policer that is shared by different classes.
show mls qos aggregate-policer	Displays the quality of service (QoS) aggregate policer configuration.

mls qos cos

Use the **mls qos cos** interface configuration command to define the default class of service (CoS) value of a port or to assign the default CoS to all incoming packets on the port. Use the **no** form of this command to return to the default setting.

mls qos cos {default-cos | override}

no mls qos cos { default-cos | **override**}

Syntax Description

default-cos	Assign a default CoS value to a port. If packets are untagged, the default CoS value becomes the packet CoS value. The CoS range is 0 to 7.
override	Override the CoS of the incoming packets, and apply the default CoS value on the port to all incoming packets.

Defaults

The default CoS value for a port is 0.

CoS override is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can use the default value to assign a CoS and Differentiated Services Code Point (DSCP) value to all incoming packets that are untagged (if the incoming packet does not have a CoS value). You also can assign a default CoS and DSCP value to all incoming packets by using the **override** keyword.

Use the **override** keyword when all incoming packets on certain ports deserve higher or lower priority than packets entering from other ports. Even if a port is previously set to trust DSCP, CoS, or IP precedence, this command overrides the previously configured trust state, and all the incoming CoS values are assigned the default CoS value configured with the **mls qos cos** command. If an incoming packet is tagged, the CoS value of the packet is modified with the default CoS of the port at the ingress port.

Examples

This example shows how to configure the default port CoS to 4 on a port:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# mls qos cos 4
```

This example shows how to assign all the packets entering a port to the default port CoS value of 4 on a port:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos cos 4
Switch(config-if)# mls qos cos override
```

You can verify your settings by entering the **show mls qos interface** privileged EXEC command.

Command	Description
show mls qos interface	Displays quality of service (QoS) information.

mls qos dscp-mutation

Use the **mls qos dscp-mutation** interface configuration command to apply a Differentiated Services Code Point (DSCP)-to-DSCP-mutation map to a DSCP-trusted port. Use the **no** form of this command to return the map to the default settings (no DSCP mutation).

mls qos dscp-mutation dscp-mutation-name

no mls qos dscp-mutation dscp-mutation-name

Syntax Description

dscp-mutation-name	Name of the DSCP-to-DSCP-mutation map. This map was previously
	defined with the mls qos map dscp-mutation global configuration
	command.

Defaults

The default DSCP-to-DSCP-mutation map is a null map, which maps incoming DSCPs to the same DSCP values.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

If two quality of service (QoS) domains have different DSCP definitions, use the DSCP-to-DSCP-mutation map to translate one set of DSCP values to match the definition of another domain. You apply the DSCP-to-DSCP-mutation map to the receiving port (ingress mutation) at the boundary of a quality of service (QoS) administrative domain.

With ingress mutation, the new DSCP value overwrites the one in the packet, and QoS handles the packet with this new value. The switch sends the packet out the port with the new DSCP value.

You can configure multiple DSCP-to-DSCP-mutation maps on ingress ports.

You apply the map only to DSCP-trusted ports. If you apply the DSCP mutation map to an untrusted port, to class of service (CoS) or IP-precedence trusted port, the command has no immediate effect until the port becomes DSCP-trusted.

Examples

This example shows how to define the DSCP-to-DSCP-mutation map named *dscpmutation1* and to apply the map to a port:

```
Switch(config)# mls qos map dscp-mutation dscpmutation1 10 11 12 13 to 30
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation dscpmutation1
```

This example show how to remove the DSCP-to-DSCP-mutation map name *dscpmutation1* from the port and to reset the map to the default:

Switch(config-if)# no mls qos dscp-mutation dscpmutation1

You can verify your settings by entering the **show mls qos maps** privileged EXEC command.

Command	Description
mls qos map dscp-mutation	Defines the DSCP-to-DSCP-mutation map.
mls qos trust	Configures the port trust state.
show mls qos maps	Displays QoS mapping information.

mls qos map

Use the **mls qos map** global configuration command to define the class of service (CoS)-to-Differentiated Services Code Point (DSCP) map, DSCP-to-CoS map, the DSCP-to-DSCP-mutation map, the IP-precedence-to-DSCP map, and the policed-DSCP map. Use the **no** form of this command to return to the default map.

mls qos map {cos-dscp dscp1...dscp8 | dscp-cos dscp-list to cos | dscp-mutation dscp-mutation-name in-dscp to out-dscp | ip-prec-dscp dscp1...dscp8 | policed-dscp dscp-list to mark-down-dscp}

no mls qos map {cos-dscp | dscp-cos | dscp-mutation dscp-mutation-name | ip-prec-dscp |
 policed-dscp}

Syntax Description	cos-dscp dscp1dscp8	Define the CoS-to-DSCP map.
		For <i>dscp1dscp8</i> , enter eight DSCP values that correspond to CoS values 0 to 7. Separate each DSCP value with a space. The range is 0 to 63.
	dscp-cos dscp-list to cos	Define the DSCP-to-CoS map.
		For <i>dscp-list</i> , enter up to eight DSCP values, with each value separated by a space. The range is 0 to 63. Then enter the to keyword.
		For <i>cos</i> , enter a single CoS value to which the DSCP values correspond. The range is 0 to 7.
	dscp-mutation	Define the DSCP-to-DSCP-mutation map.
	dscp-mutation-name in-dscp to out-dscp	For dscp-mutation-name, enter the mutation map name.
		For <i>in-dscp</i> , enter up to eight DSCP values, with each value separated by a space. Then enter the to keyword.
		For out-dscp, enter a single DSCP value.
		The range is 0 to 63.
	ip-prec-dscp	Define the IP-precedence-to-DSCP map.
	dscp1dscp8	For <i>dscp1dscp8</i> , enter eight DSCP values that correspond to the IP precedence values 0 to 7. Separate each DSCP value with a space. The range is 0 to 63.
	policed-dscp dscp-list to mark-down-dscp	Define the policed-DSCP map.
		For <i>dscp-list</i> , enter up to eight DSCP values, with each value separated by a space. Then enter the to keyword.
		For <i>mark-down-dscp</i> , enter the corresponding policed (marked down) DSCP value.
		The range is 0 to 63.

Defaults

Table 2-6 shows the default CoS-to-DSCP map:

Table 2-6 Default CoS-to-DSCP Map

CoS Value	DSCP Value
0	0
1	8
2	16
3	24
4	32
5	40
6	48
7	56

Table 2-7 shows the default DSCP-to-CoS map:

Table 2-7 Default DSCP-to-CoS Map

DSCP Value	CoS Value
0–7	0
8–15	1
16–23	2
24–31	3
32–39	4
40–47	5
48–55	6
56–63	7

Table 2-8 shows the default IP-precedence-to-DSCP map:

Table 2-8 Default IP-Precedence-to-DSCP Map

IP Precedence Value	DSCP Value
0	0
1	8
2	16
3	24
4	32
5	40
6	48
7	56

The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

All the maps are globally defined. All the maps, except the DSCP-to-DSCP-mutation map, are applied to all ports. The DSCP-to-DSCP-mutation map is applied to a specific port.

Examples

This example shows how to define the IP-precedence-to-DSCP map and to map IP-precedence values 0 to 7 to DSCP values of 0, 10, 20, 30, 40, 50, 55, and 60:

```
Switch# configure terminal
Switch(config)# mls qos map ip-prec-dscp 0 10 20 30 40 50 55 60
```

This example shows how to define the policed-DSCP map. DSCP values 1, 2, 3, 4, 5, and 6 are marked down to DSCP value 0. Marked DSCP values that not explicitly configured are not modified:

```
Switch# configure terminal
Switch(config)# mls qos map policed-dscp 1 2 3 4 5 6 to 0
```

This example shows how to define the DSCP-to-CoS map. DSCP values 20, 21, 22, 23, and 24 are mapped to CoS 1. DSCP values 10, 11, 12, 13, 14, 15, 16, and 17 are mapped to CoS 0:

```
Switch# configure terminal
Switch(config)# mls qos map dscp-cos 20 21 22 23 24 to 1
Switch(config)# mls qos map dscp-cos 10 11 12 13 14 15 16 17 to 0
```

This example shows how to define the CoS-to-DSCP map. CoS values 0 to 7 are mapped to DSCP values 0, 5, 10, 15, 20, 25, 30, and 35:

```
Switch# configure terminal
Switch(config)# mls qos map cos-dscp 0 5 10 15 20 25 30 35
```

This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remain as specified in the null map):

```
Switch# configure terminal
Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 10
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
```

Switch(config)# mls qos map dscp-mutation mutation1 0 31 32 33 34 to 30

You can verify your settings by entering the show mls qos maps privileged EXEC command.

Command	Description
mls qos dscp-mutation	Applies a DSCP-to-DSCP-mutation map to a DSCP-trusted port.
show mls qos maps	Displays quality of service (QoS) mapping information.

mls qos queue-set output buffers

Use the **mls qos queue-set output buffers** global configuration command to allocate buffers to a queue-set (four egress queues per port). Use the **no** form of this command to return to the default setting.

mls qos queue-set output qset-id buffers allocation1 ... allocation4

no mls qos queue-set output qset-id buffers

Syntax Description

qset-id	ID of the queue-set. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port. The range is 1 to 2.
allocation1 allocation4	Buffer space allocation (percentage) for each queue (four values for queues 1 to 4). For allocation1, allocation3, and allocation4, the range is 0 to 99. For allocation2, the range is 1 to 100 (including the CRIL buffer). Separate each value with a grace
	the range is 1 to 100 (including the CPU buffer). Separate each value with a space.

Defaults

All allocation values are equally mapped among the four queues (25, 25, 25, 25). Each queue has 1/4 of the buffer space.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Specify four allocation values, and separate each with a space.

Allocate buffers according to the importance of the traffic; for example, give a large percentage of the buffer to the queue with the highest-priority traffic.

To configure different classes of traffic with different characteristics, use this command with the **mls qos queue-set output** *qset-id* **threshold** global configuration command.

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

Examples

This example shows how to map a port to queue-set 2. It allocates 40 percent of the buffer space to egress queue 1 and 20 percent to egress queues 2, 3, and 4:

Switch(config)# mls qos queue-set output 2 buffers 40 20 20 20
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# queue-set 2

You can verify your settings by entering the **show mls qos interface** [interface-id] **buffers** or the **show mls qos queue-set** privileged EXEC command.

Command	Description
mls qos queue-set output threshold	Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.
queue-set	Maps a port to a queue-set.
show mls qos interface buffers	Displays quality of service (QoS) information.
show mls qos queue-set	Displays egress queue settings for the queue-set.

mls qos queue-set output threshold

Use the **mls qos queue-set output threshold** global configuration command to configure the weighted tail-drop (WTD) thresholds, to guarantee the availability of buffers, and to configure the maximum memory allocation to a queue-set (four egress queues per port). Use the **no** form of this command to return to the default setting.

mls qos queue-set output *qset-id* **threshold** *queue-id drop-threshold1 drop-threshold2 reserved-threshold maximum-threshold*

no mls qos queue-set output *qset-id* **threshold** [*queue-id*]

Syntax Description

qset-id	ID of the queue-set. Each port belongs to a queue-set, which defines all the characteristics of the four egress queues per port. The range is 1 to 2.
queue-id	Specific queue in the queue-set on which the command is performed. The range is 1 to 4.
drop-threshold1 drop-threshold2	Two WTD thresholds expressed as a percentage of the allocated memory of the queue. The range is 1 to 3200 percent.
reserved-threshold	Amount of memory to be guaranteed (reserved) for the queue and expressed as a percentage of the allocated memory. The range is 1 to 100 percent.
maximum-threshold	Enable a queue in the full condition to get more buffers than are reserved for it. This is the maximum memory the queue can have before the packets are dropped. The range is 1 to 3200 percent.

Defaults

When quality of service (QoS) is enabled, WTD is enabled.

Table 2-9 shows the default WTD threshold settings.

Table 2-9 Default Egress Queue WTD Threshold Settings

Feature	Queue 1	Queue 2	Queue 3	Queue 4
WTD drop threshold 1	100 percent	200 percent	100 percent	100 percent
WTD drop threshold 2	100 percent	200 percent	100 percent	100 percent
Reserved threshold	50 percent	100 percent	50 percent	50 percent
Maximum threshold	400 percent	400 percent	400 percent	400 percent

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Use the **mls qos queue-set output** *qset-id* **buffers** global configuration command to allocate a fixed number of buffers to the four queues in a queue-set.

The drop-threshold percentages can exceed 100 percent and can be up to the maximum (if the maximum threshold exceeds 100 percent).

While buffer ranges allow individual queues in the queue-set to use more of the common pool when available, the maximum number of packets for each queue is still internally limited to 400 percent, or 4 times the allocated number of buffers. One packet can use one 1 or more buffers.

The range increased in Cisco IOS Release 12.2(25)SEE1 or later for the *drop-threshold*, *drop-threshold*2, and *maximum-threshold* parameters.

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

The switch uses a buffer allocation scheme to reserve a minimum amount of buffers for each egress queue, to prevent any queue or port from consuming all the buffers and depriving other queues, and to decide whether to grant buffer space to a requesting queue. The switch decides whether the target queue has not consumed more buffers than its reserved amount (under-limit), whether it has consumed all of its maximum buffers (over-limit), and whether the common pool is empty (no free buffers) or not empty (free buffers). If the queue is not over-limit, the switch can allocate buffer space from the reserved pool or from the common pool (if it is not empty). If there are no free buffers in the common pool or if the queue is over-limit, the switch drops the frame.

Examples

This example shows how to map a port to queue-set 2. It configures the drop thresholds for queue 2 to 40 and 60 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory this queue can have before packets are dropped:

```
Switch(config)# mls qos queue-set output 2 threshold 2 40 60 100 200
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# queue-set 2
```

You can verify your settings by entering the **show mls qos interface** [interface-id] **buffers** or the **show mls qos queue-set** privileged EXEC command.

Command	Description
mls qos queue-set output buffers	Allocates buffers to a queue-set.
queue-set	Maps a port to a queue-set.
show mls qos interface buffers	Displays QoS information.
show mls qos queue-set	Displays egress queue settings for the queue-set.

mls qos rewrite ip dscp

Use the **mls qos rewrite ip dscp** global configuration command to configure the switch to change (rewrite) the Differentiated Services Code Point (DSCP) field of an incoming IP packet. Use the **no** form of this command to configure the switch to not modify (rewrite) the DSCP field of the packet and to enable DSCP transparency.

mls qos rewrite ip dscp

no mls gos rewrite ip dscp

Syntax Description

This command has no arguments or keywords.

Defaults

DSCP transparency is disabled. The switch changes the DSCP field of the incoming IP packet.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SE1	This command was introduced.
12.2(25)SEE	This command was introduced.

Usage Guidelines

DSCP transparency affects only the DSCP field of a packet at the egress. If DSCP transparency is enabled by using the **no mls qos rewrite ip dscp** command, the switch does not modify the DSCP field in the incoming packet, and the DSCP field in the outgoing packet is the same as that in the incoming packet.

Enabling DSCP transparency does not affect the port trust settings on IEEE 802.1Q tunneling ports.

By default, DSCP transparency is disabled. The switch modifies the DSCP field in an incoming packet, and the DSCP field in the outgoing packet is based on the quality of service (QoS) configuration, including the port trust setting, policing and marking, and the DSCP-to-DSCP mutation map.

Regardless of the DSCP transparency configuration, the switch modifies the internal DSCP value of the packet that the switch uses to generate a class of service (CoS) value representing the priority of the traffic. The switch also uses the internal DSCP value to select an egress queue and threshold.

For example, if QoS is enabled and an incoming packet has a DSCP value of 32, the switch might modify the internal DSCP value based on the policy-map configuration and change the internal DSCP value to 16. If DSCP transparency is enabled, the outgoing DSCP value is 32 (same as the incoming value). If DSCP transparency is disabled, the outgoing DSCP value is 16 because it is based on the internal DSCP value.

Examples

This example shows how to enable DSCP transparency and configure the switch to not change the DSCP value of the incoming IP packet:

```
Switch(config)# mls qos
Switch(config)# no mls qos rewrite ip dscp
```

This example shows how to disable DSCP transparency and configure the switch to change the DSCP value of the incoming IP packet:

```
Switch(config)# mls qos
Switch(config)# mls qos rewrite ip dscp
```

You can verify your settings by entering the **show running config | include rewrite** privileged EXEC command.

Command	Description
mls qos	Enables QoS globally.
show mls qos	Displays QoS information.
show running-config include rewrite	Displays the DSCP transparency setting. For syntax information, select Cisco IOS Release 12.2 Configuration Guides and Command References > Cisco IOS Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

mls qos srr-queue input bandwidth

Use the **mls qos srr-queue input bandwidth** global configuration command to assign shaped round robin (SRR) weights to an ingress queue. The ratio of the weights is the ratio of the frequency in which the SRR scheduler dequeues packets from each queue. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input bandwidth weight1 weight2

no mls qos srr-queue input bandwidth

Syntax Description

weight1 weight2	Ratio of weight1 and weight2 determines the ratio of the frequency in which the
	SRR scheduler dequeues packets from ingress queues 1 and 2. The range is 1 to
	100. Separate each value with a space.

Defaults

Weight1 and weight2 are 4 (1/2 of the bandwidth is equally shared between the two queues).

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

SRR services the priority queue for its configured weight as specified by the **bandwidth** keyword in the **mls qos srr-queue input priority-queue** *queue-id* **bandwidth** *weight* global configuration command. Then SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the **mls qos srr-queue input bandwidth** *weight1 weight2* global configuration command.

You specify which ingress queue is the priority queue by using the **mls qos srr-queue input priority-queue** global configuration command.

Examples

This example shows how to assign the ingress bandwidth for the queues. Priority queueing is disabled, and the shared bandwidth ratio allocated to queue 1 is 25/(25+75) and to queue 2 is 75/(25+75):

```
Switch(config)# mls qos srr-queue input priority-queue 2 bandwidth 0 Switch(config)# mls qos srr-queue input bandwidth 25 75
```

In this example, queue 2 has three times the bandwidth of queue 1; queue 2 is serviced three times as often as queue 1.

This example shows how to assign the ingress bandwidths for the queues. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratio allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

```
Switch(config) # mls qos srr-queue input priority-queue 1 bandwidth 10 Switch(config) # mls qos srr-queue input bandwidth 4 4
```

You can verify your settings by entering the **show mls qos interface** [interface-id] **queueing** or the **show mls qos input-queue** privileged EXEC command.

Command	Description
mls qos srr-queue input buffers	Allocates the buffers between the ingress queues.
mls qos srr-queue input cos-map	Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.
mls qos srr-queue input dscp-map	Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.
mls qos srr-queue input priority-queue	Configures the ingress priority queue and guarantees bandwidth.
mls qos srr-queue input threshold	Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.
show mls qos input-queue	Displays ingress queue settings.
show mls qos interface queueing	Displays quality of service (QoS) information.

mls qos srr-queue input buffers

Use the **mls qos srr-queue input buffers** global configuration command to allocate the buffers between the ingress queues. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input buffers percentage1 percentage2

no mls gos srr-queue input buffers

Syntax Description

percentage1	Percentage of buffers allocated to ingress queues 1 and 2. The range is 0 to
percentage2	100. Separate each value with a space.

Defaults

Ninety percent of the buffers is allocated to queue 1, and 10 percent of the buffers is allocated to queue 2.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You should allocate the buffers so that the queues can handle any incoming bursty traffic.

Examples

This example shows how to allocate 60 percent of the buffer space to ingress queue 1 and 40 percent of the buffer space to ingress queue 2:

Switch(config) # mls qos srr-queue input buffers 60 40

You can verify your settings by entering the **show mls qos interface** [interface-id] **buffers** or the **show mls qos input-queue** privileged EXEC command.

Command	Description
mls qos srr-queue input bandwidth	Assigns shaped round robin (SRR) weights to an ingress queue.
mls qos srr-queue input cos-map	Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.
mls qos srr-queue input dscp-map	Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.
mls qos srr-queue input priority-queue	Configures the ingress priority queue and guarantees bandwidth.
mls qos srr-queue input threshold	Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.

Command	Description
show mls qos input-queue	Displays ingress queue settings.
show mls qos interface buffers	Displays quality of service (QoS) information.

mls qos srr-queue input cos-map

Use the **mls qos srr-queue input cos-map** global configuration command to map class of service (CoS) values to an ingress queue or to map CoS values to a queue and to a threshold ID. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}

no mls qos srr-queue input cos-map

Syntax Description

queue queue-id	Specify a queue number.	
	For queue-id, the range is 1 to 2.	
cos1cos8	Map CoS values to an ingress queue.	
	For <i>cos1cos8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 7.	
threshold threshold-id	Map CoS values to a queue threshold ID.	
cos1cos8	For threshold-id, the range is 1 to 3.	
	For <i>cos1cos8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 7.	

Defaults

Table 2-10 shows the default CoS input queue threshold map:

Table 2-10 Default CoS Input Queue Threshold Map

CoS Value	Queue ID - Threshold ID
0–4	1–1
5	2–1
6, 7	1–1

Command Modes

Global configuration

Command History

Release	Modification	
12.2(25)SEE	This command was introduced.	

Usage Guidelines

The CoS assigned at the ingress port selects an ingress or egress queue and threshold.

The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state. You can assign two weighted tail-drop (WTD) threshold percentages to an ingress queue by using the **mls qos srr-queue input threshold** global configuration command.

You can map each CoS value to a different queue and threshold combination, allowing the frame to follow different behavior.

Examples

This example shows how to map CoS values 0 to 3 to ingress queue 1 and to threshold ID 1 with a drop threshold of 50 percent. It maps CoS values 4 and 5 to ingress queue 1 and to threshold ID 2 with a drop threshold of 70 percent:

```
Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 1 0 1 2 3 Switch(config)# mls qos srr-queue input cos-map queue 1 threshold 2 4 5 Switch(config)# mls qos srr-queue input threshold 1 50 70
```

You can verify your settings by entering the show mls qos maps privileged EXEC command.

Command	Description
mls qos srr-queue input bandwidth	Assigns shaped round robin (SRR) weights to an ingress queue.
mls qos srr-queue input buffers	Allocates the buffers between the ingress queues.
mls qos srr-queue input dscp-map	Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.
mls qos srr-queue input priority-queue	Configures the ingress priority queue and guarantees bandwidth.
mls qos srr-queue input threshold	Assigns WTD threshold percentages to an ingress queue.
show mls qos maps	Displays QoS mapping information.

mls qos srr-queue input dscp-map

Use the **mls qos srr-queue input dscp-map** global configuration command to map Differentiated Services Code Point (DSCP) values to an ingress queue or to map DSCP values to a queue and to a threshold ID. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input dscp-map queue queue-id {dscp1...dscp8 | threshold threshold-id dscp1...dscp8}

no mls qos srr-queue input dscp-map

Syntax Description

queue queue-id	Specify a queue number.	
	For queue-id, the range is 1 to 2.	
dscp1dscp8	Map DSCP values to an ingress queue.	
	For <i>dscp1dscp8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 63.	
threshold threshold-id	Map DSCP values to a queue threshold ID.	
dscp1dscp8	For threshold-id, the range is 1 to 3.	
	For <i>dscp1dscp8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 63.	

Defaults

Table 2-11 shows the default DSCP input queue threshold map:

Table 2-11 Default DSCP Input Queue Threshold Map

DSCP Value	Queue ID-Threshold ID
0–39	1–1
40–47	2–1
48–63	1–1

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The DSCP assigned at the ingress port selects an ingress or egress queue and threshold.

The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state. You can assign two weighted tail-drop (WTD) threshold percentages to an ingress queue by using the **mls qos srr-queue input threshold** global configuration command.

You can map each DSCP value to a different queue and threshold combination, allowing the frame to follow different behavior.

You can map up to eight DSCP values per command.

Examples

This example shows how to map DSCP values 0 to 6 to ingress queue 1 and to threshold 1 with a drop threshold of 50 percent. It maps DSCP values 20 to 26 to ingress queue 1 and to threshold 2 with a drop threshold of 70 percent:

```
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 1 0 1 2 3 4 5 6
Switch(config)# mls qos srr-queue input dscp-map queue 1 threshold 2 20 21 22 23 24 25 26
Switch(config)# mls qos srr-queue input threshold 1 50 70
```

You can verify your settings by entering the show mls qos maps privileged EXEC command.

Command	Description
mls qos srr-queue input bandwidth	Assigns shaped round robin (SRR) weights to an ingress
	queue.
mls qos srr-queue input buffers	Allocates the buffers between the ingress queues.
mls qos srr-queue input cos-map	Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to threshold ID.
mls qos srr-queue input priority-queue	Configures the ingress priority queue and guarantees bandwidth.
mls qos srr-queue input threshold	Assigns WTD threshold percentages to an ingress queue.
show mls qos maps	Displays QoS mapping information.

mls qos srr-queue input priority-queue

Use the **mls qos srr-queue input priority-queue** global configuration command to configure the ingress priority queue and to guarantee bandwidth on the internal ring if the ring is congested. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input priority-queue queue-id bandwidth weight

no mls qos srr-queue input priority-queue queue-id

Syntax Description

queue-id	Ingress queue ID. The range is 1 to 2.
bandwidth weight	Bandwidth percentage of the internal ring. The range is 0 to 40.

Defaults

The priority queue is queue 2, and 10 percent of the bandwidth is allocated to it.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You should use the priority queue only for traffic that needs to be expedited (for example, voice traffic, which needs minimum delay and jitter).

The priority queue is guaranteed part of the bandwidth on the internal ring, which reduces the delay and jitter under heavy network traffic on an oversubscribed ring (when there is more traffic than the backplane can carry, and the queues are full and dropping frames).

Shaped round robin (SRR) services the priority queue for its configured weight as specified by the **bandwidth** keyword in the **mls qos srr-queue input priority-queue** *queue-id* **bandwidth** *weight* global configuration command. Then SRR shares the remaining bandwidth with both ingress queues and services them as specified by the weights configured with the **mls qos srr-queue input bandwidth** *weight1 weight2* global configuration command.

To disable priority queueing, set the bandwidth weight to 0, for example, mls qos srr-queue input priority-queue queue-id bandwidth 0.

Examples

This example shows how to assign the ingress bandwidths for the queues. Queue 1 is the priority queue with 10 percent of the bandwidth allocated to it. The bandwidth ratio allocated to queues 1 and 2 is 4/(4+4). SRR services queue 1 (the priority queue) first for its configured 10 percent bandwidth. Then SRR equally shares the remaining 90 percent of the bandwidth between queues 1 and 2 by allocating 45 percent to each queue:

```
Switch(config)# mls qos srr-queue input priority-queue 1 bandwidth 10 Switch(config)# mls qos srr-queue input bandwidth 4 4
```

You can verify your settings by entering the **show mls qos interface** [*interface-id*] **queueing** or the **show mls qos input-queue** privileged EXEC command.

Command	Description
mls qos srr-queue input bandwidth	Assigns shaped round robin (SRR) weights to an ingress queue.
mls qos srr-queue input buffers	Allocates the buffers between the ingress queues.
mls qos srr-queue input cos-map	Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.
mls qos srr-queue input dscp-map	Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.
mls qos srr-queue input threshold	Assigns weighted tail-drop (WTD) threshold percentages to an ingress queue.
show mls qos input-queue	Displays ingress queue settings.
show mls qos interface queueing	Displays quality of service (QoS) information.

mls qos srr-queue input threshold

Use the **mls qos srr-queue input threshold** global configuration command to assign weighted tail-drop (WTD) threshold percentages to an ingress queue. Use the **no** form of this command to return to the default setting.

mls qos srr-queue input threshold queue-id threshold-percentage1 threshold-percentage2

no mls qos srr-queue input threshold queue-id

Syntax Description

queue-id	ID of the ingress queue. The range is 1 to 2.
threshold-percentage1	Two WTD threshold percentage values. Each threshold value is a
threshold-percentage2	percentage of the total number of queue descriptors allocated for the queue. Separate each value with a space. The range is 1 to 100.

Defaults

When quality of service (QoS) is enabled, WTD is enabled.

The two WTD thresholds are set to 100 percent.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

QoS uses the CoS-to-threshold map or the DSCP-to-threshold map to decide which class of service (CoS) or Differentiated Services Code Points (DSCPs) values are mapped to threshold 1 and to threshold 2. If threshold 1 is exceeded, packets with CoS or DSCPs assigned to this threshold are dropped until the threshold is no longer exceeded. However, packets assigned to threshold 2 continue to be queued and sent as long as the second threshold is not exceeded.

Each queue has two configurable (explicit) drop threshold and one preset (implicit) drop threshold (full).

You configure the CoS-to-threshold map by using the **mls qos srr-queue input cos-map** global configuration command. You configure the DSCP-to-threshold map by using the **mls qos srr-queue input dscp-map** global configuration command.

Examples

This example shows how to configure the tail-drop thresholds for the two queues. The queue 1 thresholds are 50 percent and 100 percent, and the queue 2 thresholds are 70 percent and 100 percent:

```
Switch(config) # mls qos srr-queue input threshold 1 50 100
Switch(config) # mls qos srr-queue input threshold 2 70 100
```

You can verify your settings by entering the **show mls qos interface** [interface-id] **buffers** or the **show mls qos input-queue** privileged EXEC command.

Command	Description
mls qos srr-queue input bandwidth	Assigns shaped round robin (SRR) weights to an ingress queue.
mls qos srr-queue input buffers	Allocates the buffers between the ingress queues.
mls qos srr-queue input cos-map	Maps class of service (CoS) values to an ingress queue or maps CoS values to a queue and to a threshold ID.
mls qos srr-queue input dscp-map	Maps Differentiated Services Code Point (DSCP) values to an ingress queue or maps DSCP values to a queue and to a threshold ID.
mls qos srr-queue input priority-queue	Configures the ingress priority queue and guarantees bandwidth.
show mls qos input-queue	Displays ingress queue settings.
show mls qos interface buffers	Displays quality of service (QoS) information.

mls qos srr-queue output cos-map

Use the **mls qos srr-queue output cos-map** global configuration command to map class of service (CoS) values to an egress queue or to map CoS values to a queue and to a threshold ID. Use the **no** form of this command to return to the default setting.

mls qos srr-queue output cos-map queue queue-id {cos1...cos8 | threshold threshold-id cos1...cos8}

no mls qos srr-queue output cos-map

Syntax Description

queue queue-id	Specify a queue number.
	For <i>queue-id</i> , the range is 1 to 4.
cos1cos8	Map CoS values to an egress queue.
	For <i>cos1cos8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 7.
threshold threshold-id	Map CoS values to a queue threshold ID.
cos1cos8	For threshold-id, the range is 1 to 3.
	For <i>cos1cos8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 7.

Defaults

Table 2-12 shows the default CoS output queue threshold map:

Table 2-12 Default Cos Output Queue Threshold Map

Queue ID-Threshold ID	
2–1	
3–1	
4–1	
1–1	
4–1	

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your quality of service (QoS) solution.

You can assign two weighted tail-drop (WTD) threshold percentages to an egress queue by using the **mls qos queue-set output** *qset-id* **threshold** global configuration command.

You can map each CoS value to a different queue and threshold combination, allowing the frame to follow different behavior.

Examples

This example shows how to map a port to queue-set 1. It maps CoS values 0 to 3 to egress queue 1 and to threshold ID 1. It configures the drop thresholds for queue 1 to 50 and 70 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped.

```
Switch(config)# mls qos srr-queue output cos-map queue 1 threshold 1 0 1 2 3
Switch(config)# mls qos queue-set output 1 threshold 1 50 70 100 200
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# queue-set 1
```

You can verify your settings by entering the **show mls qos maps**, the **show mls qos interface** [interface-id] **buffers**, or the **show mls qos queue-set** privileged EXEC command.

Command	Description
mls qos srr-queue output dscp-map	Maps Differentiated Services Code Point (DSCP) values to an egress queue or maps DSCP values to a queue and to a threshold ID.
mls qos queue-set output threshold	Configures the WTD thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.
queue-set	Maps a port to a queue-set.
show mls qos interface buffers	Displays QoS information.
show mls qos maps	Displays QoS mapping information.
show mls qos queue-set	Displays egress queue settings for the queue-set.

mls qos srr-queue output dscp-map

Use the **mls qos srr-queue output dscp-map** global configuration command to map Differentiated Services Code Point (DSCP) values to an egress or to map DSCP values to a queue and to a threshold ID. Use the **no** form of this command to return to the default setting.

mls qos srr-queue output dscp-map queue queue-id {dscp1...dscp8 | **threshold** threshold-id dscp1...dscp8}

no mls qos srr-queue output dscp-map

Syntax Description

queue queue-id	Specify a queue number.
	For queue-id, the range is 1 to 4.
dscp1dscp8	Map DSCP values to an egress queue.
	For <i>dscp1dscp8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 63.
threshold threshold-id dscp1dscp8	Map DSCP values to a queue threshold ID.
	For threshold-id, the range is 1 to 3.
	For <i>dscp1dscp8</i> , enter up to eight values, and separate each value with a space. The range is 0 to 63.

Defaults

Table 2-13 shows the default DSCP output queue threshold map:

Table 2-13 Default DSCP Output Queue Threshold Map

DSCP Value	Queue ID-Threshold ID
0–15	2–1
16–31	3–1
32–39	4–1
40–47	1–1
48–63	4–1

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The drop-threshold percentage for threshold 3 is predefined. It is set to the queue-full state.

The egress queue default settings are suitable for most situations. You should change them only when you have a thorough understanding of the egress queues and if these settings do not meet your QoS solution.

You can assign two weighted tail-drop (WTD) threshold percentages to an egress queue by using the **mls qos queue-set output** *qset-id* **threshold** global configuration command.

You can map each DSCP value to a different queue and threshold combination, allowing the frame to follow different behavior.

You can map up to eight DSCP values per command.

Examples

This example shows how to map a port to queue-set 1. It maps DSCP values 0 to 3 to egress queue 1 and to threshold ID 1. It configures the drop thresholds for queue 1 to 50 and 70 percent of the allocated memory, guarantees (reserves) 100 percent of the allocated memory, and configures 200 percent as the maximum memory that this queue can have before packets are dropped.

```
Switch(config)# mls qos srr-queue output dscp-map queue 1 threshold 1 0 1 2 3 Switch(config)# mls qos queue-set output 1 threshold 1 50 70 100 200 Switch(config)# interface gigabitethernet0/1 Switch(config-if)# queue-set 1
```

You can verify your settings by entering the **show mls qos maps**, the **show mls qos interface** [interface-id] **buffers**, or the **show mls qos queue-set** privileged EXEC command.

Command	Description
mls qos srr-queue output cos-map	Maps class of service (CoS) values to an egress queue or maps CoS values to a queue and to a threshold ID.
mls qos queue-set output threshold	Configures the WTD thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.
queue-set	Maps a port to a queue-set.
show mls qos interface buffers	Displays quality of service (QoS) information.
show mls qos maps	Displays QoS mapping information.
show mls qos queue-set	Displays egress queue settings for the queue-set.

mls qos trust

Use the **mls qos trust** interface configuration command to configure the port trust state. Ingress traffic can be trusted, and classification is performed by examining the packet Differentiated Services Code Point (DSCP), class of service (CoS), or IP-precedence field. Use the **no** form of this command to return a port to its untrusted state.

mls qos trust [cos | device cisco-phone | dscp | ip-precedence]

no mls qos trust [cos | device | dscp | ip-precedence]

Syntax Description

cos	(Optional) Classify an ingress packet by using the packet CoS value. For an untagged packet, use the port default CoS value.
device cisco-phone	(Optional) Classify an ingress packet by trusting the CoS or DSCP value sent from the Cisco IP Phone (trusted boundary), depending on the trust setting.
dscp	(Optional) Classify an ingress packet by using the packet DSCP value (most significant 6 bits of 8-bit service-type field). For a non-IP packet, the packet CoS is used if the packet is tagged. For an untagged packet, the default port CoS value is used.
ip-precedence	(Optional) Classify an ingress packet by using the packet IP-precedence value (most significant 3 bits of 8-bit service-type field). For a non-IP packet, the packet CoS is used if the packet is tagged. For an untagged packet, the port default CoS value is used.

Defaults

The port is not trusted. If no keyword is specified when the command is entered, the default is **dscp**.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Packets entering a quality of service (QoS) domain are classified at the edge of the domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the domain. Use this command to specify whether the port is trusted and which fields of the packet to use to classify traffic.

When a port is configured with trust DSCP or trust IP precedence and the incoming packet is a non-IP packet, the CoS-to-DSCP map is used to derive the corresponding DSCP value from the CoS value. The CoS can be the packet CoS for trunk ports or the port default CoS for nontrunk ports.

If the DSCP is trusted, the DSCP field of the IP packet is not modified. However, it is still possible that the CoS value of the packet is modified (according to DSCP-to-CoS map).

If the CoS is trusted, the CoS field of the packet is not modified, but the DSCP can be modified (according to CoS-to-DSCP map) if the packet is an IP packet.

The trusted boundary feature prevents security problems if users disconnect their PCs from networked Cisco IP Phones and connect them to the switch port to take advantage of trusted CoS or DSCP settings. You must globally enable the Cisco Discovery Protocol (CDP) on the switch and on the port connected to the IP phone. If the telephone is not detected, trusted boundary disables the trusted setting on the switch or routed port and prevents misuse of a high-priority queue.

If you configure the trust setting for DSCP or IP precedence, the DSCP or IP precedence values in the incoming packets are trusted. If you configure the **mls qos cos override** interface configuration command on the switch port connected to the IP phone, the switch overrides the CoS of the incoming voice and data packets and assigns the default CoS value to them.

For an inter-QoS domain boundary, you can configure the port to the DSCP-trusted state and apply the DSCP-to-DSCP-mutation map if the DSCP values are different between the QoS domains.

Classification using a port trust state (for example, **mls qos trust** [**cos | dscp | ip-precedence**] and a policy map (for example, **service-policy input** *policy-map-name*) are mutually exclusive. The last one configured overwrites the previous configuration.

Examples

This example shows how to configure a port to trust the IP precedence field in the incoming packet:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos trust ip-precedence
```

This example shows how to specify that the Cisco IP Phone connected on a port is a trusted device:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos trust device cisco-phone
```

You can verify your settings by entering the **show mls qos interface** privileged EXEC command.

Command	Description
mls qos cos	Defines the default CoS value of a port or assigns the default CoS to all incoming packets on the port.
mls qos dscp-mutation	Applies a DSCP-to DSCP-mutation map to a DSCP-trusted port.
mls qos map	Defines the CoS-to-DSCP map, DSCP-to-CoS map, the DSCP-to-DSCP-mutation map, the IP-precedence-to-DSCP map, and the policed-DSCP map.
show mls qos interface	Displays QoS information.

mls qos vlan-based

Use the **mls qos vlan-based** interface configuration command to enable VLAN-based quality of service (QoS) on the physical port. Use the **no** form of this command to disable this feature.

mls qos vlan-based

no mls qos vlan-based

Syntax Description

There are no arguments or keywords.

Defaults

VLAN-based QoS is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Before attaching a hierarchical policy map to a switch virtual interface (SVI), use the **mls qos vlan-based** interface configuration command on a physical port if the port is to be specified in the secondary interface level of the hierarchical policy map.

When you configure hierarchical policing, the hierarchical policy map is attached to the SVI and affects all traffic belonging to the VLAN. The individual policer in the interface-level traffic classification only affects the physical ports specified for that classification.

For detailed instructions about configuring hierarchical policy maps, see the "Classifying, Policing, and Marking Traffic by Using Hierarchical Policy Maps" section in the software configuration guide for this release.

Examples

This example shows how to enable VLAN-based policing on a physical port:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos vlan-based

You can verify your settings by entering the **show mls qos interface** privileged EXEC command.

Command	Description
show mls qos interface	Displays QoS information.

monitor session

Use the **monitor session** global configuration command to start a new Switched Port Analyzer (SPAN) session or Remote SPAN (RSPAN) source or destination session, to enable ingress traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance), to add or delete interfaces or VLANs to or from an existing SPAN or RSPAN session, and to limit (filter) SPAN source traffic to specific VLANs. Use the **no** form of this command to remove the SPAN or RSPAN session or to remove source or destination interfaces or filters from the SPAN or RSPAN session. For destination interfaces, the encapsulation options are ignored with the **no** form of the command.

monitor session session_number destination {interface interface-id [, | -] [encapsulation replicate] [ingress {dot1q vlan vlan-id | isl | untagged vlan vlan-id | vlan vlan-id}]} | {remote vlan vlan-id}

monitor session session_number filter vlan vlan-id [, | -]

no monitor session { session_number | **all** | **local** | **remote**}

no monitor session $session_number$ destination {interface $interface \cdot id$ [, | -] [encapsulation replicate] [ingress {dot1q vlan $vlan \cdot id$ | isl | untagged vlan $vlan \cdot id$ | vlan $vlan \cdot id$ }] | {remote vlan $vlan \cdot id$ }

no monitor session session_number **filter vlan** vlan-id [, | -]

no monitor session $session_number$ source {interface interface-id [, |-] [both | rx | tx]} | {vlan-id [, |-] [both | rx | tx]} | {remote vlan vlan-id}

Syntax Description

session_number	Specify the session number identified with the SPAN or RSPAN session. The range is 1 to 66.
destination	Specify the SPAN or RSPAN destination. A destination must be a physical port.
interface interface-id	Specify the destination or source interface for a SPAN or RSPAN session. Valid interfaces are physical ports (including type and port number). For source interface , port channel is also a valid interface type, and the valid range is 1 to 48.
encapsulation replicate	(Optional) Specify that the destination interface replicates the source interface encapsulation method. If not selected, the default is to send packets in native form (untagged).
	These keywords are valid only for local SPAN. For RSPAN, the RSPAN VLAN ID overwrites the original VLAN ID; therefore, packets are always sent untagged.
ingress	(Optional) Enable ingress traffic forwarding.
dot1q vlan vlan-id	Accept incoming packets with IEEE 802.1Q encapsulation with the specified VLAN as the default VLAN.
isl	Specify ingress forwarding using ISL encapsulation.

untagged vlan vlan-id	Accept incoming packets with untagged encapsulation with the specified VLAN as the default VLAN.
vlan vlan-id	When used with only the ingress keyword, set default VLAN for ingress traffic.
remote vlan vlan-id	Specify the remote VLAN for an RSPAN source or destination session. The range is 2 to 1001 and 1006 to 4094.
	The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 to 1005 (reserved for Token Ring and FDDI VLANs).
,	(Optional) Specify a series of interfaces or VLANs, or separate a range of interfaces or VLANs from a previous range. Enter a space before and after the comma.
-	(Optional) Specify a range of interfaces or VLANs. Enter a space before and after the hyphen.
filter vlan vlan-id	Specify a list of VLANs as filters on trunk source ports to limit SPAN source traffic to specific VLANs. The <i>vlan-id</i> range is 1 to 4094.
source	Specify the SPAN or RSPAN source. A source can be a physical port, a port channel, or a VLAN.
both, rx, tx	(Optional) Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both transmitted and received traffic.
source vlan vlan-id	Specify the SPAN source interface as a VLAN ID. The range is 1 to 4094.
all, local, remote	Specify all , local , or remote with the no monitor session command to clear all SPAN and RSPAN, all local SPAN, or all RSPAN sessions.

Defaults

No monitor sessions are configured.

On a source interface, the default is to monitor both received and transmitted traffic.

On a trunk interface used as a source port, all VLANs are monitored.

If **encapsulation replicate** is not specified on a local SPAN destination port, packets are sent in native form with no encapsulation tag.

Ingress forwarding is disabled on destination ports.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Traffic that enters or leaves source ports or source VLANs can be monitored by using SPAN or RSPAN. Traffic routed to source ports or source VLANs cannot be monitored.

You can set a combined maximum of two local SPAN sessions and RSPAN source sessions. You can have a total of 66 SPAN and RSPAN sessions on a switch.

You can have a maximum of 64 destination ports on a switch.

Each session can include multiple ingress or egress source ports or VLANs, but you cannot combine source ports and source VLANs in a single session. Each session can include multiple destination ports.

When you use VLAN-based SPAN (VSPAN) to analyze network traffic in a VLAN or set of VLANs, all active ports in the source VLANs become source ports for the SPAN or RSPAN session. Trunk ports are included as source ports for VSPAN, and only packets with the monitored VLAN ID are sent to the destination port.

You can monitor traffic on a single port or VLAN or on a series or range of ports or VLANs. You select a series or range of interfaces or VLANs by using the [, | -] options.

If you specify a series of VLANs or interfaces, you must enter a space before and after the comma. If you specify a range of VLANs or interfaces, you must enter a space before and after the hyphen (-).

EtherChannel ports cannot be configured as SPAN or RSPAN destination ports. A physical port that is a member of an EtherChannel group can be used as a destination port, but it cannot participate in the EtherChannel group while it is as a SPAN destination.

A private-VLAN port cannot be configured as a SPAN destination port.

You can monitor individual ports while they participate in an EtherChannel, or you can monitor the entire EtherChannel bundle by specifying the **port-channel** number as the RSPAN source interface.

A port used as a destination port cannot be a SPAN or RSPAN source, nor can a port be a destination port for more than one session at a time.

You can enable IEEE 802.1x authentication on a port that is a SPAN or RSPAN destination port; however, IEEE 802.1x authentication is disabled until the port is removed as a SPAN destination. If IEEE 802.1x authentication is not available on the port, the switch returns an error message. You can enable IEEE 802.1x authentication on a SPAN or RSPAN source port.

VLAN filtering refers to analyzing network traffic on a selected set of VLANs on trunk source ports. By default, all VLANs are monitored on trunk source ports. You can use the **monitor session** *session_number* **filter vlan** *vlan-id* command to limit SPAN traffic on trunk source ports to only the specified VLANs.

VLAN monitoring and VLAN filtering are mutually exclusive. If a VLAN is a source, VLAN filtering cannot be enabled. If VLAN filtering is configured, a VLAN cannot become a source.

If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.

Destination ports can be configured to act in these ways:

- When you enter **monitor session** *session_number* **destination interface** *interface-id* with no other keywords, egress encapsulation is untagged, and ingress forwarding is not enabled.
- When you enter **monitor session** session_number **destination interface** interface-id **ingress**, egress encapsulation is untagged; ingress encapsulation depends on the keywords that follow—**dot1q**, **isl**, or **untagged**.
- When you enter **monitor session** session_number **destination interface** interface-id **encapsulation replicate** with no other keywords, egress encapsulation replicates the source interface encapsulation; ingress forwarding is not enabled. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)
- When you enter **monitor session** session_number **destination interface** interface-id **encapsulation replicate ingress**, egress encapsulation replicates the source interface encapsulation; ingress encapsulation depends on the keywords that follow—**dot1q**, **isl**, or **untagged**. (This applies to local SPAN only; RSPAN does not support encapsulation replication.)

Examples

This example shows how to create a local SPAN session 1 to monitor both sent and received traffic on source port 1 to destination port 2:

```
Switch(config)# monitor session 1 source interface gigabitethernet0/1 both Switch(config)# monitor session 1 destination interface gigabitethernet0/2 This example shows how to delete a destination port from an existing local SPAN session:
```

```
Switch(config) # no monitor session 2 destination gigabitethernet0/2
```

This example shows how to limit SPAN traffic in an existing session only to specific VLANs:

```
Switch(config) # monitor session 1 filter vlan 100 - 110
```

This example shows how to configure RSPAN source session 1 to monitor multiple source interfaces and to configure the destination RSPAN VLAN 900.

```
Switch(config) # monitor session 1 source interface gigabitethernet0/1
Switch(config) # monitor session 1 source interface port-channel 2 tx
Switch(config) # monitor session 1 destination remote vlan 900
Switch(config) # end
```

This example shows how to configure an RSPAN destination session 10 in the switch receiving the monitored traffic.

```
Switch(config) # monitor session 10 source remote vlan 900
Switch(config) # monitor session 10 destination interface gigabitethernet0/2
```

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that supports IEEE 802.1Q encapsulation. Egress traffic replicates the source; ingress traffic uses IEEE 802.1Q encapsulation.

 $\label{thm:config} {\tt Switch(config)\#\ monitor\ session\ 2\ destination\ interface\ gigabitethernet0/2\ encapsulation\ replicate\ ingress\ dot1q\ vlan\ 5}$

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that does not support encapsulation. Egress traffic and ingress traffic are untagged.

```
Switch(config) # monitor session 2 destination interface gigabitethernet0/2 ingress untagged vlan 5
```

You can verify your settings by entering the **show monitor** privileged EXEC command. You can display SPAN and RSPAN configuration on the switch by entering the **show running-config** privileged EXEC command. SPAN information appears near the end of the output.

Command	Description
remote-span	Configures an RSPAN VLAN in vlan configuration mode.
show monitor	Displays SPAN and RSPAN session information.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

group ip-address

mvr (global configuration)

Use the **mvr** global configuration command without keywords to enable the multicast VLAN registration (MVR) feature on the switch. Use the command with keywords to set the MVR mode for a switch, configure the MVR IP multicast address, set the maximum time to wait for a query reply before removing a port from group membership, and to specify the MVR multicast VLAN. Use the **no** form of this command to return to the default settings.

 $\textbf{mvr} \; [\textbf{group} \; \textit{ip-address} \; [\textit{count}] \; | \; \textbf{mode} \; [\textbf{compatible} \; | \; \textbf{dynamic}] \; | \; \textbf{querytime} \; \textit{value} \; | \; \textbf{vlan} \; \textit{vlan-id}]$

Statically configure an MVR group IP multicast address on the switch.

report before removing the port from multicast group membership.

Use the **no** form of the command to return to the default setting.

to 100; the default is 5 tenths or one-half second.

range is 1 to 4094; the default is VLAN 1.

The value is the response time in units of tenths of a second. The range is 1

(Optional) Specify the VLAN on which MVR multicast data is expected to be received. This is also the VLAN to which all the source ports belong. The

no mvr [group ip-address | mode [compatible | dynamic] | querytime value | vlan vlan-id]

	Use the no form of this command to remove a statically configured IP multicast address or contiguous addresses or, when no IP address is entered, to remove all statically configured MVR IP multicast addresses.
count	(Optional) Configure multiple contiguous MVR group addresses. The range is 1 to 256; the default is 1.
mode	(Optional) Specify the MVR mode of operation.
	The default is compatible mode.
compatible	Set MVR mode to provide compatibility with Catalyst 2900 XL and Catalyst 3500 XL switches. This mode does not allow dynamic membership joins on source ports.
dynamic	Set MVR mode to allow dynamic MVR membership on source ports.
querytime value	(Optional) Set the maximum time to wait for IGMP report memberships on a receiver port. This time applies only to receiver-port leave processing. When an IGMP query is sent from a receiver port, the switch waits for the default or configured MVR querytime for an IGMP group membership

Defaults

Syntax Description

MVR is disabled by default.

vlan vlan-id

The default MVR mode is compatible mode.

No IP multicast addresses are configured on the switch by default.

The default group ip address count is 0.

The default query response time is 5 tenths of or one-half second.

The default multicast VLAN for MVR is VLAN 1.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

A maximum of 256 MVR multicast groups can be configured on a switch.

Use the **mvr group** command to statically set up all the IP multicast addresses that will take part in MVR. Any multicast data sent to a configured multicast address is sent to all the source ports on the switch and to all receiver ports that have registered to receive data on that IP multicast address.

MVR supports aliased IP multicast addresses on the switch. However, if the switch is interoperating with Catalyst 3550 or Catalyst 3500 XL switches, you should not configure IP addresses that alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).

The **mvr querytime** command applies only to receiver ports.

If the switch MVR is interoperating with Catalyst 2900 XL or Catalyst 3500 XL switches, set the multicast mode to compatible.

When operating in compatible mode, MVR does not support IGMP dynamic joins on MVR source ports.

MVR can coexist with IGMP snooping on a switch.

Multicast routing and MVR cannot coexist on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled and a warning message appears. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled with an Error message.

Examples

This example shows how to enable MVR:

Switch(config)# mvr

Use the **show mvr** privileged EXEC command to display the current setting for maximum multicast groups.

This example shows how to configure 228.1.23.4 as an IP multicast address:

Switch(config)# mvr group 228.1.23.4

This example shows how to configure ten contiguous IP multicast groups with multicast addresses from 228.1.23.1 to 228.1.23.10:

Switch(config)# mvr group 228.1.23.1 10

Use the **show mvr members** privileged EXEC command to display the IP multicast group addresses configured on the switch.

This example shows how to set the maximum query response time as one second (10 tenths):

Switch(config) # mvr querytime 10

This example shows how to set VLAN 2 as the multicast VLAN:

Switch(config) # mvr vlan 2

You can verify your settings by entering the **show mvr** privileged EXEC command.

Command	Description
mvr (interface configuration)	Configures MVR ports.
show mvr	Displays MVR global parameters or port parameters.
show mvr interface	Displays the configured MVR interfaces with their type, status, and Immediate Leave configuration. Also displays all MVR groups of which the interface is a member.
show mvr members	Displays all ports that are members of an MVR multicast group; if the group has no members, its status is shown as Inactive.

mvr (interface configuration)

Use the mvr interface configuration command to configure a Layer 2 port as a multicast VLAN registration (MVR) receiver or source port, to set the Immediate Leave feature, and to statically assign a port to an IP multicast VLAN and IP address. Use the **no** form of this command to return to the default settings.

mvr [immediate | type {receiver | source} | vlan vlan-id group [ip-address]]

no mvr [immediate | type {source | receiver}| vlan vlan-id group [ip-address]]

Syntax Description

immediate	(Optional) Enable the Immediate Leave feature of MVR on a port. Use the no mvr immediate command to disable the feature.
type	(Optional) Configure the port as an MVR receiver port or a source port.
	The default port type is neither an MVR source nor a receiver port. The no mvr type command resets the port as neither a source or a receiver port.
receiver	Configure the port as a subscriber port that can only receive multicast data. Receiver ports cannot belong to the multicast VLAN.
source	Configure the port as an uplink port that can send and receive multicast data for the configured multicast groups. All source ports on a switch belong to a single multicast VLAN.
vlan vlan-id group	(Optional) Add the port as a static member of the multicast group with the specified VLAN ID.
	The no mvr vlan <i>vlan-id</i> group command removes a port on a VLAN from membership in an IP multicast address group.
ip-address	(Optional) Statically configure the specified MVR IP multicast group address for the specified multicast VLAN ID. This is the IP address of the multicast group that the port is joining.

Defaults

A port is configured as neither a receiver nor a source.

The Immediate Leave feature is disabled on all ports.

No receiver port is a member of any configured multicast group.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

Configure a port as a source port if that port should be able to both send and receive multicast data bound for the configured multicast groups. Multicast data is received on all ports configured as source ports.

Receiver ports cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.

A port that is not taking part in MVR should not be configured as an MVR receiver port or a source port. A non-MVR port is a normal switch port, able to send and receive multicast data with normal switch behavior.

When Immediate Leave is enabled, a receiver port leaves a multicast group more quickly. Without Immediate Leave, when the switch receives an IGMP leave message from a group on a receiver port, it sends out an IGMP MAC-based query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP MAC-based query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency.

The Immediate Leave feature should be enabled only on receiver ports to which a single receiver device is connected.

The **mvr vlan group** command statically configures ports to receive multicast traffic sent to the IP multicast address. A port statically configured as a member of group remains a member of the group until statically removed. In compatible mode, this command applies only to receiver ports; in dynamic mode, it can also apply to source ports. Receiver ports can also dynamically join multicast groups by using IGMP join messages.

When operating in compatible mode, MVR does not support IGMP dynamic joins on MVR source ports. An MVR port cannot be a private-VLAN port.

Examples

This example shows how to configure a port as an MVR receiver port:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mvr type receiver
```

Use the **show mvr interface** privileged EXEC command to display configured receiver ports and source ports.

This example shows how to enable Immediate Leave on a port:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mvr immediate
```

This example shows how to add a port on VLAN 1 as a static member of IP multicast group 228.1.23.4:

```
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# mvr vlan1 group 230.1.23.4
```

You can verify your settings by entering the **show mvr members** privileged EXEC command.

Command	Description
mvr (global configuration)	Enables and configures multicast VLAN registration on the switch.
show mvr	Displays MVR global parameters or port parameters.
show mvr interface	Displays the configured MVR interfaces or displays the multicast groups to which a receiver port belongs. Also displays all MVR groups of which the interface is a member.
show mvr members	Displays all receiver ports that are members of an MVR multicast group.

pagp learn-method

Use the **pagp learn-method** interface configuration command to learn the source address of incoming packets received from an EtherChannel port. Use the **no** form of this command to return to the default setting.

pagp learn-method {aggregation-port | physical-port}

no pagp learn-method

Syntax Description

aggregation-port	Specify address learning on the logical port-channel. The switch sends packets to the source using any of the ports in the EtherChannel. This setting is the default. With aggregate-port learning, it is not important on which physical port the packet arrives.
physical-port	Specify address learning on the physical port within the EtherChannel. The switch sends packets to the source using the same port in the EtherChannel from which it learned the source address. The other end of the channel uses the same port in the channel for a particular destination MAC or IP address.

Defaults

The default is aggregation-port (logical port channel).

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The learn method must be configured the same at both ends of the link.

The switch supports address learning only on aggregate ports even though the **physical-port** keyword is provided in the command-line interface (CLI). The **pagp learn-method** and the **pagp port-priority** interface configuration commands have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the **pagp learn-method physical-port** interface configuration command and to set the load-distribution method based on the source MAC address by using the **port-channel load-balance src-mac** global configuration command. Use the **pagp learn-method** interface configuration command only in this situation.

Examples

This example shows how to set the learning method to learn the address on the physical port within the EtherChannel:

Switch(config-if)# pagp learn-method physical-port

This example shows how to set the learning method to learn the address on the port-channel within the EtherChannel:

Switch(config-if)# pagp learn-method aggregation-port

You can verify your settings by entering the **show running-config** privileged EXEC command or the **show pagp** *channel-group-number* **internal** privileged EXEC command.

Command	Description
pagp port-priority	Selects a port over which all traffic through the EtherChannel is sent.
show pagp	Displays PAgP channel-group information.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

pagp port-priority

Use the **pagp port-priority** interface configuration command to select a port over which all Port Aggregation Protocol (PAgP) traffic through the EtherChannel is sent. If all unused ports in the EtherChannel are in hot-standby mode, they can be placed into operation if the currently selected port and link fails. Use the **no** form of this command to return to the default setting.

pagp port-priority priority

no pagp port-priority

Syntax Description

priority A priority number ranging from 0 to	255.
--	------

Defaults

The default is 128.

Command Modes

Interface configuration

Command History

Release	Modification	
12.2(25)SEE	This command was introduced.	

Usage Guidelines

The physical port with the highest priority that is operational and has membership in the same EtherChannel is the one selected for PAgP transmission.

The switch supports address learning only on aggregate ports even though the **physical-port** keyword is provided in the command-line interface (CLI). The **pagp learn-method** and the **pagp port-priority** interface configuration commands have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the **pagp learn-method physical-port** interface configuration command and to set the load-distribution method based on the source MAC address by using the **port-channel load-balance src-mac** global configuration command. Use the **pagp learn-method** interface configuration command only in this situation.

Examples

This example shows how to set the port priority to 200:

Switch(config-if) # pagp port-priority 200

You can verify your setting by entering the **show running-config** privileged EXEC command or the **show pagp** *channel-group-number* **internal** privileged EXEC command.

Command	Description	
pagp learn-method	Provides the ability to learn the source address of incoming packets.	
show pagp	Displays PAgP channel-group information.	
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.	

permit (ARP access-list configuration)

Use the **permit** Address Resolution Protocol (ARP) access-list configuration command to permit an ARP packet based on matches against the Dynamic Host Configuration Protocol (DHCP) bindings. Use the **no** form of this command to remove the specified access control entry (ACE) from the access control list.

permit {[request] ip {any | host sender-ip | sender-ip sender-ip-mask} mac {any | host sender-mac | sender-mac sender-mac-mask} | response ip {any | host sender-ip | sender-ip sender-ip-mask} | [any | host target-ip | target-ip target-ip-mask}] mac {any | host sender-mac | sender-mac | sender-mac | sender-mac | target-mac | target-mac target-mac-mask}]] [log]

no permit {[request] ip {any | host sender-ip | sender-ip sender-ip-mask} mac {any | host sender-mac | sender-mac sender-mac-mask} | response ip {any | host sender-ip | sender-ip sender-ip | target-ip target-ip target-ip-mask}] mac {any | host sender-mac | sender-mac sender-mac-mask} [{any | host target-mac | target-mac target-mac-mask}]} [log]

This command is available only if your switch is running the IP services image.

Syntax Description

- 6	you also configure the matchlog keyword in the ip arp inspection vlan logging global configuration command.	
log	(Optional) Log a packet when it matches the ACE. Matches are logged if	
target-mac-mask	(Optional) Recept the specified range of target MAC addresses.	
target-mac	(Optional) Accept the specified range of target MAC addresses.	
host target-mac	(Optional) Accept the specified target MAC address.	
mac	Specify the MAC address values for the ARP responses.	
target-ip target-ip-mask	(Optional) Accept the specified range of target IP addresses.	
host target-ip	(Optional) Accept the specified target IP address.	
response ip	Define the IP address values for the ARP responses.	
sender-mac-mask		
sender-mac	Accept the specified range of sender MAC addresses.	
host sender-mac	Accept the specified sender MAC address.	
mac	Specify the sender MAC address.	
sender-ip-mask		
sender-ip	Accept the specified range of sender IP addresses.	
host sender-ip	Accept the specified sender IP address.	
any	Accept any IP or MAC address.	
ip	Specify the sender IP address.	
request	(Optional) Requests a match for the ARP request. When request is not specified, matching is performed against all ARP packets.	

Defaults

There are no default settings.

Command Modes

ARP access-list configuration

Command History

Release	Modification	
12.2(20)SE	This command was introduced.	

Usage Guidelines

You can add permit clauses to forward ARP packets based on some matching criteria.

Examples

This example shows how to define an ARP access list and to permit both ARP requests and ARP responses from a host with an IP address of 1.1.1.1 and a MAC address of 0000.0000.abcd:

```
Switch(config)# arp access-list static-hosts
Switch(config-arp-nacl)# permit ip host 1.1.1.1 mac host 0000.0000.abcd
Switch(config-arp-nacl)# end
```

You can verify your settings by entering the show arp access-list privileged EXEC command.

Command	Description
arp access-list	Defines an ARP access control list (ACL).
deny (ARP access-list configuration)	Denies an ARP packet based on matches against the DHCP bindings.

permit (IPv6 access-list configuration)

Use the **permit** IPv6 access list configuration command on the switch stack or on a standalone switch to set permit conditions for an IPv6 access list. Use the **no** form of this command to remove the permit conditions.

permit {protocol} {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [sequence value] [time-range name]

no permit {protocol} {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [dscp value] [fragments] [log] [log-input] [sequence value] [time-range name]

Although visible in the command-line help strings, the **flow-label**, **reflect**, and **routing** keywords are not supported.

Internet Control Message Protocol

permit icmp {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [icmp-type [icmp-code] | icmp-message] [dscp value] [log] [log-input] [sequence value] [time-range name]

Transmission Control Protocol

permit tcp {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator [port-number]] [ack] [dscp value] [established] [fin] [log] [log-input] [neq {port | protocol}] [psh] [range {port | protocol}] [rst] [sequence value] [syn] [time-range name] [urg]

User Datagram Protocol

Although visible in the command-line help strings, the **flow-label**, **reflect**, and **routing** keywords are not supported.

This command is available only if your switch is running the advanced IP services image and has a switch database management (SDM) dual IPv4 and IPv6 template configured.

Syntax Description	protocol	Name or number of an Internet protocol. It can be one of the keywords	
	-	ahp, esp, icmp, ipv6, pcp, sctp, tcp, or udp, or an integer in the range from 0 to 255 representing an IPv6 protocol number.	
	source-ipv6-prefix/prefix- length	The source IPv6 network or class of networks for which to set permit conditions.	
		This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
		Note Although the CLI help shows a prefix-length range of /0 to /128, the switch supports IPv6 address-matching only for prefixes in the range of /0 to /64 and extended universal identifier (EUI)-based /128 prefixes for aggregatable global unicast and link-local host addresses.	
	any	An abbreviation for the IPv6 prefix ::/0.	
	host source-ipv6-address	The source IPv6 host address for which to set permit conditions.	
		This <i>source-ipv6-address</i> argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
	operator [port-number]	(Optional) Specify an operator that compares the source or destination ports of the specified protocol. Operators are lt (less than), gt (greater than), eq (equal), neq (not equal), and range (inclusive range).	
		If the operator is positioned after the <i>source-ipv6-prefix/prefix-length</i> argument, it must match the source port.	
		If the operator is positioned after the <i>destination-ipv6-prefix/prefix-length</i> argument, it must match the destination port.	
		The range operator requires two port numbers. All other operators require one port number.	
		The optional <i>port-number</i> argument is a decimal number or the name of a TCP or a UDP port. A port number is a number from 0 to 65535. TCP port names can be used only when filtering TCP. UDP port names can be used only when filtering UDP.	
	destination-ipv6-prefixl prefix-length	The destination IPv6 network or class of networks for which to set permit conditions.	
		This argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
		Note Although the CLI help shows a prefix-length range of /0 to /128, the switch supports IPv6 address-matching only for prefixes in the range of /0 to /64 and EUI-based /128 prefixes for aggregatable global unicast and link-local host addresses.	
	host	The destination IPv6 host address for which to set permit conditions.	
	destination-ipv6-address	This <i>destination-ipv6-address</i> argument must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.	
	dscp value	(Optional) Match a differentiated services codepoint value against the traffic class value in the Traffic Class field of each IPv6 packet header. The acceptable range is from 0 to 63.	

fragments	(Optional) Match noninitial fragmented packets where the fragment extension header contains a nonzero fragment offset. The fragments keyword is an option only if the protocol is ipv6 and the <i>operator</i> [port-number] arguments are not specified.		
log	(Optional) Send an informational logging message to the console about the packet that matches the entry. (The level of messages logged to the console is controlled by the logging console command.)		
	The message includes the access list name and sequence number; whether the packet was permitted; the protocol, whether it was TCP, UDP, ICMP, or a number; and, if appropriate, the source and destination addresses and source and destination port numbers. The message is generated for the first packet that matches, and then at 5-minute intervals, including the number of packets permitted in the prior 5-minute interval.		
log-input	(Optional) Provide the same function as the log keyword, except that the logging message also includes the receiving interface.		
timeout value	(Optional) Interval of idle time (in seconds) after which a reflexive IPv6 access list times out. The acceptable range is from 1 to 4294967295. The default is 180 seconds.		
sequence value	(Optional) Specify the sequence number for the access list statement. The acceptable range is from 1 to 4294967295.		
time-range name	(Optional) Specify the time range that applies to the permit statement. The name of the time range and its restrictions are specified by the time-range and absolute or periodic commands, respectively.		
icmp-type	(Optional) Specify an ICMP message type for filtering ICMP packets. ICMP packets can be filtered by the ICMP message type. The type is a number from 0 to 255.		
icmp-code	(Optional) Specify an ICMP message code for filtering ICMP packets ICMP packets that are filtered by the ICMP message type can also be filtered by the ICMP message code. The code is a number from 0 to 2:		
icmp-message	(Optional) Specify an ICMP message name for filtering ICMP packets. ICMP packets can be filtered by an ICMP message name or ICMP message type and code. The possible names are listed in the "Usage Guidelines" section.		
ack	(Optional) Only for the TCP protocol: acknowledgment (ACK) bit set.		
established	(Optional) Only for the TCP protocol: Means the connection has been established. A match occurs if the TCP datagram has the ACK or RST b set. The nonmatching case is that of the initial TCP datagram to form connection.		
fin	(Optional) Only for the TCP protocol: Fin bit set; no more data from sender.		
neq {port protocol}	(Optional) Match only packets that are not on a given port number.		
psh	(Optional) Only for the TCP protocol: Push function bit set.		
range {port protocol}	(Optional) Match only packets in the range of port numbers.		
rst	(Optional) Only for the TCP protocol: Reset bit set.		
syn	(Optional) Only for the TCP protocol: Synchronize bit set.		
urg	(Optional) Only for the TCP protocol: Urgent pointer bit set.		

Defaults

No IPv6 access list is defined.

Command Modes

IPv6 access-list configuration

Command History

Release	Modification	
12.2(25)SED	This command was introduced.	

Usage Guidelines

The **permit** (IPv6 access-list configuration mode) command is similar to the **permit** (IPv4 access-list configuration mode) command, except that it is IPv6-specific.

Use the **permit** (IPv6) command after the **ipv6 access-list** command to enter IPv6 access-list configuration mode and to define the conditions under which a packet passes the access list.

Specifying IPv6 for the protocol argument matches against the IPv6 header of the packet.

By default, the first statement in an access list is number 10, and the subsequent statements are incremented by 10.

You can add **permit**, **deny**, or **remark** statements to an existing access list without re-entering the entire list. To add a new statement anywhere other than at the end of the list, create a new statement with an appropriate entry number that falls between two existing entry numbers to show where it belongs.

See the **ipv6** access-list command for more information on defining IPv6 ACLs.

Every IPv6 ACL has implicit **permit icmp any any nd-na**, **permit icmp any any nd-ns**, and **deny ipv6 any any** statements as its last match conditions. The two **permit** conditions allow ICMPv6 neighbor discovery. To disallow ICMPv6 neighbor discovery and to deny **icmp any any nd-na** or **icmp any any nd-ns**, there must be an explicit **deny** entry in the ACL. For the implicit **deny ipv6 any any** statement to take effect, an IPv6 ACL must contain at least one entry.

The IPv6 neighbor discovery process uses the IPv6 network layer service. Therefore, by default, IPv6 ACLs implicitly allow IPv6 neighbor discovery packets to be sent and received on an interface. In IPv4, the Address Resolution Protocol (ARP), which is equivalent to the IPv6 neighbor discovery process, uses a separate data link layer protocol. Therefore, by default, IPv4 ACLs implicitly allow ARP packets to be sent and received on an interface.

Both the *source-ipv6-prefix/prefix-length* and *destination-ipv6-prefix/prefix-length* arguments are used for traffic filtering (the source prefix filters traffic based upon the traffic source; the destination prefix filters traffic based upon the traffic destination).

The switch supports only prefixes from /0 to /64 and EUI-based /128 prefixes for aggregatable global unicast and link-local host addresses.

The **fragments** keyword is an option only if the *operator* [port-number] arguments are not specified.

This is a list of ICMP message names:

beyond-scope destination-unreachable

echo-reply echo-request header hop-limit mld-query mld-reduction

mld-report nd-na

nd-ns next-header no-admin no-route

packet-too-big parameter-option
parameter-problem port-unreachable
reassembly-timeout renum-command
renum-result renum-seq-number
router-advertisement router-renumbering
router-solicitation time-exceeded

unreachable

Examples

This example configures two IPv6 access lists named OUTBOUND and INBOUND and applies both access lists to outbound and inbound traffic on a Layer 3 interface. The first and second permit entries in the OUTBOUND list permit all TCP and UDP packets from network 2001:ODB8:0300:0201::/64 to leave the interface. The deny entry in the OUTBOUND list prevents all packets from the network FE80:0:0:0201::/64 (packets that have the link-local prefix FE80:0:0:0201 as the first 64 bits of their source IPv6 address) from leaving the interface. The third permit entry in the OUTBOUND list permits all ICMP packets to exit the interface.

The permit entry in the INBOUND list permits all ICMP packets to enter the interface.

```
Switch(config) #ipv6 access-list OUTBOUND

Switch(config-ipv6-acl) # permit tcp 2001:0DB8:0300:0201::/64 any
Switch(config-ipv6-acl) # permit udp 2001:0DB8:0300:0201::/64 any
Switch(config-ipv6-acl) # deny FE80:0:0:0201::/64 any
Switch(config-ipv6-acl) # permit icmp any any
Switch(config-ipv6-acl) # exit
Switch(config-ipv6-acl) # permit icmp any any
Switch(config-ipv6-acl) # permit icmp any any
Switch(config-ipv6-acl) # permit icmp any any
Switch(config-ipv6-acl) # exit
Switch(config-ipv6-acl) # exit
Switch(config-ipv6-acl) # exit
Switch(config-if) # interface gigabitethernet1/0/3
Switch(config-if) # ipv6 address 2001::/64 eui-64
Switch(config-if) # ipv6 traffic-filter OUTBOUND out
Switch(config-if) # ipv6 traffic-filter INBOUND in
```


Given that a **permit any any** statement is not included as the last entry in the OUTBOUND or INBOUND access list, only TCP, UDP, and ICMP packets are permitted out of and into the interface (the implicit deny-all condition at the end of the access list denies all other packet types on the interface).

Command	Description	
ipv6 access-list	Defines an IPv6 access list and enters IPv6 access list configuration mode	
ipv6 traffic-filter	Filters incoming or outgoing IPv6 traffic on an interface.	
show ipv6 access-list	Displays the contents of all current IPv6 access lists.	

permit (MAC access-list configuration)

Use the **permit** MAC access-list configuration command to allow non-IP traffic to be forwarded if the conditions are matched. Use the **no** form of this command to remove a permit condition from the extended MAC access list.

{permit | deny} {any | host src-MAC-addr | src-MAC-addr mask} {any | host dst-MAC-addr | dst-MAC-addr mask} [type mask | cos cos | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp]

no {permit | deny} {any | host src-MAC-addr | src-MAC-addr mask} {any | host dst-MAC-addr | dst-MAC-addr mask} [type mask | cos cos | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lavc-sca | lsap lsap mask | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp]

Though visible in the command-line help strings, appletalk is not supported as a matching condition.

Syntax Description

any	Keyword to specify to deny any source or destination MAC address.	
host src-MAC-addr src-MAC-addr mask	Define a host MAC address and optional subnet mask. If the source address for a packet matches the defined address, non-IP traffic from that address is denied.	
host dst-MAC-addr dst-MAC-addr mask	Define a destination MAC address and optional subnet mask. If the destination address for a packet matches the defined address, non-IP traffic to that address is denied.	
type mask	 (Optional) Use the Ethertype number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet. type is 0 to 65535, specified in hexadecimal. 	
	 mask is a mask of don't care bits applied to the Ethertype before testing for a match. 	
aarp	(Optional) Select Ethertype AppleTalk Address Resolution Protocol that maps a data-link address to a network address.	
amber	(Optional) Select EtherType DEC-Amber.	
cos cos	(Optional) Select an arbitrary class of service (CoS) number from 0 to 7 to set priority. Filtering on CoS can be performed only in hardware. A warning message appears if the cos option is configured.	
dec-spanning	(Optional) Select EtherType Digital Equipment Corporation (DEC) spanning tree.	
decnet-iv	(Optional) Select EtherType DECnet Phase IV protocol.	
diagnostic	(Optional) Select EtherType DEC-Diagnostic.	
dsm	(Optional) Select EtherType DEC-DSM.	
etype-6000	(Optional) Select EtherType 0x6000.	
etype-8042	(Optional) Select EtherType 0x8042.	
lat	(Optional) Select EtherType DEC-LAT.	
lavc-sca	(Optional) Select EtherType DEC-LAVC-SCA.	

Isap lsap-number mask	(Optional) Use the LSAP number (0 to 65535) of a packet with 802.2 encapsulation to identify the protocol of the packet.	
	The <i>mask</i> is a mask of <i>don't care</i> bits applied to the LSAP number before testing for a match.	
mop-console	(Optional) Select EtherType DEC-MOP Remote Console.	
mop-dump	(Optional) Select EtherType DEC-MOP Dump.	
msdos	(Optional) Select EtherType DEC-MSDOS.	
mumps	(Optional) Select EtherType DEC-MUMPS.	
netbios	(Optional) Select EtherType DEC- Network Basic Input/Output System (NETBIOS).	
vines-echo	(Optional) Select EtherType Virtual Integrated Network Service (VINES) Echo from Banyan Systems.	
vines-ip	(Optional) Select EtherType VINES IP.	
xns-idp	(Optional) Select EtherType Xerox Network Systems (XNS) protocol suite.	

To filter IPX traffic, you use the *type mask* or **lsap** *lsap mask* keywords, depending on the type of IPX encapsulation being used. Filter criteria for IPX encapsulation types as specified in Novell terminology and Cisco IOS terminology are listed in Table 2-14.

Table 2-14 IPX Filtering Criteria

IPX Encapsulation Type		
Cisco IOS Name	Novell Name	Filter Criterion
arpa	Ethernet II	Ethertype 0x8137
snap	Ethernet-snap	Ethertype 0x8137
sap	Ethernet 802.2	LSAP 0xE0E0
novell-ether	Ethernet 802.3	LSAP 0xFFFF

Defaults

This command has no defaults. However, the default action for a MAC-named ACL is to deny.

Command Modes

MAC access-list configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You enter MAC access-list configuration mode by using the **mac access-list extended** global configuration command.

If you use the **host** keyword, you cannot enter an address mask; if you do not use the **any** or **host** keywords, you must enter an address mask.

After an access control entry (ACE) is added to an access control list, an implied **deny-any-any** condition exists at the end of the list. That is, if there are no matches, the packets are denied. However, before the first ACE is added, the list permits all packets.

For more information about MAC-named extended access lists, see the software configuration guide for this release.

Examples

This example shows how to define the MAC-named extended access list to allow NETBIOS traffic from any source to MAC address 00c0.00a0.03fa. Traffic matching this list is allowed.

Switch(config-ext-macl) # permit any host 00c0.00a0.03fa netbios

This example shows how to remove the permit condition from the MAC-named extended access list:

Switch(config-ext-macl)# no permit any 00c0.00a0.03fa 0000.0000.0000 netbios

This example permits all packets with Ethertype 0x4321:

Switch(config-ext-macl) # permit any any 0x4321 0

You can verify your settings by entering the **show access-lists** privileged EXEC command.

Command	Description
deny (MAC access-list configuration)	Denies non-IP traffic to be forwarded if conditions are matched.
mac access-list extended	Creates an access list based on MAC addresses for non-IP traffic.
show access-lists	Displays access control lists configured on a switch.

police

Use the **police** policy-map class configuration command to define a policer for classified traffic. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded. Use the **no** form of this command to remove an existing policer.

police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]

no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}]

Syntax Description

rate-bps	Specify the average traffic rate in bits per second (b/s). The range is 1000000 to 10000000000.	
burst-byte	Specify the normal burst size in bytes. The range is 8000 to 1000000.	
exceed-action drop	(Optional) When the specified rate is exceeded, specify that the switch drop the packet.	
exceed-action policed-dscp-transmit	(Optional) When the specified rate is exceeded, specify that the switch changes the Differentiated Services Code Point (DSCP) of the packet to that specified in the policed-DSCP map and then sends the packet.	

Defaults

No policers are defined.

Command Modes

Policy-map class configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When configuring hierarchical policy maps, you can only use the **police** policy-map command in a secondary interface-level policy map.

The port ASIC device, which controls more than one physical port, supports 256 policers (255 user-configurable policers plus 1 policer reserved for internal use). The maximum number of user-configurable policers supported per port is 63. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port. There is no guarantee that a port will be assigned to any policer.

To return to policy-map configuration mode, use the **exit** command. To return to privileged EXEC mode, use the **end** command.

Policing uses a token-bucket algorithm. You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the *burst-byte* option of the **police** policy-map class configuration command or the **mls qos aggregate-policer** global configuration command. You configure how quickly (the average rate) the tokens are removed from the bucket by using the *rate-bps* option of the **police** policy-map class configuration command or the **mls qos aggregate-policer** global configuration command. For more information, see the software configuration guide for this release.

Examples

This example shows how to configure a policer that drops packets if traffic exceeds 1 Mb/s average rate with a burst size of 20 KB. The DSCPs of incoming packets are trusted, and there is no packet modification.

```
Switch(config) # policy-map policy1
Switch(config-pmap) # class class1
Switch(config-pmap-c) # trust dscp
Switch(config-pmap-c) # police 1000000 20000 exceed-action drop
Switch(config-pmap-c) # exit
```

This example shows how to configure a policer, which marks down the DSCP values with the values defined in policed-DSCP map and sends the packet:

```
Switch(config) # policy-map policy2
Switch(config-pmap) # class class2
Switch(config-pmap-c) # police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c) # exit
```

You can verify your settings by entering the **show policy-map** privileged EXEC command.

Command	Description Defines a traffic classification match criteria (through the police, set, and trust policy-map class configuration commands) for the specified class-map name.	
class		
mls qos map policed-dscp	Applies a policed-DSCP map to a DSCP-trusted port.	
policy-map	Creates or modifies a policy map that can be attached to multiple ports to specify a service policy.	
set	Classifies IP traffic by setting a DSCP or IP-precedence value in the packet.	
show policy-map	Displays quality of service (QoS) policy maps.	
trust	Defines a trust state for traffic classified through the class policy-map configuration or the class-map global configuration command.	

police aggregate

Use the **police aggregate** policy-map class configuration command to apply an aggregate policer to multiple classes in the same policy map. A policer defines a maximum permissible rate of transmission, a maximum burst size for transmissions, and an action to take if either maximum is exceeded. Use the **no** form of this command to remove the specified policer.

police aggregate aggregate-policer-name

no police aggregate aggregate-policer-name

Syntax Description

Defaults

No aggregate policers are defined.

Command Modes

Policy-map class configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

The port ASIC device, which controls more than one physical port, supports 256 policers (255 user-configurable policers plus 1 policer reserved for internal use). The maximum number of user-configurable policers supported per port is 63. Policers are allocated on demand by the software and are constrained by the hardware and ASIC boundaries. You cannot reserve policers per port. There is no guarantee that a port will be assigned to any policer.

You set aggregate policer parameters by using the **mls qos aggregate-policer** global configuration command. You apply an aggregate policer to multiple classes in the same policy map; you cannot use an aggregate policer across different policy maps.

To return to policy-map configuration mode, use the **exit** command. To return to privileged EXEC mode, use the **end** command.

You cannot configure aggregate policers in hierarchical policy maps.

Examples

This example shows how to define the aggregate policer parameters and to apply the policer to multiple classes in a policy map:

```
Switch(config) # mls qos aggregate-policer agg_policer1 10000 1000000 exceed-action drop
Switch(config) # policy-map policy2
Switch(config-pmap) # class class1
Switch(config-pmap-c) # police aggregate agg_policer1
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # set dscp 10
Switch(config-pmap-c) # police aggregate agg_policer1
Switch(config-pmap-c) # police aggregate agg_policer1
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # exit
Switch(config-pmap-c) # trust dscp
Switch(config-pmap-c) # police aggregate agg_policer2
Switch(config-pmap-c) # police aggregate agg_policer2
Switch(config-pmap-c) # exit
```

You can verify your settings by entering the **show mls qos aggregate-policer** privileged EXEC command.

Command	Description
mls qos aggregate-policer	Defines policer parameters, which can be shared by multiple classes within a policy map.
show mls qos aggregate-policer	Displays the quality of service (QoS) aggregate policer configuration.

policy-map

Use the **policy-map** global configuration command to create or modify a policy map that can be attached to multiple physical ports or switch virtual interfaces (SVIs) and to enter policy-map configuration mode. Use the **no** form of this command to delete an existing policy map and to return to global configuration mode.

policy-map policy-map-name

no policy-map policy-map-name

Syntax Description

policy-map-name	Name of the policy map.
-----------------	-------------------------

Defaults

No policy maps are defined.

The default behavior is to set the Differentiated Services Code Point (DSCP) to 0 if the packet is an IP packet and to set the class of service (CoS) to 0 if the packet is tagged. No policing is performed.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

After entering the **policy-map** command, you enter policy-map configuration mode, and these configuration commands are available:

- **class**: defines the classification match criteria for the specified class map. For more information, see the "class" section on page 2-32.
- **description**: describes the policy map (up to 200 characters).
- exit: exits policy-map configuration mode and returns you to global configuration mode.
- **no**: removes a previously defined policy map.
- **rename**: renames the current policy map.

To return to global configuration mode, use the **exit** command. To return to privileged EXEC mode, use the **end** command.

Before configuring policies for classes whose match criteria are defined in a class map, use the **policy-map** command to specify the name of the policy map to be created, added to, or modified. Entering the **policy-map** command also enables the policy-map configuration mode in which you can configure or modify the class policies for that policy map.

You can configure class policies in a policy map only if the classes have match criteria defined for them. To configure the match criteria for a class, use the **class-map** global configuration and **match** class-map configuration commands. You define packet classification on a physical-port basis.

Only one policy map per ingress port or SVI is supported. You can apply the same policy map to multiple physical ports or SVIs.

You can apply a nonhierarchical policy maps to physical ports or to SVIs. A nonhierarchical policy map is the same as a port-based policy maps. However, you can only apply a hierarchical policy map to SVIs.

A hierarchical policy map has two levels. The first level, the VLAN level, specifies the actions to be taken against a traffic flow on an SVI. The second level, the interface level, specifies the actions to be taken against the traffic on the physical ports that belong to the SVI and are specified in the interface-level policy map.

In a primary VLAN-level policy map, you can only configure the trust state or set a new DSCP or IP precedence value in the packet. In a secondary interface-level policy map, you can only configure individual policers on physical ports that belong to the SVI.

After the hierarchical policy map is attached to an SVI, an interface-level policy map cannot be modified or removed from the hierarchical policy map. A new interface-level policy map also cannot be added to the hierarchical policy map. If you want these changes to occur, the hierarchical policy map must first be removed from the SVI.

For more information about hierarchical policy maps, see the "Policing on SVIs" section in the "Configuring QoS" chapter of the software configuration guide for this release.

Examples

This example shows how to create a policy map called *policy1*. When attached to the ingress port, it matches all the incoming traffic defined in *class1*, sets the IP DSCP to 10, and polices the traffic at an average rate of 1 Mb/s and bursts at 20 KB. Traffic exceeding the profile is marked down to a DSCP value gotten from the policed-DSCP map and then sent.

```
Switch(config) # policy-map policy1
Switch(config-pmap) # class class1
Switch(config-pmap-c) # set dscp 10
Switch(config-pmap-c) # police 1000000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c) # exit
```

This example shows how to configure multiple classes in a policy map called *policymap2*:

```
Switch(config) # policy-map policymap2
Switch(config-pmap) # class class1
Switch(config-pmap-c) # set dscp 10
Switch(config-pmap-c) # police 100000 20000 exceed-action policed-dscp-transmit
Switch(config-pmap-c) # exit
Switch(config-pmap) # class class2
Switch(config-pmap-c) # trust dscp
Switch(config-pmap-c) # police 100000 20000 exceed-action drop
Switch(config-pmap-c) # exit
Switch(config-pmap) # class class3
Switch(config-pmap-c) # set dscp 0 (no policer)
Switch(config-pmap-c) # exit
```

This example shows how to create a hierarchical policy map and attach it to an SVI:

```
Switch(config) # class-map cm-non-int
Switch(config-cmap)# match access-group 101
Switch(config-cmap)# exit
Switch(config) # class-map cm-non-int-2
Switch(config-cmap)# match access-group 102
Switch(config-cmap)# exit
Switch(config)# class-map cm-test-int
Switch(config-cmap) # match input-interface gigabitethernet0/2 - gigabitethernet0/3
Switch(config-cmap)# exit
Switch(config) # policy-map pm-test-int
Switch(config-pmap) # class cm-test-int
Switch(config-pmap-c)# police 18000000 8000 exceed-action drop
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# policy-map pm-test-pm-2
Switch(config-pmap) # class cm-non-int
Switch(config-pmap-c)# set dscp 7
Switch(config-pmap-c)# service-policy pm-test-int
Switch(config-pmap)# class cm-non-int-2
Switch(config-pmap-c)# set dscp 15
Switch(config-pmap-c)# service-policy pm-test-int
Switch(config-pmap-c)# end
Switch(config-cmap)# exit
Switch(config)# interface vlan 10
Switch(config-if)# service-policy input pm-test-pm-2
```

This example shows how to delete *policymap2*:

Switch(config) # no policy-map policymap2

You can verify your settings by entering the **show policy-map** privileged EXEC command.

Command	Description
class	Defines a traffic classification match criteria (through the police , set , and trust policy-map class configuration command) for the specified class-map name.
class-map	Creates a class map to be used for matching packets to the class whose name you specify.
service-policy	Applies a policy map to a port.
show mls qos vlan	Displays the quality of service (QoS) policy maps attached to an SVI.
show policy-map	Displays QoS policy maps.

port-channel load-balance

Use the **port-channel load-balance** global configuration command to set the load-distribution method among the ports in the EtherChannel. Use the **no** form of this command to return to the default setting.

port-channel load-balance {dst-ip | dst-mac | src-dst-ip | src-dst-mac | src-ip | src-mac}

no port-channel load-balance

Syntax Description

dst-ip	Load distribution is based on the destination host IP address.
dst-mac	Load distribution is based on the destination host MAC address. Packets to the same destination are sent on the same port, but packets to different destinations are sent on different ports in the channel.
src-dst-ip	Load distribution is based on the source and destination host IP address.
src-dst-mac	Load distribution is based on the source and destination host MAC address.
src-ip	Load distribution is based on the source host IP address.
src-mac	Load distribution is based on the source MAC address. Packets from different hosts use different ports in the channel, but packets from the same host use the same port.

Defaults

The default is **src-mac**.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

For information about when to use these forwarding methods, see the "Configuring EtherChannels" chapter in the software configuration guide for this release.

Examples

This example shows how to set the load-distribution method to **dst-mac**:

Switch(config) # port-channel load-balance dst-mac

You can verify your setting by entering the **show running-config** privileged EXEC command or the **show etherchannel load-balance** privileged EXEC command.

Command	Description
interface port-channel	Accesses or creates the port channel.
show etherchannel	Displays EtherChannel information for a channel.
show running-config	Displays the current operating configuration. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

priority-queue

Use the **priority-queue** interface configuration command to enable the egress expedite queue on a port. Use the **no** form of this command to return to the default setting.

priority-queue out

no priority-queue out

Syntax Description

out	Enable the egress expedite queue.
-----	-----------------------------------

Defaults

The egress expedite queue is disabled.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

When you configure the **priority-queue out** command, the shaped round robin (SRR) weight ratios are affected because there is one fewer queue participating in SRR. This means that *weight1* in the **srr-queue bandwidth shape** or the **srr-queue bandwidth shape** interface configuration command is ignored (not used in the ratio calculation). The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced.

Follow these guidelines when the expedite queue is enabled or the egress queues are serviced based on their SRR weights:

- If the egress expedite queue is enabled, it overrides the SRR shaped and shared weights for queue 1.
- If the egress expedite queue is disabled and the SRR shaped and shared weights are configured, the shaped mode overrides the shared mode for queue 1, and SRR services this queue in shaped mode.
- If the egress expedite queue is disabled and the SRR shaped weights are not configured, SRR services the queue in shared mode.

Examples

This example shows how to enable the egress expedite queue when the SRR weights are configured. The egress expedite queue overrides the configured SRR weights.

```
Switch(config) # interface gigabitethernet0/2
Switch(config-if) # srr-queue bandwidth shape 25 0 0 0
Switch(config-if) # srr-queue bandwidth share 30 20 25 25
Switch(config-if) # priority-queue out
```

This example shows how to disable the egress expedite queue after the SRR shaped and shared weights are configured. The shaped mode overrides the shared mode.

```
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# srr-queue bandwidth shape 25 0 0 0
```

```
Switch(config-if)# srr-queue bandwidth share 30 20 25 25
Switch(config-if)# no priority-queue out
```

You can verify your settings by entering the **show mls qos interface** *interface-id* **queueing** or the **show running-config** privileged EXEC command.

Command	Description
show mls qos interface queueing	Displays the queueing strategy (SRR, priority queueing), the weights corresponding to the queues, and the CoS-to-egress-queue map.
srr-queue bandwidth shape	Assigns the shaped weights and enables bandwidth shaping on the four egress queues mapped to a port.
srr-queue bandwidth share	Assigns the shared weights and enables bandwidth sharing on the four egress queues mapped to a port.

private-vlan

Use the **private-vlan** VLAN configuration command to configure private VLANs and to configure the association between private-VLAN primary and secondary VLANs. Use the **no** form of this command to return the VLAN to normal VLAN configuration.

private-vlan {association [add | remove] secondary-vlan-list | community | isolated | primary}

no private-vlan {association | community | isolated | primary}

Syntax Description

association	Create an association between the primary VLAN and a secondary VLAN.
secondary-vlan-list	Specify one or more secondary VLANs to be associated with a primary VLAN in a private VLAN.
add	Associate a secondary VLAN to a primary VLAN.
remove	Clear the association between a secondary VLAN and a primary VLAN.
community	Designate the VLAN as a community VLAN.
isolated	Designate the VLAN as a community VLAN.
primary	Designate the VLAN as a community VLAN.

Defaults

The default is to have no private VLANs configured.

Command Modes

VLAN configuration

Command History

Release	Modification
12.2(40)SE	This command was introduced.

Usage Guidelines

Before configuring private VLANs, you must disable VTP (VTP mode transparent). After you configure a private VLAN, you should not change the VTP mode to client or server.

VTP does not propagate private-VLAN configuration. You must manually configure private VLANs on all switches in the Layer 2 network to merge their Layer 2 databases and to prevent flooding of private-VLAN traffic.

You cannot include VLAN 1 or VLANs 1002 to 1005 in the private-VLAN configuration. Extended VLANs (VLAN IDs 1006 to 4094) can be configured in private VLANs.

You can **associate** a secondary (isolated or community) VLAN with only one primary VLAN. A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it.

- A secondary VLAN cannot be configured as a primary VLAN.
- The *secondary_vlan_list* parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.
- If you delete either the primary or secondary VLANs, the ports associated with the VLAN become
 inactive.

A **community** VLAN carries traffic among community ports and from community ports to the promiscuous ports on the corresponding primary VLAN.

An **isolated** VLAN is used by isolated ports to communicate with promiscuous ports. It does not carry traffic to other community ports or isolated ports with the same primary vlan domain.

A **primary** VLAN is the VLAN that carries traffic from a gateway to customer end stations on private ports.

Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The **private-vlan** commands do not take effect until you exit from VLAN configuration mode.

Do not configure private-VLAN ports as EtherChannels. While a port is part of the private-VLAN configuration, any EtherChannel configuration for it is inactive.

Do not configure a private VLAN as a Remote Switched Port Analyzer (RSPAN) VLAN.

Do not configure a private VLAN as a voice VLAN.

Do not configure fallback bridging on switches with private VLANs.

Although a private VLAN contains more than one VLAN, only one STP instance runs for the entire private VLAN. When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN are propagated to the secondary VLAN.

For information about configuring host ports and promiscuous ports, see the **switchport mode private-vlan** command.

For more information about private-VLAN interaction with other features, see the software configuration guide for this release.

Examples

This example shows how to configure VLAN 20 as a primary VLAN, VLAN 501 as an isolated VLAN, and VLANs 502 and 503 as community VLANs, and to associate them in a private VLAN:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# private-vlan primary
Switch(config-vlan)# exit
Switch(config)# vlan 501
Switch(config-vlan)# private-vlan isolated
Switch(config-vlan)# exit
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# private-vlan community
Switch(config-vlan)# exit
Switch(config-vlan)# exit
```

```
Switch(config-vlan)# private-vlan association 501-503
Switch(config-vlan)# end
```

You can verify your setting by entering the **show vlan private-vlan** or **show interfaces status** privileged EXEC command.

Command	Description
show interfaces status	Displays the status of interfaces, including the VLANs to which they belong.
show vlan private-vlan	Displays the private VLANs and VLAN associations configured on the switch or switch stack.
switchport mode private-vlan	Configures a private-VLAN port as a host port or promiscuous port.

private-vlan mapping

Use the **private-vlan mapping** interface configuration command on a switch virtual interface (SVI) to create a mapping between a private-VLAN primary and secondary VLANs so that both VLANs share the same primary VLAN SVI. Use the **no** form of this command to remove private-VLAN mappings from the SVI.

private-vlan mapping {[add | remove] secondary-vlan-list}

no private-vlan mapping

Syntax Description

secondary-vlan-list	Specify one or more secondary VLANs to be mapped to the primary VLAN SVI.
add	(Optional) Map the secondary VLAN to the primary VLAN SVI.
remove	(Optional) Remove the mapping between the secondary VLAN and the primary VLAN SVI.

Defaults

The default is to have no private VLAN SVI mapping configured.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(40)SE	This command was introduced.

Usage Guidelines

The switch must be in VTP transparent mode when you configure private VLANs.

The SVI of the primary VLAN is created at Layer 3.

Configure Layer 3 VLAN interfaces (SVIs) only for primary VLANs. You cannot configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

The *secondary_vlan_list* parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private-VLAN ID or a hyphenated range of private-VLAN IDs. The list can contain one isolated VLAN and multiple community VLANs.

Traffic that is received on the secondary VLAN is routed by the SVI of the primary VLAN.

A secondary VLAN can be mapped to only one primary SVI. IF you configure the primary VLAN as a secondary VLAN, all SVIs specified in this command are brought down.

If you configure a mapping between two VLANs that do not have a valid Layer 2 private-VLAN association, the mapping configuration does not take effect.

Examples

This example shows how to map the interface of VLAN 20 to the SVI of VLAN 18:

Switch# configure terminal
Switch# interface vlan 18
Switch(config-if)# private-vlan mapping 20
Switch(config-vlan)# end

This example shows how to permit routing of secondary VLAN traffic from secondary VLANs 303 to 305 and 307 through VLAN 20 SVI:

Switch# configure terminal
Switch# interface vlan 20
Switch(config-if)# private-vlan mapping 303-305, 307
Switch(config-vlan)# end

You can verify your setting by entering the **show interfaces private-vlan mapping** privileged EXEC command.

Command	Description
show interfaces private-vlan	Display private-VLAN mapping information for the VLAN SVIs.
mapping	

queue-set

Use the **queue-set** interface configuration command to map a port to a queue-set. Use the **no** form of this command to return to the default setting.

queue-set qset-id

no queue-set qset-id

Syntax Description

qset-id	ID of the queue-set. Each port belongs to a queue-set, which defines all the
	characteristics of the four egress queues per port. The range is 1 to 2.

Defaults

The queue-set ID is 1.

Command Modes

Interface configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Examples

This example shows how to map a port to queue-set 2:

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# queue-set 2

You can verify your settings by entering the **show mls qos interface** [interface-id] **buffers** privileged EXEC command.

Command	Description
mls qos queue-set output buffers	Allocates buffers to a queue-set.
mls qos queue-set output threshold	Configures the weighted tail-drop (WTD) thresholds, guarantees the availability of buffers, and configures the maximum memory allocation to a queue-set.
show mls qos interface buffers	Displays quality of service (QoS) information.

radius-server dead-criteria

Use the **radius-server dead-criteria** global configuration command to configure the conditions that determine when a RADIUS server is considered unavailable or *dead*. Use the **no** form of this command to return to the default settings.

radius-server dead-criteria [time seconds [tries number] | tries number]

no radius-server dead-criteria [time seconds [tries number] | tries number]

Syntax Description

time seconds	(Optional) Set the time in seconds during which the switch does not need to get a valid response from the RADIUS server. The range is from 1 to 120 seconds.
tries number	(Optional) Set the number of times that the switch does not get a valid response from the RADIUS server before the server is considered unavailable. The range is from 1 to 100.

Defaults

The switch dynamically determines the seconds value that is from 10 to 60 seconds.

The switch dynamically determines the *tries* value that is from 10 to 100.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

We recommend that you configure the *seconds* and *number* parameters as follows:

- Use the **radius-server timeout** *seconds* global configuration command to specify the time in seconds during which the switch waits for a RADIUS server to respond before the IEEE 802.1x authentication times out. The switch dynamically determines the default *seconds* value that is from 10 to 60 seconds.
- Use the **radius-server retransmit** *retries* global configuration command to specify the number of times the switch tries to reach the radius servers before considering the servers to be unavailable. The switch dynamically determines the default *tries* value that is from 10 to 100.
- The *seconds* parameter is less than or equal to the number of retransmission attempts times the time in seconds before the IEEE 802.1x authentication times out.
- The *tries* parameter should be the same as the number of retransmission attempts.

Examples

This example shows how to configure 60 as the **time** and 10 as the number of **tries**, the conditions that determine when a RADIUS server is considered unavailable

Switch(config) # radius-server dead-criteria time 60 tries 10

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description
dot1x critical (global configuration)	Configures the parameters for the inaccessible authentication bypass feature.
dot1x critical (interface configuration)	Enables the inaccessible authentication bypass feature on an interface and configures the access VLAN to which the switch assigns the critical port when the port is in the critical-authentication state.
radius-server retransmit retries	Specifies the number of times that the switch tries to reach the RADIUS servers before considering the servers to be unavailable. For syntax information, select Cisco IOS Security Command Reference, Release 12.2 > Server Security Protocols > RADIUS Commands.
radius-server timeout seconds	Specifies the time in seconds during which the switch waits for a RADIUS server to respond before the IEEE 802.1x authentication times out. For syntax information, select Cisco IOS Security Command Reference, Release 12.2 > Server Security Protocols > RADIUS Commands.
show running-config	Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

radius-server host

Use the **radius-server host** global configuration command to configure the RADIUS server parameters, including the RADIUS accounting and authentication. Use the **no** form of this command to return to the default settings.

radius-server host *ip-address* [acct-port *udp-port*] [auth-port *udp-port*] [test username *name* [idle-time *time*] [ignore-acct-port] [ignore-auth-port]] [key *string*]

no radius-server host ip-address

Syntax Description

ip-address	Specify the IP address of the RADIUS server.	
acct-port udp-port	(Optional) Specify the UDP port for the RADIUS accounting server. The range is from 0 to 65536.	
auth-port udp-port	(Optional) Specify the UDP port for the RADIUS authentication server. The range is from 0 to 65536.	
test username name	(Optional) Enable automatic server testing of the RADIUS server status, and specify the username to be used.	
idle-time time	(Optional) Set the interval of time in minutes after which the switch sends test packets to the server. The range is from 1 to 35791 minutes.	
ignore-acct-port	(Optional) Disables testing on the RADIUS-server accounting port.	
ignore-auth-port	(Optional) Disables testing on the RADIUS-server authentication port.	
key string	(Optional) Specify the authentication and encryption key for all RADIUS communication between the switch and the RADIUS daemon. The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in this command. Leading spaces are ignored, but spaces within and at the end of the key are used. If there are spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.	

Defaults

The UDP port for the RADIUS accounting server is 1646.

The UDP port for the RADIUS authentication server is 1645.

Automatic server testing is disabled.

The idle time is 60 minutes (1 hour).

When the automatic testing is enabled, testing occurs on the accounting and authentication UDP ports.

The authentication and encryption key (*string*) is not configured.

Command Modes

Global configuration

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

We recommend that you configure the UDP port for the RADIUS accounting server and the UDP port for the RADIUS authentication server to nondefault values.

Use the **test username** *name* keywords to enable automatic server testing of the RADIUS server status and to specify the username to be used.

You can configure the authentication and encryption key by using the **radius-server host** *ip-address* **key** *string* or the **radius-server key** {**0** *string* | **7** *string* | *string*} global configuration command. Always configure the key as the last item in this command.

Examples

This example shows how to configure 1500 as the UDP port for the accounting server and 1510 as the UDP port for the authentication server:

Switch(config)# radius-server host 1.1.1.1 acct-port 1500 auth-port 1510

This example shows how to configure the UDP port for the accounting server and the authentication server, enable automated testing of the RADIUS server status, specify the username to be used, and configure a key string:

Switch(config)# radius-server host 1.1.1.2 acct-port 800 auth-port 900 test username aaafail idle-time 75 key abc123

You can verify your settings by entering the **show running-config** privileged EXEC command.

Command	Description
dot1x critical (global configuration)	Configures the parameters for the inaccessible authentication bypass feature.
dot1x critical (interface configuration)	Enables the inaccessible authentication bypass feature on an interface and configures the access VLAN to which the switch assigns the critical port when the port is in the critical-authentication state.
radius-server key {0 string 7 string string }	Sets the authentication and encryption key for all RADIUS communications between the router and the RADIUS daemon. For syntax information, select Cisco IOS Security Command Reference, Release 12.2 > Server Security Protocols > RADIUS Commands.
show running-config	Displays the running configuration on the switch. For syntax information, select Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 > File Management Commands > Configuration File Management Commands.

remote-span

Use the **remote-span** VLAN configuration command to configure a VLAN as a Remote Switched Port Analyzer (RSPAN) VLAN. Use the **no** form of this command to remove the RSPAN designation from the VLAN.

remote-span

no remote-span

Syntax Description

This command has no arguments or keywords.

Defaults

No RSPAN VLANs are defined.

Command Modes

VLAN configuration (config-VLAN)

Command History

Release	Modification
12.2(25)SEE	This command was introduced.

Usage Guidelines

You can configure RSPAN VLANs only in config-VLAN mode (entered by using the **vlan** global configuration command), not the VLAN configuration mode entered by using the **vlan database** privileged EXEC command.

If VLAN Trunking Protocol (VTP) is enabled, the RSPAN feature is propagated by VTP for VLAN-IDs that are lower than 1005. If the RSPAN VLAN ID is in the extended range, you must manually configure intermediate switches (those in the RSPAN VLAN between the source switch and the destination switch).

Before you configure the RSPAN **remote-span** command, use the **vlan** (global configuration) command to create the VLAN.

The RSPAN VLAN has these characteristics:

- No MAC address learning occurs on it.
- RSPAN VLAN traffic flows only on trunk ports.
- Spanning Tree Protocol (STP) can run in the RSPAN VLAN, but it does not run on RSPAN destination ports.

When an existing VLAN is configured as an RSPAN VLAN, the VLAN is first deleted and then recreated as an RSPAN VLAN. Any access ports are made inactive until the RSPAN feature is disabled.

Examples

This example shows how to configure a VLAN as an RSPAN VLAN.

Switch(config)# vlan 901
Switch(config-vlan)# remote-span

This example shows how to remove the RSPAN feature from a VLAN.

Switch(config)# vlan 901
Switch(config-vlan)# no remote-span

You can verify your settings by entering the show vlan remote-span user EXEC command.

Command	Description
monitor session	Enables Switched Port Analyzer (SPAN) and RSPAN monitoring on a port and configures a port as a source or destination port.
vlan (global configuration)	Changes to config-vlan mode where you can configure VLANs 1 to 4094.

renew ip dhcp snooping database

Use the **renew ip dhcp snooping database** privileged EXEC command to renew the DHCP snooping binding database.

renew ip dhcp snooping database [{flash:/filename | ftp://user:password@host/filename | nvram:/filename | rcp://user@host/filename | tftp://host/filename}] [validation none]

Syntax Description

flash:/filename	(Optional) Specify that the database agent or the binding file is in the flash memory.
ftp://user:password @host/filename	(Optional) Specify that the database agent or the binding file is on an FTP server.
nvram:/filename	(Optional) Specify that the database agent or the binding file is in the NVRAM.
rcp://user@host/file name	(Optional) Specify that the database agent or the binding file is on a Remote Control Protocol (RCP) server.
tftp://host/filename	(Optional) Specify that the database agent or the binding file is on a TFTP server.
validation none	(Optional) Specify that the switch does not verify the cyclic redundancy check (CRC) for the entries in the binding file specified by the URL.

Defaults

No default is defined.

Command Modes

Privileged EXEC

Command History

Release	Modification
12.2(44)SE	This command was introduced.

Usage Guidelines

If you do not specify a URL, the switch tries to read the file from the configured URL.

Examples

This example shows how to renew the DHCP snooping binding database without checking CRC values in the file:

Switch# renew ip dhcp snooping database validation none

You can verify your settings by entering the **show ip dhcp snooping database** privileged EXEC command.

Command	Description
ip dhcp snooping	Enables DHCP snooping on a VLAN.

Command	Description
ip dhcp snooping binding	Configures the DHCP snooping binding database.
show ip dhcp snooping database	Displays the status of the DHCP snooping database agent.