

Design and Implementation Guide
C H A P T E R 2

MSDC Solution Details and Testing Summary

This chapter discusses Power on Auto Provisioning (PoAP) and fabric protocol scaling.

PoAP
As was discussed earlier, PoAP was used to configure the various logical topologies—one major change
for each of 4 cycles (a, b, c, and d) for this phase of testing1. Setup and testing is documented below.

The Goals of the PoAP testing can be summarized in 4 bullet points, along with a summary of results:

1. It should be demonstrated that automation of simultaneous initial provisioning of all Leafs, without
human intervention, is possible.

• SUCCESS. After issuing write erase;reload, no human intervention was needed in order for the
switches to load new images/configuration and for the network to reconverge.

2. If failures occur during the PoAP process, there should be troubleshooting steps engineers can take
to determine root cause using logs.

• CONDITIONAL SUCCESS. Log messages left on bootflash by the PoAP script helped determine
root cause of failures in most cases. However some corner cases (bootflash full) prevented logs from
being written, and log verbosity is partly dependent on the PoAP script code (which is up to the
customer/script author).

a. Upon failure, PoAP will restart continuously.

b. On console, abort PoAP process when prompted.

c. Go through user/pass setup to get to bootflash to read logs.

d. Problems with PoAP process:

– PoAP never gets to script execution step

– bootflash:<ccyymmdd>_<HHMMss>_PoAP_<PID>_init.log files contain log of PoAP
process:

DHCP related problems (DHCP Offer not received, incorrect options in OFFER, etc)

HTTP/TFTP related problems (couldn’t reach server, file not found, etc)

Check DHCP/TFTP/HTTP/FTP/SFTP server logs for additional information

e. Errors in script execution:

– NO STDOUT or STDERR – only what script writes to logfile.

1. Refer to Power On Auto Provisioning (PoAP), page 1-22.
2-1
Massively Scalable Data Center (MSDC)

Chapter 2 MSDC Solution Details and Testing Summary
 PoAP
– CCO script writes to bootflash:<ccyymmddHHMMss>_PoAP_<PID>_script.log

– Be verbose in writing to log in scripts b/c no stackdump to use for debugging (but be aware of
available space on bootflash)

3. It should be shown that PoAP can take a deterministic amount of time to provision Leafs. This can
be a ballpark reference number since actual runtime will depend on the contents of the PoAP script
and what a customer is trying to achieve.

• SUCCESS Although the actual time to PoAP depends on the PoAP script being implemented, it was
observed that a ballpark figure of around 15 minutes. This test was performed using a mix of 3048
and 3064 Leaf devices connected to a 4-wide spine of N7K’s using OSPF as the routing protocol.
This represents all of the N3K Leaf devices in the 4-wide topology at the time.

a. Concurrent PoAP of 30 Leaf devices:

– 14x N3064 Leafs.

– 16x N3048 Leafs (these were available in lab).

– Inband PoAP DHCP relay via N7K Spines.

– Simultaneous PoAP.

– Single VM for TFTP/FTP/DHCP server

– PoAP script included image download and switch configuration

– Runtime: ~15min.

4. The minimum infrastructure needed to support PoAP’ing Leaf devices should be characterized.

• SUCCESS Refer to Topology Setup, page 2-2.

PoAP Benefits
Here are a few benefits provided by PoAP:

• Pipelining device configuration

– Pre-build configurations for Phase N+1 during Phase N.

• Fast reconfiguration of entire topology

– Phase N complete and configs saved offline.

– ‘write erase’ and ‘reload’ devices and recable testbed.

– After POAP completes, the new topology fully operational.

• Ensuring consistent code version across testbed/platforms.

• Scripting allows for customization.

• Revision control: config files can be stored in SVN/Git/etc, off-box in a centralized repository, for
easy versioning and backup.

Topology Setup
Each method of enabling PoAP, below, has its pros and cons. One of the most important decisions is
how any method scales. MGMT0, page 2-3 and Inband, page 2-3 are two possible ways to enable PoAP
in the topology.
2-2
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 PoAP
MGMT0

Here is a detailed depiction of how PoAP can be used with the mgmt0 interface of each Spine and Leaf
node (Figure 2-1).

Figure 2-1 PoAP Across Dedicated Management Network

Pros

• Simple setup (no relay).

• DHCP server can be single homed.

• Single subnet in DHCP config.

Cons

• This is not how most MSDC would deploy. Cost of separate mgmt network at MSDC scales are
prohibitive.

• DHCP server could potentially respond to DISCOVERIES from outside the primary network,
depending on cabling and configuration.

If using this setup, the PoAP script uses the management VRF.

Inband

In this setup, no mgmt network is used, but rather the normal network (Figure 2-2).
2-3
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 PoAP
Figure 2-2 PoAP Across Inband Network

Pros

• Customers prefer this method; L3-only, no separate network needed.

• DHCP scope limited to just the main network.

Cons

• Requires DHCP relay on devices.

• When testing, this setup requires extra non-test gear within the topology (dedicated servers).

• DHCP is multi-homed.

• More complex DHCP server configuration.

The test topology used this arrangement for PoAP. The Pros for inband are much higher weighted than
all the other cons, and it scales much better than a dedicated L2 network. And with software automation
the complexity of DHCP server configuration is easily managed.

Infrastructure
PoAP requires supporting services, such as DHCP, TFTP, FTP/SFTP, and HTTP to properly function.
These are discussed below.

DHCP Server

PoAP requires DHCP Offer to contain:

1. IP
2-4
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 PoAP
2. Subnet

3. routers option

4. domain-name-server option

5. next-server

6. tftp-server-name option

7. bootfile-name option

8. lease time of 1 hour or greater

If PoAP does not get offer with adequate information, init.log will show:

poap_dhcp_select_interface_config: No interface with required config
poap_dhcp_intf_ac_action_config_interface_select: Failed in the interface selection to
send DHCPREQUEST for interface 1a013000

isc-dhcpd Configuration

Split config into Subnet and Host portions.

• Subnets

– Switch could DHCP from any interface. Need a subnet entry for every network where DHCP
Discover could originate. For inband, that is every point-to-point link where dhcp-relay is
configured.

– IP/Subnet/Router unique for each subnet.

– Use ‘group’ to specify same next-server, tftp-server, domain-name-server for all subnets.

• Hosts

– Host entries need to map Serial Number (prepended with \0) to device hostname.

host msdc-leaf-r4 {
option dhcp-client-identifier "\000FOC1546R0SL";
option host-name "msdc-leaf-r4";
}

– Use ‘group’ to specify same filename, bootfile-name for hosts that will use the same PoAP
script.

– Grouping based on platform, network role, testbed, etc.

TFTP/FTP/SFTP/HTTP Server

• PoAP process on switch downloads PoAP script via TFTP/HTTP. Most tftp servers chroot, so
filename but not path is required. For http, configure dhcp option tftp-server-name to be
“http://servername.domain.com”.

• PoAP script then downloads image and config via TFTP, FTP, SFTP, or SCP.

– Script will need credentials for login and full path to files

• Host specific config files named directly or indirectly2.

– Identified directly by hostname when using os.environ['POAP_HOST_NAME']

– Best Practice: MAC or S/N mapped to hostname in DHCP config

– Identified indirectly by serial number, mac address, CDP neighbor.

2. As of this writing hostname is only available in Caymen+ (U4.1) and GoldCoast Maintenance.
2-5
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 PoAP
– Best Practice: symlink conf_<hostname>.cfg to conf_<serialnum/mac_addr>.cfg

• The load on TFTP/FTP/SFTP servers depends on the PoAP script:

– Generally, devices PoAP’ing look just like any other TFTP/FTP/SFTP client requests.

– Best practice: make script intelligen enough to NOT download images if they’re already
present.

– Be aware of increased log sizes if enabling debugging on servers for troubleshooting.

Demo
The following collection of logfiles demonstrates a successful PoAP event.

• leaf-r13

2012 Jun 4 19:53:22 %$ VDC-1 %$ %NOHMS-2-NOHMS_DIAG_ERR_PS_FAIL: System minor alarm
on power supply 1: failed
Starting Power On Auto Provisioning...
2012 Jun 4 19:54:17 %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online
2012 Jun 4 19:54:17 switch %$ VDC-1 %$ %POAP-2-POAP_INITED: POAP process initialized
Done

Abort Power On Auto Provisioning and continue with normal setup ?(yes/no)[n]:
2012 Jun 4 19:54:37 switch %$ VDC-1 %$ %POAP-2-POAP_DHCP_DISCOVER_START: POAP DHCP
Discover phase started
2012 Jun 4 19:54:37 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Abort Power On Auto
Provisioning and continue with normal setup ?(yes/no)[n]:

• DHCP Server and Script Output. The first reboot happens at 19:55. Then config requiring reboot is
applied (system URPF, hardware profile, etc). The first second reboot at 19:58:

Jun 4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via
10.3.1.32
Jun 4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via
10.2.1.32
Jun 4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via
10.4.1.32
Jun 4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via
10.1.1.32
Jun 4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.3.1.33 to 54:7f:ee:34:10:c1
via 10.3.1.32
Jun 4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.2.1.33 to 54:7f:ee:34:10:c1
via 10.2.1.32
Jun 4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.4.1.33 to 54:7f:ee:34:10:c1
via 10.4.1.32
Jun 4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.1.1.33 to 54:7f:ee:34:10:c1
via 10.1.1.32
Jun 4 10:54:34 milliways-cobbler dhcpd: DHCPREQUEST for 10.3.1.33 (10.128.3.132) from
54:7f:ee:34:10:c1 via 10.3.1.32
Jun 4 10:54:34 milliways-cobbler dhcpd: DHCPACK on 10.3.1.33 to 54:7f:ee:34:10:c1 via
10.3.1.32
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Using DHCP, information
received over Eth1/19 from 10.128.3.132
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Assigned IP address:
10.3.1.33
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Netmask: 255.255.255.254
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: DNS Server: 10.128.3.136
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Default Gateway: 10.3.1.32
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Script Server: 10.128.3.132

3. This output is from 5.0(3)U3.2. Output is more verbose in 5.0(3)U4.1.
2-6
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 PoAP
2012 Jun 4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Script Name:
/poap_script.py
2012 Jun 4 19:55:04 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: The POAP Script download
has started
2012 Jun 4 19:55:04 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: The POAP Script is being
downloaded from [copy tftp://10.128.3.132//poap_script.py bootflash:script.sh vrf
default]
2012 Jun 4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_SCRIPT_DOWNLOADED: Successfully
downloaded POAP script file
2012 Jun 4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Script file size 15738, MD5
checksum b9b180bd70baee9fabb7a253d59e909a
2012 Jun 4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: MD5 checksum received from
the script file is b9b180bd70baee9fabb7a253d59e909a
2012 Jun 4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_SCRIPT_STARTED_MD5_VALIDATED:
POAP script execution started(MD5 validated)

$ head -n 1 poap_script.py
#md5sum="b9b180bd70baee9fabb7a253d59e909a"
Mon Jun 4 10:54:50 2012 1 10.3.1.33 886 /var/lib/tftpboot/conf_FOC1539R06D.cfg b _ o
r administrator ftp 0 * c
Mon Jun 4 10:54:51 2012 1 10.3.1.33 0 /var/lib/tftpboot/conf_FOC1539R06D.cfg.md5 b _
o r administrator ftp 0 * i
Mon Jun 4 10:54:53 2012 1 10.3.1.33 3060 /var/lib/tftpboot/conf_mgmt_milliways.cfg b
_ o r administrator ftp 0 * c
Mon Jun 4 10:54:55 2012 1 10.3.1.33 0 /var/lib/tftpboot/conf_mgmt_milliways.cfg.md5 b
_ o r administrator ftp 0 * i
Mon Jun 4 10:54:56 2012 1 10.3.1.33 632 /var/lib/tftpboot/conf_proto_ospf.cfg b _ o r
administrator ftp 0 * c
Mon Jun 4 10:54:58 2012 1 10.3.1.33 0 /var/lib/tftpboot/conf_proto_ospf.cfg.md5 b _ o
r administrator ftp 0 * i

2012 Jun 4 19:55:27 switch %$ VDC-1 %$ %POAP-2-POAP_SCRIPT_EXEC_SUCCESS: POAP script
execution success
2012 Jun 4 19:55:30 switch %$ VDC-1 %$ %PFMA-2-PFM_SYSTEM_RESET: Manual system
restart from Command Line Interface
 writing reset reason 9,

· leaf-r1. After second reboot, the remainder of the cofiguration is applied:

POAP - Applying scheduled configuration...
2012 Jun 4 19:58:36 %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online
Warning: URPF successfully disabled
Warning: Please copy running-config to startup-config and reload the switch to apply
changes
[##] 100%
Done
WARNING: This command will reboot the system
2012 Jun 4 19:58:54 switch %$ VDC-1 %$ %PFMA-2-PFM_SYSTEM_RESET: Manual system
restart from Command Line Interface
 writing reset reason 9,
POAP - Applying scheduled configuration...
2012 Jun 4 20:02:01 switch %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online
Please disable the ICMP redirects on all interfaces
running BFD sessions using the command below
'no ip redirects '
% Warning - the verbose event-history buffer may result in a slow down of OSPF
[##] 100%
Done
2012 Jun 4 16:02:36 msdc-leaf-r
msdc-leaf-r1 login:
2-7
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
PoAP Considerations
The following PoAP considerations are recommended.

• No “default” config using PoAP

– If no admin user is configured during PoAP - you’ll lock yourself out of the box.

– No CoPP policy applied to box by default – you must have it in your config.

– Any IP address received via DHCP during PoAP is discarded when PoAP is complete.

• DHCP Relay issues on N7k

– CSCtx88353 – DHCP Relay; Boot Reply packet not forwarded over L3 interface

– CSCtw55298 – With broadcast flag set, dhcp floods resp pkt with dmac=ch_addr

• System configuration after aborted PoAP

– If PoAP initiated because ‘write erase’, config will be blank

– If PoAP initiated by ‘boot poap enable’, config will be in unknown state. Cannot fall-back to
previous config.

• Ensure you have enough free space on bootflash for script logs, downloaded images, and
downloaded configs.

Fabric Protocol Scaling
This section discusses ways to tell if a MSDC is approaching meltdown. Refer to the “Scale” section on
page 1-31 for designing MSDC networks to mitigate issues with churn. Figure 2-3 through Figure 2-11
shows and defines the routing and processing subsystems of a packets journey.

Churn
Figure 2-3 is used to describe the day in the life of a packet and how it relates to various routing events
and actions.

Figure 2-3 Day in the Life of a Packet Through Routing and Processing Subsystems
2-8
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Several terms are used to describe a routing protocol failure; meltdown, cascading failures, etc. The
underlying problem in each of these is the network reaches the point where the protocol can no longer
keep up. It is so far backed up and sending updates that it becomes the cause of problems instead of
routing packets around problems. From an application point of view, this manifests as communication
failures between endpoints. But how can one tell from the router point of view that this is occurring?
Every routing protocol does three basic things; receive updates, compute new route tables based on these
updates, and send out new updates. The most obvious item to check is CPU utilization. If CPU is pegged
at 100% computing new route tables, then the limit has obviously been reached. There are, however,
other potential breakpoints from when new updates are taken off the wire, to when those updates are
processed by the routing protocol, to when new RIB and FIB and generated and pushed to hardware, to
when new updates are sent out.

Line Card Input Queues

The first place a packet goes when it comes off the wire is the port’s input queue. The architecture of
each linecard and platform is different, so the specifics won’t be covered here.4

Figure 2-4 Line Card Input Queues

CoPP

Control Plane Policing (CoPP) protects the supervisor from becoming overwhelmed by DDOS type
attacks using hardware rate-limiters. The CoPP configuration is user customizable. The default N7k
CoPP policy puts all routing protocol packets into the copp-system-p-class-critical class. By default this
class is given the strict policy of 1 rate and 2 color and has a BC value of 250ms. The default N3k CoPP
policy divides the routing protocol packets into several classes based on each protocol. Should the
routing protocol exceed configured rates, packets will be dropped. Dropped Hello's can lead to entire
neighbor session being dropped. Dropped updates/LSAs can lead to increased load due to
retransmissions or inconsistent routing state.

4. Refer to Appendix C, “F2/Clipper Linecard Architecture,”
2-9
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Figure 2-5 CoPP Path

CoPP Commands

On the N7k the show policy-map interface control-plane class copp-system-p-class-critical command
displays counters for default CoPP class regulating routing protocol traffic. A violated counter that is
continuously incrementing indicates network churn rate is approaching meltdown.

msdc-spine-r9# show pol int cont class copp-system-p-class-critical | begin mod
 module 3 :
 conformed 14022805664 bytes; action: transmit
 violated 0 bytes; action: drop

 module 4 :
 conformed 8705316310 bytes; action: transmit
 violated 0 bytes; action: drop

On the N3k, the show policy-map interface control-plane command displays counters for all CoPP
classes. A routing protocol class DropPackets counter that is continuously incrementing indicates the
network churn rate is approaching meltdown.

msdc-leaf-r21# show policy-map interface control-plane | begin copp-s-igmp
 class-map copp-s-igmp (match-any)
 match access-grp name copp-system-acl-igmp
 police pps 400
 OutPackets 0
 DropPackets 0
 class-map copp-s-eigrp (match-any)
 match access-grp name copp-system-acl-eigrp
 match access-grp name copp-system-acl-eigrp6
 police pps 200
 OutPackets 0
 DropPackets 0
 class-map copp-s-pimreg (match-any)
 match access-grp name copp-system-acl-pimreg
 police pps 200
 OutPackets 0
 DropPackets 0
 class-map copp-s-pimautorp (match-any)
 police pps 200
 OutPackets 0
 DropPackets 0
 class-map copp-s-routingProto2 (match-any)
 match access-grp name copp-system-acl-routingproto2
 police pps 1300
2-10
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
 OutPackets 0
 DropPackets 0
 class-map copp-s-v6routingProto2 (match-any)
 match access-grp name copp-system-acl-v6routingProto2
 police pps 1300
 OutPackets 0
 DropPackets 0
 class-map copp-s-routingProto1 (match-any)
 match access-grp name copp-system-acl-routingproto1
 match access-grp name copp-system-acl-v6routingproto1
 police pps 1000
 OutPackets 1208350
 DropPackets 0
 class-map copp-s-arp (match-any)
 police pps 200
 OutPackets 9619
 DropPackets 0
 class-map copp-s-ptp (match-any)
 police pps 1000
 OutPackets 0
 DropPackets 0
 class-map copp-s-bfd (match-any)
 police pps 350
 OutPackets 24226457
 DropPackets 0
<snip>

Supervisor Inband Interface

After making it through CoPP, control plane packets are sent to the supervisor via its inband interface.
As the level of network churn increases, it is expected the number of Updates/LSAs sent and received
by the device should also increase. A corresponding increase is seen in RX and TX utilization on the
inband interface. Should this interface become overwhelmed, throttling occurs and packets will be
dropped. Dropped Hello's may lead to entire neighbor sessions being dropped. Dropped updates/LSAs
may also lead to increased load due to retransmissions or inconsistent routing state.

Figure 2-6 Inband Interface Path
2-11
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Supervisor Inband Interface Commands

On the N7k, the inband rate limit for Sup1 is 32kpps, while the limit for Sup2 is 64kpps. The show
hardware internal cpu-mac inband stats command gives a vast array of statics regarding the inband
interface, specifically statistics about throttling. Seeing the rate limit reached counter incrementing
indicates the network churn rate is approaching meltdown.

msdc-spine-r1# show hard int cpu-mac inband stats | be Throttle | head
Throttle statistics
-----------------------------+---------
Throttle interval 2 * 100ms
Packet rate limit 32000 pps
Rate limit reached counter .. 0
Tick counter 2217856
Active 0
Rx packet rate (current/max) 261 / 3920 pps
Tx packet rate (current/max) 618 / 4253 pps

Netstack

Netstack is the set of NX-OS processes that implement all protocol stacks required to send and receive
control plane packets. Routing protocols register with the IP Process to receive their Hello and Update
packets. MTS is used to pass these updates between IP Process and routing protocols. When routing
protocols are too busy processing previous messages or doing route recalculations to receive these
messages, they can be dropped. Dropped Hello's can lead to entire neighbor session being dropped.
Dropped updates/LSAs can lead to increased load due retransmissions or inconsistent routing state. Each
routing protocol registers as a client of IP process to receive these messages. Statistics are available on
a per-client basis.

Figure 2-7 Netstack Path

Netstack Output Commands

The show ip client command lists all the processes that have registered to receive IP packets. Seeing the
failed data messages counter incrementing is an indication that the network churn rate is approaching
meltdown.

msdc-spine-r9# show ip client ospf

Client: ospf-msdc, uuid: 1090519321, pid: 4242, extended pid: 4242
 Protocol: 89, client-index: 12, routing VRF id: 65535
2-12
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
 Data MTS-SAP: 324, flags 0x3
 Data messages, send successful: 737284, failed: 0

msdc-spine-r8# show ip client tcpudp

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
 Protocol: 1, client-index: 6, routing VRF id: 65535
 Data MTS-SAP: 2323, flags 0x1
 Data messages, send successful: 462, failed: 0
 Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
 Protocol: 2, client-index: 7, routing VRF id: 65535
 Data MTS-SAP: 2323, flags 0x1
 Data messages, send successful: 0, failed: 10
 Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
 Protocol: 6, client-index: 4, routing VRF id: 65535
 Data MTS-SAP: 2323, flags 0x1
 Data messages, send successful: 14305149, failed: 0
 Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
 Protocol: 17, client-index: 5, routing VRF id: 65535
 Data MTS-SAP: 2323, flags 0x1
 Data messages, send successful: 588710, failed: 0
 Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
 Protocol: 112, client-index: 8, routing VRF id: 65535
 Data MTS-SAP: 2323, flags 0x1
 Data messages, send successful: 0, failed: 0
 Recv fn: tcp_process_ip_data_msg (0x8369da6)

CPU Utilization

Once the update has reached its final destination, the routing protocol requires compute time on the
supervisor to run its SPF or best-path algorithms. As the network converges more frequently, the more
load will be put on CPU. However, each platform has a different type of CPU so load will be different
on each platform. Also, the location of the device in the network has an impact (routers in an OSPF
totally stubby area are insulated from churn in other areas). Thus CPU utilization is one metric to
carefully examine, but monitoring all devices is required until it is determined which platform+roles will
be high water marks. If the network melts before any devices have pegged the CPU, then one of the other
breakpoints are being reached first.
2-13
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Figure 2-8 CPU Usage

CPU Utilization Commands

The following CPU usage commands were used:

• show process cpu sort

• show process cpu hist

• show system resources module all

msdc-spine-r1# show proc cpu sort | exc 0.0%

PID Runtime(ms) Invoked uSecs 1Sec Process
----- ----------- -------- ----- ------ -----------
 3929 229 87 2641 6.8% netstack
 4347 4690520 3655116 1283 2.9% statsclient
 3824 5842819 2004444 2914 2.0% diagmgr
 4223 9112189 35562230 256 2.0% stp
 26 507049 1086599 466 0.9% kide/1
 3983 33557935 1148416 29221 0.9% sac_usd
 4034 5259725 1575385 3338 0.9% oc_usd
 4218 1484069 4998255 296 0.9% diag_port_lb
 4235 1991337 1127732 1765 0.9% udld

CPU util : 5.0% user, 4.5% kernel, 90.5% idle
Please note that only processes from the requested vdc are shown above
msdc-spine-r1# show proc cpu hist

 1 11 226 2 111 211 111 4554 353 2 2 1 3
 696787708864288269140716978855989375663843527196860868197579
100
 90
 80
 70 #
 60 # # #
 50 # ## #
 40 # #### #
 30 # #### ### # #
 20 # # ### # ### ### #### ### # # # #
 10 ################################# ##########################
 0....5....1....1....2....2....3....3....4....4....5....5....
 0 5 0 5 0 5 0 5 0 5

 CPU% per second (last 60 seconds)
2-14
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
 # = average CPU%

 1 1 11
 777877697797678967989767785988798980787586978798098788009679
 166077546715148676827549868699342800060935474641066850000773
100 * * * * * * ** **
 90 * * ** * * * *** * * * * * * *** * *** *
 80 ***** ***** ** ***** *** *** ***** * * *************** **
 70 ************ ********* *** ************ ********************
 60 **
 50 **
 40 **#****#**********#******#*#*****#******#*#*****#*****##***#
 30 **##*#*##*#***#***#*##***#*###***#*###**#*###***#*#***##**##
 20 ###############*##
 10 ##
 0....5....1....1....2....2....3....3....4....4....5....5....
 0 5 0 5 0 5 0 5 0 5

 CPU% per minute (last 60 minutes)
 * = maximum CPU% # = average CPU%

 111111111111 1111111 111
 000000000000900000009000
 000000000000900000006000
100 **************************##########################********************
 90 **************************##########################********************
 80 **************************###########################*******************
 70 *************************############################*******************
 60 *************************############################*******************
 50 ******#*****************##
 40 ******#****************###
 30 ###*###*####***********###
 20 ##
 10 ##
 0....5....1....1....2....2....3....3....4....4....5....5....6....6....7.
 0 5 0 5 0 5 0 5 0 5 0 5 0

 CPU% per hour (last 72 hours)
 * = maximum CPU% # = average CPU%

msdc-spine-r1# show system resources module all
CPU Resources:

 CPU utilization: Module 5 seconds 1 minute 5 minutes

 1 25 15 14
 2 21 15 15
 3 26 23 21
 4 14 14 14
 5 21 15 14
 6 11 13 13
 7 11 13 13
 8 11 12 12
 10 27 18 19
 11 23 13 12
 12 17 11 12
 13 10 13 12
 14 10 13 13
 15 11 12 13
 16 11 12 12
 17 11 13 13
2-15
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling

 Processor memory: Module Total(KB) Free(KB) % Used

 1 2075900 1339944 35
 2 2075900 1340236 35
 3 2075900 1333976 35
 4 2075900 1339780 35
 5 2075900 1341112 35
 6 2075900 1344648 35
 7 2075900 1344492 35
 8 2075900 1344312 35
 10 8251592 6133856 25
 11 2075900 1344604 35
 12 2075900 1344904 35
 13 2075900 1344496 35
 14 2075900 1344496 35
 15 2075900 1344808 35
 16 2075900 •show process cpu sort

• show process cpu hist

• show system resources module all

msdc-spine-r1# show proc cpu sort | exc 0.0%

PID Runtime(ms) Invoked uSecs 1Sec Process
----- ----------- -------- ----- ------ -----------
 3929 229 87 2641 6.8% netstack
 4347 4690520 3655116 1283 2.9% statsclient
 3824 5842819 2004444 2914 2.0% diagmgr
 4223 9112189 35562230 256 2.0% stp
 26 507049 1086599 466 0.9% kide/1
 3983 33557935 1148416 29221 0.9% sac_usd
 4034 5259725 1575385 3338 0.9% oc_usd
 4218 1484069 4998255 296 0.9% diag_port_lb
 4235 1991337 1127732 1765 0.9% udld

CPU util : 5.0% user, 4.5% kernel, 90.5% idle
Please note that only processes from the requested vdc are shown above
msdc-spine-r1# show proc cpu hist

 1 11 226 2 111 211 111 4554 353 2 2 1 3
 696787708864288269140716978855989375663843527196860868197579
100
 90
 80
 70 #
 60 # # #
 50 # ## #
 40 # #### #
 30 # #### ### # #
 20 # # ### # ### ### #### ### # # # #
 10 ################################# ##########################
 0....5....1....1....2....2....3....3....4....4....5....5....
 0 5 0 5 0 5 0 5 0 5

 CPU% per second (last 60 seconds)
 # = average CPU%

 1 1 11
 777877697797678967989767785988798980787586978798098788009679
 166077546715148676827549868699342800060935474641066850000773
100 * * * * * * ** **
2-16
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
 90 * * ** * * * *** * * * * * * *** * *** *
 80 ***** ***** ** ***** *** *** ***** * * *************** **
 70 ************ ********* *** ************ ********************
 60 **
 50 **
 40 **#****#**********#******#*#*****#******#*#*****#*****##***#
 30 **##*#*##*#***#***#*##***#*###***#*###**#*###***#*#***##**##
 20 ###############*##
 10 ##
 0....5....1....1....2....2....3....3....4....4....5....5....
 0 5 0 5 0 5 0 5 0 5

 CPU% per minute (last 60 minutes)
 * = maximum CPU% # = average CPU%

 111111111111 1111111 111
 000000000000900000009000
 000000000000900000006000
100 **************************##########################********************
 90 **************************##########################********************
 80 **************************###########################*******************
 70 *************************############################*******************
 60 *************************############################*******************
 50 ******#*****************##
 40 ******#****************###
 30 ###*###*####***********###
 20 ##
 10 ##
 0....5....1....1....2....2....3....3....4....4....5....5....6....6....7.
 0 5 0 5 0 5 0 5 0 5 0 5 0

 CPU% per hour (last 72 hours)
 * = maximum CPU% # = average CPU%

msdc-spine-r1# show system resources module all
CPU Resources:

 CPU utilization: Module 5 seconds 1 minute 5 minutes

 1 25 15 14
 2 21 15 15
 3 26 23 21
 4 14 14 14
 5 21 15 14
 6 11 13 13
 7 11 13 13
 8 11 12 12
 10 27 18 19
 11 23 13 12
 12 17 11 12
 13 10 13 12
 14 10 13 13
 15 11 12 13
 16 11 12 12
 17 11 13 13

 Processor memory: Module Total(KB) Free(KB) % Used

 1 2075900 1339944 35
 2 2075900 1340236 35
 3 2075900 1333976 35
 4 2075900 1339780 35
2-17
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
 5 2075900 1341112 35
 6 2075900 1344648 35
 7 2075900 1344492 35
 8 2075900 1344312 35
 10 8251592 6133856 25
 11 2075900 1344604 35
 12 2075900 1344904 35
 13 2075900 1344496 35
 14 2075900 1344496 35
 15 2075900 1344808 35
 16 2075900 1344416 35
 17 2075900 1344536 35
msdc-spine-r1# 1344416 35
 17 2075900 1344536 35
msdc-spine-r1#

URIB

When there is a lot of network instability urib-redist can run out of shared memory waiting for acks
caused by routing changes. urib-redist uses 1/8 of the memory allocated to urib, which can be increased
by modifying the limit for 'limit-resource u4route-mem' (urib).

This data shows urib-redist with 12292 allocated, which is 1/8 of urib (98308)

n7k# show processes memory shared
Component Shared Memory Size Used Available Ref
 Address (kbytes) (kbytes) (kbytes) Count
smm 0X50000000 1028 4 1024 41
cli 0X50101000 40964* 25151 15813 12
npacl 0X52902000 68 2 66 2
u6rib-ufdm 0X52913000 324* 188 136 2
u6rib 0X52964000 2048+ (24580) 551 1497 11
urib 0X54165000 7168+ (98308) 5161 2007 22
u6rib-notify 0X5A166000 3076* 795 2281 11
urib-redist 0X5A467000 12292* 11754 538 22
urib-ufdm 0X5B068000 2052* 0 2052 2

Protocols often express interest in notifications whenenever there is a change in the status of their own
routes or routes of others (redistribution). Previously, no flow control in this notification mechanism
existed, that is, urib kept sending notifications to protocols without checking whether the protocol was
able to process the notifications or not. These notifications use shared memory buffers which may
encounter situations where shared memory was exhausted. Part of this feature, urib will now allow only
for a fixed number of unacknowledged buffers. Until these buffers are acknowledged additional
notifications will not be sent.
2-18
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Figure 2-9 URIB Path

EOBC

Once a new FIB has been generated from the RIB, updates are sent to the forwarding engine on each
linecard via the Ethernet Out of Band Channel (EOBC) interface on the supervisor. Many other internal
system processes utilize the EOBC as well. As the level of network churn increases, it is expected the
number of FIB updates increase. Thus it is expected an increase in RX and TX utilization on the EOBC
interface to happen. Should this interface become overwhelmed, throttling will occur and packets will
be dropped. This delays programming new entries into the forwarding engine, causing packet misrouting
and increased convergence times.

Figure 2-10 EOBC Path

EOBC Commands

On the N7k, the EOBC rate limit for SUP1 is 16kpps, while the limit for SUP2 is significantly higher.
The show hardware internal cpu-mac eobc stats command gives a vast array of statics regarding the
EOBC interface. Statistics about throttling are specifically sought after. Seeing the Rate limit reached
counter incrementing indicates the network churn rate is approaching meltdown.

msdc-spine-r8# show hard int cpu-mac eobc stats | be Throttle | head
Throttle statistics
2-19
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
-----------------------------+---------
Throttle interval 3 * 100ms
Packet rate limit 16000 pps
Rate limit reached counter .. 0
Tick counter 6661123
Active 0
Rx packet rate (current/max) 30 / 6691 pps
Tx packet rate (current/max) 28 / 7581 pps

Linecard FIB Programming

Each linecard and platform has its own programming algorithms for its forwarding engines. The
architecture of each is different, so the specifics won’t be covered here.5

Figure 2-11 Linecard FIB Programming

OSPF
Open Shortest Path First (OSPF) testing focused around control plane scale at a real MSDC customer
network, herein to be referred as ACME_16. ACME_1 has an OSPF network that runs at a higher scale
than Cisco originally published for the N7K platform as supported, and is growing at a rapid pace.

This testing verification ensures Nexus 7000 capabilities of handling ACME_1s specific scenario.

This version of ACME_1 testing includes the following primary technology areas:

• OSPF Scale

• Unicast Traffic

• ECMP

DDTS caveats discovered and/or encountered in this initial testing effort are identified in the “Defects
Enountered” section of the external test results document.7

5. Refer to Appendix C, “F2/Clipper Linecard Architecture,”

6. To protect the names of the innocent, as well as comply with MNDA requirements, ACME_1 will be used. If
other real MSDC customers are referred to in this document, they will be notated as “ACME_2”, “ACME_3”,
etc.

7. For a detailed discussion of testing results, please refer to the document “Cisco ACME_1 Control Plane Scale
Testing, Phase 1 Test Results”. This guide is intended to provide a summary only of overall considerations.
2-20
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Table 2-1shows project scale number for OSPF scale parameters.

All routing protocols are susceptible to scale limitation in the number of routes in the table and the
number of peers to which they are connected. Link state protocols like OSPF are also susceptible to
limitations in the number of routers and links within each area. The ACME_1 topology pushes all these
limits, as is typical of most MSDC customers.

Summary of Test plan

OSPF Scale testing focused on 7 major considerations in this phase:

1. OSPF Baselining

2. Type-5 LSA Rout Injections/Withdrawals

3. Domain Stability

4. External Influences on OSPF Domain Stability

5. Unicast Traffic Patterns

6. ECMP

7. BFD

Each test group (test set) had a series of individual tests. The reader may refer to a subsequent document
detailing all tests and results upon request.

Summary of Results

OSPF testing results demonstrated that the network remains stable up to 30k LSAs, and can scale to 60k
LSAs if BFD is enabled. OSPF and OSPF with BFD enabled showed some instability in a few instances
with steady-state flaps and LSA propagation delays; however, both those issues are addressed in
NX-OS 6.2.

BGP
Another MSDC customer, ACME_2, was selected to examine alternative BGP arrangements for
increasing scale of an MSDC without compromising convergence. Both resiliency and reliability were
also top concerns needing attention, and are discussed below. The test topology was not a
straightforward three-stage Clos, but rather closer to a “reduced” five-stage Clos with multiple Spine
“networks”, never the less, the same high-level topological principles apply (Figure 2-12). It was run
within the test topology.

Table 2-1 Project Scale Number for OSPF Scale Parameters

OSPF Scale Parameters Value

Area 0 Type-1 LSA >1000

Type-5 External 20,000->30,000

Neighbors ~45
2-21
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
Figure 2-12 BGP Testing: Resilliency and Reliability

The system was composed of 3 physical Podsets8, Podsets 1, 2 and 3. Each Podset consisted of 4 Nexus
3064 Leaf nodes and a mixture of Nexus 3064/3048 ToRs. Podset 1 had over a dozen TORs while Podset
2 and 3 had 3 ToRs. IXIA IXNetwork was used to bring the total number of real and simulatied ToRs to
17 for each Podset. Route-maps were configured on each ToR to advertise four /24 directly connected
prefixes. A 300x VM Hadoop cluster was also connected to Podset 1 (also used for TCP incast and buffer
utilization testing). Each VM connected to the ToR via a /30 connected subnet, configured through
DCHP.

Note /30 masks were used to provide location awareness for Hadoop nodes.

Based on the DHCP forwarding address, backend servers map requests to specific racks, and position in
the rack. Inband management was used for the Hadoop cluster, out of band was utilized for network
devices. Each Leaf node connected to a single Spine. Depending on the Leaf node there were either two
or three parallel connections to the Spine layer (ACME_2 requirement). IXNetwork was used to simulate
up to 32 BGP spine sessions for each Leaf node.

Scaling was done to 140 POD sets at the Spine layer using combinations of real and simulated
equipment. Each Spine node connected three non-simulated Leaf nodes, and the remaining nodes, 137
of them, were simulated using IXIA. All Leafs advertised 68 /24 ipv4 prefixes to each Spine node, and
each Spine node received over 9000 BGP prefixes, in total, from the Leaf layer.

8. A Podset would be comprised of hundreds of servers. ToRs for each rack were N3064s. Pod sets connect to
an infrastructure based on the three-stage Clos topology. For the purposes of testing, a smaller-scale version
of the customer has in production was used.
2-22
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
With the exception of the programmable BGP Speakers (pBS), BFD was enabled across the topology for
each BGP session. BFD is enabled for all ToR <-> Leaf, Leaf <-> Spine, and Spine <-> Border
connections.

pBSes were simulated using IXIA. Each Spine and Leaf node peered with a pBS. There were 32 BGP
sessions with the pBS, per device, broken down into two groups, with each group consisting of sixteen
BGP sessions. All 32 BGP sessions advertised hundreds of /32 VIPs used for service loadbalancing to
the server. For all VIPS advertised, Group1 advertises prefix with MED 100 while Group 2 advertised
MED 200. Each VIP had 16 equal cost paths in the route table; NH reachability for all VIPs point to the
physical IP address of the load balancer(s).

To reach the final goal of 16,000 IPV4 prefixes, IXIA injected 4700 prefixes at the Border Leaf layer.
Nexus 3000 limits the route size to 8K in hardware if uRPF is enabled (default). To get to the target of
16K routes, urpf had to be disabled on Leaf and ToR nodes.

Two types of traffic were used in testing:

1. Background server-to-server traffic

a. Podset 2 <-> Podset 1

b. Podset 3 <-> Podset 1

c. Podset 3 <-> Podset 2

2. VIP traffic from servers to loadbalancers

a. Podset 2 -> VIP

b. Podset 1 -> VIP

c. Podset 3 -> VIP

With the entire system configured as outlined above, these were the 3 major test sets executed:

1. Baseline tests

2. Route Convergence

3. Multi-Factor Reliability

Note Test sets are defined as a broad characterization of individual tests; in other words, Test set 1 had 17
individual tests (BGP steady state with and without churn, BGP soft clearing, Link Flapping, ECMP path
addition and reduction, etc), Test set 2 had 7, Test set 3 had 6.

Summary of Results

All platforms must be considered when examining routing scale limits. For the N7K9; 2 session limits
exist when running BGP with and without BFD. BFD is limited to 200 sessions per module, and 1000
sessions were supported per system. For BGP, 1000 neighbors per system were supported. Limits for
N3K were less than N7K.

Observations

• Peering at both Spine and Leaf provides greater granularity of available hardware loadbalancing.
However, peering at the Spine, requires customizing route-maps to change next-hop which is less
scalable.

4. SDU validated these numbers in testing:

9. http://www.cisco.com/en/US/docs/switches/datacenter/sw/verified_scalability/b_Cisco_Nexus_7000_Series_
NX-OS_Verified_Scalability_Guide.html#concept_2CDBB777A06146FA934560D7CDA37525
2-23
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Fabric Protocol Scaling
• The overall test topology as a whole:

– N7K—Up to 128 sessions of BGP+BFD were validated per linecard. Note: BGP Updates do
not terminate on the linecard, unlike BFD sessions. Thus the 128 session limit is what BFD
could do. Per system, tests were scaled to 768 sessions (768 IXIA sessions + 12 real sessions).
All were run rith BFD at 500ms timers.

– N3K—16 BGP sessions on leaf-r1, the remaining Leafs at 8 sessions.

5. Convergence with BGP (w/ BFD enabled) was well below the 10 second target.

6. Convergence with BGP alone (without BFD) did not converge under the targeted 10 seconds.

7. FIB overflow can cause inconsistency or unpredictable convergence. It should be avoided if
possible or worked around. This is due to new entries learned after FIB exhaustion that would be
otherwise forced to software route. Once mapped in software these would never reprogram back into
the FIB, unless they were lost and relearned. The workaround is to clear all IP routes, forcing a
TCAM reload/reprogram. This workaround causes temporary neighbor-loss with BFD configured
(when we used 500/3 timers). This workaround can be done manually or through an EEM script,
like this:

event manager applet fib-exception
 event syslog pattern "<put-to-FIB-exception-gone-syslog>"
 action 1.0 cli clear ip route *
 action 1.1 syslog msg FIB Re-downloaded to HW

Features are available in IOS-XR which would benefit NX-OS development, which address FIB
issues encountered above.

8. FIB and MAC tables are not coupled. Recommendation is to configure identical aging timer to
maintain synchronization. Options are; either increase MAC aging or decrease ARP aging.
Primarily applies to unidirectional flow.

9. If BFD is implemented in the network, BFD echo packets needs to be assigned to priority queue to
ensure network stability under load.

10. URPF must be disabled to support 16K routes in hardware on the N3K.

11. To work around an ECMP polarization issue, hashing algorithms must be different between ToR and
Leaf layers. A new CLI command was created to configure different hash offsets to avoid the ECMP
polarization.

Refer to subsequent testing documentation for complete details about ACME_2 testing.

BFD
Bidirectional Forwarding Detection (BFD), a fast failure detection technology, was found to allow for
relaxed routing protocol timers. This in turn creates room for scaling routing protocols.

Summary of Results

BFD testing occurred between test instrumentation hardware and the Spine. 384 sessions were validated
at the spine with both BGP and OSPF. A 500ms interval was configured based on overall system
considerations for other LC specific processes.
2-24
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Incast Simulation and Conclusions
Since SDU-MSDC’s objective was provide meaningful network architecture guidance in this space, it
is necessary to simulate as close to the real thing as possible. This presents difficulties in MSDC space
because of the sheer volume of servers (endpoints, or nodes) that are required to make the problem
appear in the first place.

Servers
Servers are distributed throughout the fabric with 10G connectivity. Refer to Server and Network
Specifications, page A-1 for server specifications, configurations, and Hadoop applications details.

Intel recommends the following based on real world applications:
http://www.intel.com/content/dam/doc/application-note/82575-82576-82598-82599-ethernet-controlle
rs-interrupts-appl-note.pdf

Note File transfer buffering behaviors were observed – kernel controls how frequently data is dumped from
cache; with default kernel settings, the kernel wasn’t committing all memory available, thus there was
a difference between committed memory vs. what it’s able to burst up to. As a result, VMs that hadn’t
committed everything behaved worse than those that did. To keep all experiments consistent, all VMs
were configured to have all memory 100% “committed”.

TCP receive buffers were configured at 32MB. It was set higher because the goal was to remove receive
window size as a potential limitation on throughput and to completely rely on CWND. This is not
realistic for a production deployment, but it made tracking key dependencies easier. Refer to Incast
Utility Scripts, IXIA Config, page E-1 for relevant sysctl.conf items.

The formula for TCP receive window is:

Below shows TCP RX window is set correctly:

 [root@r09-p02-vm01 tmp]# more /proc/sys/net/ipv4/tcp_adv_win_scale
 2

Based on theeformula, 75% of buffer size is used for TCP receive window (25MB window scale
factor 10). This value is never reached as CWND is always the limiting factor.

Note Regarding window size, as of linux kernel 2.6.19 and above, CUBIC is the standard implementation for
congestion control.

Other TCP parameters were as follows:

• TCP selective ACK is enabled:

[root@r09-p02-vm01 ipv4]# more tcp_sack
1

• IP forward disabled:
2-25
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
[root@r09-p02-vm01 ipv4]# more ip_forward
0

• Misc settings:

[root@r09-p02-vm01 ipv4]# more tcp_congestion_control
Cubic
[root@r09-p02-vm01 ipv4]# more tcp_reordering
3

• RTT averaged 0.5ms as reported by ping.

All VMs were configured with 4 VCPU and 20G memory. Since the Hadoop jobs were not CPU bound,
one vcpu would have been sufficient. IO was the biggest bottleneck especially when less than 20G
assigned and during cluster failure; hence moving to 20G masked that. For comparison purposes, to copy
a 1G file from hdfs to local disk iowait peak was at 75% with 3G memory, barely over 1% @20G. This
is because linux page cache relies on pdflush to write data of cache to disk, and this is nominally 30
seconds or 10% dirty pages. Depending on the type of job write interval can be tuned up or down, as
required :

Note This link outlines additional issues to be aware of when hot plugging vcpu:
https://bugzilla.redhat.com/show_bug.cgi?id=788562

To manage failures and their impact to Incast events, two scripts were written to track the status of a job:
“fail-mapper.sh” and “find-reducer.sh”. fail-mapper.sh reloads 15% of the VMs immediately before the
reduce phase, and find-reducer.sh launches tcpdump on the reducer. Tcpdump output was used to
analyze TCP windowing behavior during Incast events.

Following logic was implemented in fail-mapper.sh:

1. User inputs two job ids (example 0051, 0052)

2. Query each map task and generate a unique list of VMs responsible for each job. There will be two
lists generated, one per job.

3. Compare the two lists, generate a third list by suppress common VMs.

4. Query the job status, once map tasks reaches 100% completion (96% for cascading failure), reload
15% of the VMs based on #3.

Find-reducer.sh determines the location of the reducer and launches tcpdump.

Topology
Figure 2-13 shows a standard 3-stage folded Clos topology, with 8 Spines and 16 Leafs.
2-26
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-13 Incast Lab Setup

Note Physical servers are arranged in logical racks, numbered “r01-r16”. Even though a physical server spans
two logical racks, it is the physical NICs (and the VMs mapped to them) that are actually assigned to a
logical rack. For example, the first server shown in the top-leftmost position has NIC_1 which is “in”
rack r01 and NIC_2 in r02.

Initially, there was noise traffic sent to exhaust both “bandwidth” and “buffer utilization”, but it was
determined exercising buffers was sufficient, along with Hadoop traffic, to create Incast events. For
completeness, the “bandwidth utilization” noise floor traffic method is described in Bandwidth
Utilization Noise Floor Traffic Generation, page F-1.

The border devices represent “external” networks and are injecting a default route, effectively acting as
a sensor for spurious traffic.

Buffer Utilization

Figure 2-14 shows an IXIA shared buffer setup.
2-27
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-14 IXIA Shared Buffer Setup

The IXIA is connected to each Leaf indirectly, and using a series of oscillating traffic bursts, in
conjunction with the bandwidth “noise” traffic above, both dedicated and shared buffers on the Leafs
are consumed at will (oscillating traffic is needed because the IXIA wasn’t able to consistently consume
N3K buffers with steady-stream traffic). The purposes of sending traffic through the border leaf and to
the Spines are two-fold:

1. IXIA didn’t have enough 10G ports to connect to every Leaf.

2. Sending traffic via ECMP towards the Spine, and then the Spine downto the Leafs, simulates real
traffic flow, albeit uni-directional (IXIA is both the source and sink).

In detail, this is how the IXIA is configured for shared buffer impairment traffic:

2x 10G interfaces, in total, are used to Send (Ix3/7) and Recv (Ix3/8) uni-directional UDP traffic. The
source traffic comes into an N5K fanout switch (this switch held other experiments to the border, so it
was left intact – technically, the IXIA could be connected directly to the border leaf, achieving the same
result) to Border leaf-r1 (msdc-leaf-r17), which connects to Spines r1 – r8.

• Refer to the following example for Leaf dest IP 10.128.4.131:

msdc-leaf-r17# show ip route 10.128.4.131
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
2-28
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

10.128.4.128/25, ubest/mbest: 8/0
 *via 10.1.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.2.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.3.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.4.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.5.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.6.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.7.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
 *via 10.8.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512

• Traffic is sourced from the same IP (10.128.128.151), but there are 3 unique dest IP’s for each leaf
(msdc-leaf-r1-16), Vlans 11-13:

msdc-leaf-r1# show ip int brief
IP Interface Status for VRF "default"(1)
Interface IP Address Interface Status
Vlan11 10.128.4.129 protocol-up/link-up/admin-up
Vlan12 10.128.5.1 protocol-up/link-up/admin-up
Vlan13 10.128.6.1 protocol-up/link-up/admin-up

msdc-leaf-r2# show ip int brief
IP Interface Status for VRF "default"(1)
Interface IP Address Interface Status
Vlan11 10.128.8.129 protocol-up/link-up/admin-up
Vlan12 10.128.9.1 protocol-up/link-up/admin-up
Vlan13 10.128.10.1 protocol-up/link-up/admin-up

• All Leaf switches have 3x 100Mb links connected to an N3K fan-in switch, which connects to IXIA
(Ix3/8):

msdc-leaf-r1# show cdp neighbors
Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater,
 V - VoIP-Phone, D - Remotely-Managed-Device,
 s - Supports-STP-Dispute

Device-ID Local Intrfce Hldtme Capability Platform Port ID
msdc-leaf-r42(FOC1550R05E)
 Eth1/46 131 R S I s N3K-C3048TP-1 Eth1/1
msdc-leaf-r42(FOC1550R05E)
 Eth1/47 135 R S I s N3K-C3048TP-1 Eth1/2
msdc-leaf-r42(FOC1550R05E)
 Eth1/48 133 R S I s N3K-C3048TP-1 Eth1/3

Two traffic items are configured:

1. Shared_Buffer

2. Shared_Buffer_Xtra

Shared_Buffer (Figure 2-15) has 48 endpoints that send UDP traffic unidirectional (3 streams to each
leaf) at ~ 100Mb. This causes dedicated buffers to be consumed for that port, but does not dip into the
system-wide shared buffer pool.
2-29
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-15 IXIA Flows for Shared_Buffer

Shared_Buffer_Xtra (Figure 2-16) has the same 48 endpoints and traffic profile except that it sends
traffic at ~ 800Kb.

Figure 2-16 IXIA Flows for Shared_Buffer_Xtra

This exceeds the interface throughput when combined with the first profile and starts to consume shared
buffers. To achieve a shared buffer impairment without running out of buffers an IXIA script is used to
stop and start the Xtra traffic stream, while the Shared_Buffer stream runs continuously (Figure 2-17).

Figure 2-17 IXIA Shared Buffer Impairment Timing

The timing of the script first loads up the shared buffers to ~8.5k for each of the 3 interfaces and then
switches to a pattern where it alternates between bleeding off and increasing the buffer usage. This
allows for a majority of the shared buffers to be used without exceeding the limit and dropping packets.
The process forms a saw tooth pattern of usage shown in Figure 2-18.
2-30
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-18 IXIA Shared Buffer Impairment Traffic Oscillation

Buffer Allocation
Because the primary objective in these tests is to observe buffer behavior on the N3K Leaf layer, it must
be ensured that dedicated buffers are consumed and shared buffer space is being exercised.

Figure 2-19 shows the overall schema of shared vs dedicated buffers on the N3K

Figure 2-19 N3K Buffers

This means the noise floor will consume all 128 dedicated buffers per port and has the capability of
leeching into shared space, at will. With this control, Incast traffic can be pushed over the tipping point
of consuming the remainder of available buffer space, i.e. – shared buffers, thus causing an Incast event.
Table 2-2 shows how buffers are allocated system-wide.
2-31
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Note There is a defined admission control related to when shared buffer space is consumed by each port.

Admission control criteria are:

1. Queue Reserved space available

2. Queue dynamic limit not exceeded

3. Shared Buffer Space available

N3064-E imposes dynamic limits on a per queue basis for each port. The dynamic limit is controlled by
the alpha parameter, which is set to 2. In dynamic mode, buffers allocated per interface cannot exceed
the value based on this formula:

See N3K datasheets for a more detailed treatment of buffer admission control.

Monitoring
Standard Hadoop, Nagios, Graphite and Ganglia tools were used to monitor all VMs involved. Custom
Python scripts, running on the native N3K Python interpreter, were created to monitor shared buffer
usage.

Incast Event
Figure 2-20 shows a logical representation of the Incast event created.

Table 2-2 How Buffers are Carved Up on N3K

Reserved Memory Physical Port CPU Port Loopback Port Total MB

(For 3064) 64 1 1

Queue/Port 15 (10+5) 48 5

Total # of Qs 960 48 5 1013

Cells 7680 384 40 8104

Bytes 1597440 79872 8320 1685632

Reserved Shared Total

Cells 8104 37976 46080

Bytes 1685632 7899088 9584640 (9.14 MB)
2-32
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-20 Incast Event with M Mappers and R Reducers

Incast events were created by one of three methods:

1. Fail x number of Mapper (M) VMs.

2. Fail y number of racks where M VMs live.

3. Fail z number of Leafs where M VMs live.

The test results in this section show two examples of a 33:1 Incast event created by inducing failures, as
listed above, between the 33 M VMs to the 1 Reducer (R) VM: copying a 1GB file.

Note Actual locations of M or R VMs is determined by the Hadoop system when a job is created, thus
monitoring scripts must first query for the locations before executing their code.

For the first example (Figure 2-21, Figure 2-22), two Hadoop jobs were executed: _0026 and _0027. Job
26 was tracked, and when the Map phase reached 96% of completion a script would kill 15% of the Map
nodes only used in job 27. This would force failures on that particular job and cause block replication
(data xfer) throughout the network. This was an attempt to introduce a cascading failure. However, it did
not occur – Job 26 experienced the expected incast event, but no additional failure events were seen.
Though numerous errors due to force-failed datanodes were observed in Job27, it too completed once it
was able to recover after the Incast event.
2-33
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-21 33 Mappers to 1 Reducer

Figure 2-22 Task Ran to Completion Once it Recovered

The Reduce Copy phase is when the reducer requests all Map data in order to sort and merge the resulting
data to be written to the output directory. The Incast burst occurs during this ‘Copy’ phase, which occurs
between the Start time and Shuffle Finished time (Figure 2-23). Due to tuning parameters used to
maximize network throughput bursting, the 1GB data transfer completed within a few seconds during
the time window of 11s.
2-34
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-23 Traffic Received from Perspective of Reducer

Interfaces on the Leaf switch which connects to servers are 1-33 – 37, map to r02-p0(1-5)_vm01,
respectively, thus Leaf interfaces which connect to the Reducer is 1-35. Figure 2-24 shows packet loss
seen by the switch interface during event. Because data points for packets dropped are plotted every 10s
by Graphite, and reported every 1s by the switch, the time period is slightly skewed.

Figure 2-24 Packet Loss, as Seen by Leaf Device

Figure 2-25 shows global instant cell usage and max cell usage, observed as the sharp burst in traffic,
for the Reducer (Leaf-R2). The instant cell data point doesn’t show up for this interface because the
event occurs quickly then clears before the data point can be captured. However, max cell usage is
persistent and reflects the traffic event.
2-35
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-25 Instant and Max Cell (Buffer) Usage, as Seen on the N3K

Figure 2-26 is a zoomed-in view of the spike. The additional spiking after the event is due to block
replication that occurs from the force-failed VMs.

Figure 2-26 Max Cell Usage Zoom on the Spike

The reason why the spike didn't use all 37976 shared buffers available on the N3K system is because of
buffer admission control – cannot exceed 2x available buffer per interface.

Lastly, for Job26, Figure 2-27 shows a Wireshark Expert Analysis of this job from a trace taken on the
Reducer. Throughput collapse is evidenced by “Zero window” parameter (this means the TCP
connection has a window-size of 0 and no payload can be transmitted/acknowledged); after which TCP
slow-start mechanism kicks in.
2-36
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-27 TCP Statistics

The second example is Job47 (Figure 2-28, Figure 2-29), which looks similar to Job26, but there is an
additional comparison to the Control at the end. As before, there are 33 Mappers and 1 Reducer. One
Hadoop job was launched with the IXIA shared buffer impairment running without any force failures.
The Reduce copy phase produced a spike causing drops and degradation.

Due to the tuning parameters used to maximize network throughput bursting the 1GB data transfer was
complete within a few seconds during the time window of 12s.

Figure 2-28 Job47: 33 Mappers and 1 Reducer
2-37
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-29 Completed Successfully After it Recovered From the Incast Event

As with Job26, the burst received by Reducer (r16-p02_vm01) is seen in Figure 2-30:

Figure 2-30 Traffic Burst to the Reducer

Figure 2-31 shows packet loss for the Incast event.
2-38
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-31 Packet Loss for Job47 During Incast Event

Figure 2-32 shows instant and max cell (buffer) usage.

Figure 2-32 Zoom In on Spike in Max Cell Usage

Note Detailed analysis that follows is based on TCP sessions which contribute to the overall whole of the
Hadoop job.

Figure 2-33 shows TCP connection stats throughput collapse.
2-39
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-33 TCP Stats as Reported by Wireshark of Packet Capture File

The following configuration is a parsed tcptrace CLI output on VMs, with important metrics highlighted:

TCP connection 6:
 host k: r16-p02-vm01.dn.voyager.cisco.com:43809
 host l: r10-p01-vm01.dn.voyager.cisco.com:50060
 complete conn: yes
 first packet: Fri Nov 9 14:44:48.479320 2012
 last packet: Fri Nov 9 14:45:02.922288 2012
 elapsed time: 0:00:14.442968
 total packets: 3107
 filename: job_0047.pcap
 k->l: l->k:
 total packets: 1476 total packets: 1631
 ack pkts sent: 1475 ack pkts sent: 1631
 pure acks sent: 1473 pure acks sent: 1
 sack pkts sent: 40 sack pkts sent: 0
 dsack pkts sent: 0 dsack pkts sent: 0
 max sack blks/ack: 1 max sack blks/ack: 0
 unique bytes sent: 302 unique bytes sent: 33119860
 actual data pkts: 1 actual data pkts: 1628
 actual data bytes: 302 actual data bytes: 33158956
 rexmt data pkts: 0 rexmt data pkts: 5
 rexmt data bytes: 0 rexmt data bytes: 39096
 zwnd probe pkts: 0 zwnd probe pkts: 0
 zwnd probe bytes: 0 zwnd probe bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 1 pushed data pkts: 60
 SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
 req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
 adv wind scale: 10 adv wind scale: 10
 req sack: Y req sack: Y
 sacks sent: 40 sacks sent: 0
 urgent data pkts: 0 pkts urgent data pkts: 0 pkts
 urgent data bytes: 0 bytes urgent data bytes: 0 bytes
 mss requested: 1460 bytes mss requested: 1460 bytes
 max segm size: 302 bytes max segm size: 26064 bytes
 min segm size: 302 bytes min segm size: 1448 bytes
 avg segm size: 301 bytes avg segm size: 20367 bytes
 max win adv: 3950592 bytes max win adv: 16384 bytes
 min win adv: 1024 bytes min win adv: 16384 bytes
2-40
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 1953866 bytes avg win adv: 16384 bytes
 max owin: 303 bytes max owin: 983193 bytes
 min non-zero owin: 1 bytes min non-zero owin: 1 bytes
 avg owin: 1 bytes avg owin: 414083 bytes
 wavg owin: 0 bytes wavg owin: 59842 bytes
 initial window: 302 bytes initial window: 14480 bytes
 initial window: 1 pkts initial window: 1 pkts
 ttl stream length: 302 bytes ttl stream length: 33119860 bytes
 missed data: 0 bytes missed data: 0 bytes
 truncated data: 246 bytes truncated data: 33067788 bytes
 truncated packets: 1 pkts truncated packets: 1628 pkts
 data xmit time: 0.000 secs data xmit time: 3.594 secs
 idletime max: 10728.5 ms idletime max: 10842.2 ms
 throughput: 21 Bps throughput: 2293148 Bps

 RTT samples: 3 RTT samples: 1426
 RTT min: 0.6 ms RTT min: 0.1 ms
 RTT max: 1.0 ms RTT max: 64.5 ms
 RTT avg: 0.8 ms RTT avg: 13.5 ms
 RTT stdev: 0.2 ms RTT stdev: 9.3 ms

 RTT from 3WHS: 0.6 ms RTT from 3WHS: 0.3 ms

 RTT full_sz smpls: 2 RTT full_sz smpls: 2
 RTT full_sz min: 0.6 ms RTT full_sz min: 0.1 ms
 RTT full_sz max: 0.9 ms RTT full_sz max: 0.3 ms
 RTT full_sz avg: 0.8 ms RTT full_sz avg: 0.2 ms
 RTT full_sz stdev: 0.0 ms RTT full_sz stdev: 0.0 ms

 post-loss acks: 0 post-loss acks: 0
 segs cum acked: 0 segs cum acked: 199
 duplicate acks: 0 duplicate acks: 36
 triple dupacks: 0 triple dupacks: 1
 max # retrans: 0 max # retrans: 4
 min retr time: 0.0 ms min retr time: 0.0 ms
 max retr time: 0.0 ms max retr time: 89.2 ms
 avg retr time: 0.0 ms avg retr time: 35.5 ms
 sdv retr time: 0.0 ms sdv retr time: 47.7 ms

Note the RTT was quite large, especially considering all VMs for these tests are in the same datacenter.

Figure 2-34 shows a scatterplot taken from raw tcptrace data as sampled on the Reducer – thoughput
collapse and ensuring TCP slow-start are easily visible. Yellow dots are raw, instantaneous, throughput
samples. Red line is the average throughput based on the past 10 samples. Blue line (difficult to see) is
the average throughput up to that point in the lifetime of the TCP connection.
2-41
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-34 Scatterplot of TCP Throughput (y-axis) vs Time (x-axis)

By way of comparison, here is the Control for the test: a copy of the same 1GB job between the Reducer
to the output directory, as assigned by HDFS, and no Incast event was present (it’s a one to many, not
many to one, communication).

TCP connection 46:
 host cm: r16-p02-vm01.dn.voyager.cisco.com:44839
 host cn: r10-p05-vm01.dn.voyager.cisco.com:50010
 complete conn: yes
 first packet: Fri Nov 9 14:45:13.413420 2012
 last packet: Fri Nov 9 14:45:15.188133 2012
 elapsed time: 0:00:01.774713
 total packets: 4542
 filename: job_0047.pcap
 cm->cn: cn->cm:
 total packets: 2146 total packets: 2396
 ack pkts sent: 2145 ack pkts sent: 2396
 pure acks sent: 100 pure acks sent: 1360
 sack pkts sent: 0 sack pkts sent: 0
 dsack pkts sent: 0 dsack pkts sent: 0
 max sack blks/ack: 0 max sack blks/ack: 0
 unique bytes sent: 67659222 unique bytes sent: 12399
 actual data pkts: 2044 actual data pkts: 1034
 actual data bytes: 67659222 actual data bytes: 12399
 rexmt data pkts: 0 rexmt data pkts: 0
 rexmt data bytes: 0 rexmt data bytes: 0
 zwnd probe pkts: 0 zwnd probe pkts: 0
 zwnd probe bytes: 0 zwnd probe bytes: 0
 outoforder pkts: 0 outoforder pkts: 0
 pushed data pkts: 928 pushed data pkts: 1034
 SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
 req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
 adv wind scale: 10 adv wind scale: 10
 req sack: Y req sack: Y
 sacks sent: 0 sacks sent: 0
 urgent data pkts: 0 pkts urgent data pkts: 0 pkts
2-42
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
 urgent data bytes: 0 bytes urgent data bytes: 0 bytes
 mss requested: 1460 bytes mss requested: 1460 bytes
 max segm size: 65160 bytes max segm size: 12 bytes
 min segm size: 210 bytes min segm size: 3 bytes
 avg segm size: 33101 bytes avg segm size: 11 bytes
 max win adv: 15360 bytes max win adv: 195584 bytes
 min win adv: 15360 bytes min win adv: 16384 bytes
 zero win adv: 0 times zero win adv: 0 times
 avg win adv: 15360 bytes avg win adv: 183357 bytes
 max owin: 174158 bytes max owin: 37 bytes
 min non-zero owin: 1 bytes min non-zero owin: 1 bytes
 avg owin: 65325 bytes avg owin: 10 bytes
 wavg owin: 66250 bytes wavg owin: 0 bytes
 initial window: 241 bytes initial window: 3 bytes
 initial window: 1 pkts initial window: 1 pkts
 ttl stream length: 67659222 bytes ttl stream length: 12399 bytes
 missed data: 0 bytes missed data: 0 bytes
 truncated data: 67544758 bytes truncated data: 0 bytes
 truncated packets: 2044 pkts truncated packets: 0 pkts
 data xmit time: 1.755 secs data xmit time: 1.766 secs
 idletime max: 18.7 ms idletime max: 19.2 ms
 throughput: 38124036 Bps throughput: 6986 Bps

 RTT samples: 1086 RTT samples: 891
 RTT min: 0.2 ms RTT min: 0.1 ms
 RTT max: 3.0 ms RTT max: 8.0 ms
 RTT avg: 1.3 ms RTT avg: 0.7 ms
 RTT stdev: 0.5 ms RTT stdev: 1.0 ms

 RTT from 3WHS: 0.3 ms RTT from 3WHS: 0.2 ms

 RTT full_sz smpls: 2 RTT full_sz smpls: 2
 RTT full_sz min: 0.3 ms RTT full_sz min: 0.2 ms
 RTT full_sz max: 0.8 ms RTT full_sz max: 0.3 ms
 RTT full_sz avg: 0.5 ms RTT full_sz avg: 0.2 ms
 RTT full_sz stdev: 0.0 ms RTT full_sz stdev: 0.0 ms

 post-loss acks: 0 post-loss acks: 0
 segs cum acked: 960 segs cum acked: 145
 duplicate acks: 1 duplicate acks: 0
 triple dupacks: 0 triple dupacks: 0
 max # retrans: 0 max # retrans: 0
 min retr time: 0.0 ms min retr time: 0.0 ms
 max retr time: 0.0 ms max retr time: 0.0 ms
 avg retr time: 0.0 ms avg retr time: 0.0 ms
 sdv retr time: 0.0 ms sdv retr time: 0.0 ms
================================

It comes as no surprise that RTT is significantly less than when there was Incast: 3ms down from ~60ms,
what one would expect for a 1:1 interaction.

Finally, Figure 2-35 shows the scatterplot of the TCP connection while the file was being copied.
2-43
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 Incast Simulation and Conclusions
Figure 2-35 Example of Good TCP Throughput for 1:1 Control Test

The reason for the dip ¼ the way through is inconclusive, but the important point is that it doesn’t go to
zero, nor is slow-start seen after the dip (as one would expect if collapse had occurred), and the file copy
for the Control test completed in 1.7 seconds (with reasonable RTT), as opposed to 14 seconds for Job47.

Incast Testing Summary
The objectives of performing Incast testing for Phase 1 were achieved, that is:

1. Hadoop was successfully used as a generic Incast traffic generator.

2. The Incast event was correctly identified and tracked using open tools, including Graphite,
Wireshark, tcpdump, tcptrace, and SNMP stats from the N3K. Also, custom Python scripts for
shared buffer monitoring were successfully executed directly on the N3K platform (refer to Incast
Utility Scripts, IXIA Config, page E-1).

3. The N3K was shown to be able to deal with Incast insofar that it could allocate shared buffer enough
to ensure the transaction completed.

Future Phases of MSDC testing may include additional Incast research. Such research would potentially
explore additional tuning on both Linux and NX-OS platforms to better signal when Incast events occur,
and perhaps even deal with Incast more proactively using technologies like ECN and buffer usage
trending.
2-44
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 MSDC Conclusion
MSDC Conclusion
The purpose of this document was to:

1. Examine the characteristics of a traditional data center and a MSDC and highlight differences in
design philosophy and characteristics.

2. Discuss scalability challenges unique to a MSDC and provide examples showing when an MSDC is
approaching upper limits. Design considerations which improve scalability are also reviewed.

3. Present summaries and conclusions to SDU’s routing protocol, provisioning and monitoring, and
TCP Incast testing.

4. Provide tools for a network engineer to understand scaling considerations in MSDCs.

It achieved that purpose.

• Customers’ top-of-mind concerns were brought into consideration and effective use of Clos
topologies, particularly the 3-stage folded Clos, we examined and demonstrated how they enable
designers to meet east-west bandwidth needs and predictable traffic variations.

• The Fabric Protocol Scaling section outlined considerations with Churn, OSPF, BGP, and BFD with
regard to scaling.

• OSPF was tested and shown were current system-wide limits contrast with BGP today. For BGP, it
was demonstrated how the customer’s peering, reliability, and resiliency requirements could be met
with BGP + BFD.

• Along with (3), the N3K was shown to have effective tools for buffer monitoring and signaling when
and where thresholds are crossed.

Using underlying theory, coupled with hands-on examples and use-cases, knowledge and tools are given
to help network architects be prepared to build and operate MSDC networks.
2-45
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

Chapter 2 MSDC Solution Details and Testing Summary
 MSDC Conclusion
2-46
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

	MSDC Solution Details and Testing Summary
	PoAP
	PoAP Benefits
	Topology Setup
	MGMT0
	Inband

	Infrastructure
	DHCP Server
	isc-dhcpd Configuration
	TFTP/FTP/SFTP/HTTP Server

	Demo
	PoAP Considerations

	Fabric Protocol Scaling
	Churn
	Line Card Input Queues
	CoPP
	Supervisor Inband Interface
	Netstack
	CPU Utilization
	URIB
	EOBC
	Linecard FIB Programming

	OSPF
	Summary of Test plan
	Summary of Results

	BGP
	Summary of Results

	BFD
	Summary of Results

	Incast Simulation and Conclusions
	Servers
	Topology
	Buffer Utilization

	Buffer Allocation
	Monitoring
	Incast Event
	Incast Testing Summary

	MSDC Conclusion

