

Cloud Service Assurance
 Design Guide
C H A P T E R 3

CLSA VMDC System Architecture

This chapter provides an overview of the Cloud Service Assurance for VMDC (CLSA VMDC) system
architecture.

• Functional View, page 3-1 and Component View, page 3-3 provide the functional and component
views of the CLSA VMDC system architecture.

• System Components, page 3-4 defines the components and interfaces used to deliver the system
functions.

• Monitored Components and Services, page 3-5 lists the VMDC devices that are monitored by CLSA
VMDC.

• Key Functions, page 3-6 defines the functions of the new architecture.

Functional View
Figure 3-1 illustrates the functional framework for CLSA VMDC. This functionality is delivered with
one or more of the integrated products/components. In CLSA VMDC, only a subset of this functionality
is available. This section defines the functional layers of this architecture and identifies the layers that
are available in CLSA VMDC.
3-1
 for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Chapter 3 CLSA VMDC System Architecture
Functional View
Figure 3-1 Functional View of CLSA VMDC Architecture

The Managed Device Layer consists of Data Center (DC) infrastructure including compute, storage,
and network components with instrumentation for inventory, fault, and performance data collection. The
instrumentation used in this system includes Simple Network Management Protocol (SNMP), syslog,
XML Application Programming Interface (API), NETCONF, vSphere API, and so on. Details of
interfaces used per VMDC component are included in Monitored Components and Services, page 3-5.

The Domain/Element Management Layer includes the UCS Manager (UCSM) and vCenter. They
provide intra-domain inventory, fault, and performance monitoring for UCS and VMware hosts and
VMs. These domain managers offer northbound interfaces APIs as well as SNMP and syslog interfaces.
CLSA VMDC utilizes UCS XML API and vSphere API interfaces. CLSA VMDC 3.0 also introduces
the Storage Management Initiative Specification (SMI-S) Provider domain manager to incorporate EMC
VMAX and VNX inventory, fault, and performance monitoring.

The Service Assurance Manager (SAM) Layer provides all inter-domain functions and a single pane
of glass to monitor all VMDC domains including compute, storage, and network. The high-level
functions of each of the SAM layers are as follows:

• Data Collection Layer. This layer leverages domain managers, third-party tools, and so on to obtain
performance, availability, and event data for the end-to-end multi-domain system via a range of open
protocols such as SNMP, SSL, WMI, and so on. This layer is responsible for normalizing this data
into a consistent format and persisting data. Collected data includes inventory, fault, and
performance type of information.

• Modeling Layer. This layer performs discovery, classification, and modeling to determine
component dependencies and service dependency graphs. Both performance and fault data should
be included in device and service models.
3-2
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Component View
• Service Model-based Technology. CLSA VMDC uses service model-based technology which is
described in more detail in Root Cause Analysis and Service Impact Analysis, page 3-14 and Zenoss
Cloud Service Assurance Overview, page 4-1CLSA VMDC.

• Root Cause Analysis (RCA). Leverages the dependency graph or analytics algorithms to determine
which events are the probable root cause of the problem and which ones are just consequences that
create noise. Therefore, RCA reduces Mean Time to Repair (MTTR). There are a number of
different approaches to RCA, but most of them can be classified in one of the following
technologies:

1. Event correlation rules-based

2. Topology and service model-based

3. Analytics based

• Service-Impact Analysis (SIA). Leverages the dependency graph or analytics algorithms and
collects fault and performance data to do the following:

– Answer who is impacted by the failures

– Prioritize urgency of failure tickets based on business relevance

– Determine whether redundancy protected the service

– Identify failure impacted customers/tenants

– Prevent future failures by identifying potential service impacting technical risks before they
impact service

– Provide data for SLA measurements and reporting

• Performance Aggregation Layer. This layer aggregates performance data from multiple domains
(e.g, storage, network, compute for VMDC), normalizes it in the same format and units, provides
threshold crossing alerts to the fault management part of the SAM, trends the data over time, and in
some cases, performs additional analysis of the data.

• Presentation Layer. This layer provides a single view to do both fault and performance monitoring
for the entire system. Presentation is done both via dashboards and reports. CLSA VMDC includes
SP dashboards for both fault and performance.

• Northbound Interface. The Northbound Interface (NBI) is a special form of the presentation layer
where normalized and enriched data is presented to northbound OSS/BSS systems via open
interfaces such as WS API, SNMP, and email.

Component View
This section defines the components used to deliver those functions, as well as their interfaces. The key
component of the architecture for CLSA VMDC is Zenoss Cloud Service Assurance (CSA), which plays
the role of the SAM. In addition, several domain managers are utilized - UCS Manager (UCSM) for UCS
hardware monitoring, VMware vCenter for monitoring the virtualized infrastructure, and SMI-S
Provider for EMC VMAX and VNX monitoring.

Figure 3-2 illustrates the components and interfaces used to deliver the functional layers of the CLSA
VMDC architecture.
3-3
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
System Components
Figure 3-2 Component View of CLSA VMDC Architecture

Key system interfaces include:

• Southbound interface instrumentation to collect data from managed system devices.

• Northbound interface to integrate with OSS/BSS systems such Manager-of-Managers (MoM) (e.g.,
IBM Netcool), ticketing systems (e.g., Remedy) and so on. The interfaces available from CLSA
VMDC are SNMP, JSON API, email, page, commands, and Advanced Message Queuing Protocol
(AMQP).

• CLSA VMDC offers the JSON API interface for integration with orchestration and fulfillment
systems.

System Components
Table 3-1 lists the Cisco and third-party components used in CLSA VMDC.

Table 3-1 Cisco and Third-Party Components Used in CLSA VMDC

Vendor Model Description

Zenoss Resource Manager 4.2.3 Zenoss CSA software module that performs resource discovery,
monitoring, and modeling.

Zenoss Impact 4.2.3 Zenoss CSA software module that performs service impact
discovery and analysis.

Zenoss Analytics 4.2.3 Zenoss CSA software module that performs long term data
trending, processing, and reporting.
3-4
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Monitored Components and Services
Note The Zenoss software modules are packaged together as Zenoss CSA 4.2.3.

Monitored Components and Services
Table 3-2 lists the VMDC devices that are monitored by the CLSA VMDC system out-of-the-box and
the instrumentation (interfaces) utilized by Zenoss CSA to collect data.

vCenter vCenter 5.0 Domain manager for VMware based virtualization

Cisco UCSM 2.0 Domain manager for UCS platform

EMC SMI-S Provider 4.5.0.1 Domain manager for EMC VMAX and VNX platforms

Table 3-1 Cisco and Third-Party Components Used in CLSA VMDC (continued)

Vendor Model Description

Table 3-2 VMDC Components Monitored by CLSA VMDC

Managed Component Interfaces Utilized in CLSA VMDC 3.0

Compute Components

UCS 5108; B-series blades ICMP, UCSM XML API

UCS 6100, 6200 ICMP, UCSM XML API

VMware ESX and ESXi Hypervisors ICMP, vSphere API

VMware Virtual Machines ICMP, vSphere API

Storage Components

MDS 9000 ICMP, SNMP

EMC VMAX 1 ICMP, SMI-S API

EMC VNX 1 ICMP, SMI-S API

FAS6080, FAS3000 ICMP, SNMP, SSH

Network Components

UCS 6100, 6200 ICMP, UCSM XML API

Nexus 7000 (e.g., 7018, 7010, 7009, 7004 including M1 and
F1/F2 cards) 3,4

ICMP, NETCONF, SNMP

Nexus 5000 (e.g., 5548, 5596, and 5020) ICMP, NETCONF, SNMP

Nexus 3000 1 ICMP, NETCONF, SNMP

Nexus 2000 (e.g., 2248 and 2232) ICMP, NETCONF, SNMP

Nexus 1000V / Nexus 1010 1 ICMP, NETCONF, SNMP

ASR 9000 ICMP, SNMP, SSH

ASR 1000 ICMP, SNMP

Network Services Components

Catalyst 6500 VSS ICMP, SNMP, SSH
3-5
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
1 Denotes new enhancement for CLSA VMDC 3.0.

2 Denotes new enhancement for CLSA VMDC 2.3.

3 FabricPath F1 cards are added to Nexus 7000 devices for CLSA VMDC 3.0.

4 FabricPath F2 cards are added to Nexus 7000 devices for CLSA VMDC 2.3.

For detailed information on software releases, please refer to the following documents:

• VMDC 2.2 Implementation Guide

• VMDC 2.3 Implementation Guide

• VMDC 3.0 Implementation Guide

Note Information on previous VMDC system releases can be found at VMDC System Releases.

Key Functions
This section describes the key functions of CLSA VMDC.

In the overall lifecycle of assurance services, the first task that has to be completed is enablement of
service assurance services. Automatic Enablement of Service Assurance, page 3-7 provides details about
enabling service assurance, including provisioning and automatic discovery. Once assurance services are
enabled, they can be used for Day 2 operations. Figure 3-3 illustrates and explains the high-level,
end-to-end data flow through the fault and problem management part of CLSA VMDC.

ACE (e.g., ACE20, ACE30, ACE4710 2) ICMP, SNMP, ACE XML API

FWSM ICMP, SNMP

ASASM 1 ICMP, SNMP

ASA 5555 2 ICMP, SNMP

ASA 5580-40 ICMP, SNMP

ASA 5585-40 ICMP, SNMP

Virtual Security Gateway ICMP, SNMP, NETCONF, SSH

Table 3-2 VMDC Components Monitored by CLSA VMDC (continued)

Managed Component Interfaces Utilized in CLSA VMDC 3.0
3-6
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

http://wwwin-wats.cisco.com/publications/viewdoc.php?docid=6272
http://wwwin-wats.cisco.com/publications/viewdoc.php?docid=6638
http://wwwin-wats.cisco.com/publications/viewdoc.php?docid=6546

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-3 End-to-End Fault and Problem Management Data and Processing Flow

The following sections discuss each of the stages and functions in this sample data flow:

• Fault Performance, Configuration Data Collection, and Device Modeling, page 3-10

• Event Processing, page 3-13

• Root Cause Analysis and Service Impact Analysis, page 3-14

• Northbound Interface, page 3-19

This section also discusses the following additional functions related to the overall platform and its use:

• Performance Management, page 3-29

• Dashboards, page 3-30

• Reporting, page 3-35

• Multiservices, page 3-37

Automatic Enablement of Service Assurance
Automatic enablement of service assurance can be achieved in a couple of different ways.
Fundamentally, the following are approaches that can be taken to automate service enablement and life
cycle:

1. Reduce necessary amount of configuration (by using technology that is self learning (e.g., self
learning thresholds))

2. Automatic discovery (by assurance system)

3. Programmatic orchestrated provisioning (via integration with orchestration system)
3-7
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
CLSA VMDC focuses on automatic discovery. CLSA VMDC also provide APIs for programmatic
orchestrated provisioning, but they are not integrated or validated with any particular orchestration
system. Automatic discovery and APIs are discussed in the following sections.

• Automatic Discovery, page 3-8

• Zenoss APIs for Programmatic Provisioning, page 3-9

Automatic Discovery

The following types of objects are automatically discovered in CLSA VMDC:

• Monitored devices (e.g., UCS, Nexus 7000, MDS 9000, etc.)

• Sub-components of devices and their relationships (e.g., UCS chassis, blades, fabric interconnect,
etc.)

• Tenant-based Service Impact Analysis (SIA) model for the compute (e.g., tenant Virtual Machine
(VM) mapping to service impacting resources, both dedicated and shared vCenter and UCSM
managed resources). The exception is tenant name and its link to the service, which cannot be
discovered, but relies on orchestrated provisioning. In this release, tenant name and mapping to the
VM are provisioned manually, but the API is provided.

Figure 3-4 and Figure 3-5 illustrate examples of automatic enablement of service assurance.

Figure 3-4 Real-time Automatic Discovery of Device Components - Cisco UCS
3-8
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-5 Real-time Automatic Discovery of Tenant Service Impact Model

Zenoss APIs for Programmatic Provisioning

CLSA VMDC offers APIs to programmatically provision the following components in the service
impact tree:

• Tenant Name

• Tenant ID

• Service Name

• Service ID

• VM Name

• VM ID

This enables automatic onboarding of the tenant and tenant compute service, which maps them to the
already automatically discovered VM and its relationships to shared hardware.

Note Proof of Concept (PoC) of this functionality integrated with the Cisco Intelligent Automation for Cloud
(CIAC) orchestration stack has been performed by Cisco Advanced Services; however, it was not
validated as part of the CLSA VMDC system. If this functionality is desired in the field before it is
included as part of the Systems Development Unit (SDU) system release, then Cisco Advanced Services
can perform integration with the desired orchestration stack using the provided API.
3-9
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-6 illustrates the high-level workflow that provisions the tenant and tenant service and then maps
the workflow to the automatically discovered VM and the rest of the automatically discovered
infrastructure.

Figure 3-6 Zenoss Tenant Provisioning Using CIAC Orchestration

Fault Performance, Configuration Data Collection, and Device Modeling
Consolidated monitoring and data collection at the SAM layer is one of the fundamental functions of
CLSA VMDC. Consolidated monitoring and data collection is characterized by the following attributes:

• Various domains (applications, compute, storage, network). The cloud assurance system needs to
provide a single pane of glass to monitor components from various domains.

• Fault and performance data. The cloud assurance system needs to consolidate fault and performance
data and leverage both for all of its higher order functions like RCA and SIA.

• Various data sources, interfaces, and protocols. The cloud assurance system needs to collect data
from multiple data sources and protocols and consolidate this data in unified device and service
models. Some examples of different data sources and protocols are SNMP, syslog, WS API,
Netflow, customer opened tickets, and so on.

Zenoss Data Collection

Zenoss CSA offers consolidated monitoring for VMDC, including consolidation of domains (i.e.,
support for OS, compute, storage, and network), consolidation of performance and fault data (i.e., takes
into consideration both polled performance data, asynchronous events it receives, as well as synthetic
3-10
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
events it generates for both performance and availability), and consolidation of data sources (i.e., device
monitoring models utilize multiple data sources such as SNMP, syslog, API, and consolidate it within
unified device model).

Zenoss CSA uses an agentless data collection approach, which is critical for the type of scale expected
in cloud systems. Instead of installing an agent on monitored devices, Zenoss supports a rich set of
protocols to enable data collection. A list of protocols used for data collection from VMDC devices is
included in Monitored Components and Services, page 3-5. The following is a more comprehensive list
of data collection interfaces that the Zenoss CSA platform supports:

Event input:

• SNMP

• Syslog

• XML Remote Procedure Call (RPC)

• JavaScript Object Notation (JSON)/API

• AMQP

• Windows Event Log

Easily configurable protocol usage:

• Secure Shell (SSH)

• Java Management Extensions (JMX)

• Windows Management Instrumentation (WMI)

• Perfmon

• Any script that returns data in a known format (such as Nagios)

Other collection mechanisms (model/performance/event data):

• Internet Control Message Protocol (ICMP)

• Telnet

• JMX

• Hypertext Transfer Protocol (HTTP) - Web Transactions

• Oracle

• Structured Query Language (SQL) Server

• MySQL

• Apache (mod_status)

• memcache

• Splunk Queries

• Simple Mail Transfer Protocol (SMTP)

• SMI-S Provider

• Post Office Protocol (POP)

• UCSM XML API

• vSphere Simple Object Access Protocol (SOAP) API

• vCloud Director

• Amazon EC2 and CloudWatch
3-11
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
• Cisco CallManager (AXL)

• Domain Name System (DNS)

• Lightweight Directory Access Protocol (LDAP)

• Network Time Protocol (NTP)

• File Transfer Protocol (FTP)

• Internet Relay Chat (IRC)

• Extensible Messaging and Presence Protocol (XMPP)

• Remote Procedure Call (RPC)

• Network News Transfer Protocol (NNTP)

Zenoss Device Modeling

Device modeling in Zenoss goes beyond traditional device discovery; it also uses standard Management
Information Bases (MIBs) to discover interesting aspects of the device and automatically defines models
for that device type. Once modeled, these learned attributes can be inherited as part of the model when
a new device of the same type is discovered again. The information below describes various attributes
of the Zenoss device modeling process.

Initial Zenoss Model (plugins):

• Interfaces to access device and objects of interest (KPI statistics, events, thresholds, etc.) are
statically defined

• Models are assigned to a device class

Device Modeling:

• During individual device discovery, all modeler plug-ins for the device class are automatically
considered, and a model per instance of the device is created.

• After discovery modeling, monitoring and event processing automatically starts.

Device Remodeling:

• Model per device instance can dynamically change in response to events (e.g., blade removed, etc.)

• ZenModelerDeamon - per collector configuration happens every 12 hours

• ZenVMwareDeamon (exception for VMware and remodels every 4 hours)

• List of events that trigger remodeling is configurable (default set exists)

An example of unified monitoring using Zenoss CSA is illustrated in Figure 3-7.
3-12
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-7 Unified Monitoring Using Zenoss CSA

Event Processing
In CLSA VMDC, event processing is divided into two categories:

• Basic event processing

• Event processing that is part of RCA and SIA

This section only describes basic event processing functions, while RCA and SIA are discussed in the
following sections. The basic event processing functions included in this system are event classification,
normalization, de-duplication, enrichment, persistence, and clearing.

Event classification groups similar events in event classes, so that some of the more complex processing
may be simplified by looking at event classes rather than each individual event.

Event normalization translates various formats of the raw collected data into a single format that is used
by the SAM. Often, the same format or subset of the fields of normalized format can be sent to
northbound systems. This function allows simplified integration of northbound systems since they have
to deal with a single event format for multiple device types and instrumentation protocols.

Event de-duplication eliminates multiple events that have the exact same content with the exception of
the time stamp. After de-duplication, a single event is kept, and typically a counter indicating the number
of occurrences of the event is added, as well as a timestamp indicating the first and last occurrence of
the duplicate event.

Event persistence archives all events to be used for forensic analysis. In some systems, persistence exists
only on post-processed events, while in others, for raw events as well.
3-13
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Event clearing is used to indicate when the original condition for which the event was raised is removed.
Explicit event clearing is done by generating clearing events with the field within the clearing event,
which points to the ID of the event that it is clearing. For example, if an interface down event for a
specific interface had an ID of ID1, when the interface goes up again, an event with ID2 should be raised,
which includes as one of its fields a reference to event ID1. Explicit event clearing is recommended. In
addition to explicit clearing, time-based clearing can be utilized as well. Time-based clearing clears the
event after a specific time interval elapses from the time that the original event was received.

Root Cause Analysis and Service Impact Analysis
One of the key functions of CLSA VMDC is Root Cause Analysis (RCA) and tenant-based Service
Impact Analysis (SIA).

The objective of RCA is to reduce MTTR by determining which events are probable root causes of the
problem and which events are just consequences that create noise.

The following are the objectives of tenant-based SIA:

• To prioritize the urgency of failure tickets based on business relevance.

• To determine whether redundancy protected the service.

• To identify failure impacted customers/tenants.

• To prevent future failures by identifying potential service impacting technical risks before they
impact service.

• To enable Service Level Agreement (SLA) measurements and reporting.

The following sections are detailed:

• Zenoss SIA and RCA, page 3-14

• VMDC Assurance Service Models, page 3-16

• VMDC RCA and SIA Use Cases, page 3-18

Zenoss SIA and RCA

Zenoss CSA uses model-based SIA, which produces a set of ranked probable root causes as a by-product
of SIA. This service impact-based approach to RCA is a fundamentally different approach from legacy
rule-based systems:

• Bottom-up. What services are impacted by conditions below (Zenoss) vs.

• Top-down. What is the cause of problem at service level (legacy products)

Zenoss does not determine a single root cause, but instead identifies multiple related events (probable
root cause events) and presents the following:

• A root cause ranking algorithm is utilized to rank probable root cause events in order of confidence
that the event is the actual root cause event. This algorithm ranks impact events based on a variety
of criteria, including the severity of the event, service graph depth, and the number of graph branches
affected by an event.

• Hierarchical service dependency graphs provide a visual indication of probable root causes leading
to a service impact.
3-14
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Events flow through the graph referencing molecular node policies to determine whether they should be
passed, filtered, aggregated, or masked. There are a few key elements of RCA and SIA in Zenoss CSA.
Each assurance service within Zenoss is modeled with a service impact tree that consists of a set of
nodes, policies applied to the nodes, and the relationships between the nodes:

• The service can be arbitrarily defined and can be a very abstract service that consists of other
sub-services, or on other extreme, one can even define a single physical interface as a service. This
provides a very flexible framework for service definition.

• Model nodes represent arbitrary components such as physical, logical, or virtual resource. For
example, nodes can represent an end-to-end service such as voice, a virtual resource such as a VM,
or a physical resource such as a chassis or physical interface. The following four types of nodes are
currently supported, as illustrated in Figure 3-8:

– Physical. Systems, infrastructure, and network devices that a service relies on.

– Virtual. Software components that make up a service.

– Logical. Aspects of a service that must be measured or evaluated as a set to determine state
(facilitates extension of an impact graph by providing a hook to incorporate arbitrary events into
impact analysis).

– Reference (future release). Provide a link to dependencies managed by an external instance of
Zenoss or other management system capable of propagating state information to Zenoss.

Figure 3-8 Node Types

• Policy is defined per node, which allows it to move as the resources move, which is a critical
characteristic for the cloud environment. Zenoss refers to this policy as a molecular policy since it
is defined per node. Zenoss utilizes a very simple policy that can define the state of the node solely
as a function of the state of its children nodes, which allows for service impact "rules" decoupling
from device events resulting in the following:

– "Rules" defined in a single place for any given device or service: device events processing in
event processing software modules, service impact processing in service impact graphs (i.e.,
device events do not need to be considered in service level rules)

– Simplified development and maintenance of cross-domain service impact and RCA
customizations: do not have to correlate device events from multiple devices to determine
cross-domain service impact and possible root causes

– Note that whenever desired, device events can be used as part of service impact "rules" via use
of logical nodes whose rules define how to interpret the service impact of specific events based
on its type and severity.

– Policy can be global or contextual:
3-15
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Global policy applies to device/service type in any service graph.

Contextual policy applies only to device/service in the particular service graph.

– Each node has a default policy applied, which reduces the need for custom configuration. The
default policy is often sufficient, but can be modified where required via GUI or API. Figure 3-8
illustrates a sample node policy.

VMDC Assurance Service Models

In order to perform SIA, CLSA VMDC uses service models with polled and asynchronous data to
perform SIA and RCA. CLSA VMDC offers an out-of-the-box tenant service model for compute. In
future releases, CLSA VMDC will expand the library of out-of-the-box service models that will be
validated and delivered as part of this system, however, note that users can easily customize service
models as well as create new ones.

Tenant Compute Assurance Service

Figure 3-9 defines the out-of-the-box tenant compute service model to be delivered as part of CLSA
VMDC. More details are provided about this service model in Zenoss SIA and RCA, page 3-14.

Figure 3-9 Tenant Compute Assurance Service Model - Generic Application

Service Model Policy

Each node (referred to as the parent node) in the service model has a policy defined that calculates the
state of that node based on the state of its children and any explicit events associated with the parent
node.

For the particular service model illustrated in Figure 3-9, the specific policies listed in Table 3-3 should
be applied.
3-16
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Out-of-the-box, all nodes use the default policy where the worst impact wins. The one exception is the
VMware cluster, which is DOWN if all children are DOWN and DEGRADED if any nodes are DOWN
or DEGRADED.

In addition to considering the parent/child policy, the explicit state of the nodes is determined by both
availability and events for components the node represents. For VMware and UCS nodes, the explicit
node impact status is determined mainly by modeled properties. As modeling occurs or various events
are received, Zenoss reassesses the impact state by querying the Zenoss model. For example, when a VM
power off event is received, the model is updated and the VM status is reassessed and updated.

Service Model Variations

Note that the model defined in this section illustrates a single-tier application with a single VM.
Variation of this service model would be models for the following:

• Multi-tier application, where there would be multiple "tenant dedicated VM" blocks tied to the
tenant compute service. The tenant compute service default policy may need to be customized.

• Single-tier application that supports application level redundancy via clustering (e.g., Cisco UC
applications such as CUCM). In this case, the model would be modified to include multiples of
"tenant dedicated VM" blocks. The default policy used for the "tenant compute service" should be
applicable. An example of this service model is illustrated in Figure 3-9.

Service Model Enablement

Most of this model is automatically discovered, while the top node of the service model needs to be
provisioned. Typically, provisioning would be done in an automated way when the tenant and VM get
onboarded. In CLSA VMDC, there is no integration with the orchestration stack, and as such, the top
node of the service model is manually provisioned. Note that in real deployments, per-tenant manual
provisioning is not an option, in which case either an available Zenoss API can be used by the
orchestration platform of choice, or if not provisioned, the tenant service impact is still possible but
results are given in the VM context rather than tenant service context. For example, there would be no
automatic mapping between tenant name, tenant service name, and VM ID.

In future CLSA VMDC releases, integration with VMDC orchestration stacks will be implemented and
validated. In addition to automatic discovery of the service model from VM down, if operating systems
such as Windows or Linux are deployed, they should also be automatically discovered.

Table 3-3 Service Model Policy Decisions

Node Node State If Child Node State

Tenant Compute Service UP/DOWN/AT RISK UP/DOWN/AT RISK

Tenant Guest OS UP/DOWN/AT RISK UP/DOWN/AT RISK

Tenant VM UP/DOWN/AT RISK UP/DOWN/AT RISK

ESXi Cluster UP/DOWN
AT RISK

All Children up/down
At least One Child Down/At Risk

ESXi Host UP/DOWN/AT RISK UP/DOWN/AT RISK

UCS Blade UP/DOWN/AT RISK UP/DOWN/AT RISK
3-17
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Mobility Handling

The host to VM relationship is given by VMware during modeling stage. Whenever VMware generates
an event that indicates VM movement, Zenoss reacts and remodels the source and target hosts to update
its model. Depending on the event collection interval specified in the Zenoss configuration, the model
change can take anywhere from 15 seconds to 3 minutes. With the out-of-the-box configuration, the
average time would be about 1 minute.

Redundancy Implications

A service model with three service states accounts for redundancy. The AT RISK state is used to indicate
conditions where the service or service model node is still functioning despite a failure of one of its
children because redundancy protected the service. For the particular service model shown in Figure 3-9,
redundancy capabilities that are accounted for include the following:

• If one of the blades/hosts fails, and the vCenter cluster that VM belongs to has multiple blades/hosts,
then the VM node is marked AT RISK as opposed to DOWN based on the status of its children. Note
that explicit VM related state and events can result in the state of the VM node being down even
though the state of its children alone would result in an AT RISK state

• In a case where there is application level redundancy and thus more than one VM and application
deployed for single tier applications, there is also service model redundancy built in on the
application/VM level. For example, a service is AT RISK if one of the application nodes/VMs is
DOWN because the remaining application/VM nodes provides redundancy for the failed
application/VM node.

VMDC RCA and SIA Use Cases

Once service impact models are defined, the data is applied to service impact models to maintain
real-time state of the service availability and performance, as well as to determine probable root cause
of any failures that may happen. This section provides a list of failure scenarios (use cases) validated as
part of the CLSA VMDC test effort, for which the out-of-the-box compute service model can determine
correct probable root cause and service state for previously defined services. All of the use cases are
validated in an environment where VMware High Availability (HA) is deployed.

Refer to Root Cause Analysis and Service Impact Analysis, page 3-14 for an example workflow
illustrating a UCS switch failure event, including screen shots.

Use Case Name (Fault):

• VM Failure

• VM vNIC failure

• VM vMotion - VM vMotion is not a true fault event, since the VM stays up, however, the impact
graph does track the VM's host swap.

• ESXi host failure

• UCS Blade failure

• UCS chassis failure

• UCS P/S failure

• UCS FEX failure

• UCS 6100 chassis failure

• UCS 6100 interfaces to UCS 5100 failure

• VM CPU degradation (Threshold Crossing Alert (TCA))
3-18
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
• VM Memory degradation (TCA)

• Host CPU degradation (TCA)

• Host Memory degradation (TCA)

Northbound Interface
One of the key, new functions of CLSA VMDC architecture is a single, normalized Northbound Interface
(NBI) provided by the SAM.

The key objectives of the single, normalized interface are:

• To simplify and reduce the cost of integrating providers existing northbound system with the
CLSA VMDC system. The provider needs to integrate and maintain just one interface rather than
multiple dozens of interfaces towards individual devices and/or domain managers. CLSA VMDC is
responsible for absorbing updates related to any relevant changes in the underlying system and
devices.

• To enable CLSA VMDC to be inserted in various business and operational deployment
environments. This is achieved by offering a variety of interface protocols, rich filtering
capabilities, and notifications with tenant awareness.

• To enable CLSA VMDC to simplify service assurance of overlaid application based systems
that are deployed on top of VMDC infrastructure. An example of this type of system is the
Hosted Collaboration Solution (HCS). This is achieved by providing tenant service level
notifications rather than device level notifications, which enables a service overlay (or multi-tier
SIA) to be implemented by HCS, and as such, Cloud Service Assurance-HCS (CLSA-HCS) would
have to deal with the state of only a handful of services coming from CLSA VMDC, rather than
thousands of events coming from individual VMDC devices.

Zenoss northbound integration is supported via:

• JavaScript Object Notation (JSON)/Representational State Transfer Application Programming
Interface (ReST API)

• SNMP Traps (ZENOSS-MIB.txt and ZENOSS-IMPACT-MIB.txt)

• Syslog

• Event queues (AMQP and Java/Python wrappers) and event commands (command line call with
event context)

• SMTP email

Configurable filtering capabilities are offered to provide different data to different northbound
consumers. The following sections describe the interfaces, data, and filtering capabilities in more detail.

Sections

• SNMP Northbound Interface, page 3-20

• Zenoss SNMP Notification Content, page 3-20

• Zenoss Notification Filtering, page 3-21

• Zenoss Service Impact SNMP Trap, page 3-21

• WS or ReST API, page 3-25

• Northbound Integration Use Case Examples, page 3-26
3-19
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
SNMP Northbound Interface

One of the key requirements for CLSA VMDC is to offer asynchronous notifications via SNMP. These
notifications are consumed either by the provider's existing northbound systems such as MoM, ticketing,
and SLA management systems, or by other Cisco systems deployed on VMDC architecture such as HCS.

Regardless of the source or type of the event, all events should be sent using the same normalized format,
however, as discussed in this chapter, there may be differences in the values of the populated fields based
on the type of events (e.g., service impact events contain information about service name and state, while
device level events do not).

Zenoss SNMP Notification Content

Zenoss CSA uses custom Zenoss MIB implementations for northbound notifications. The original
SNMP MIB addresses the resource manager part of the product, but not the service impact part. MIB
extensions have been designed to address service impact events and related probable root cause events
as a part of the this phase of CLSA VMDC. For a discussion of the new service impact trap, see Zenoss
Service Impact SNMP Trap, page 3-21.

Events associated with devices use ZENOSS-MIB for notifications. The ZENOSS-MIB.txt file is located
in the following Zenoss directory: $ZENHOME/share/mibs/site. Device level SNMP notifications can
be sent to multiple destinations. Refer to the Zenoss Cloud Service Assurance Installation and
Administration Guide for more information regarding notifications.

Table 3-4 maps the fields of Zenoss MIBs to the SAM requirements.

Table 3-4 Zenoss MIB Fields

Zenoss MIB Field Name Description

evtId Unique identifier ID of the event

evtDedupid De-duplication ID of the event

evtDevice Device associated with event

evtComponent Device component associated with event

evtClass Event classification

evtKey Event key used for refining event granularity beyond device and component.
Used in de-duplication, automatic clearing.

evtSummary Event message truncated to 128 characters

evtSeverity Event severity number: 0=clear(normal), 1=debug, 2=info,
3=warning,4=error, 5=critical

evtState Event state number: 0=new, 1=acknowledged, 2=suppressed

evtClassKey Class key for rule processing often matches component

evtGroup Logical grouping of event sources

evtStateChange Last time event changed through administrative activity

evtFirstTime First time an event was received

evtLastTime Last time an event was received

evtCount Number of times this event has been seen

evtProdState Production state of the device or component associated with this event

evtAgent Collector process that received or created this event
3-20
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

https://support.zenoss.com/ics/support/default.asp?deptID=16059
https://support.zenoss.com/ics/support/default.asp?deptID=16059

Chapter 3 CLSA VMDC System Architecture
Key Functions
Zenoss Notification Filtering

Filtering capabilities using Zenoss Triggers can be used to customize notifications based on the needs of
different northbound consumers:

• Multiple subscribers/receivers may receive notifications.

• Each notification subscriber/receiver may apply a different filter: one receiver may subscribe to
service events, another may subscribe to compute events, and a third may subscribe to network
events.

• Each system user should be able to apply different filters.

For more information regarding Triggers, refer to the Zenoss Cloud Service Assurance Installation and
Administration Guide.

Zenoss Service Impact SNMP Trap

This section defines the SNMP notification for Zenoss Impact, which is new for CLSA VMDC 3.0. The
following data is available internally within Zenoss Impact for service related events. This data was used
by the notification script in CLSA VMDC 2.2.

• Service Name

• Severity

• Timestamp

• Service state

• URLs to EventDetail, page to acknowledge and close events, device events

• All events in the impact chain. Each event in impact chain includes:

– Device

– Component

evtDeviceClass Class of device that this event is associated with

evtLocation Location of device that this event is associated with

evtSystems Systems containing the device that this event is associated with

evtDeviceGroup Groups containing the device that this event is associated with

evtIpAddress IP address that this event was generated or sent from

evtFacility Syslog facility if the event was initially sent as a syslog

evtPriority Syslog priority if the event was initially sent as a syslog

evtNtEvId Windows NT_EVENT_ID if the event was initially received from Windows
event log

evtOwnerId User that acknowledged this event

evtClearId evtId that cleared this event

evtDevicePriority Priority of the device that this event is associated with

evtClassMapping Name of the event class mapping that matched this event

Table 3-4 Zenoss MIB Fields

Zenoss MIB Field Name Description
3-21
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

https://support.zenoss.com/ics/support/default.asp?deptID=16059
https://support.zenoss.com/ics/support/default.asp?deptID=16059

Chapter 3 CLSA VMDC System Architecture
Key Functions
– Device Class

– Event Class

– Severity

– Timestamp

– Message

– URLs to EventDetail, page to acknowledge and close events, device events

Zenoss Impact provides a flexible framework to define arbitrary services, including support for
hierarchical service nesting. In such environments, the question arises for which nodes and/or levels of
hierarchy notifications should be sent. Services are collected under Service Organizers. A Service
Organizer consists of multiple folders and in each folder there is set of services. In Zenoss Impact, the
notification trigger criteria is configured for Service Organizer folders and its services and not based on
individual nodes and their hierarchy level in the impact tree. This approach provides good balance
between flexibility to select notification trigger criteria and simplicity of implementation.

For CLSA VMDC to send notifications per service instance state change, the appropriate structure must
be created to organize the services. The following sections discuss the folders and the structure used for
the services defined in CLSA VMDC 3.0.

Service Organizers

Service Organizers are located on the left tab in the Impact GUI.

The Shared Services folder includes:

• Service Name X (e.g., Network Aggregation service, Network Core service, etc.)

• Service Name Y

The Customer Name folder includes:

• Tenant Service 1 (e.g., Tenant Compute service, Tenant Network service, etc.)

• Tenant Service 2

Notification Triggers

The user is able to select services and or/folders for which to send notifications. This action is available
both in the GUI, as well as via the REST API so that the orchestration system at the time of onboarding
the tenant service can select whether or not to enable notification for the service.

The notification policy should be selectable both per folder or per service instance. This enables support
for the following use cases:

• Where a single operator or NB system manages and/or provides visibility to all services of single
tenant/customer (since one folder is defined per tenant).

• Where different services of the same tenant are managed by different operators/NB systems, e.g.,
notification for IaaS services are sent to the IaaS operator while notifications for Unified
Communications as a Service (UCaaS) services are sent to the UC operator.

Notification Timing

This section defines the guidelines for service impact notification triggers and timing. An attempt is
made to balance any delay in notifications indicating change with excessive noise in events sent due to
transient state during service impact analysis. In order to have the capability to delay some service
impact notifications, there is a timer that can be configured (value range 0-10 minutes with default of
three minutes).

Service impact notifications are triggered when the following events occur:
3-22
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
• If the service state changes (top-level service in each folder):

– The notification indicating a service state change should always be sent immediately, regardless
of the value of the notification delay timer. This enables the northbound system to immediately
detect the change. Also, for northbound systems that are using service state notifications to
measure service availability and SLA, this immediate notification enables more accurate service
availability measurements.

– When the service state changes back to UP, the event should serve as a clearing event for the
previous service state change event. As such, the ID of the service event that it is clearing must
be included.

• If the service state does not change, but most a probable root-cause event changes (i.e., root cause
ranked with highest confidence% changes):

– This trigger honors the notification delay timer, and as such, it is sent only if the event is
generated after the notification timer expires.

The following example shows the use of the notification delay timer and the two notification types listed
above. Assume that the following conditions exist:

1. The notification delay timer is set to three minutes.

2. The root cause is a UCS blade failure, and the final service state for the IaaS service is AT RISK.

If these conditions exist, the following occurs:

1. At zero seconds, event E1 (VMware event for the VM) arrives. The root cause at that time is RC1=
VM Failure.

2. A service impact event is sent northbound indicating that the IaaS state = AT RISK, RC=VM.

3. At one minute, event E2 (VMware event for the host) arrives. The root cause at that time is RC2=
Host Failure. Since the notification delay timer is set to three minutes, there are no events sent
northbound due to the change of root-cause events. Only one minute has passed since the service
state change time.

4. At four minutes, event E3 (UCSM event for blade) arrives. The root cause at that time is RC3=UCS
blade failure. A service impact event is sent northbound indicating that the IaaS state = AT RISK,
RC= Blade.

Figure 3-10 shows the existing capability that Zenoss has to delay notifications and also to send the
clearing events. The same capabilities would be extended to the service impact events.
3-23
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-10 Edit Notification Timer

Notification Content

The following fields should be included in the northbound service impact notification:

• Folder Name (one up only). The customer name would typically be placed here, but keeping the
field generic allows flexibility to use folders in any way desired (e.g., to represent shared
infrastructure services, reseller, etc.). The operator can include the option to have a full folder path.

• Folder Type. The folder type indicates what the folder represent, e.g., for folders representing the
customer name, the folder type would have value the value "customer."

• Service Instance Name and systemwide unique ID.

• Service Type. This field can be used to filter notifications by type of service that the northbound
consumer is interested in, even though each instance of the service may be in different folders which
are representing different customers.

• Service State. The service state is UP, DOWN, AT RISK, or DEGRADED.

• URLs to Service Impact EventDetail. This page acknowledges and closes events and device
events.

• Timestamp.

• Event clearing ID. The ID of the event that is being cleared by this event.

• Probable root-cause event name and systemwide unique ID (event with highest confidence
level).

• Probable root-cause confidence level.

• Probable root-cause device, component, and severity.
3-24
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
• Impact chain and ID to events in impact chain. The ID can be used to retrieve the impact chain
via REST API upon receipt of the notification.

• URLs to probable root-cause EventDetail. This page acknowledges and closes events and device
events.

Note In CLSA VMDC 3.0, the following fields are not supported: Folder Type, Service Type, and URLs to
probable root-cause event detail. In addition, the Event Clearing ID is implemented slightly differently
than proposed above. The Service Instance Name & system wide unique ID is implemented in a field
called zenImpactUUID. The initial and clearing events have the same zenImpactUUID, however they
have states new and cleared.

Root-cause Event Notification

In addition to sending probable root-cause events as part of service impact notification, there is also a
need to be able to send only probable root-cause events. For example, in cases of more catastrophic
failures where a single root-cause event impacts a larger number of services, northbound systems that
are not service focused may prefer to receive only one notification representing the root-cause event and
not receive multiple service impacting notifications.

Even in this case, it is desirable to provide the relationship between the root-cause event and the services
it impacted. This can be done by including a list of services impacted by the same root-cause event in
the root-cause event notification URL or ID.

Root-cause notification is not a separate notification in CLSA VMDC 3.0; instead, the root-cause event
is communicated as a field via the service impact notification.

WS or ReST API

The JSON API can be used to obtain the following:

• Device model and attributes data

• Performance data

• Event data

• Service data

Most of the information visible via the GUI can also be obtained via the JSON API.

In addition to retrieving data, the JSON API can also be used for the following:

• Managing events (acknowledge, clear, close)

• Adding devices to be monitored

• Setting production state

• Initiating discovery and modeling of devices

• Managing thresholds

• Managing reports

• Other configurations

More information on the JSON API can be found at the following URL:

http://community.zenoss.org/community/documentation/official_documentation/api
3-25
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

http://community.zenoss.org/community/documentation/official_documentation/api

Chapter 3 CLSA VMDC System Architecture
Key Functions
Northbound Integration Use Case Examples

This section includes typical use cases that illustrate the rich filtering capabilities of the NBI.

Sections

• Abstraction via Single Interface, page 3-26

• Integration With Multiple Northbound Systems, page 3-27

• Abstraction Through Service Overlays, page 3-28

Abstraction via Single Interface

One of the key functions of the SAM layer as defined in CLSA VMDC architecture is the capability to
provide a single, normalized NBI that is consistent regardless of the formats of data used by the
underlying VMDC components. This allows simplified integration and ongoing interface maintenance
with providers existing OSS systems as:

• There is only one integration point as opposed to the number of integration points being proportional
to the number of VMDC devices and domain managers.

• Changes in any of the underlying interfaces on managed devices are absorbed by the SAM as
opposed to the provider having to update OSS systems every time there is a change in one of the
managed components.

Figure 3-11 illustrates how the VMDC system is abstracted via a single interface to the provider's
existing OSS system. The purple areas represent the enhancements for CLSA VMDC 3.0.

Figure 3-11 Single Normalized and Service Abstraction NBI
3-26
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Integration With Multiple Northbound Systems

This use case example illustrates the need for different types of notifications and northbound filtering
capabilities.

Figure 3-12 VMDC CSA Integration in Northbound OSS Systems

In this use case example (Figure 3-12), there is an IT department with two operations teams: one for
network operations and one for server/compute operations. In addition, each one of the teams has a
ticketing system and a MoM capable of further event processing and RCA. Assume also that the
server/compute operations team has an SLA management system used to measure and manage SLA
compliance.

Using the extensive filtering capabilities of the northbound notifications, the needs of both of these
operations teams and their various northbound systems can be satisfied with a single instance of the
service assurance system. In this example, five northbound notification destinations are configured, each
with a different filter (also known as a notification trigger) as follows:

• All root cause events originated by vCenter or UCSM are sent to the Compute Operations ticketing
system.

• All service-impact events originated by vCenter or UCSM are sent to the Compute Operations SLA
management system.

• All other compute events that may require additional analysis are sent to the Compute Operations
MoM.

• All root cause events originated by network devices are sent to the Network Operations ticketing
system.
3-27
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
• All other compute events that may require additional analysis are sent to the Network Operations
MoM.

Abstraction Through Service Overlays

This use case illustrates the need for service impact notifications from CLSA VMDC. This use case is a
prerequisite for integrating CLSA VMDC into CLSA-HCS. To deliver HCS services (voice, voicemail,
etc.) to the end customer/tenant, multiple services need to be provided to the customer, which are
referred to as service overlays. In a scenario for top-level service such as HCS, there are a number of
benefits to only processing abstracted events related to a few underlying services:

• Complexity of its fault management system can be reduced significantly if it is only receiving events
related to few underlying services (IaaS, MPLS VPN WAN service, etc.) rather than having to deal
with device level events from tens of underlying components.

• More flexibility to support various business and operational deployment models that vary in which
domains and services are owned and operated by the provider offering top-level (e.g., HCS)
services.

Figure 3-13 and Figure 3-14 illustrate the service overlay approach for application-based services such
as HCS, and the need for service level abstraction from the underlying infrastructure system.

Figure 3-13 HCS Services and Operational Domains
3-28
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-14 Multi-tiered SIA

Performance Management
The following performance management capabilities are provided out-of-the-box in CLSA VMDC:

• KPI statistics resource monitoring and trending:

– Resource monitoring is partially validated as part of CLSA VMDC.

• Performance service impact models for compute and storage:

– TCAs utilized as part of SIA

– Validated as part of CLSA VMDC

• Application response time measurements:

– Not validated as part of CLSA VMDC

– For details, refer to product documentation on www.zenoss.com.

• Performance reporting:

– Not validated as part of CLSA VMDC

– For details, refer to product documentation on www.zenoss.com.
3-29
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Dashboards
CLSA VMDC features aggregated SP dashboards, as well as both device level and service level
dashboards that operators can use to obtain more details. The following are the key dashboard categories
for Zenoss CSA:

• Aggregated systemwide resources status dashboards

• Service inventory and status dashboards

• Infrastructure/resource monitoring dashboards

• Event dashboards

Aggregated Systemwide Resources Status Dashboards

These dashboards list all devices with events systemwide, sorted by number of highest priority events,
as shown in Figure 3-15.

Figure 3-15 Aggregated Systemwide Resources Status Dashboard

Service Inventory and Status Dashboards

These dashboards show the availability and performance state of all services in the system, as shown in
Figure 3-16.
3-30
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-16 Service Inventory and Status Dashboard

Figure 3-17 shows a per-service detailed dashboard, which lists service impact events and related
probable root cause events, as well as a visualization of the service model tree.
3-31
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-17 Per-service Detailed Dashboard

Infrastructure/Resource Monitoring Dashboards

These dashboards list the inventory of all devices and their status, as shown in Figure 3-18.

Figure 3-18 Infrastructure Dashboard
3-32
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-19 and Figure 3-20 show a detailed component dashboard and graphical view (example UCS
server blade).

Figure 3-19 Detailed Component Dashboard
3-33
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-20 UCS Server Blade Graphical View

Event Dashboards

These dashboards show all events in the console (similar consoles exist per component as well), as
shown in Figure 3-21.
3-34
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-21 Event Dashboard

Refer to Dashboards, page 3-30 for a use case example of dashboard monitoring.

Reporting
CLSA VMDC provides a range of defined and custom report options, including the following:

• Device Reports

• Event Reports

• Performance Reports

• Graph Reports

• Multi-Graph Reports

• Custom Device Reports

Reports can be exported to external files and systems or can be viewed locally. Reports can also be
generated ad hoc or scheduled. Refer to the Zenoss Cloud Service Assurance Installation and
Administration Guide for more information.

The following is a list of reports supported out-of-the-box for CLSA VMDC:

• Device Reports (9)

– All Devices

– All Monitored Components

– Device Changes
3-35
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

http://community.zenoss.org/docs/DOC-11995#DeviceReports
http://community.zenoss.org/docs/DOC-11995#EventReports
http://community.zenoss.org/docs/DOC-11995#PerformanceReports
http://community.zenoss.org/docs/DOC-12007
http://community.zenoss.org/docs/DOC-12103
http://community.zenoss.org/docs/DOC-12006
https://support.zenoss.com/ics/support/default.asp?deptID=16059
https://support.zenoss.com/ics/support/default.asp?deptID=16059

Chapter 3 CLSA VMDC System Architecture
Key Functions
– MAC Addresses

– Model Collection Age

– New Devices

– Ping Status Issues

– SNMP Status Issues

– Software Inventory

• Custom Device Reports

• Graph Reports

• Multi-graph Reports

• Event Reports (3)

– All EventClasses

– All EventMappings

– All Heartbeats

• Performance Reports (7)

– Aggregate Reports

– Availability Report

– CPU Utilization

– Filesystem Util Report

– Interface Utilization

– Memory Utilization

– Threshold Summary

• Storage (3)

– Clients

– Licenses

– Disk Firmware

• Enterprise Reports (17)

– Organizer Graphs

– 95th Percentile

– Defined Thresholds

– Interface Volume

– Network Topology

– Customized Performance Templates

– User Event Activity

– Notifications and Triggers by Recipient

– Datapoints by Collector

– Organizer Availability

– Maintenance Windows

– Interface Utilization
3-36
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
– Event Time to Resolution

– Data Sources in Use

– Users Group Membership

– Cisco Inventory

– Guest to Datapools

• MSExchange (1)

– MSExchangeAvailability

• VMware (5)

– ESXs

– VMware Utilization

– VMs

– Datastores

– Clusters

• Cisco UCS Reports (2)

– Hardware Inventory

– Free Slots

Multiservices
This section discusses the CLSA VMDC approach to multitenancy. VMDC architecture supports
multitenant delivery, and CLSA VMDC must therefore support an assurance window into these tenant
services to equip cloud providers with the ability to assure logically distinct customer services. A related
topic, Role-Based Access Control (RBAC), is also presented in this section.

CLSA VMDC Multitenancy

VMDC provides a multitenancy cloud infrastructure by logically separating tenant services that are
implemented on a shared physical infrastructure. Tenants consume a portion of network, storage, and
compute resources that have been allocated from the larger pool represented by the cloud. CLSA VMDC
delivers cloud provider assurance of shared infrastructure devices and their sub-components. In addition,
CLSA VMDC supports the multitenancy aspect of the VMDC architecture through the use of defined
Tenant Services.

Zenoss CSA enables an administrator to stitch together service element nodes which taken as a whole
comprise a specific tenant service. A CLSA VMDC tenant service begins with the creation of the
topmost element node named for the tenant. To this tenant node, underlying VMware vSphere and UCS
shared infrastructure elements can be discovered and attached. Refer to VMDC Assurance Service
Models, page 3-16 for more details regarding tenant services.

Using the tenant service modeling feature of CLSA VMDC, cloud customers' services can be assured
independently. Elements of the tenant service that are unique to that tenant customer such as specific
VM's are visible only to the cloud provider or the service owner. Elements of the service that belong to
shared infrastructure, such as a UCS chassis or a storage device are visible across multiple tenant
services, as would be expected. In fact, if a shared device experiences a fault condition, all services
associated with that device should be impacted, however, any fault condition associated with unique
elements of a tenant service are not visible to other tenants.
3-37
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Note This phase of CLSA VMDC only supports cloud provider visibility into dashboards and service impact
trees. Tenant customer visibility into service impact trees via customer portals will be supported in future
releases.

RBAC Implementation

As a cloud providers' infrastructure increases in scale, it becomes important to provide a segmentation
of operations capability to implement a division of responsibility. CLSA VMDC fulfills this need with
its RBAC implementation. Beyond this division of responsibility capability, RBAC can also be used to
support groups of users with limited visibility into specific tenant services. Table 3-5 lists the
out-of-the-box roles that may be used to segment cloud provider operations responsibilities and access.

These predefined roles are global in scope, such that an operator may access all cloud objects, but only
be allowed certain operations. In addition to these global user roles, users may be defined that are more
limited in scope. These user roles may be assigned to organizational groups to manage a subset of the
entire infrastructure or even specific tenant services.

Organizational groups are used to collect subsets of infrastructure and/or services into logical categories
for segmented operations. Table 3-6 lists the broad group categories and suggested uses for each group
type. Groups can be devised for each tenant such that a customer's tenant services can be assigned to a
tenant group.

Figure 3-22 illustrates a list of users with either global or customized group role assignments. Users with
the global user roles would belong to the cloud provider.

Table 3-5 Global User Role Definitions

Role Definition

ZenUser Provides global read-only access to system objects.

ZenManager Provides global read-write access to system objects.

Manager Provides global read-write access to system objects and read-write access to the Zope
object database (which includes all devices, users, and event mappings)

ZenOperator Provides users the ability to manage events, i.e. acknowledge, move to archive, etc.

Table 3-6 Device and Service Group Categories

Group Categories Group Purpose

Group Can be used for collecting similar devices, e.g. all switches group, all compute
devices group

Systems Can be used to collect all equipment with a specific data center, e.g. data center A,
data center B

Locations Can be used to collect devices by geographic boundaries, e.g. city, state, or even
specific device rack
3-38
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
Figure 3-22 Custom User Groups

Users with non-global roles can belong to either the cloud provider or even a cloud customer. While
RBAC is only supported for the cloud provider in this phase, it could be the mechanism to deliver a cloud
customer, or multiservices, assurance portal in future phases.
3-39
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

 Design Guide

Chapter 3 CLSA VMDC System Architecture
Key Functions
3-40
Cloud Service Assurance for Virtualized Multiservice Data Center 2.2, 2.3, 3.0

Design Guide

	CLSA VMDC System Architecture
	Functional View
	Component View
	System Components
	Monitored Components and Services
	Key Functions
	Automatic Enablement of Service Assurance
	Automatic Discovery
	Zenoss APIs for Programmatic Provisioning

	Fault Performance, Configuration Data Collection, and Device Modeling
	Event Processing
	Root Cause Analysis and Service Impact Analysis
	Zenoss SIA and RCA
	VMDC Assurance Service Models
	VMDC RCA and SIA Use Cases

	Northbound Interface
	SNMP Northbound Interface
	Zenoss SNMP Notification Content
	Zenoss Notification Filtering
	Zenoss Service Impact SNMP Trap
	WS or ReST API
	Northbound Integration Use Case Examples

	Performance Management
	Dashboards
	Reporting
	Multiservices

