

Newer Cisco SBA Guides Available

This guide is part of an older series of Cisco Smart Business Architecture designs. To access the latest Cisco SBA Guides, go to http://www.cisco.com/go/sba

Cisco strives to update and enhance SBA guides on a regular basis. As we develop a new series of SBA guides, we test them together, as a complete system. To ensure the mutual compatibility of designs in Cisco SBA guides, you should use guides that belong to the same series.

GET VPN Deployment Guide

SMART BUSINESS ARCHITECTURE

August 2012 Series

Preface

Who Should Read This Guide

This Cisco® Smart Business Architecture (SBA) guide is for people who fill a variety of roles:

- Systems engineers who need standard procedures for implementing solutions
- Project managers who create statements of work for Cisco SBA implementations
- Sales partners who sell new technology or who create implementation
 documentation
- Trainers who need material for classroom instruction or on-the-job training

In general, you can also use Cisco SBA guides to improve consistency among engineers and deployments, as well as to improve scoping and costing of deployment jobs.

Release Series

Cisco strives to update and enhance SBA guides on a regular basis. As we develop a series of SBA guides, we test them together, as a complete system. To ensure the mutual compatibility of designs in Cisco SBA guides, you should use guides that belong to the same series.

The Release Notes for a series provides a summary of additions and changes made in the series.

All Cisco SBA guides include the series name on the cover and at the bottom left of each page. We name the series for the month and year that we release them, as follows:

month year Series

For example, the series of guides that we released in August 2012 are the "August 2012 Series".

You can find the most recent series of SBA guides at the following sites:

Customer access: http://www.cisco.com/go/sba

Partner access: http://www.cisco.com/go/sbachannel

How to Read Commands

Many Cisco SBA guides provide specific details about how to configure Cisco network devices that run Cisco IOS, Cisco NX-OS, or other operating systems that you configure at a command-line interface (CLI). This section describes the conventions used to specify commands that you must enter.

Commands to enter at a CLI appear as follows:

configure terminal

Commands that specify a value for a variable appear as follows:

ntp server 10.10.48.17

Commands with variables that you must define appear as follows:

class-map [highest class name]

Commands shown in an interactive example, such as a script or when the command prompt is included, appear as follows:

Router# enable

Long commands that line wrap are underlined. Enter them as one command:

wrr-queue random-detect max-threshold 1 100 100 100 100 100

100 100 100

Noteworthy parts of system output or device configuration files appear highlighted, as follows:

interface Vlan64

ip address 10.5.204.5 255.255.25.0

Comments and Questions

If you would like to comment on a guide or ask questions, please use the SBA feedback form.

If you would like to be notified when new comments are posted, an RSS feed is available from the SBA customer and partner pages.

August 2012 Series

Table of Contents

What's In This SBA Guide	1
Cisco SBA Borderless Networks	1
Route to Success	1
About This Guide	1
Introduction	2
Business Overview	2
Technology Overview	2
Deployment Details	5
Implementing Key Servers	5
Implementing Group Member1	6

Appendix A: Product List	19
Appendix B: Device Configuration Files	. 22
GET VPN Key Server	22
GET VPN Group Member	25
Appendix C: Changes	. 28

What's In This SBA Guide

Cisco SBA Borderless Networks

Cisco SBA helps you design and quickly deploy a full-service business network. A Cisco SBA deployment is prescriptive, out-of-the-box, scalable, and flexible.

Cisco SBA incorporates LAN, WAN, wireless, security, data center, application optimization, and unified communication technologies—tested together as a complete system. This component-level approach simplifies system integration of multiple technologies, allowing you to select solutions that solve your organization's problems—without worrying about the technical complexity.

Cisco SBA Borderless Networks is a comprehensive network design targeted at organizations with up to 10,000 connected users. The SBA Borderless Network architecture incorporates wired and wireless local area network (LAN) access, wide-area network (WAN) connectivity, WAN application optimization, and Internet edge security infrastructure.

Route to Success

To ensure your success when implementing the designs in this guide, you should first read any guides that this guide depends upon—shown to the left of this guide on the route below. As you read this guide, specific prerequisites are cited where they are applicable.

About This Guide

This *deployment guide* contains one or more deployment chapters, which each include the following sections:

- Business Overview—Describes the business use case for the design. Business decision makers may find this section especially useful.
- Technology Overview—Describes the technical design for the business use case, including an introduction to the Cisco products that make up the design. Technical decision makers can use this section to understand how the design works.
- **Deployment Details**—Provides step-by-step instructions for deploying and configuring the design. Systems engineers can use this section to get the design up and running quickly and reliably.

You can find the most recent series of Cisco SBA guides at the following sites:

Customer access: http://www.cisco.com/go/sba

Partner access: http://www.cisco.com/go/sbachannel

Introduction

This guide describes how to deploy Cisco® Group Encrypted Transport VPN (GET VPN) technology to secure WAN and metropolitan-area network (MAN) connectivity between a primary site and up to 500 remote sites.

Business Overview

Organizations pay a great deal of attention to protecting their electronic assets from outside threats. This includes an important development: IT services are increasingly migrating toward cloud-based services.

With organizations moving toward cloud-based IT services and cloud computing, they have an increasing need to secure data in transit and ensure data confidentiality, integrity, and availability. This is further driven by government regulatory requirements and industry security standards such as the Health Insurance Portability and Accountability Act (HIPAA), the Federal Information Security Management Act (FISMA), the Sarbanes-Oxley Act, and the Payment Card Industry Data Security Standard (PCI DSS) that spell out the need and set standards for encrypting data transported over networks.

Furthermore, voice and video are becoming a prominent piece of the overall network traffic. Organizations are looking to leverage technologies (for example, rich media collaboration tools and interactive video solutions) to lower operating cost and reduce their carbon footprint by cutting down on travel. As a result, the distributed nature of voice and interactive video applications has accelerated the need for instantaneous, remote site-to-remote site communications. At the same time, current WAN technologies force organizations to make tradeoffs between enabling quality of service (QoS) to support these real-time applications and network transport security.

To address these challenges, Cisco introduced the next generation of WAN encryption technology, Cisco GET VPN, which addresses the security requirement while maintaining the instantaneous remote site-to-remote site communication needed for real-time applications. Cisco GET VPN eliminates the need for compromise between network intelligence and data privacy in private WAN environments. The technology introduces a new category of VPN that eliminates the need for tunnels, while providing strong encryption that meets the 140 series of the Federal Information Processing Standards (FIPS).

Technology Overview

GET VPN is a tunnel-less VPN technology based on the IETF standard (RFC 3547). The technology provides end-to-end data encryption for network infrastructure while maintaining any-to-any communication between sites. You can deploy it across various WAN core transports, such as IP or Multiprotocol Label Switching (MPLS) networks. GET VPN leverages the Group Domain of Interpretation (GDOI) protocol to create a secure communication domain among network devices.

The benefits of GET VPN include the following:

- Highly scalable VPN technology that provides an any-to-any meshed topology without the need for complex peer-to-peer security associations
- Low latency and jitter communication with direct traffic between sites
- Centralized encryption policy and membership management with the key servers (KSs)
- Simplified network design due to leveraging of native routing infrastructure (no overlay routing protocol needed)
- Efficient bandwidth utilization by supporting multicast-enabled network core
- Network intelligence such as native routing path, network topology, and QoS

GET VPN Components

A group member (GM) is a router running Cisco IOS that encrypts and decrypts the data traffic. A GM registers with a key server to obtain the encryption keys necessary for encrypting and decrypting traffic streams traversing through the device. The GM also performs routing between secure and unsecure domains. Lastly, the GM participates in multicast communications that have been established in the network.

A *key server (KS)* is the brain of the GET VPN operation. It is responsible for authenticating GMs. The KS manages security policies that determine which traffic should be encrypted. The KS distributes session keys for traffic encryption and the security policies through GDOI protocol to GMs. There are two types of keys that the KS sends out to GMs: the key encryption key (KEK) and the traffic encryption key (TEK). The KS uses the KEK to secure communication between the KS and GMs. GMs use the TEK for bulk data encryption of traffic traversing between GMs.

The KS sends out rekey messages as needed. The rekey message contains new encryption policy and encryption keys to use when the old IPSec Security Association (SA) expires. The rekey message is sent in advance of the SA expiration, which helps ensure that the new keys are available to all GMs.

The KS is an essential component in the GET VPN deployment. If the KS becomes unavailable, new GMs will not be able to register and participate in the secure communication, and the existing GMs will not receive new rekeys and updated security policies when the existing ones expire.

To help ensure a highly available and resilient GET VPN network, redundant KSs operate in cooperative mode. Cooperative key servers (COOP KSs) share the GM registration load by jointly managing the GDOI registration of the group. When COOP KSs start up, they go through an election process and the KS with the highest priority assumes the primary role, while the other KSs remain in secondary roles. The primary KS is responsible for creating and redistributing the security policies and keys to GMs, as well as synchronizing the secondary KSs.

Figure 3 - COOP KS synchronization flow

Deployment Details

This section covers the following:

- · Deployment details for key servers
- Deployment details for group members

Ca

Caution

If you are using a Cisco ASR 1000 Series router as a GET VPN GM, the required software release is version 15.2(2)S2. Additional details are included in Appendix A: Product List.

Process

Implementing Key Servers

- 1. Configure the distribution switch
- 2. Configure the KS
- 3. Configure connectivity to the LAN
- 4. Generate and export an RSA key
- 5. Configure KS policies
- 6. Configure redundancy on primary KS
- 7. Configure secondary KS

This section describes configuring the GET VPN KSs. Only the core relevant features are described.

Table 1 - Parameters used in the deployment examples

Host name	Port- channel number	IP address	Netmask	Default gateway	KS role	KS priority
KS-2951-1	21	10.4.32.151	255.255.255.192	10.4.32.129	Primary	100
KS-2951-2	22	10.4.32.152	255.255.255.192	10.4.32.129	Secondary	75

Procedure 1

Configure the distribution switch

Step 1: If a VLAN does not already exist on the distribution layer switch, configure it now.

vlan **350**

name WAN_Service_Net

Step 2: Configure Layer 3 (if necessary).

Be sure to configure a VLAN interface (SVI) for every new VLAN you add, so devices in the VLAN can communicate with the rest of the network.

interface Vlan350
ip address 10.4.32.129 255.255.255.192
no shutdown

Step 3: Configure EtherChannel member interfaces.

Tech Tip

EtherChannel is a logical interface that bundles multiple physical LAN links into a single logical link.

Connect the KS EtherChannel uplinks in order to separate switches in the distribution layer switches or stack (for the Cisco Catalyst 4507R+E distribution layer, this separates redundant modules for additional resiliency), and then configure two physical interfaces to be members of the EtherChannel. Also, apply the egress QoS macro that was defined in the platform configuration procedure. This ensures traffic is prioritized appropriately.

Tech Tip

Configure the physical interfaces that are members of a Layer 2 EtherChannel prior to configuring the logical port-channel interface. Doing the configuration in this order allows for minimal configuration and reduces errors because most of the commands entered to a port-channel interface are copied to its members interfaces and do not require manual replication.

```
interface GigabitEthernet 1/0/9
```

```
description Link to KS-2951-1 Gig0/0
interface GigabitEthernet 2/0/9
description Link to KS-2951-1 Gig0/1
```

```
!
```

interface range GigabitEthernet 1/0/9, GigabitEthernet 2/0/9
switchport

macro apply EgressQoS

channel-group **21** mode on

logging event link-status

logging event bundle-status

Next, configure the EtherChannel. Access mode interfaces are used for the connection to the KSs.

Step 4: Assign the VLAN created at the beginning of the procedure to the interface. When using EtherChannel, the port-channel number must match the channel group configured in Step 3.

```
interface Port-channel 21
description EtherChannel link to KS-2951-1
switchport access vlan 350
logging event link-status
no shutdown
```

Procedure 2

Configure the KS

Within this design, there are features and services that are common across all KS routers. In this procedure, you configure system settings that simplify and secure the management of the solution.

Step 1: Configure the device host name to make it easy to identify the device.

hostname **KS-2951-1**

Step 2: Configure the local login and password

The local login account and password provide basic access authentication to a router, which provides only limited operational privileges. The enable password secures access to the device configuration mode. By enabling password encryption, you prevent the disclosure of plaintext passwords when viewing configuration files

username admin password **clscol23** enable secret **clscol23** service password-encryption aaa new-model

By default, HTTPS access to the router will use the enable password for authentication.

Step 3: If you want to configure centralized user authentication, perform this step.

As networks scale in the number of devices to maintain, the operational burden to maintain local user accounts on every device also scales. A centralized Authentication, Authorization, and Accounting (AAA) service reduces operational tasks per device and provides an audit log of user access for security compliance and root-cause analysis. When AAA is enabled for access control, all management access to the network infrastructure devices (Secure Shell [SSH] Protocol and Secure HTTP [HTTPS]) is controlled by AAA. **Reader Tip**

The AAA server used in this architecture is the Cisco Access Control System (ACS). For details about ACS configuration, see the Cisco SBA—Borderless Networks Device Management Using ACS Deployment Guide.

TACACS+ is the primary protocol used to authenticate management logins on the infrastructure devices to the AAA server. A local AAA user database is also defined in Step 2 on each network infrastructure device to provide a fallback authentication source in case the centralized TACACS+ server is unavailable.

```
tacacs server TACACS-SERVER-1
  address ipv4 10.4.48.15
  key SecretKey
 !
 aaa group server tacacs+ TACACS-SERVERS
  server name TACACS-SERVER-1
 !
 aaa authentication login default group TACACS-SERVERS local
  aaa authorization exec default group TACACS-SERVERS local
  aaa authorization console
  ip http authentication aaa
```

Step 4: Configure device management protocols.

HTTPS and SSH are secure replacements for the HTTP and Telnet protocols. They use Secure Sockets Layer (SSL) and Transport Layer Security (TLS) to provide device authentication and data encryption.

The use of the SSH and HTTPS protocols enables secure management of the network device. Both protocols are encrypted for privacy, and the unsecure protocols—Telnet and HTTP—are turned off.

Specify the **transport preferred none** command on vty lines to prevent errant connection attempts from the CLI prompt. Without this command, if the ip name-server is unreachable, long timeout delays may occur for mistyped commands. ip domain-name cisco.local ip ssh version 2 no ip http server ip http secure-server line vty 0 15 transport input ssh transport preferred none

When synchronous logging of unsolicited messages and debug output is turned on, console log messages are displayed on the console after interactive CLI output is displayed or printed. With this command, you can continue typing at the device console when debugging is enabled.

line con 0 logging synchronous

Enable Simple Network Management Protocol (SNMP) to allow the network infrastructure devices to be managed by a network management system (NMS). SNMPv2c is configured both for a read-only and a read/write community string.

snmp-server community cisco RO
snmp-server community cisco123 RW

Step 5: If operational support is centralized in your network, you can increase network security by using an access list to limit the networks that can access your device. In this example, only devices on the 10.4.48.0/24 network will be able to access the device via SSH or SNMP.

```
access-list 55 permit 10.4.48.0 0.0.0.255
line vty 0 15
access-class 55 in
!
snmp-server community cisco RO 55
snmp-server community cisco123 RW 55
```

Tech Tip

If you configure an access list on the vty interface, you may lose the ability to use SSH to log in from one router to the next for hop-by-hop troubleshooting. Step 6: Configure a synchronized clock.

The Network Time Protocol (NTP) is designed to synchronize a network of devices. An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the organization's network.

You should program network devices to synchronize to a local NTP server in the network. The local NTP server typically references a more accurate clock feed from an outside source. By configuring console messages, logs, and debug output to provide time stamps on output, you can crossreference events in a network.

```
ntp server 10.4.48.17
ntp update-calendar
!
clock timezone PST -8
clock summer-time PDT recurring
!
service timestamps debug datetime msec localtime
service timestamps log datetime msec localtime
```

Procedure 3

Configure connectivity to the LAN

Any links to adjacent distribution layers should be Layer 3 links or Layer 3 EtherChannels.

Step 1: Configure a Layer 3 interface.

interface Port-channel21

ip address 10.4.32.151 255.255.255.192

no shutdown

Step 2: Configure EtherChannel member interfaces.

Configure the physical interfaces to tie to the logical port-channel using the **channel-group** command. The number for the port-channel and channel-group must match. Not all router platforms can support Link Aggregation Control Protocol (LACP) to negotiate with the switch, so EtherChannel is configured statically.

```
interface GigabitEthernet0/0
description WAN-D3750X Gig1/0/9
!
interface GigabitEthernet0/1
description WAN-D3750X Gig2/0/9
!
interface range GigabitEthernet0/0, GigabitEthernet0/1
no ip address
channel-group 21
no shutdown
```

Step 3: Configure a default route.

Provide reachability information for the KS to reach GMs using a default route.

ip route 0.0.0.0 0.0.0.0 10.4.32.129

Procedure 4 Generate and export an RSA key

This procedure is for the primary KS only.

Before starting KS configuration, generate exportable RSA keys to be used during rekeys.

Step 1: Generate an RSA key to use during rekeys.

```
crypto key generate rsa label GETVPN-REKEY-RSA modulus 2048 exportable
```

Tech Tip

Generate the RSA key pair on the primary KS. Make sure that the "exportable" option is used in generating the RSA keys. This will allow you to export the key pair and install it into other KSs that will be running in COOP KS mode in the network.

Example

KS-2951-1(config) # crypto key generate rsa label GETVPN-REKEY-RSA modulus 2048 exportable

The name for the keys will be: GETVPN-REKEY-RSA

% The key modulus size is 2048 bits

% Generating 2048 bit RSA keys, keys will be exportable...[OK]

Step 2: Export RSA keys from the primary KS.

crypto key export rsa **GETVPN-REKEY-RSA** pem terminal 3des clsco123

In this example, you export the RSA key pair from the primary KS to a privacy-enhanced mail (PEM) format. We suggest that you use copy and paste from the KS console to a file, and store the file in a secure environment. You will use the key pair later to build secondary KSs or, if necessary, to rebuild the primary KS.

Repeat for both the public key and private key information.

Example

KS-2951-1(config)#crypto key export rsa GETVPN-REKEY-RSA pem terminal 3des c1sco123

- % Key name: GETVPN-REKEY-RSA Usage: General Purpose Key Key data:
- ----BEGIN PUBLIC KEY----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtX3Cr8QUpSmgTpmLkyYG CySAYlPTnoy06umGRMmxXu/XB4ls64BpfHnrmuCqhtNajrlOxKO9TYh6r7kUSSKO EpFqmtk3bEJq/MF+hUvCXxz6Qe8S+YC0dHUem1039/mZJdK9RBwjC7KlFbP4io6D h9WmlL9R8mvTmslCEfdu4ameRaR+8dt6Tbm9SGwamKA8U2I8q5BPXDXfJMHCe/4y Kijo+5gSy1hy+1SEXW9MiNtV4Htckb5KlH+vhtkxDIzhXT2m8/wUQz3t+9LXfRgU OWFSo9XjTqbMDcMpAGSNnhFsqHW6+DYqup1wJGypfRKlTFr5cQ8nCQx0q6pwzA+5 fwIDAQAB

----END PUBLIC KEY-----

----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4, ENCRYPTED

DEK-Info: DES-EDE3-CBC, B0EA38C0B90569C9

2BADU1kcBZQo3aY/C+1gT3jVQxbawIoidGi5OZtqpczzHX5KwkgjN/o36t1Wa7ka TtPh3XZ6UZJ1YCiAW/fzyuKD3ITx6eS/npaHQu2pKl0ToDUEman0ptdKklRv5ODV7 AQEMYwI27Uy16cbb0dTkX4y1y5VmzCz3oLWqcygEiYWe2pHaB1dP7TEHnKmnrp3H ztRJIwLWJc682EIOK2IuhhNb05XAt3xXO241wNSvgE5zAtE9p2Z8lGSevcWjfmoi Pp58T7EWL9hWoCmpUA6+S60b/OVTV+MG7tGENGiL0alquMKQnGRf/eK28KaLwg7x <key data deleted>

----END RSA PRIVATE KEY-----

Procedure 5

Configure KS policies

The Internet Security Association and Key Management Protocol (ISAKMP) policy for GET VPN uses the following:

- Advanced Encryption Standard (AES) with 256-bit key
- Secure Hash Standard (SHA)
- Diffie-Hellman Group: 5 (used for KS)
- Diffie-Hellman Group: 2 (used for GM)
- Internet Key Exchange (IKE) lifetime: 86,400 (default, used for KS)
- IKE lifetime: 1200 (used for GM)

Step 1: Define ISAKMP policy for COOP KS.

crypto isakmp policy 10 encr aes 256 group 5

Step 2: Define ISAKMP policy for GMs.

crypto isakmp policy 15 encr aes 256 group 2 lifetime 1200

Although most ISAKMP policy parameters must be identically configured between KS and GM, IKE lifetime is negotiated between KS and GM to the lowest value configured. On the KS, change the IKE lifetime to 1200 seconds from the default 86400 seconds to centrally set the IKE lifetime for GM.

Step 3: Configure the IKE authentication method using pre-shared key (PSK).

```
crypto isakmp policy 10
authentication pre-share
!
crypto isakmp policy 15
authentication pre-share
```

The default authentication method uses public key infrastructure (PKI) (authentication rsa-sig). For ease of deployment, this example uses PSK as the authentication method.

Step 4: Configure the PSK. For IKE authentication to be successful, the remote peer's PSK must match the local peer's PSK. You can uniquely configure the PSK on a per-peer basis, or you can use a wildcard PSK to allow a group of remote devices with the same level of authentication to share an IKE PSK.

crypto isakmp key **clsco123** address 0.0.0.0 0.0.0.0

Step 5: Configure the IPsec encryption profile.

```
crypto ipsec transform-set AES256/SHA esp-aes 256 esp-sha-hmac !
```

crypto ipsec profile **GETVPN-PROFILE**

set security-association lifetime seconds 7200

set transform-set AES256/SHA

This example defines the algorithm used for data encryption, as well as the traffic encryption key (TEK) lifetime. Using the AES-256 encryption algorithm provides more robust security. The TEK lifetime is set for 2 hours (7200 seconds).

Tech Tip

The TEK lifetime should not be less than the default 3600 seconds. A short TEK lifetime creates more encryption policy rollovers that must be synchronized from the KS to all GMs. Setting the TEK lifetime too low may cause the GET VPN network to operate in an unstable state.

Step 6: Configure GET VPN GDOI group parameters. Each GDOI group configured on the KS requires a unique group ID.

crypto gdoi group **GETVPN-GROUP** identity number **65511** **Step 7:** Designate the device as a GDOI KS and define the parameters that will be used during the rekey process.

server local
rekey algorithm aes 256
rekey retransmit 40 number 3
rekey authentication mypubkey rsa GETVPN-REKEY-RSA
rekey transport unicast
address ipv4 [KS address]

The default rekey transport is multicast, but in this example you use the unicast rekey transport mechanism, with two more retransmits at 40-second intervals. The rekey algorithm is defined using AES-256 and using RSA signature for rekey authentication.

Step 8: Configure the IPsec profile and security policies, which define the traffic to be encrypted, and then configure the time-based anti-replay (TBAR) window size.

sa ipsec 10
profile GETVPN-PROFILE
match address ipv4 GETVPN-POLICY-ACL
replay time window-size 5

Step 9: Configure the security policy access control list (ACL).

Define the security policy on the KS by using an extended IP ACL. You should only use the 5-tuple in the ACL (that is, source_ip_address, destination_ip_address, protocol, source_port, destination_port) to determine what to encrypt. The **permit** entries in the ACL define the traffic that should be encrypted, and the **deny** entries define the traffic that should be excluded from the GET VPN encryption. The **deny** entries in the ACL should be configured to exclude routing protocols and the traffic that is encrypted already, such as SSH, TACACS+, GDOI, ISAKMP, etc. The ACL is applied to the GET VPN configuration as shown in Step 8.

```
ip access-list extended GETVPN-POLICY-ACL
```

```
remark >> exclude transient encrypted traffic (ESP, ISAKMP,
GDOI)
deny esp any any
deny udp any eq isakmp any eq isakmp
deny udp any eq 848 any eq 848
remark >> exclude encrypted in-band management traffic (SSH,
TACACS+)
```

denv	tcp any any eq 22
denv	tcp any eq 22 any
-	tcp any any eq 49
	tcp any eq 49 any
4	
remark	>> exclude routing protocol with MPLS provider
deny	tcp any any eq bgp
deny	tcp any eq bgp any
remark	>> exclude routing protocol used for Layer 2 WAN
deny	eigrp any any
remark	>> exclude other protocols as necessary (multiple
lines)	
deny	[protocol] [source] [destination]
remark	>> Require all other traffic to be encrypted
permit	ip any any

Tech Tip

By migrating from an unencrypted network to GET VPN, you can use receive-only SAs while WAN edge routers are in the process of converting to GET VPN GMs. The receive-only SA allows a GM to register to a KS and start receiving security policies and keys used for encryption; however, the GM continues to forward traffic in clear. The receive-only SA option establishes the control plane for the GET VPN network without engaging the data plan. This serves to provide interoperability between the sites that have been migrated to the GET VPN network and the sites waiting to be migrated. The following command enables the receive-only SA capability on the KS.

crypto gdoi group **GETVPN-GROUP** server local **sa receive-only**

After your network is fully migrated to GET VPN and you have verified that the control plane is completely operational, you can enable the encryption for all GMs in a group by disabling the receive-only SA mode on the KS.

crypto gdoi group GETVPN-GROUP

server local

no sa receive-only

Example—Primary KS

```
crypto isakmp policy 10
 encr aes 256
 authentication pre-share
 group 5
!
crypto isakmp policy 15
 encr aes 256
authentication pre-share
group 2
lifetime 1200
crypto isakmp key clscol23 address 0.0.0.0 0.0.0.0
!
!
crypto ipsec transform-set AES256/SHA esp-aes 256 esp-sha-hmac
!
crypto ipsec profile GETVPN-PROFILE
 set security-association lifetime seconds 7200
```

set transform-set **AES256/SHA**

crypto gdoi group **GETVPN-GROUP** identity number **65511** server local

rekey algorithm aes 256

rekey retransmit 40 number 3

rekey authentication mypubkey rsa GETVPN-REKEY-RSA

rekey transport unicast

sa ipsec 10

profile GETVPN-PROFILE

match address ipv4 GETVPN-POLICY-ACL

replay time window-size 5

address ipv4 10.4.32.151

!

I

ip access-list extended GETVPN-POLICY-ACL

remark >> exclude transient encrypted traffic (ESP, ISAKMP,

GDOI)

deny esp any any

deny udp any eq isakmp any eq isakmp

deny udp any eq 848 any eq 848

remark >> exclude encrypted in-band management traffic (SSH,

TACACS+)

deny tcp any any eq 22 tcp any eq 22 any denv tcp any any eq 49 deny tcp any eq 49 any deny remark >> exclude routing protocol with MPLS provider deny tcp any any eq bgp tcp any eq bgp any deny remark >> exclude routing protocol used for Layer 2 WAN eigrp any any deny remark >> exclude PIM protocol pim any host 224.0.0.13 denv remark >> exclude IGMP with MPLS provider igmp any host 224.0.0.1 deny igmp host 224.0.0.1 any deny igmp any host 224.0.1.40 denv

deny igmp host 224.0.1.40 any
remark >> exclude icmp traffic destined to SP address
deny icmp any 192.168.3.0 0.0.0.255
deny icmp 192.168.4.0 0.0.0.255
deny icmp 192.168.4.0 0.0.0.255
deny icmp 192.168.4.0 0.0.0.255 any
remark >> Require all other traffic to be encrypted
permit ip any any

Procedure 6

Configure redundancy on primary KS

To achieve redundancy and high availability in a GET VPN network, Cisco recommends having at least two KSs running in COOP KS mode. COOP KSs ensure that the group security policies, encryption keys, and registered GM information are shared and synchronized between KSs. From among the available KSs running in COOP mode, a primary KS is determined based first on highest priority, and then on the highest IP address used for rekey.

The primary KS is responsible for creating and redistributing group policies, and it also sends out updates on group information to other KSs to keep the secondary KSs in sync. If the primary KS is unavailable, a secondary KS can declare itself primary KS for the group and transition to the primary KS role if it does not detect other KS with higher priority.

Step 1: Configure KS redundancy on the primary KS and set the KS priority to 100.

Tech Tip

To minimize disruptions to the existing KS when adding a new KS into the COOP KS mode, we recommend that redundancy should be configured on the secondary KS in Procedure 7 Step 4 first, before redundancy is enabled on the primary KS.

crypto gdoi group **GETVPN-GROUP** server local redundancy local priority **100**

peer address ipv4 10.4.32.152

Step 2: Configure periodic dead peer protection on the primary KS running in COOP KS mode so that the secondary KS can track the state for the primary KS.

crypto isakmp keepalive 15 periodic

Example—Primary KS with redundancy

crypto isakmp keepalive 15 periodic crypto gdoi group **GETVPN-GROUP** identity number **65511** server local redundancy local priority **100** peer address ipv4 **10.4.32.152**

Procedure 7

Configure secondary KS

This procedure is for the secondary KS only.

The secondary KSs are configured similarly to the primary KS. Begin by repeating Procedure 1 to configure the distribution switch. Follow this with Procedure 2, and Procedure 3. Then, complete the following steps. Identical policies must be configured between the primary and secondary KS. This helps ensure that the same rules are redistributed to the GM if the secondary KS assumes the primary role.

Step 1: Import the RSA keys from the primary KS that were created in Procedure 4. This step requires PEM-formatted keys. Cut and paste from the terminal to a new KS router. You need to paste the public and private keys separately.

crypto key import rsa GETVPN-REKEY-RSA exportable terminal clscol23

Example

KS-2951-2(config) # crypto key import rsa GETVPN-REKEY-RSA
exportable terminal c1sco123

% Enter PEM-formatted public General Purpose key or certificate. % End with a blank line or "quit" on a line by itself. -----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtX3Cr8QUpSmgTpmLkyYG CySAYlPTnoy06umGRMmxXu/XB4ls64BpfHnrmuCqhtNajrlOxKO9TYh6r7kUSSKO EpFqmtk3bEJq/MF+hUvCXxz6Qe8S+YC0dHUem1039/mZJdK9RBwjC7KlFbP4io6D h9WmlL9R8mvTmslCEfdu4ameRaR+8dt6Tbm9SGwamKA8U2I8q5BPXDXfJMHCe/4y Kijo+5gSy1hy+1SEXW9MiNtV4Htckb5KlH+vhtkxDIzhXT2m8/wUQz3t+9LXfRgU OWFSo9XjTqbMDcMpAGSNnhFsqHW6+DYqup1wJGypfRKlTFr5cQ8nCQx0q6pwzA+5 fwIDAQAB

----END PUBLIC KEY-----

quit

% Enter PEM-formatted encrypted private General Purpose key.

% End with "quit" on a line by itself.

----BEGIN RSA PRIVATE KEY----

Proc-Type: 4, ENCRYPTED

DEK-Info: DES-EDE3-CBC, B0EA38C0B90569C9

2BADU1kcBZQo3aY/C+1gT3jVQxbawIoidGi5OZtqpczzHX5KwkgjN/o36t1Wa7ka TtPh3XZ6UZJ1YCiAW/fzyuKD3ITx6eS/npaHQu2pK10ToDUEman0ptdKk1Rv5ODV AQEMYwI27Uy16cbbOdTkX4y1y5VmzCz3oLWqcygEiYWe2pHaB1dP7TEHnKmnrp3H ztRJIwLWJc682EIOK2IuhhNb05XAt3xXO241wNSvgE5zAtE9p2Z81GSevcWjfmoi Pp58T7EWL9hWoCmpUA6+S60b/OVTV+MG7tGENGiL0alquMKQnGRf/eK28KaLwg7x <key data deleted>

----END RSA PRIVATE KEY----

quit

% Key pair import succeeded.

Tech Tip

The RSA key pair must be identical on all KS running in COOP KS mode. If a KS is added to a group without the RSA key, it will not be able to generate policies. This will results in the GM registered to this KS to stay in a fail-closed state and be unable to pass traffic with the rest of the GM in the group.

Step 2: Complete Procedure 5 (all steps) for the secondary KS

Step 3: Configure periodic dead peer protection on all secondary KSs running in COOP KS mode so that the primary KS can track state for the secondary KS.

crypto isakmp keepalive 15 periodic

Step 4: Configure KS redundancy by enabling the cooperative KS function on the secondary KS and setting the KS priority to 75, which is less than that of the primary KS (which is set to 100).

Tech Tip

To minimize disruptions to the existing KS when adding a new KS into the COOP KS mode, we recommend that redundancy should be configured on the secondary KS first, before redundancy is enabled on the primary KS in Procedure 6 Step 1.

```
crypto gdoi group GETVPN-GROUP
server local
redundancy
local priority 75
peer address ipv4 10.4.32.151
```

Example — Secondary KS

crypto isakmp policy 10 encr aes 256 authentication pre-share group 5 1 crypto isakmp policy 15 encr aes 256 authentication pre-share group 2 lifetime 1200 crypto isakmp key clscol23 address 0.0.0.0 0.0.0.0 crypto isakmp keepalive 15 periodic T 1 crypto ipsec transform-set AES256/SHA esp-aes 256 esp-sha-hmac 1 crypto ipsec profile GETVPN-PROFILE set security-association lifetime seconds 7200 set transform-set AES256/SHA 1 crypto gdoi group GETVPN-GROUP identity number 65511 server local rekey algorithm aes 256 rekey retransmit 40 number 3 rekey authentication mypubkey rsa GETVPN-REKEY-RSA rekey transport unicast sa ipsec 10 profile GETVPN-PROFILE match address ipv4 GETVPN-POLICY replay time window-size 5

address ipv4 10.4.32.152 redundancy local priority 75 peer address ipv4 10.4.32.151 L ip access-list extended GETVPN-POLICY-ACL remark >> exclude transient encrypted traffic (ESP, ISAKMP, GDOI) denv esp any any udp any eq isakmp any eq isakmp deny udp any eq 848 any eq 848 deny remark >> exclude encrypted in-band management traffic (SSH, TACACS+) tcp any any eq 22 deny tcp any eq 22 any denv deny tcp any any eq 49 tcp any eq 49 any deny remark >> exclude routing protocol with MPLS provider tcp any any eq bqp deny tcp any eq bgp any deny remark >> exclude routing protocol used for Layer 2 WAN deny eigrp any any remark >> exclude PIM protocol pim any host 224.0.0.13 denv remark >> exclude IGMP with MPLS provider igmp any host 224.0.0.1 deny igmp host 224.0.0.1 any denv igmp any host 224.0.1.40 deny igmp host 224.0.1.40 any deny remark >> exclude icmp traffic destined to SP address deny icmp any 192.168.3.0 0.0.0.255 icmp 192.168.3.0 0.0.0.255 any deny icmp any 192.168.4.0 0.0.0.255 denv deny icmp 192.168.4.0 0.0.0.255 any remark >> Permit all other traffic to be encrypted permit ip any any

Process Implementing Group Member 1. Configure a GM

This process adds GM functionality to an already configured WAN router. It only includes the additional steps required to enable the GM capabilities.

Reader Tip

For complete MPLS CE router configuration, see Cisco SBA— Borderless Networks MPLS WAN Deployment Guide.

For complete Layer 2 WAN CE router configuration, see Cisco SBA—Borderless Networks Layer 2 WAN Deployment Guide.

Procedure 1

Configure a GM

The GM registers with the KS in order to obtain the IPSec SA and the encryption keys that are necessary to encrypt traffic. During registration, the GM presents a group ID to the KS to get the respective policies and keys for the group. Because most of the intelligence resides on the KS, the configuration on a GM is relatively simple and is identical across all GMs.

This procedure assumes that all of the basic connectivity configurations (such as default route, routing protocols, etc.) are already set up. This procedure needs to be repeated for every GM that runs GET VPN.

Step 1: Configure ISAKMP policy.

The ISAKMP policy for GET VPN uses the following:

- AES with 256-bit key
- · SHA
- Diffie-Hellman Group 2
- PSK authentication

crypto isakmp policy **15** encr aes **256** authentication pre-share group **2**

Step 2: Configure the PSK for the KSs.

crypto isakmp key **clscol23** address **10.4.32.151** crypto isakmp key **clscol23** address **10.4.32.152**

For IKE authentication to be successful, the remote peer's PSK must match the local peer's PSK. You only need to specify the PSKs with the KSs.

Step 3: Configure the GDOI group information.

crypto gdoi group **GETVPN-GROUP** identity number **65511** server address ipv4 **10.4.32.151** server address ipv4 **10.4.32.152**

You do not need to configure IPsec transform-set and profile on a GM. When the GM successfully registers with the KS, it downloads these parameters. A GM needs to define only the GDOI group identity and the address of the KSs.

Step 4: Define the crypto map with the GDOI option and associate it to the GDOI group created in the previous step. Although the sequence number is arbitrary, it is the best practice to use the same value on all GMs.

crypto map **GETVPN-MAP** local-address **Loopback0** crypto map **GETVPN-MAP** [Sequence number] gdoi set group **GETVPN-GROUP**

Step 5: Activate GET VPN configuration on the GM.

Tech Tip

A router that is connected to multiple WAN transports, such as dual MPLS, must have the crypto map applied to each of its WAN-facing interfaces. When you use trunked demarcation in Layer 2 WAN deployments, you must apply the crypto map to all WAN-facing subinterfaces.

interface [type] [number]
crypto map GETVPN-MAP

Step 6: Apply the **ip tcp adjust-mss 1360** command on the WAN interface to account for the IPsec overhead. This command results in lowering the maximum segment size (MSS) for TCP traffic traverse through the interface to avoid the overhead caused by the IPsec header. This command only affects TCP traffic and is not applicable to UDP traffic.

interface [type] [number]
ip tcp adjust-mss 1360

Example - MPLS and Layer 2 WAN

```
crypto isakmp policy 15
encr aes 256
 authentication pre-share
group 2
crypto isakmp key clscol23 address 10.4.32.151
crypto isakmp key clscol23 address 10.4.32.152
1
crypto gdoi group GETVPN-GROUP
identity number 65511
 server address ipv4 10.4.32.151
server address ipv4 10.4.32.152
L
I.
crypto map GETVPN-MAP local-address Loopback0
crypto map GETVPN-MAP 10 gdoi
 set group GETVPN-GROUP
```

Example - MPLS CE router

interface GigabitEthernet0/0/3
description Connection to MPLS PE router
ip tcp adjust-mss 1360
crypto map GETVPN-MAP

Example - Layer 2 WAN CE router (with trunked demarcation)

interface GigabitEthernet0/0/3.38
encapsulation dot1Q 38
description Connection to Layer 2 WAN
ip tcp adjust-mss 1360
crypto map GETVPN-MAP

Notes			
	_		

Appendix A: Product List

WAN Aggregation

Functional Area	Product Description	Part Numbers	Software
GET VPN Key Server	Cisco 2951 Security Bundle with Security License	CISCO2951-SEC/K9	15.1(4)M2
WAN-aggregation Router	Aggregation Services 1002 Router	ASR1002-5G-VPN/K9	IOS-XE 15.2(2)S2
	Aggregation Services 1001 Router	ASR1001-2.5G-VPNK9	Advanced Enterprise
WAN-aggregation Router	Cisco 3945 Security Bundle w/SEC license PAK	CISCO3945-SEC/K9	15.1(4)M4
	Cisco 3925 Security Bundle w/SEC license PAK	CISCO3925-SEC/K9	
	Data Paper PAK for Cisco 3900 series	SL-39-DATA-K9	

WAN Remote Site

Functional Area	Product Description	Part Numbers	Software
Modular WAN Remote-site Router	Cisco 3945 Voice Sec. Bundle, PVDM3-64, UC and SEC License PAK	C3945-VSEC/K9	15.1(4)M4
	Cisco 3925 Voice Sec. Bundle, PVDM3-64, UC and SEC License PAK	C3925-VSEC/K9	
	Data Paper PAK for Cisco 3900 series	SL-39-DATA-K9	
Modular WAN Remote-site Router	Cisco 2951 Voice Sec. Bundle, PVDM3-32, UC and SEC License PAK	C2951-VSEC/K9	15.1(4)M4
	Cisco 2921 Voice Sec. Bundle, PVDM3-32, UC and SEC License PAK	C2921-VSEC/K9	-
	Cisco 2911 Voice Sec. Bundle, PVDM3-32, UC and SEC License PAK	C2911-VSEC/K9	
	Data Paper PAK for Cisco 2900 series	SL-29-DATA-K9	
Modular WAN Remote-site Router	1941 WAAS Express only Bundle	C1941-WAASX-SEC/K9	15.1(4)M4
	Data Paper PAK for Cisco 1900 series	SL-19-DATA-K9	securityk9, datak9
Fixed WAN Remote-site Router	Cisco 881 SRST Ethernet Security Router with FXS FXO 802.11n FCC Compliant	C881SRST-K9	15.1(4)M4 securityk9, datak9

LAN Access Layer

Functional Area	Product Description	Part Numbers	Software	
Modular Access Layer Switch	Cisco Catalyst 4507R+E 7-slot Chassis with 48Gbps per slot	WS-C4507R+E	3.3.0.SG(15.1-1SG)	
	Cisco Catalyst 4500 E-Series Supervisor Engine 7L-E	WS-X45-SUP7L-E	IP Base	
	Cisco Catalyst 4500 E-Series 48 Ethernet 10/100/1000 (RJ45) PoE+ ports	WS-X4648-RJ45V+E		
	Cisco Catalyst 4500 E-Series 48 Ethernet 10/100/1000 (RJ45) PoE+,UPoE ports	WS-X4748-UPOE+E		
Stackable Access Layer	Cisco Catalyst 3750-X Series Stackable 48 Ethernet 10/100/1000 PoE+ ports	WS-C3750X-48PF-S	15.0(1)SE2	
Switch	Cisco Catalyst 3750-X Series Stackable 24 Ethernet 10/100/1000 PoE+ ports	WS-C3750X-24P-S	IP Base	
	Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module	C3KX-NM-10G		
	Cisco Catalyst 3750-X Series Four GbE SFP ports network module	C3KX-NM-1G		
Standalone Access Layer Switch	Cisco Catalyst 3560-X Series Standalone 48 Ethernet 10/100/1000 PoE+ ports	WS-C3560X-48PF-S	15.0(1)SE2 IP Base	
	Cisco Catalyst 3560-X Series Standalone 24 Ethernet 10/100/1000 PoE+ ports	WS-C3560X-24P-S		
	Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module	C3KX-NM-10G		
	Cisco Catalyst 3750-X Series Four GbE SFP ports network module	C3KX-NM-1G		
Stackable Access Layer Switch	Cisco Catalyst 2960-S Series 48 Ethernet 10/100/1000 PoE+ ports and Two 10GbE SFP+ Uplink ports	WS-C2960S-48FPD-L	15.0(1)SE2 LAN Base	
	Cisco Catalyst 2960-S Series 48 Ethernet 10/100/1000 PoE+ ports and Four GbE SFP Uplink ports	WS-C2960S-48FPS-L		
	Cisco Catalyst 2960-S Series 24 Ethernet 10/100/1000 PoE+ ports and Two 10GbE SFP+ Uplink ports	WS-C2960S-24PD-L		
	Cisco Catalyst 2960-S Series 24 Ethernet 10/100/1000 PoE+ ports and Four GbE SFP Uplink ports	WS-C2960S-24PS-L		
	Cisco Catalyst 2960-S Series Flexstack Stack Module	C2960S-STACK		

LAN Distribution Layer

Functional Area	Product Description	Part Numbers	Software	
Modular Distribution Layer Virtual Switch Pair	Cisco Catalyst 6500 E-Series 6-Slot Chassis	WS-C6506-E	15.0(1)SY1	
	Cisco Catalyst 6500 VSS Supervisor 2T with 2 ports 10GbE and PFC4	VS-S2T-10G	IP services	
	Cisco Catalyst 6500 16-port 10GbE Fiber Module w/DFC4	WS-X6816-10G-2T		
	Cisco Catalyst 6500 24-port GbE SFP Fiber Module w/DFC4	WS-X6824-SFP		
	Cisco Catalyst 6500 4-port 40GbE/16-port 10GbE Fiber Module w/DFC4	WS-X6904-40G-2T		
	Cisco Catalyst 6500 4-port 10GbE SFP+ adapter for WX-X6904-40G module	CVR-CFP-4SFP10G		
Modular Distribution Layer	Cisco Catalyst 4507R+E 7-slot Chassis with 48Gbps per slot	WS-C4507R+E	3.3.0.SG(15.1-1SG)	
Switch	Cisco Catalyst 4500 E-Series Supervisor Engine 7-E, 848Gbps	WS-X45-SUP7-E	Enterprise Services	
	Cisco Catalyst 4500 E-Series 24-port GbE SFP Fiber Module	WS-X4624-SFP-E		
	Cisco Catalyst 4500 E-Series 12-port 10GbE SFP+ Fiber Module	WS-X4712-SFP+E		
Stackable Distribution Layer Switch	Cisco Catalyst 3750-X Series Stackable 12 GbE SFP ports	WS-C3750X-12S-E	15.0(1)SE2	
	Cisco Catalyst 3750-X Series Two 10GbE SFP+ and Two GbE SFP ports network module	C3KX-NM-10G	IP Services	
	Cisco Catalyst 3750-X Series Four GbE SFP ports network module	C3KX-NM-1G		

Appendix B: Device Configuration Files

GET VPN Key Server	!
version 15.1	!
service timestamps debug datetime msec localtime	!
service timestamps log datetime msec localtime	!
service password-encryption !	! ip domain name cisco.local !
hostname KS-2951-1 !	multilink bundle-name authenticated !
boot-start-marker boot-end-marker	
! !	
enable secret 5 ***********************************	voice-card 0
aaa new-model !	
! aaa group server tacacs+ TACACS-SERVERS server name TACACS-SERVER-1	: ! !
! aaa authentication login default group TACACS-SERVERS local aaa authorization console	! ! license udi pid CISCO2951/K9 sn **********
aaa authorization exec default group TACACS-SERVERS local aaa authorization console ip http authentication aaa	license boot module c2951 technology-package securityk9 hw-module pvdm 0/0 !
aaa session-id common !	! ! username admin password 7 ************
clock timezone PST -8 0 clock summer-time PDT recurring	!

!

!

no ipv6 cef

ip cef

ip source-route

crypto pki token default removal timeout 0

ipv6 spd queue min-threshold 62 ipv6 spd queue max-threshold 63

```
redundancy
I
L
ip ssh version 2
L
L
crypto isakmp policy 10
encr aes 256
 authentication pre-share
group 5
1
crypto isakmp policy 15
encr aes 256
authentication pre-share
group 2
lifetime 1200
crypto isakmp key clscol23 address 0.0.0.0 0.0.0.0
crypto isakmp keepalive 15 periodic
1
L.
crypto ipsec transform-set AES256/SHA esp-aes 256 esp-sha-hmac
L
crypto ipsec profile GETVPN-PROFILE
 set security-association lifetime seconds 7200
 set transform-set AES256/SHA
L
crypto gdoi group GETVPN-GROUP
identity number 65511
 server local
 rekey algorithm aes 256
  rekey retransmit 40 number 3
 rekey authentication mypubkey rsa GETVPN-REKEY-RSA
  rekey transport unicast
  sa ipsec 10
  profile GETVPN-PROFILE
```

```
match address ipv4 GETVPN-POLICY-ACL
   replay time window-size 5
  address ipv4 10.4.32.151
  redundancy
   local priority 100
   peer address ipv4 10.4.32.152
Т
1
1
T
interface Port-channel21
ip address 10.4.32.151 255.255.255.192
hold-queue 150 in
!
interface Embedded-Service-Engine0/0
no ip address
shutdown
1
interface GigabitEthernet0/0
 no ip address
 duplex auto
 speed auto
 channel-group 21
1
interface GigabitEthernet0/1
 no ip address
 duplex auto
 speed auto
 channel-group 21
1
interface GigabitEthernet0/2
no ip address
 shutdown
 duplex auto
speed auto
1
```

ip forward-protocol nd	permit ip any any
!	!
no ip http server	!
ip http secure-server	!
!	!
ip route 0.0.0.0 0.0.0.0 10.4.32.129	!
!	nls resp-timeout 1
ip access-list extended GETVPN-POLICY-ACL	cpd cr-id 1
remark >> exclude transient encrypted traffic (ESP, ISAKMP,	!
GDOI)	snmp-server community cisco RO
deny esp any any	snmp-server community cisco123 RW
deny udp any eq isakmp any eq isakmp	!
deny udp any eq 848 any eq 848	!
remark >> exclude encrypted in-band management traffic (SSH,	!
TACACS+)	control-plane
deny tcp any any eq 22	!
deny tcp any eq 22 any	!
deny tcp any any eq tacacs	!
deny tcp any eq tacacs any	!
remark >> exclude routing protocol with MPLS provider	mgcp profile default
deny tcp any any eq bgp	!
deny tcp any eq bgp any	tacacs server TACACS-SERVER-1
remark >> exclude routing protocol used for Layer 2 WAN	address ipv4 10.4.48.15
deny eigrp any any	key 7 113A1C0605171F270133
remark >> exclude PIM protocol	!
deny pim any host 224.0.0.13	!
remark >> exclude IGMP with MPLS provider	!
deny igmp any host 224.0.0.1	!
deny igmp host 224.0.0.1 any	gatekeeper
deny igmp any host 224.0.1.40	shutdown
deny igmp host 224.0.1.40 any	!
remark >> exclude icmp traffic destined to SP address	!
deny icmp any 192.168.3.0 0.0.0.255	!
deny icmp 192.168.3.0 0.0.0.255 any	line con O
deny icmp any 192.168.4.0 0.0.0.255	logging synchronous
deny icmp 192.168.4.0 0.0.0.255 any	line aux 0
remark >> Require all other traffic to be encrypted	line 2

no activation-character no exec transport preferred none transport input all transport output pad telnet rlogin lapb-ta mop udptn v120 ssh stopbits 1 line vty 0 4 transport input ssh line vty 5 15 transport input ssh ! scheduler allocate 20000 1000 ntp update-calendar ntp server 10.4.48.17 end

GET VPN Group Member

version 15.1 service timestamps debug datetime msec localtime service timestamps log datetime msec localtime service password-encryption no platform punt-keepalive disable-kernel-core 1 hostname CE-ASR1002-1 1 boot-start-marker boot-end-marker L L. vrf definition Mgmt-intf Į. address-family ipv4 exit-address-family ! address-family ipv6 exit-address-family

1 ! aaa new-model 1 1 aaa group server tacacs+ TACACS-SERVERS server name TACACS-SERVER-1 1 aaa authentication login default group TACACS-SERVERS local aaa authorization console aaa authorization exec default group TACACS-SERVERS local aaa authorization console ip http authentication aaa ! 1 1 1 1 aaa session-id common clock timezone PST -8 0 clock summer-time PDT recurring ! 1 1 ip domain name cisco.local ip multicast-routing distributed 1 1 T 1 multilink bundle-name authenticated 1 !

```
T
redundancy
mode none
ip tftp source-interface Loopback0
ip ssh source-interface Loopback0
ip ssh version 2
L
crypto isakmp policy 15
encr aes 256
 authentication pre-share
group 2
crypto isakmp key clscol23 address 10.4.32.151
crypto isakmp key clscol23 address 10.4.32.152
crypto gdoi group GETVPN-GROUP
identity number 65511
 server address ipv4 10.4.32.151
server address ipv4 10.4.32.152
crypto map GETVPN-MAP local-address Loopback0
crypto map GETVPN-MAP 10 gdoi
set group GETVPN-GROUP
L.
```

```
1
T
1
T
interface Loopback0
 ip address 10.4.32.241 255.255.255.255
ip pim sparse-mode
!
interface Port-channel1
ip address 10.4.32.2 255.255.255.252
ip pim sparse-mode
 no negotiation auto
1
interface GigabitEthernet0/0/0
no ip address
 negotiation auto
 channel-group 1 mode active
!
interface GigabitEthernet0/0/1
 no ip address
negotiation auto
 channel-group 1 mode active
1
interface GigabitEthernet0/0/2
 no ip address
 shutdown
 negotiation auto
1
interface GigabitEthernet0/0/3
 description WAN Interface
bandwidth 300000
ip address 192.168.3.1 255.255.255.252
 ip tcp adjust-mss 1360
 negotiation auto
 crypto map GETVPN-MAP
1
interface GigabitEthernet0
```

```
vrf forwarding Mgmt-intf
 no ip address
 shutdown
 negotiation auto
1
L
router eigrp 100
 distribute-list route-map BLOCK-TAGGED-ROUTES in
 default-metric 100000 100 255 1 1500
 network 10.4.0.0 0.1.255.255
 redistribute bqp 65511
 passive-interface default
 no passive-interface Port-channel1
 eigrp router-id 10.4.32.241
!
router bqp 65511
 bgp router-id 10.4.32.241
 bgp log-neighbor-changes
 network 0.0.0.0
 network 192.168.3.0 mask 255.255.255.252
 redistribute eigrp 100
 neighbor 10.4.32.242 remote-as 65511
 neighbor 10.4.32.242 update-source Loopback0
 neighbor 10.4.32.242 next-hop-self
 neighbor 192.168.3.2 remote-as 65401
ip forward-protocol nd
1
no ip http server
ip http authentication aaa
ip http secure-server
ip pim autorp listener
ip tacacs source-interface Loopback0
1
1
route-map BLOCK-TAGGED-ROUTES deny 10
 match tag 65401 65402 65512
```

```
!
route-map BLOCK-TAGGED-ROUTES permit 20
!
snmp-server community cisco RO
snmp-server community cisco123 RW
snmp-server trap-source Loopback0
1
tacacs server TACACS-SERVER-1
 address ipv4 10.4.48.15
 key 7 113A1C0605171F270133
1
1
control-plane
!
1
1
1
T
line con 0
logging synchronous
stopbits 1
line aux 0
 stopbits 1
line vty 0 4
transport input ssh
line vty 5 15
 transport input ssh
!
ntp source Loopback0
ntp server 10.4.48.17
end
```

Appendix C: Changes

This appendix summarizes the changes to this guide since the previous Cisco SBA series.

- The software release for the Cisco ASR 1000 Series routers used as GET VPN GM was updated to IOS-XE 15.2(2)S2.
- The software release for the Cisco ISR-G2 Series routers used as GET VPN GM was updated to IOS 15.1(4)M4.

Feedback

Click here to provide feedback to Cisco SBA.

SMART BUSINESS ARCHITECTURE

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS (COLLECTIVELY, "DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES, INCLUDING, WITH-OUT LIMITATION, THE WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY OF USE THE DESIGNS, EVEN OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY OF USE THE DESIGNS, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR THEIR APPLICATION OF THE DESIGNS ON ON CONSTITUTE THE TECHNICAL OR OTHER PROFESSIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR OWN TECHNICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON FACTORS NOT TESTED BY CISCO.

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.

Americas Headquarters Cisco Systems, Inc. San Jose, CA Asia Pacific Headquarters Cisco Systems (USA) Pte. Ltd. Singapore Europe Headquarters Cisco Systems International BV Amsterdam, The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)