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Preface

Cisco’s customers that exist within the MSDC realm are expanding their East-West networks at 
ever-increasing rates to keep up with their own demand. Because networks at MSDC scale are large 
cost-centers, designers and operators of these networks are faced with the task of getting the most out of 
their capital, power and cooling, and data center investments. Commodity pricing for networking gear, 
previously only seen in the server space, is pushing vendors to re-think how customers architect and 
operate their network environments as a whole: to do more (faster), safely (resilient), with lower costs 
(smaller buffers, fewer features, power efficiency).

This document intends to guide the reader in the concepts and considerations impacting MSDC 
customers today. We:

1. Examine characteristics of traditional data centers and MSDCs and highlight differences in design 
philosophy and characteristics.

2. Discuss scalability challenges unique to MSDCs and provide examples showing when a MSDC is 
approaching upper limits. Design considerations that improve scalability are also reviewed.

3. Present summaries and conclusions to SDU’s routing protocol, provisioning and monitoring, and 
TCP performance testing.

4. Provide tools for network engineers to understand scaling considerations in MSDCs.

While any modern network can benefit from topics covered in this document, it is intended for customers 
who build very large data centers with significantly larger East-West than North-South traffic. Cisco 
calls this space Massively Scalable Data Center (MSDC).
i
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C H A P T E R 1

MSDC Scale Characteristics

The following scaling characteristics are defined as a prelude to the Massively Scalable Data Center 
design that drives the MSDC technology and differentiates it from VMDC/Enterprise.

Drivers

 • Commoditization!

 • Cloud Networking. Classical reasons to adopt cloud networking include:

 – Improving compute, memory, and storage utilization across large server fleets (Figure 1-1). 
Efficiencies improve when troughs of the utilization cycle are filled in with useful work.

Figure 1-1 Optimization Benefits of Clouds

 – Increased efficiencies enable customers to innovate by freeing up compute cycles for other 
work as well as providing a more flexible substrate to build upon.

 • Operations and Management (OaM).

 • Scalability. Application demands are growing within MSDCs. This acceleration requires 
infrastructure to keep pace.

 • Predictability. Latency variation needs to be kept within reasonable bounds across the entire MSDC 
fabric. If every element is nearly the same, growth is easier to conceptualize and the impact scaling 
has on the overall system is relatively easy to predict—homogeneity, discussed later in Design 
Tenets, page 1-5, is a natural outgrowth of predictability.

CPU/Mem/Storage
Utilization

Time

CPU/Mem/Storage
Utilization

Time

Cloud
&

Virtualization
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Differences Between VMDC/Enterprise and MSDC

Here are some key concepts that differ between VMDC/Enterprise and MSDCs:

1. Fault Tolerance vs. Fault Avoidance—The concept of Fault Tolerance has traditionally been 
interchangeable with redundancy when describing networks. For purposes of this document the 
scope of its definition is narrowed to a specific type of redundancy; faults are handled by the entire 
system and impact is minimized by overall system design [high degree of Equal Cost Multi-Pathing 
(ECMP)]. ECMP can dramatically increase cross-sectional bandwidth available between any two 
layers of the network. Since ECMP provides many parallel paths it is tolerant of any number of path 
failures (assuming bandwidth needs do not exceed remaining links capacity). On the other hand, 
VMDCs are more concerned about Fault Avoidance, which is where faults are handled by 
individual components and impact is avoided by designing redundant components into nodes which 
comprise the system (dual SUPs).

2. Scale—MSDC data centers interconnect tens to nearly hundreds of thousands of compute, memory, 
and storage resources under a single roof (or in some cases, many roofs whose networks are joined 
via optical infrastructures), comprising a single, unified network. Typical MSDCs can have over 
24,000 point to point links, 250,000+ servers, and over 800 network elements.

3. Churn—The steady state of a network designed for fault tolerance has a routing protocol which is 
in a constant state of flux. Such network flux is called churn. Churn can be caused by unplanned 
events such as link failures, linecard or chassis failures, routing loops, as well as planned events, 
such as Change Management procedures. Routing protocols provide insight into amounts of churn 
a network experiences—as portions of the network are brought offline or become unavailable due 
to unplanned failures, routing protocols notice such changes and propagate updates to the rest of the 
network. The more churn, the more routing updates are seen. Churn in MSDCs is the norm—always 
in a constant state of flux.

Traditional Data Center Design Overview
Figure 1-2 shows a traditional data center network topology.

Figure 1-2 Traditional Network Topology
1-2
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These networks are characterized by a set of aggregation pairs (AGGs) which aggregate many access 
(aka Top of Rack, or ToR) switches. AGGs then connect to an upstream distribution (DIS) layer, which 
is followed by a core (COR) layer which aggregates the DIS layer and connects to other networks as 
needed. Another noticeable characteristic in these networks which differ from that of MSDCs is 
inter-AGG, inter-DIS, and inter-COR links between pairs; in MSDCs the amount of bandwidth needed, 
and the fact that today’s platforms do not provide the necessary port density, make it unnecessary and 
even cost-prohibitive to provide inter-device links which meet requirements. In MSDCs, the routing 
decision to take a particular path from ToR to the rest of the network is made early on at the ToR layer.

Traditional data center networks are designed on principles of fault avoidance. The strategy for 
implementing this principle is to take each switch1 (and links) and build redundancy into it. For example, 
two or more links are connected between devices to provide redundancy in case of fiber or transceiver 
failures. These redundant links are bundled into port-channels that require additional configuration or 
protocols. Devices are typically deployed in pairs requiring additional configuration and protocols like 
VRRP and spanning-tree to facilitate inter-device redundancy. Devices also have intra-device 
redundancy such as redundant power supplies, fabric modules, clock modules, supervisors, and line 
cards. Additional features (SSO) and protocol extensions (graceful-restart) are required to facilitate 
supervisor redundancy. The steady state of a network designed with this principle is characterized by a 
stable routing protocol. But it comes at the expense of:

 • Operational complexity.

 • Configuration complexity.

 • Cost of Redundant Hardware—this in turn increases capital costs per node and increases the risk of 
things to fail, longer development time, longer test plans.

 • Inefficient use of bandwidth (single rooted).

 • Not being optimized for small flows (required by MSDCs).

Whereas MSDCs are more interested in being able to fail a device and the overall system doesn’t 
care—thus reducing liability each network element can introduce into the system upon failure—again, 
this is fault tolerance.

1.  For the purposes of this document, the term “switch[es]” refers to basic networking elements of an MSDC 
network. These basic elements can be routers and/or switches, in the strict sense. However unless otherwise 
noted, a “switch” is a L3 device that can perform both traditional L2 switching and L3 routing functions, 
including speaking routing protocols such as OSPF and BGP.
1-3
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Figure 1-3 Evolution, From the Field

Evidence of this break from traditional data center design is already observed in the field, as seen in this 
sanitized version of a particular customer’s network above. Here a higher degree of ECMP is seen than 
is present in earlier network architectures, however there are still weaknesses in the above design – most 
notably the sizeable reduction in bandwidth capacity if one AGG device fails. ECMP is allowing for 
higher cross-sectional bandwidth between layers, thus greater east-west bandwidth for applications, and 
reduces the fault domain as compared to traditional designs – that is failure of a single device only 
reduces available bandwidth by a fraction.

Finally, the logical conclusion to the trend towards more ECMP is a Clos2 design with a “Spine” and a 
“Leaf” as shown in Figure 1-4. The Spine is responsible for interconnecting all Leafs, and provides a 
way for servers in one rack to talk to servers in another in a consistent way. Leafs are responsible for 
equally distributing server traffic across all Spine nodes.

Figure 1-4 3-Stage Folded Clos Topology

2.  Refer to Interconnecting Building Blocks, page 1-9 for details on how MSDC’s use Clos topology.
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Design Goals
Data in this guide is based on thorough research into customer motivations, design tenets, and 
top-of-mind concerns, all coupled by the drivers discussed.

Design Tenets
All engineering requirements for the design of a MSDC are mapped, at varying degrees, to these 
fundamental concerns and governing tenets:

 • Cost—Customers want to spend less on their network, or turn their network into a profit-center. For 
example, a 1W savings in power on a server NIC can translate to $1M saved overall.

 • Power—Reducing power footprint, as well as improving PDU efficiencies, are major concerns to 
customers.

 • East-West BW—AKA “crosstalk”. Applications are demanding more bandwidth due to 
multi-layers and large fanout. In a MSDC context, applications typically generate huge fanout 
ratios, for example 1:100. For every byte inbound to the data center, this can translate to 100bytes 
inside the MSDC because a typical social website 2.0 takes well over 100 backend (east-west) 
transactions per single north-south transaction. Oversubscription is less tolerated in MSDC 
environments.

 • Transparency—Customers use this term to help communicate the idea of building an intelligent 
network which fosters easier, predictable communication between East-West components.

 • Homogeneity—Eliminating one-offs makes operating MSDC networks easier at scale.

 • Multipathing—ECMP brings fault domain optimization. ECMP reduces liability of a single fault, 
or perhaps a small number of faults, to the overall system.

 • Control—Programmability, automation, monitoring and bug/defect management, and innovation 
velocity.  The more customers control (code), vendor’s adoption of relevant technologies, the more 
they can integrate into their own software infrastructure which gives them a competitive advantage.  
Being able to influence quality assurance with Vendors are traits that give customers control they 
need to operate successful environments.

Customer Architectural Motivations
From these tenets, MSDC networks are designed based on a principle of fault tolerance. Mechanisms 
aren’t put into place to prevent failures from happening, but rather to minimize the impact a fault has on 
network operations. The strategy for implementing this principle is to design redundancy into the 
network architecture.

A traditional 2-wide AGG or DIS pair (Figure 1-2 and Figure 1-3) will lose 50% of its capacity if a 
single node fails. A scaled out MSDC architecture minimizes the impact of similar failures by creating 
more parallel nodes. The multiple parallel nodes of a Clos network3 Spine are a perfect example of 
redundancy coming from the network architecture which also minimizes the impact a fault has on overall 
network operations. In an 8x Spine4 Clos network, for example, loss of an entire Spine node would only 
3.  Refer to Interconnecting Building Blocks, page 1-9 for additional analysis of Clos topologies and their 

benefits.
4.  8x Spines means “8 devices that make a single Spine”. This nomenclature will be used throughout this 

document. In cases where multiple Spines are used, it will be notated like: 8x8 Spine, that is, 8 overall Spines 
that are connected in parallel, each Spine also being composed of 8 devices. Also, refer to Interconnecting 
Building Blocks, page 1-9 for a more formal definition of Spines and Leafs.
1-5
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reduce available bandwidth by one-eighth. Leaf devices could have two independent uplink failures and 
still operate at 75% capacity. From these two examples it is apparent that fault tolerant network design 
moves redundancy from individual network elements to the network as a system. Instead of each 
network element having a unique mechanism to handle its own failures, the routing protocol is 
responsible for handling failures at all levels. This drastically reduces configuration and operational 
complexity of each device. But simplification, as always, comes at a cost (flexibility) which must be 
balanced against the benefits of simplification.

As mentioned earlier, “M” in MSDC means “massive”. MSDC networks are massive, and require 
astounding amounts of fiber (24,576 links), transceivers (49,152 xfp/sfp+), power supplies (over 800 
devices), line cards, supervisors, chassis, etc. Such data centers are home to tens or hundreds of 
thousands of physical servers, and the burden to interconnect those in intelligent ways is non-trivial. 
These network elements are put into the domain of a single routing protocol. Due to the sheer number 
of network elements in a single domain, failures are routine. Failures are the norm! Also, in MSDC 
networks, the “application” is tightly integrated with the network and often participates with routing 
protocols. For example, Virtual IPs (VIPs, these are IP addresses from services which load balancers are 
advertising) can be injected or withdrawn into the network at the discretion of the application. Routing 
protocols must keep the network stable despite near constant changes coming from both application 
updates and network element failures. Dealing with churn is a primary motivation for moving all 
redundancy and resiliency into the network.

Note Failures can be caused by various sources, whether intentional or not.

Top of Mind Concerns
MSDC customers face the following three major areas of concern on a daily basis:

 • Operations and Management, page 1-6

 • Scalability, page 1-6

 • Predictibility, page 1-7

Any architectures or solutions customers may want to implement will be tempered by these main 
concerns discussed below.

Operations and Management

Operations and Management (OaM) of MSDCs is a major demand on those operating such networks. 
The operational implications of a MSDC cannot be overstated. Customers want tools to help them 
increase provisioning velocity, make change management procedures take less time, increase visibility 
of important telemetry, and minimize human-caused outages. 

Scalability

The scalability limits of individual devices that make up MSDCs are well known. Each platform has 
route scale limits defined by TCAM partitioning and size. Base measurements like these can be used to 
quantify a network with a stable steady state. However, these limits do not properly define scalability of 
MSDC networks. Routing protocols are invoked in nearly every fault scenario, and as discussed in a 
previous section titled “Scale, Differences between VMDC/Enterprise and MSDC”, MSDCs are so large 
that faults are routine. Therefore true scalability limits of MSDC networks are in part defined by the 
capacity of its routing protocol to handle network churn.
1-6
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Deriving a measurement to quantify network churn can be difficult. Frequency and amplitude of routing 
protocol updates depends on several factors; explicit network design, application integration, protocols 
used, failure rates, fault locations, etc. Measurements derived would be specific to the particular 
network, and network variations would bring statistical ambiguity. A more useful question is; 
“Depending on a particular network architecture, how does one know when churn limits have been 
reached?”  MSDC customers are asking such a question today.  For details, refer to Scalability, page 1-6.

Predictibility

Predictible latencies across the MSDC fabric are critical for effective application workload placement. 
A feature of the Clos topology is all endpoints are equidistant from one another, thus it doesn’t matter 
where workloads are placed, at least in terms of topological placement. 

Reference Topologies and Network Components
The SDU MSDC test topologies are intended to be a generic representation of what customers are 
building, or want to build, within the next 24 months. The building blocks used are what customers are 
ordering today, and have a solid roadmap going forward. MSDC customers care less about things such 
as ISSU (high availability for each individual component), and are more concerned with high-density, 
inexpensive, and programmable building blocks.

Building Blocks
The guide uses specific hardware and software building blocks, all of which fulfill MSDC design tenets. 
Building blocks must be cost-sensitive, consume lower power, simpler, programmable, and fascilitate 
sufficient multipathing width (both hardware and software are required for this).

Building blocks are broken down into three areas:

 • Leaf Layer, page 1-7

 • Spine Layer, page 1-8

 • Fib, page 1-8

Leaf Layer

The Leaf Layer is responsible for advertising server subnets into the network fabric. In MSDCs this 
usually means Leaf devices sit in the Top-of-Rack (ToR), if the network is configured in a standard 
3-stage folded Clos design5.

Figure 1-5 shows the Nexus 3064, the foundation of the Leaf layer. 

Figure 1-5 N3064

5.  Refer to Interconnecting Building Blocks, page 1-9 for Clos details.
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The Leaf layer is what determines oversubscription ratios, and thus size of the Spine. As such, this layer 
is of top priority to get right. The N3064 provides 64x 10G linerate ports, utilizes a shared memory 
buffer, is capable of 64-way ECMP, and features a solid enhanced-manageability roadmap.

In exchange for Cisco’s devices which employ more feature-rich ASICs (M-series linecards, 5500 
switches, ISSU, triple redundancy) , this layer employs simpler designs that have fewer “moving parts” 
to effectively forward packets while learning the network graph accurately.

Spine Layer

The Spine layer is responsible for interconnecting all Leafs. Individual nodes within a Spine are not 
connected to one another nor form any routing protocol adjacencies among themselves. Rather, Spine 
devices are responsible for learning “infrastructure” routes, that is routes of point-to-point links and 
loopbacks, to be able to correctly forward from one Leaf to another. In most cases, the Spine is not used 
to directly connect to the outside world, or other MSDC networks, but will forward such traffic to 
specialized Leafs acting as a Border Leaf. Border Leafs may inject default routes to attract traffic 
intended for external destinations.

Figure 1-6 shows the F2 linecard providing 48x 10G linerate ports (with the appropriate Fabric Cards).

Figure 1-6 F2 Linecard

The Nexus 7K is the platform of choice which provides high-density needed for large bandwidth 
networks, has a modular operating system which allows for programmability. The N7004 consumes 7RU 
of space but only provides 2 I/O slots, and is side-to-side airflow (although not a first-order concern, 
MSDCs prefer front-to-back, hot-isle, cold-isle cooling when they can get it). The N{7009|7010|7018} 
are preferable since their port-to-RU ratio is much higher (real-estate is a concern in MSDCs).  If 
front-to-back airflow is required, the N7010 provides this function.   N7009 and N7018 utilize 
side-to-side airflow. The building blocks in SDU testing employs all three N{7009,7010,7018} 
platforms.

Customers have voiced concern about complexities and costs of the M-series linecards, and thus 
requested simpler linecards that do less, but do those fewer tasks very fast and highly reliable. F2 fits 
very well with those requirements.   It provides low-power per 10G port, low-latency, and utilizes ingress 
buffering to support large fanout topologies.

Note The F2 linecard is based on Cisco’s Clipper ASIC detailed in Appendix C, “F2/Clipper Linecard 
Architecture”.

Fib

New FIB management schemes are needed to meet the demands of larger networks. The number of 
loopbacks, point-to-point interfaces, and edge subnets are significantly higher than in traditional 
networks. And as MSDCs are becoming more cloud-aware, more virtualization-aware, the burden on a 
FIB can skyrocket.
1-8
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Obviously, dedicating hardware such as TCAM to ever-growing FIBs is not scalable; the number of 
entries can grow to hundreds of millions, as seen in some MSDC customer’s analysis. This is cost and 
power prohibitive. 

Regardless of size, managing FIB churn is a conern.

Strategies to address this concern:

1. One strategy to manage FIB is merely to reduce the size of FIB by separating infrastructure6 routes 
from customer7 routes. If the network system could relegate hardware to simply managing 
infrastructure ONLY, this could take the FIB from hundreds of thousands, even millions, down to 
24,000 or less. Customer routes could be managed by a system that is orthogonal to the 
infrastructure itself, this could be the network, or it could be off-box route controller cluster(s).

2. The strategy used in Phase 1 was to manage the FIB by learning routes over stable links – links that 
are directly connected routes. In such situations, churn is only introduced as physical links go down 
and is less fragile than a topology which completely relies on dynamic insertion of prefixes. For 
example, MSDC networks based on a 3-stage Clos architecture may have 32 Spine devices 
(N7K+F2) and 768 Leaf devices (N3064). The FIB will be comprised of a stable set of 24,576 
point-to-points, 800 loopbacks, and then server subnets being advertised by the Leafs.

Interconnecting Building Blocks
As stated in the “Scale” section on page 1-31, MSDC data centers have many compononets comprising 
a single whole. Getting such resources to talk to one another, as well as delivering packets to and from 
the Internet, is non-trivial. Therefore it is recommended to review designs that make MSDC fabrics more 
robust and incrase resiliency.

Traditional Tree Hierarchy

Refering back to the “Traditional Data Center Design Overview” section on page 1-2, a traditional tree 
hierarchy may look similar to Figure 1-7.

6.  Infrastructure routes = loopbacks and point-to-point fabric links.
7.  Customer routes = the subnets the end-hosts live in.
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Figure 1-7 Traditional, Hierarchical Design

These networks are characterized by a set of aggregation pairs (AGGs) which aggregate many access 
(aka Top of Rack) switches. 

The bandwidth increases significantly near the root of the tree, but non-blocking functionality is not 
supported, therefore introducing significant oversubscription. Examples of oversubscription and 
blocking, in traditional architectures, are displayed in Figure 1-8.

Oversubscription—means ingress capacity exceeds egress capacity. In Figure 8, if you have a rack of 
24x 10G attached servers, the ACC device needs at least 240G of port capacity facing the upstream layer 
to be 1:1 oversubscribed (1:1 would actually mean there is NO oversubscription). If the ACC device has 
24x 10G server ports and 2x 10G uplinks, you have 12:1 oversubscription. To allow the entire network 
to operate at linerate, 1:1 oversubscription is required. However, not all networks need to provide 1:1 
performance; some applications will operate fine when oversubscription occurs.  Therefore in some 
scenarios non-blocking designs aren’t necessary.  The architect should have a thorough understanding 
of application traffic patterns, bursting needs, and baseline states in order to accurately define the 
oversubscription limits a system can tolerate.

Figure 1-8 Oversubscription Scenario
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Blocking—Oversubscription situations at device level, and even at logical layers, are causes of 
applications getting blocked which results in network queueing. For example in Figure 1-9 server A 
wants to talk to server Z, but the upstream DIS layer is busy handling other inter-rack traffic. Since the 
DIS layer is overwhelmed the network causes server A to "block". Depending on the queueing 
mechanisms and disciplines of the hardware, queueing may occur at ingress to the DIS layer. 

Figure 1-9 Blocking Scenario

In Figure 1-8 and Figure 1-9 10G interfaces are being considered as the foundation.  If the system wants 
to deliver packets at line-rate these characteristics should be considered:

 • Each ACC/ToR device could only deliver 20G worth of server traffic to the AGG layer, if we assume 
there are only 2x 10G uplinks per ACC device. That represents only 8% of total possible server 
traffic capability!  This scenario provides a 1:1 oversubscription.

 • Each AGG device needs to deliver ten times the number of racks-worth of ACC traffic to the DIS 
layer.

 • Each DIS device needs to deliver multiple-terrabytes of traffic to the COR layer.

Scaling such a network becomes cost-prohibitive, and growth becomes more complex because 
additional branches of the tree need to be built to accomodate new pods . In addition to bandwidth 
constraints, there are also queueing concerns based on the amount of buffer available to each port within 
the fabric.

The problem with these traditional topologies, in the MSDC space, is they can't sustain the burst of 
east-west traffic patters and bandwidth needs common in MSDC environments.  

Clos

Figure 1-10 shows an example of a Clos topology composed of a hypothetical 6-port building block.
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Figure 1-10 3-Stage Clos

In 1953 Charles Clos created the mathematical theory of the topology which bears his name; a 
non-blocking, multi-stage topology which provides greater bandwidth than what a single node8 is 
capable of supplying. The initial purpose of the Clos topology was to solve the n2 interconnect problem 
in telephone switching systems: it interconnects n inputs to n outputs with ? n2 nodes. The labeling of 
both inputs and outputs with the same variable, n, is by design – that is, we marry each output with an 
input; the number of outputs equals the number of inputs, or there is precisely one connection between 
nodes of one stage to those of another stage. Said another way, a Clos network connects a large number 
of inputs and outputs with “smaller-sized” nodes.9

In this example, using 6-port switches, we connect 18 endpoints (or “edge ports”) in non-blocking 
fashion10 using a 3-stage Clos topology. We use the phrase “folded Clos” to mean the same thing as a 
3-stage Clos, but is more convenient for network engineers to visualize ports, servers, and topology in 
a folded Clos manner. For terminology, in a 3-stage Clos we have an ingress Leaf layer, a Spine center 
layer, and an egress Leaf layer. If we fold it, we simply have a Leaf layer and a Spine layer.

If we create a Clos network using building blocks of uniform size, we calculate the number of edge ports 
using a relationship derived from Charles Clos’ original work:

where k is the radix of each node (its total number of edges), and h is the number of stages (the “height” 
of the Clos). Some examples:

 • k=6, h=3

8.  The term “node” is synonymous with “switch”.
9.  Since the context of this document is about networks, not unidirectional phone interconnects, we will consider 

the term “ports” to mean bi-directional ports that contain both TX and RX lines.
10.  Non-blocking for this document means a sender X can send to receiver Y and not be blocked by a simultaneous 

sender Q, hanging off the same switch as X, sending to receiver R, which lives on a different switch than Y.
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 • k=64, h=3

 • k=64, h=5

Intuition, however, shows a 5-stage Clos built using, say, the Nexus 3064, doesn’t actually give you more 
than 4 million edge ports, but rather 65,536 edge ports (2048 Leafs multiplied by 32 edge-facing ports). 
Figure 1-11 shows an example of a 5-stage folded Clos, using 6-port building blocks.

Figure 1-11 5-Stage Clos

Here we have 54 edge ports (not 214 ports as the formula predicts), up from 18 when using a 3-stage 
Clos. The primary reason to increase the number of stages is to increase the overall cross-sectional 
bandwidth between Leaf and Spine layers, thus allowing for an increased number of edge ports.

Note The discrepancy between the above formula and intuition can be explained by a “trunking” factor in 
Clos’ derivation due to the middle stages – since the N3064 isn’t a perfect single crossbar, but rather a 
multi-stage crossbar itself, the above formula does not work where h ? 5. And it should be noted that in 
the strict sense a Clos network is one in which each building-block is of uniform size and is a perfect, 
single crossbar. 
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As such, because the nodes of today (Nexus 3064) are multi-stage Clos’es themselves, a more 
appropriate formula for MSDC purposes is one in which h is always 3 (in part because cabling of a strict 
Clos network where h ? 5 is presently cost-prohibitive, and the discussion of more stages is beyond the 
scope of this document), and the formula is simplified to:

Where N is the radix of Spine nodes and k is the radix of each Leaf; we divide by two because only half 
the ports on the Leaf (k) are available for edge ports at 1:1 oversubscription. Therefore a 3-stage Clos 
using only N3064s would provide 2048 edge ports:

Or, a 3-stage Clos using fully-loaded N7018s+F2 linecards as Spine nodes and N3064s as Leafs, you get 
24,576 edge ports:

Fat Tree

A Fat Tree is a tree-like arrangement of a Clos network (Figure 1-12), where the bandwidth between 
each layer increases by x2, hence the tree gets thicker (fatter) the closer to the trunk you get.

Figure 1-12 Fat Tree Topology
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Note the boxes outlined with dotted-blue; these are the “Leafs” of the Clos; the topmost grouping of 
nodes, 3x3, are each the “Spines”. In other words, you essentially have a 3-stage folded Clos of 6 
“nodes”, comprised of 3x 6-port Spines nodes and 3x 6-port Leafs. This creates 27 edge-ports.

Compared to a standard Clos, while it’s true you get more edge ports with a Fat Tree arrangement, you 
also potentially have more devices and more links. The cost of doing such must considered when 
deciding on a particular topology.

Table 1-1 compares relative costs of Clos and Fat-trees using hypothetical 6-port building blocks.

Figure 1-13 Topologies, Comparison of Relative Costs11

Table 1-2 shows an N3K as the building block (user to calculate x, y, and z for an N3K-based Fat Tree).

Table 1-1 Clos and Fat-Trees Relative Cost Comp Using Hypothetical 6-Port Building Blocks

Topology
Building Block, 
Ports/Box Fabric Boxes

Fabric Links 
(don’t Include server links) Total End-hosts

Fat Tree 6 27 54 27

Clos-3 6 9 18 18

Clos-5 6 45 108 54

11.  Costs, in this case, refers to the number of Fabric Boxes, Links, and Optics to achieve a particular end-host 
capacity.
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Table 1-3 shows a modification for the CLOS-5 case that might employ a 16-wide “Spine” rather than a 
32-wide “Spine” (Spine, in the CLOS-5 sense, means that each Spine “node” is comprised of a 3-stage 
Clos), thus each Leaf has 2 connections/Spine. In other words, you cut the number of devices and 
end-hosts in half.

Figure 1-14 represents such a topology.

Figure 1-14 Modified 5-Stage Clos Topology

It cannot be overstated the importance of also considering the amount of cabling, the cost of cabling, and 
the quantity and cost of optics in large Clos topologies!

The width of a Spine is determined by uplink capacity of the platform chosen for the Leaf layer. In the 
Reference Archicture, the N3064 is used to build the Leaf layer. To be 1:1 oversubscribed the N3K needs 
to have 32x 10G upstream and 32x 10G edge-facing. In other words, each Leaf layer device can support 
racks of 32x 10G attached servers or less. This also means that the Spine needs to be 32 nodes wide.  

Note In Figure 1-14, there is latitude in how one defines a Spine “node”. For example, there might be 16 
nodes, but each Leaf uses 2x 10G ports to connect to each Spine node. For simplicity, a Spine in the strict 
sense, meaning that for each Leaf uplink there must be a discrete node, is what is used. The size of the 
Spine node will determine the number of Leafs the Clos network can support.

With real-world gear we construct the Clos with N3Ks (32 ports for servers each) and N7Ks+F2 (768 
ports for Leafs, which means there are a total of 768 Leafs) as Leafs and Spines respectively. This means 
a total of 24,456 10G ports are available to interconnect servers at the cost of 800 devices, 24,456 cables, 
and 48912 10G optical transceivers.

Because of limited rack real-estate, power, and hardware availablility, the test topology employs a 
16-wide Spine with 20 Leafs, each Leaf supporting at most 16 servers/rack (this leaves a total of 32 ports 
on the N3Ks unused/non-existent for the purposes of our testing).

The lab topology had 16 N7Ks as a spine, so it is a 16-wide Spine Clos architecture.

Table 1-2

Topology
Building Block, 
Ports/Box Fabric Boxes Fabric Links Total End-hosts

Fat Tree 64 x y z

Clos-3 64 96 (32spines+64leafs) 2048 2048

Clos-5 64 5120 ((96*32)spines+(32*64)leafs) 131072 
(2048*32+2048*32)

65536

Table 1-3

Topology
Building Block, 
Ports/Box Fabric Boxes Fabric Links Total End-hosts

Clos-5’ 64 2560 ((96*16)spines+(32*32)leafs) 131072 
(2048*32+2048*32)

32768
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Other Topologies

Clos’es and Fat Trees are not the only topologies being researched by customers. While Clos’es are the 
most popular, other topologies under consideration include the Benes12 network (Figure 1-15).

Figure 1-15 Benes Topology

Or 1-dimensional (ring) (Figure 1-16), 2 and 3-dimensional Toroid13, (Figure 1-17 & Figure 1-18)and 
hypercubes (Figure 1-19)

Figure 1-16 1D Toroid (Ring)

Figure 1-17 2D Toroid

12.  http://en.wikipedia.org/wiki/Benes_network#Clos_networks_with_more_than_three_stages
13.  http://en.wikipedia.org/wiki/Grid_network
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Figure 1-18 3D Toroid

Figure 1-19 Hypercube

Each topology has pros and cons, and may be better suited to a particular application. For example, 
toroid and hypercube topologies favor intra-node, east-west traffic, but are terrible for north-south 
traffic. Toroid networks are in fact being utilized by some vendors, especially in the High Performance 
Computing (HPC) space. While a fuller discussion of alternative topologies is no doubt interesting to 
network engineers and architects trying to optimize the network to their applications, it is beyond the 
scope of the present document.
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As of this writing, customers by and large gravitate to 3-stage Clos’es since they represent an acceptable 
balance of east-west vs north-south capability, implementation cost and complexity, number of cables 
and optics needed, and ease of operating. It goes without saying that Clos topologies are very well 
understood since they’ve been in use, such as in ASICs, for around 60 years and the theory is well 
developed as compared to more exotic topologies.

How a Clos Architecture Addresses Customer Concerns
The lab topology is based on a standard 3-stage folded Clos arrangement (Figure 1-20) . Leafs are 
N3064s and Spine devices are N7ks. Inter-Leaf bandwidth is 2.5Tbps, and Leaf to the outside world 
(Border) is 640Gbps. 4 Leafs, leaf-{r17-r20} are dedicated for Border functionality, br-leaf-{r1-r4}. For 
this phase of testing Border Leafs are merely injecting default route. Servers are attached directly to the 
Leaf layer, along with test instrumentation hardware such as IXIA. In order to create additional end-host 
nodes for the purpose of TCP testing, as well as to enable greater flexibility in subnetting arrangements, 
KVM VMs are configured across the server fleet.

Figure 1-20 SDU MSDC Test Topology

Refer to the bullet points in the “Design Tenets” section on page 1-5, to see how this type of topology 
can be use to meet those needs.
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COST

Low-cost platforms for the Leaf, such as N3064, are based on commodity switching chipsets. For the 
Spine, F2 linecards on N7K are used.  F2 is a higher density, high performance linecard with a smaller 
feature set than that of the M-series.

POWER

The testing did not focus as much on power as in the other areas of concern.

EAST-WEST BW

This area was of greatest concern when considering a MSDC topology for the lab. Utilizing the 3-stage 
folded Clos design afforded 2.5Tbps of east-west bandwidth, with each Leaf equally getting 160Gbps of 
the total.

TRANSPARENCY

An area of concern that is not discussed in this guide. It is expected that overlays may play an important 
part in achieving sufficient transparency between logical and physical networks, and between customer 
applications and the network.

HOMOGENEITY

There are only 2 platforms used in our MSDC topology, N3K and N7K. With only a small number of 
platform types it is expected that software provisioning, operations, and performance predictability will 
be achievable with present-day tools.

MULTIPATHING

The use of 16-way ECMP between the Leaf and Spine layers is key.14 For a long time, IOS, as well as 
other network operating systems throughout the industry, were limited to 8 path descriptors for each 
prefix in the FIB. Modern platforms such as those based on NX-OS double the historical number to 16 
as well as provide a roadmap to significantly greater ECMP parallelization. 64-way is currently 
available.15 128-way is not far off.16

CONTROL

This aspect of MSDC design tenets is met by programmability, both in initial provisioning (PoAP) and 
monitoring. This guide addresses both of these areas later in the document. However, it is acknowledged 
that “control” isn’t just about programmability and monitoring, but also may include the customer’s 
ability to influence a Vendor’s design, or even for large portions of the network operating system, for 
example, to be open to customer modifications and innovation. These last 2 aspects of control are not 
addressed in this guide.

14.  As of this writing, NX-OS on Nexus 3064 is capable of 32-way ECMP.
15. http://www.cisco.com/en/US/prod/collateral/switches/ps9441/ps11541/data_sheet_c78-651097.html
16.  This view is solely the author’s view and does not necessarily represent any official commitments by relevant 

BUs or Cisco at large.
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Cisco Efforts in the MSDC Space
Cisco recognizes the significance of the MSDC market, and as such has created various internal 
initiatives to better position Cisco’s expertise and innovation in this market-space. SDU’s MSDC 
Engineering team represents one such initiative. As Cisco better understands customer requirements, it 
is able to become a more valued innovation partner with customers across the MSDC spectrum.

Applications
When discussing applications in MSDC environments, it is important to recognize not all MSDC 
operators actually control the applications running on their infrastructure. In the case of MSDC-scale 
public cloud service providers, for example, MSDC operators have little control over what applications 
tenants place into the cloud, when they run workloads, or how they tune their software.

Conversely in situations where public tenancy is not a constraint, operators tend to have very 
fine-grained control over the applications workloads. In many cases, the applications are written 
in-house rather than being purchased “off the shelf”. Many use open source components such as 
databases, frameworks, message queues, or programming libraries. In such scenarios, applications vary 
widely between MSDC customers, but many share common threads:17

 • Workloads are distributed across many nodes.

 • Because of their distributed nature, many-to-one conversations among participating nodes are 
common.

 • Applications that the data center owner controls are generally designed to tolerate (rather than 
avoid) failures in the infrastructure and middleware layers.

 • Workloads can be sensitive to race conditions; but customers have made great efforts to minimize 
this with increased intelligence in the application space (independent of the network).

Exceptions certainly exist to the above application characteristics, but by-and-large represent the trends 
seen in present-day MSDCs.

Distribution
Distribution in MSDC environments may vary. Common distribution schemes include:

 • In most cases, workloads are distributed among multiple racks (for scale and resiliency).

 • In many cases, workloads are distributed among multiple independent clusters or pods (for 
manageability, resiliency, or availability reasons).

 • In some cases, workloads are distributed among multiple data centers (for resiliency or proximity).

While the exact schemas for distribution may vary, some common rationales drive the design. A few 
common key characteristics which determine how workloads are distributed include:

 • Performance

 • Manageability

 • Resiliency to failures (redundancy, fault isolation zones, etc)

 • Proximity (to audience or other interacting components/data stores/applications)

 • Scalability and elasticity

17. This information is based on extensive work with Account Teams as well as customer surveys.
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 • Cost

Workload Characterizations
Workloads vary between MSDC's based on applications being supported and how much control the 
customer has over the workload. For example, large cloud service providers hosting thousands of tenants 
have little control over workloads tenants deploy on top of the provider's IaaS or PaaS. Traffic in the 
network, disk I/O on end hosts, and other resource usage may be very inconsistent and hard to predict. 
Even in these cases, however, MSDC customers may have some distributed applications running atop 
the hardware that it has direct control over, such as orchestration systems, cloud operating systems, 
monitoring agents, and log analysis tools. Most such applications are designed to have as light a 
footprint as possible in order to preserve the maximum resources possible for sale to tenants.

By contrast, web portal or e-commerce providers may run applications designed in-house and therefore 
have flexibility in how to tune workloads that best suit underlying infrastructure. In such networks, 
tenants tend to be entities within the same corporation which actively collaborate on how best to use 
available resources. Workloads can be tuned for maximum efficiency, and elasticity may follow 
predictable trends (e-commerce sites might expect more load during holiday shopping season). 
Workloads in such customer environments can be loosely characterized as a series of interacting 
applications that together create a singular end-user SaaS experience. Characteristics of these systems 
reflect the purpose of the application. For example, distributed applications participating in the 
presentation of a website generate small packets (128-512 bytes) and short-lived conversations. Big data 
analysis workloads by contrast may have longer sustained flows as chunks of data are passed around and 
results of analysis returned.

Because of workload variability found in MSDC environments, it is strongly recommended that 
architects make careful study of the applications to be deployed before making infrastructure design 
decisions.

Provisioning
It doesn’t matter if a network is the highest performing network engineers may build for their 
applications if the network cannot get provisioned quickly and accurately.  Timing is essential because 
MSDC network change often.  Popular reasons for frequent network changes include Change 
Management (CM) proceedures or rapid scale growth to meet seasonal traffic bursts.  It is not uncommon 
for customers to require entire datacenters be built within weeks of an initial request.  Also, provisioning 
systems that easily integrate into customer’s own software mechanisms are the ones that get deployed.

Power On Auto Provisioning (PoAP)
PoAP, or Power on Auto Provisioning, is bootstrapping and kickstarting for switches. PoAP is an 
important fascilliatator for effective, timely, and programmable provisioning. It uses a DHCP client 
during initial boot-up to assign the device an IP address and then load software images and/or 
configuration. This is currently supported on the N3K, N5K, N7K lines.

Pieces of the Puzzle

In our lab topology, these are the pieces that make up the PoAP process:

 • Nexus 3064s as Device Under Test (DUT).18
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 • Nexus 7Ks as DHCP relay.

 • Cisco UCS server, configured with stock CentOS running isc-dhcpd, as DHCP server.

 • Cisco UCS server, CentOS, as TFTP/FTP/SFTP/HTTP server.19

 • Configuration scripts written in Python (although TCL could be used as well; however this guide 
completely focuses on modern Python).

PoAP in a MSDC

PoAP in MSDCs is important for the following reasons:

 • MSDC’s have a lot of devices to provision, especially Leafs.

 • Configuring devices manually doesn’t scale.

 • MSDCs already use the network to bootstrap servers and would like to be able to treat network 
infrastructure in a similar manner.

 • Speed of deployment.

PoAP Step-by-Step

Step 1 Device fully boots up.

Step 2 Empty config or ‘boot poap enable’ configured.

Step 3 All ports (including mgmt0) put into L3/routed mode, and DHCP Discover sent.

a. DHCP Discover has client-ID set to serial number found in ‘show sprom backplane’

b. DHCP Discover has broadcast flag set

c. DHCP Discover requests TFTP server name/address and bootfile name options

Step 4 DHCP Offer randomly selected. DHCP Request sent, DHCP Ack received.

Step 5 Download PoAP script using TFTP/HTTP server and bootfile options from DHCP Offer.

Step 6 MD5sum verified and script executed.

Step 7 If script errors out, POAP restarts.

Step 8 If script completes successfully, Device is rebooted.20

PoAP Scripts

 • Can be written in Python or TCL. Python is considered more modern.

 • First line of script is md5sum over rest of script text.

 – #md5sum="0b96a4f2b9f876b4af97d4e1b212fabf”

 – Update with every script change!
18. http://www.cisco.com/en/US/docs/switches/datacenter/nexus3000/sw/fundamentals/503_U3_1/b_Nexus_30

00_Fundamentals_Guide_Release_503_U3_1_chapter_0111.html
19.  If the Python script does not require image or configuration download, then FTP/HTTP servers aren’t 

required.
20.  Configurations applied after the first reboot may be things like hardware profile 
portmode, hardware profile unicast, and system urpf.
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 • Sample scripts available on CCO download page (it’s with kickstart images)

 – Upcoming scripting “community” for code sharing with/among customers to be available.21

 • Full system initialization and libraries available

 – Script can be customized to do almost anything!22

 • Script troubleshooting is time consuming, therefore keep the script simple!

 • PoAP process on switch is very basic, script does all the magic.

Topology and Infrastructure Setup
Throughout this phase of testing many logical topology changes were made, one change for each of 4 
cycles; a, b, c, and d. PoAP was solely used to perform the configuration modifications automatically. 
Figure 1-21, Figure 1-22, Figure 1-23, and Figure 1-24 show progessive changes the topology 
underwent for the different cycles within this phase of testing. Each separate and logical topology is 
represented by a Greek letter to conveniently distinguish them. The minute details of each diagram aren’t 
important, but rather the fact that logically separate topologies, using the same physical topology, were 
configured without human hands throughout the testing.

Figure 1-21 Two Parallel and Independent Topologies, one testing OSPF, the other BGP

21. https://github.com/datacenter
22. http://www.cisco.com/en/US/docs/switches/datacenter/nexus3000/sw/python/api/python_api.html
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Figure 1-22 Two Topologies, Integrating Monitoring/Provisioning Servers

Figure 1-23 Two Topologies, Integrating End-Host Servers
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Figure 1-24 One Full Topology, Running Hadoop for Incast Testing

Monitoring
As networks grow, extracting useful telemetry in a timely manner is critical. Without relevant 
monitoring data it is impossible to manage MSDC-sized networks and stay profitable.  MSDC customers 
want to do more with less, thus monitoring (with the requisite automation) is the glue which holds the 
infrastructure together. In addition to daily operations, monitoring provides essential information that 
allows for effective forward-planning and scaling, with a minimum number of network engineers.

Buffers
Statistics, gleaned from probes which monitor buffers, reveal important real-time MSDC characteristics.  
These characteristics show how traffic is distributed, how the infrastructure is performing, and are key 
indicators of where applications may suffer from blocking and queueing.

Why Congestion Matters

MSDCs are often home to highly distributed applications, and the network architecture is built with the 
applications in mind. It is the nature of these applications which leads to increased East-West bandwidth 
consumption across the data center. These distributed applications also have a high potential for creating 
bursty, many-to-one conversations such as what is observed in MapReduce jobs; these many-to-one 
conversations inevitably lead to congestion. Such systems are difficult to monitor since the visibility into 
performance and state is limited by the large size of the system.
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Congestion leads to many possible problems, which includes:

 • Session drops

 • Job re-execution

 • Job redistribution

 • Data storage re-replication

 • Reduced system capacity do to blacklisting

 • Increased system performance churn due to nodes with fluctuating availability and performance.

Applications, or the infrastructure upon which they sit, can be optimized if operators have sufficient 
insight into congestion patterns. Such optimizations may include:

 • Spin up or reduces nodes

 • Rebalancing of storage

 • Tweaking application traffic transmission patterns

 • Operating System adjustments

 • Alternate hardware can be chosen

One way to measure congestion is to observe buffering in relevant switches, that is, when buffering 
happens due to more traffic being sent than a port can handle, packets get dropped as those buffers fill. 
There are far fewer switches than compute nodes in MSDC distributed systems, thus making the switch 
a good vantage point to get an idea of what’s happening in the system. This is especially true as the 
congestion data collected from switches can be correlated to events in the application, such as different 
phases of workload processing, or in the infrastructure, such as hardware failures. If congestion data can 
be gathered, then operators can model and optimize the system. If the supporting data can be analyzed 
quickly, system behavior changes might even be triggered on the fly.

Buffer Monitoring Challenges

Nexus 3064 switches use a 9MB shared buffer system. There are 8 unicast and 4 multicast queues per 
port. Deficit round-robin scheduling mechanism with multilevel schedule scheduling per-port and 
per-queue is used. 20% of the total buffer is dedicated to egress per-queue and per-port, the remaining 
80% is dynamically shared. Instant and maximum cell utilization provided via CLI or XML (MSDC 
environments prefer XML), and EEM events can be triggered based on when thresholds are crossed.

When Watching Buffer Utilization Isn’t Enough

In many cases, the worst problems happen when packets are dropped (not necessarily when they are 
buffered). Traffic elasticity in the application minimizes drops, but even if buffer space is available on 
the box doesn’t mean it will be allocated to a congested port.

The admission control algorithm determines if a buffer cell is available for a port. Some buffer cells are 
allocated statically to each port even if not actually used. The CPU also may use some buffer capacity. 
If your app wants to react intelligently you want to know when a given port is about to run out of buffer 
space and cannot allocate more.

To be useful, buffer utilization must be correlated with other data from the system. Other data might 
come from the network, server, and/or applications, which means it’s very useful to have metrics from 
all sources reporting into a single system. Correlation typically requires fine-grained data in order to see 
exactly how events in the software correspond to events in the network. Real-time graphing is useful 
when conditions are being actively observed, though this can be tricky at scale.
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Traditionally, monitoring systems poll each node for data periodically. A classical Free Open Source 
Software (FOSS) example is Nagios. Usually the monitoring polling is done in serial, but can be 
parallelized to some degree (mod_gearman). Polling systems can only interact with switches via the 
mechanisms such as SNMP, SSH to CLI, Netconf, etc. In cases where CLI or Netconf are used, all 
command output must be sent to the monitoring system to be parsed and analyzed. Generally, these 
polling nodes don’t tax CPU and Memory on the switch much (same as a user shell).

Pull vs Push Models

An example of the pull method is polling with SNMP at pre-set intervals. Polling based methods rarely 
provide sufficient granularity. For example, off-box polling via Nagios can generally fetch stats every 
5-10s in previous testing. The ability of the polling server to open sessions and requests stats often 
actually limits the scale of such monitoring systems. Many of the readily available polling systems are 
harder to loadbalance (Nagios + mod_gearman incurs queue overhead and latency). Netconf over SSH 
isn’t preferable, modern developers want REST or similar interfaces. There’s a limit of 8 concurrent SSH 
sessions. General-purpose shell access requires crypt+auth. Not all NX-OS commands are available via 
XML. There are limited choices for open programming libraries. Inflexible transport method and 
verbose formatting (must transmit lots of useless XML over TCP). Lastly, XML is poorly formatted 
(“CLI wrapped in tags”), but is still preferable to unformatted CLI output. Poor granularity causes 
operators to miss bursts and limits the ability to correlate events and optimize the system. 

On-switch Buffer Monitoring for Fine-grained Stats

To achieve real-time and for granular statistics gathering, we used a push model as follows.

 • Created an on-switch monitoring daemon to provide buffer utilization stats to a sink at 1s or less 
intervals. SDU’s python script is capable of publishing stats in pickle-protocol format to Graphite 
at approximately 0.17-0.20s intervals (though CPU utilization is excessive 40-50%). To avoid CPU 
hit, we published stats a 1s intervals.

 • Explored other relevant stats via on-box monitoring to help correlate events. Adding interface 
counters and queuing drop counter was achieved, but quickly pushed reporting intervals about 1s. 
This can be mitigated somewhat with parallelization, though management and CPU/mem footprint 
is higher. SDU recommends choosing stats and commands carefully.

 • Used on-switch monitoring and server stats to show correlation of Incast events and distributed 
system events in a 500+ node Hadoop cluster. SDU deployed ‘collectd’ to server nodes and had 
collectd sink data to the same Graphite server as the Leaf devices. This combination provided near 
real-time graphs allowing events to be seen as they happened with crafted MapReduce jobs.

The basic idea with on-switch monitoring is that a daemon running on each N3K periodically sends data 
to a central sink. This changes the model from pull to push. It also grants greater flexibility to Network 
Operations teams in how stats are gathered – doesn’t force them to use SSH, but rather, TCP/UDP based 
protocols can be used. There’s also a choice of encryption/authentication (or not) methods. SDU found 
that transporting of stats is more efficient than with polling mechanisms. The daemon opens a single 
TCP/UCP connection and sends data over it periodically… no need to tear down and setup repeatedly 
as in the Nagios model, for example. Only the actual stats are transported, not the surrounding XML/CLI 
overhead. The scalability of the central monitoring point increases due to such on-box monitoring. 
Central sink only needs to worry about receiving and storing data, not parsing or invoking filtering logic 
and device interaction. Parsing and filtering workloads are distributed to each switch rather than at a 
centralized point like in the Nagios model.

Doing on-switch monitoring allows operators to take advantage of Cisco features, such as PoAP (PoAP, 
page 2-1), or the ability to run native Python on the device, thus granting greater flexibility to developers 
to issue commands via an API. The NX-OS scheduler can also be used to keep the daemons running.
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Deployment in Testing

Refer to Figure 1-20 on page 1-19 for details.

The daemon was written in Python with approximately 600 lines of code, and it used only modules 
provided by NX-OS – it wasn’t necessary to load 3rd party libraries from bootflash, for example. The 
program sets up a TCP socket to a Graphite23 receiver once then sends data via the Pickle24 protocol at 
configurable intervals. Several CLI options are available to alter the frequency of stats collection, which 
stats are collected, where data is sent, and so forth.

SDU was able to demonstrate these capabilities with the on-switch system:

 • Gathers data from both XML (when available) and raw CLI commands (when XML output not 
supported).

 • Uses fast, built-in, modules like cPickly and Expat, to gather some stats, such as buffer cell 
utilization, and calculates other info not provided by NX-OS, such as % of buffer threshold used per 
port. As expected, there is a tradeoff between CPU impact and stat collection frequency moved to 
runtime via CLI arguments.

Graphite Setup

 • Single server (8 cores/16 threads, 12GB RAM, 4-disk SATA3 RAID5 array).

 • 8 carbon-cache instances fed by 1 carbon-relay daemon.

 • Server receives stats from collectd 25on each of 40 physical servers as well as on-switch monitoring 
daemons on each Leaf.

 • Each collectd instance also provides stats for 14 VMs/server acting as Hadoop nodes.

 • Incoming rate of over 36,000 metrics/sec possible, with 17,000-21,000 metrics/sec more the 
average.

Companion Script for NX-OS Scheduler

 • NX-OS scheduler runs companion script every 1ms.

 • Checks to see if daemon is running, starts it if not.

 • Allows script to start at boot time, restart if crashed or killed.

Performance

 • Buffer utilization stats every 0.18-0.20s possible, but uses 40-50% CPU!

 • Buffer stats at approximately 1s intervals used negligible CPU, ranging from 2-5%.

 • About 10.5MB footprint in memory.

Why Graphite and collectd?  Both are high performance, open source components popular in cloud 
environments and elsewhere.

Graphite

 • Apache2 license, originally created by Orbitz.

 • Scales horizontally, graphs in near realtime even under load.

 • Written in Python.

Accepts data in multiple easy-to-create formats.
23. http://graphite.wikidot.com/
24. https://graphite.readthedocs.org/en/latest/feeding-carbon.html#the-pickle-protocol
25. http://collectd.org/
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Collectd

 • GPLv2 license.

 • Written in C.

 • Low overhead on server nodes.

 • Extensible via plugins.26

 • Can send stats to Graphite via the Write Graphite plugin.27

Issues and Notes

Defects and caveats uncovered, and addressed, in SDU’s work:

 • Issue 1

 – No Python API for per-interface buffer stats…only switch-level stats.

 – Must therefore fall back to CLI for per-interface buffer usage data.

 • Issue 2

 – No per-port maximum buffer utilization since cleared counter.

 – Will miss burst events lasting less than the frequency with which stats are collected.

 • Issue 3

 – Scheduler config errors out during PoAP.

 – Means daemon can’t be automatically started at bootup via a PoAP’d config.

Recommendations

The following recommendations are provided.

 • When Possible, stick with Python modules already included on the N3K. Loading 3rd party 
pure-python modules from bootflash is possible, but provisioning and maintenance becomes more 
painful. This could be mitigated, however, by config management tools like Puppet, if it has support 
for Cisco devices.

 • Balance granularity and CPU/memory footprint to specific needs. Adding more commands and stats 
to the daemon quickly lengthens the amount of time required to collect data and therefore the 
interval at which metrics can be published. The bulk of the overhead is in issuing commands and 
receiving output (not usually parsing or calculating). Parallelization can help by running multiple 
daemons or multiple instances of a daemon, each configured to gather only certain stats. This will 
certainly increase memory footprint, and may even increase CPU burden. But, doing parallelization 
make collecting different stats at different intervals easier.

 • Use XML output from commands when possible. There is more reliable parsing available, as well 
as fast, especially with C-based Expat parser)

 • Carefully select data sink, as it can become a choke point. SDU used Graphite, which scales 
relatively well, horizontally on multiple hosts and/or behind loadbalancers. Many MSDC customers 
have the resources and experience to design their own data sink systems.

 • Avoid using per-interface command when possible, especially if you have a lot of interfaces to 
check. Parsing ‘show queuing interface’, once, is faster than issuing and parsing 64 individual ‘show 
queuing interface x/y’ commands.

26. https://collectd.org/wiki/index.php/Table_of_Plugins
27. https://collectd.org/wiki/index.php/Plugin:Write_Graphite
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Caveats

The following caveats are provided.

 • The on-switch approach still has some of the same pain points as other approaches. It still has to 
deal with issuing commands and parsing output. Full support for getting data via any one method 
other than CLI is lacking. Some commands have XML output, some don’t. Some command have a 
Python API, most don’t.

 • The bottleneck for metric frequency is usually the CLI. Most of the bottlenecks SDU found were in 
how long it took to issue commands and get back output. For example:

 – show queuing interface has no XML output, takes ~1.1s

 – show interface x/y | xml on 29 interfaces took ~1.9s

Role of Virtualization
In this guide, virtualization plays only a supporting role and is not the focus of Phase 1. Virtualization 
was configured on the servers to provide infrastructure services, such as DHCP, TFTP, FTP/SFTP, and 
HTTP daemons. Virtualization was also used to create additional “nodes” in the Hadoop framework for 
the purpose of having finer-grained control over where workloads were placed.

Scale
Here we discuss best practice designs to raise the limits of the MSDC network. Refer to Fabric Protocol 
Scaling, page 2-8 for details on what the top churn elements are. BFD and routing protocols are 
discussed. Also, TCP Incast is introduced.

Fast Failure Detection (FFD)

The goal of FFD is to achieve sub-second detection of communication failures between two adjacent 
devices, on both the Control and Forwarding Plane.  Below are common questions customers have when 
evaluating FFD methodologies in their environment

 • What happens when there are intermediate L2 hops over L3 links?

 • What happens when the protocol software fails?

 • How fast will BFD detect unidirectional failures on ptp physical L3 links?

Operational simplicity and scalability is also another concern:

 • Single set of timers that can apply to all routing protocols.

 • Need to be lightweight and work with large number of peers without introducing instability 
(aggressive BGP timers increase CPU utilization).

 • Media agnostic.

Issue with Tuning Routing Protocol Timers:

 • Sub second convergence difficult to achieve.

 • Different protocols require different set of timers—Not scalable.
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 • Indirect validation of forwarding plane failure. Not helpful in link down scenarios between p2p 
links.28 

 • May impact SSO and ISSU in redundant systems.

 • High CPU overhead caused by the additional information carried in Routing protocol messages not 
needed for failure detection. Link utilization also increases as a result of frequent updates.

 • Aggressive Routing protocol timers can lead to false positives under load/stress.

Quick BFD Overview

BFD is a lightweight hello protocol that provides fast detection of failure and supports routing protocols 
for IPv4, IPv6 and MPLS (RFC 5880). Salient features include:

 • Detection in milliseconds

 • Facilitates close alignment with hardware

 • Three way handshake to bring up and teardown a session. 

 • Supports Authentication

 • Active and Passive roles

 • Demand and Asynchronous modes of operation

 • Client notification upon state change of sessions. BFD Clients independently decide on action

 • Protocol Version 0 and Version 1

BFD vs Protocol Timers in MSDC

Table 1-4 lists differences between BFD and protocol timers in MSDC.

28.  On NXOS and many other products, link-down notification to protocols will always be faster than default 
dead-timer expiration.

Table 1-4 BFD vs Protocol Timers in MSDC

BFD Timers

Single set of timer for all protocols. Hello/dead timers different for each protocol and load.

Lightweight and can work with large number of peers without 
introducing instability (scalable).

Routing protocol messages carry superfluous information not 
needed for failure detection. Higher CPU load, link utilization 
and false positives can occur.

Distributed implementation (hellos sent from I/O module1).

1.  For N7K implantation; not true for N3K.

Centralized implementation (hellos sent from SUP).

Failure notification to other protocols. No failure notification to other protocols.

Interacts well under system HA events. May impact SSO and ISSU in redundant systems (not as 
relevant in MSDCs).

Single L3 hop only2.

2.  The standard includes multi-hop, but Cisco implementation is only single-hop.  Multi on roadmap.

Capable of single and multi L3 hop.

Sub-second failure detection. Failure detection not sub-second.
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General BFD Support

BFD was jointly developed by Cisco and Juniper. Many major vendors now support BFD, such as TLAB, 
Huawei, ALU. BFD at Cisco is implemented in IOS, IOS XR, and NX-OS with support for both BFD 
v0 and v1 packet formats. NX-OS implementation has been tested to interoperate with Cat6k, CRS, and 
various JUNOS platforms. Table 1-5 comparing the difference implementations across network Cisco’s 
network OSes.

Figure 1-25 BFD, Systems on N7K

Table 1-5 BFD Support

Function IOS IOS-XR NX-OS

Version Support v0/v1 v0/v1 v1 only

Async and Echo Mode Yes Yes Yes (except F1 LC)

Distributed Mode Implementation Yes (GSR only) Yes Yes

BFD over Link Bundle1

1.  As of this writing, BFD over bundles aren’t standardized.  Expect interoperability limitations.

Depends on Platform Yes Yes

Separate BFD Parameters per Protocol/Peer ID Per interface Yes Global and Per interface. Applied 
to all sessions for all protocols.

Sessions Per LC2

2.  F2 linecard (LC).

NA CRS—1k/7000pps

12k—100/1300pps

200 (50ms timer)

1k/system

Minimum Detection Timers 50ms CRS—30ms

12K—150ms

50 ms

250 ms link bundle

IPv4 and IPv6 Yes Yes Yes (IPv6 on roadmap)

Single/Multi-hop Support Single only Yes Single (multi on roadmap)

Active/Demand Mode Active Mode only Yes Yes
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NX-OS N7K BFD Implementation

BFD functions as follows:

Step 1 Session request is received from the application (example OSPF, BGP).

Step 2 SUP-BFD process on the SUP determines type of port and ports operational parameters and IP address.

Step 3 A session discriminator is assigned and session context is created. A response is sent to the application.

Step 4 Finite State Machine (FSM) selects linecard where the session will be installed. ACLMGR programs 
required  ACL (ACL’s are required to redirect incoming BFD packets to appropriate line card CPU).

Step 5 Session control is passed to the linecard from the SUP.

Step 6 The LC-BFD process on LC sends notification to registered applications indicating session UP or 
DOWN status.

Step 7 If session state changes during session, BFD process on the LC will notify all registered applications.

BFD Recommendation

Based on the testing , here is a list of recommendations when using BFD:

 • Use BFD if FFD tuning is needed.29

 • Implement default timers for required protocol.

 • Use Echo Mode to detect forwarding plane failure.

 • Implement QoS to avoid false positive.

 • BFD timers should be tuned to accommodate other distributed tasks such as netflow, Sflow. 

 • Incorporate validated limits as part of design consideration.30 31

Graceful Restart

It is recommended to turn this feature off in an MSDC network. Graceful Restart allows the data-plane 
to continue forwarding packets should a control-plane-only failure occur (the routing protocol needs to 
restart but no links have changed). In a network with a stable control plane during steady-state, this is a 
very useful as it allows for hitless control-plane recovery. However, in a network with unstable 
control-plane during steady state, this feature can cause additional packet loss because the data-plane 
cannot handle addition updates during the restart interval.

Hiding Fabric Routes

The number of links between spine and leaf in an MSDC can be enormous. These routes alone can 
overwhelm a platforms FIB, without even adding the host facing subnets. There are several methods to 
work around this issue, each with their own pros and cons.

 • BGP suppress connected routes 
29.  Cisco is constantly working to improve convergence with the N7K BU on OSPF.  TCAM grooming can cause 

the forwarding plane to converge slowly. This is not specific to BFD.
30. http://www.cisco.com/en/US/docs/switches/datacenter/sw/6_x/nx-os/unicast/configuration/guide/l3_limits.h

tml#wp1014867—N7K
31. http://www.cisco.com/en/US/docs/switches/datacenter/nexus3000/sw/configuration_limits/503_u2_2/b_Nexus3K_

Configuration_Limits_for_Cisco_NXOS_Release_503_u2_2.html  - N3k
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 • IPv6 Link Local Peering

 • IP Unnumbered

TCP Incast
TCP Incast, also known as “TCP Throughput Collapse”, a form of congestive collapse, is an extreme 
response in TCP implementations that results in gross under-utilization of link capacity in certain N:1 
communication configurations.32

Packet loss, usually occurring at the last-hop network device, is a result of the N senders exceeding the 
capacity of the switch’s internal buffering. Such packet-loss across a large fleet of senders may lead to 
TCP Global Synchronization (TGS), an undesirable condition where senders respond to packet losses 
by taking TCP timeouts in “lock-step”. In stable networks, buffer queues are either usually empty or full; 
in bursty environments these limited queues are quickly overrun. A popular method for dealing with 
overrun queues is to enforce “tail drop”. However when there are large numbers of [near] simultaneous 
senders, N, and the senders are sending to a single requestor, the resultant tail-drop packet-losses occur 
at roughly the same time. This in turn causes the sender’s TCP automatic recovery mechanisms of 
congestion avoidance to kick in (“slow-start” and its variant and augmentations) at the same time. The 
net effect wasted bandwidth consumed that isn’t doing much real work.33

Why A Concern in MSDC

Distributed systems, such as Hadoop clusters or large storage clusters, are canonical examples of 
systems affected by Incast. There are three primary drivers for SDU’s research and testing in this area:

 • Our Tier-1 MSDC Customers have expressed concern in this area.34

 • There isn’t much guidance and literature in the field, especially from Cisco, on how to deal with the 
Incast problem in MSDC contexts.

 • We care about buffers and buffer-bloat since a 1993 proof, the key is appropriately sized buffers 
have predictable end-to-end delay from point A to Z. Predictability is important to MSDC 
Customers where infrastructure is such a dominating cost center.

Current Work at Cisco

Another team at Cisco has conducted BigData analysis using Hadoop (HDFS, MapReduce) across two 
topologies: N7K Spine/N5K Leaf, and N7K Spine/N3K Leaf. Since MSDCs do not use FEX or N5Ks, 
the N3K topology is most relevant (Figure 1-26).

32.  Adapted from “http://radlab.cs.berkeley.edu/wiki/Incast”.
33.  Refer to “http://en.wikipedia.org/wiki/TCP_global_synchronization” for more details on TGS.
34.  Account Teams from Facebook, Amazon, Yahoo!, Rackspace, and Microsoft have expressed interest and 

concern.  This isn’t necessarily a comprehensive list.
1-35
Massively Scalable Data Center (MSDC)

Design and Implementation Guide

http://radlab.cs.berkeley.edu/wiki/Incast
http://en.wikipedia.org/wiki/TCP_global_synchronization


 

Chapter 1      MSDC Scale Characteristics
  Scale
Figure 1-26 Topology from Prior Buffer Analysis Work

The team showed that with 10G attached servers there are fewer burdens on network buffering because 
servers will consume network data faster. Thus CPU, memory, and storage I/O becomes the bottleneck 
as opposed to network buffers (Figure 1-27). Work done in support of this guide differs from what has 
previously been done in two ways:

1. Testing used Hadoop as a way to generalize Incast conditions rather than analyzing Hadoop itself.

2. Testing builds upon work that has already been done by introducing a broader class of failure and 
churn scenarios and observe how the network behaves, for example, what happens when you fail 
larger groups of servers, or have gross-level rack failures?

Figure 1-27 Hadoop and Buffer Analysis with 10G

Industry Research Gaps This Testing Addresses

TCP Incast testing builds upon work that has already been done and focuses on these issues:

 • More generalized—not focused on Hadoop itself, but rather provides a tool to generalize Incast and 
complete system impact.

 • Failure injection and job concurrency (multiple jobs at various stages when failure occurs).

 • Single rack and Multi-rack failures (focus on multi-rack) – induce “cascading failure(s)”.

 • Detection of an Incast event from the perspectives of both network and servers.
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C H A P T E R 2

MSDC Solution Details and Testing Summary

This chapter discusses Power on Auto Provisioning (PoAP) and fabric protocol scaling.

PoAP
As was discussed earlier, PoAP was used to configure the various logical topologies—one major change 
for each of 4 cycles (a, b, c, and d) for this phase of testing1. Setup and testing is documented below.

The Goals of the PoAP testing can be summarized in 4 bullet points, along with a summary of results:

1. It should be demonstrated that automation of simultaneous initial provisioning of all Leafs, without 
human intervention, is possible.

 • SUCCESS. After issuing write erase;reload, no human intervention was needed in order for the 
switches to load new images/configuration and for the network to reconverge.

2. If failures occur during the PoAP process, there should be troubleshooting steps engineers can take 
to determine root cause using logs.

 • CONDITIONAL SUCCESS. Log messages left on bootflash by the PoAP script helped determine 
root cause of failures in most cases. However some corner cases (bootflash full) prevented logs from 
being written, and log verbosity is partly dependent on the PoAP script code (which is up to the 
customer/script author). 

a. Upon failure, PoAP will restart continuously.

b. On console, abort PoAP process when prompted.

c. Go through user/pass setup to get to bootflash to read logs.

d. Problems with PoAP process:

 – PoAP never gets to script execution step

 – bootflash:<ccyymmdd>_<HHMMss>_PoAP_<PID>_init.log files contain log of PoAP 
process:

DHCP related problems (DHCP Offer not received, incorrect options in OFFER, etc)

HTTP/TFTP related problems (couldn’t reach server, file not found, etc)

Check DHCP/TFTP/HTTP/FTP/SFTP server logs for additional information

e. Errors in script execution:

 – NO STDOUT or STDERR – only what script writes to logfile.

1.  Refer to Power On Auto Provisioning (PoAP), page 1-22.
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 – CCO script writes to bootflash:<ccyymmddHHMMss>_PoAP_<PID>_script.log

 – Be verbose in writing to log in scripts b/c no stackdump to use for debugging (but be aware of 
available space on bootflash)

3. It should be shown that PoAP can take a deterministic amount of time to provision Leafs. This can 
be a ballpark reference number since actual runtime will depend on the contents of the PoAP script 
and what a customer is trying to achieve.

 • SUCCESS Although the actual time to PoAP depends on the PoAP script being implemented, it was 
observed that a ballpark figure of around 15 minutes. This test was performed using a mix of 3048 
and 3064 Leaf devices connected to a 4-wide spine of N7K’s using OSPF as the routing protocol. 
This represents all of the N3K Leaf devices in the 4-wide topology at the time.

a. Concurrent PoAP of 30 Leaf devices:

 – 14x N3064 Leafs.

 – 16x N3048 Leafs (these were available in lab).

 – Inband PoAP DHCP relay via N7K Spines.

 – Simultaneous PoAP.

 – Single VM for TFTP/FTP/DHCP server

 – PoAP script included image download and switch configuration

 – Runtime: ~15min.

4. The minimum infrastructure needed to support PoAP’ing Leaf devices should be characterized.

 • SUCCESS Refer to Topology Setup, page 2-2.

PoAP Benefits
Here are a few benefits provided by PoAP:

 • Pipelining device configuration

 – Pre-build configurations for Phase N+1 during Phase N.

 • Fast reconfiguration of entire topology

 – Phase N complete and configs saved offline.

 – ‘write erase’ and ‘reload’ devices and recable testbed.

 – After POAP completes, the new topology fully operational.

 • Ensuring consistent code version across testbed/platforms.

 • Scripting allows for customization.

 • Revision control: config files can be stored in SVN/Git/etc, off-box in a centralized repository, for 
easy versioning and backup.

Topology Setup
Each method of enabling PoAP, below, has its pros and cons. One of the most important decisions is how 
any method scales. MGMT0, page 2-3 and Inband, page 2-3 are two possible ways to enable PoAP in 
the topology.
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MGMT0

Here is a detailed depiction of how PoAP can be used with the mgmt0 interface of each Spine and Leaf 
node (Figure 2-1).

Figure 2-1 PoAP Across Dedicated Management Network

Pros

 • Simple setup (no relay).

 • DHCP server can be single homed.

 • Single subnet in DHCP config.

Cons

 • This is not how most MSDC would deploy. Cost of separate mgmt network at MSDC scales are 
prohibitive.

 • DHCP server could potentially respond to DISCOVERIES from outside the primary network, 
depending on cabling and configuration.

If using this setup, the PoAP script uses the management VRF.

Inband

In this setup, no mgmt network is used, but rather the normal network (Figure 2-2).
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Figure 2-2 PoAP Across Inband Network

Pros

 • Customers prefer this method; L3-only, no separate network needed.

 • DHCP scope limited to just the main network.

Cons

 • Requires DHCP relay on devices.

 • When testing, this setup requires extra non-test gear within the topology (dedicated servers).

 • DHCP is multi-homed.

 • More complex DHCP server configuration.

The test topology used this arrangement for PoAP. The Pros for inband are much higher weighted than 
all the other cons, and it scales much better than a dedicated L2 network. And with software automation 
the complexity of DHCP server configuration is easily managed.

Infrastructure
PoAP requires supporting services, such as DHCP, TFTP, FTP/SFTP, and HTTP to properly function. 
These are discussed below.

DHCP Server

PoAP requires DHCP Offer to contain:

1. IP
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2. Subnet

3. routers option

4. domain-name-server option

5. next-server

6. tftp-server-name option

7. bootfile-name option

8. lease time of 1 hour or greater

If PoAP does not get offer with adequate information, init.log will show:
poap_dhcp_select_interface_config: No interface with required config
poap_dhcp_intf_ac_action_config_interface_select: Failed in the interface selection to 
send DHCPREQUEST for interface 1a013000

isc-dhcpd Configuration

Split config into Subnet and Host portions.

 • Subnets

 – Switch could DHCP from any interface. Need a subnet entry for every network where DHCP 
Discover could originate. For inband, that is every point-to-point link where dhcp-relay is 
configured.

 – IP/Subnet/Router unique for each subnet.

 – Use ‘group’ to specify same next-server, tftp-server, domain-name-server for all subnets.

 • Hosts

 – Host entries need to map Serial Number (prepended with \0) to device hostname.
host msdc-leaf-r4 {
option dhcp-client-identifier "\000FOC1546R0SL";
option host-name              "msdc-leaf-r4";
}

 – Use ‘group’ to specify same filename, bootfile-name for hosts that will use the same PoAP 
script.

 – Grouping based on platform, network role, testbed, etc.

TFTP/FTP/SFTP/HTTP Server

 • PoAP process on switch downloads PoAP script via TFTP/HTTP. Most tftp servers chroot, so 
filename but not path is required. For http, configure dhcp option tftp-server-name to be 
“http://servername.domain.com”.

 • PoAP script then downloads image and config via TFTP, FTP, SFTP, or SCP.

 – Script will need credentials for login and full path to files

 • Host specific config files named directly or indirectly2.

 – Identified directly by hostname when using os.environ['POAP_HOST_NAME']

 – Best Practice: MAC or S/N mapped to hostname in DHCP config

 – Identified indirectly by serial number, mac address, CDP neighbor.

2.  As of this writing hostname is only available in Caymen+ (U4.1) and GoldCoast Maintenance.
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 – Best Practice: symlink conf_<hostname>.cfg to conf_<serialnum/mac_addr>.cfg

 • The load on TFTP/FTP/SFTP servers depends on the PoAP script:

 – Generally, devices PoAP’ing look just like any other TFTP/FTP/SFTP client requests.

 – Best practice: make script intelligen enough to NOT download images if they’re already 
present.

 – Be aware of increased log sizes if enabling debugging on servers for troubleshooting.

Demo
The following collection of logfiles demonstrates a successful PoAP event.

 • leaf-r13

2012 Jun  4 19:53:22  %$ VDC-1 %$ %NOHMS-2-NOHMS_DIAG_ERR_PS_FAIL: System minor alarm 
on power supply 1: failed
Starting Power On Auto Provisioning...
2012 Jun  4 19:54:17  %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online 
2012 Jun  4 19:54:17 switch %$ VDC-1 %$ %POAP-2-POAP_INITED: POAP process initialized
Done

Abort Power On Auto Provisioning and continue with normal setup ?(yes/no)[n]: 
2012 Jun  4 19:54:37 switch %$ VDC-1 %$ %POAP-2-POAP_DHCP_DISCOVER_START: POAP DHCP 
Discover phase started
2012 Jun  4 19:54:37 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Abort Power On Auto 
Provisioning and continue with normal setup ?(yes/no)[n]:

 • DHCP Server and Script Output. The first reboot happens at 19:55. Then config requiring reboot is 
applied (system URPF, hardware profile, etc). The first second reboot at 19:58:
Jun  4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via 
10.3.1.32
Jun  4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via 
10.2.1.32
Jun  4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via 
10.4.1.32
Jun  4 10:54:19 milliways-cobbler dhcpd: DHCPDISCOVER from 54:7f:ee:34:10:c1 via 
10.1.1.32
Jun  4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.3.1.33 to 54:7f:ee:34:10:c1 
via 10.3.1.32
Jun  4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.2.1.33 to 54:7f:ee:34:10:c1 
via 10.2.1.32
Jun  4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.4.1.33 to 54:7f:ee:34:10:c1 
via 10.4.1.32
Jun  4 10:54:20 milliways-cobbler dhcpd: DHCPOFFER on 10.1.1.33 to 54:7f:ee:34:10:c1 
via 10.1.1.32
Jun  4 10:54:34 milliways-cobbler dhcpd: DHCPREQUEST for 10.3.1.33 (10.128.3.132) from 
54:7f:ee:34:10:c1 via 10.3.1.32
Jun  4 10:54:34 milliways-cobbler dhcpd: DHCPACK on 10.3.1.33 to 54:7f:ee:34:10:c1 via 
10.3.1.32
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Using DHCP, information 
received over Eth1/19 from 10.128.3.132
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Assigned IP address: 
10.3.1.33
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Netmask: 255.255.255.254
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: DNS Server: 10.128.3.136
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Default Gateway: 10.3.1.32
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Script Server: 10.128.3.132

3.  This output is from 5.0(3)U3.2.  Output is more verbose in 5.0(3)U4.1.
2-6
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Chapter 2      MSDC Solution Details and Testing Summary
  PoAP
2012 Jun  4 19:54:53 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Script Name: 
/poap_script.py
2012 Jun  4 19:55:04 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: The POAP Script download 
has started
2012 Jun  4 19:55:04 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: The POAP Script is being 
downloaded from [copy tftp://10.128.3.132//poap_script.py bootflash:script.sh vrf 
default ]
2012 Jun  4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_SCRIPT_DOWNLOADED: Successfully 
downloaded POAP script file
2012 Jun  4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: Script file size 15738, MD5 
checksum b9b180bd70baee9fabb7a253d59e909a
2012 Jun  4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_INFO: MD5 checksum received from 
the script file is b9b180bd70baee9fabb7a253d59e909a
2012 Jun  4 19:55:06 switch %$ VDC-1 %$ %POAP-2-POAP_SCRIPT_STARTED_MD5_VALIDATED: 
POAP script execution started(MD5 validated)

$ head -n 1 poap_script.py 
#md5sum="b9b180bd70baee9fabb7a253d59e909a"
Mon Jun  4 10:54:50 2012 1 10.3.1.33 886 /var/lib/tftpboot/conf_FOC1539R06D.cfg b _ o 
r administrator ftp 0 * c
Mon Jun  4 10:54:51 2012 1 10.3.1.33 0 /var/lib/tftpboot/conf_FOC1539R06D.cfg.md5 b _ 
o r administrator ftp 0 * i
Mon Jun  4 10:54:53 2012 1 10.3.1.33 3060 /var/lib/tftpboot/conf_mgmt_milliways.cfg b 
_ o r administrator ftp 0 * c
Mon Jun  4 10:54:55 2012 1 10.3.1.33 0 /var/lib/tftpboot/conf_mgmt_milliways.cfg.md5 b 
_ o r administrator ftp 0 * i
Mon Jun  4 10:54:56 2012 1 10.3.1.33 632 /var/lib/tftpboot/conf_proto_ospf.cfg b _ o r 
administrator ftp 0 * c
Mon Jun  4 10:54:58 2012 1 10.3.1.33 0 /var/lib/tftpboot/conf_proto_ospf.cfg.md5 b _ o 
r administrator ftp 0 * i

2012 Jun  4 19:55:27 switch %$ VDC-1 %$ %POAP-2-POAP_SCRIPT_EXEC_SUCCESS: POAP script 
execution success
2012 Jun  4 19:55:30 switch %$ VDC-1 %$ %PFMA-2-PFM_SYSTEM_RESET: Manual system 
restart from Command Line Interface
 writing reset reason 9,

· leaf-r1. After second reboot, the remainder of the cofiguration is applied:

POAP - Applying scheduled configuration...
2012 Jun  4 19:58:36  %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online 
Warning: URPF successfully disabled
Warning: Please copy running-config to startup-config and reload the switch to apply 
changes
[########################################] 100%
Done
WARNING: This command will reboot the system
2012 Jun  4 19:58:54 switch %$ VDC-1 %$ %PFMA-2-PFM_SYSTEM_RESET: Manual system 
restart from Command Line Interface
 writing reset reason 9,
POAP - Applying scheduled configuration...
2012 Jun  4 20:02:01 switch %$ VDC-1 %$ %VDC_MGR-2-VDC_ONLINE: vdc 1 has come online 
Please disable the ICMP redirects on all interfaces
running BFD sessions using the command below
'no ip redirects '
% Warning - the verbose event-history buffer may result in a slow down of OSPF
[########################################] 100%
Done
2012 Jun  4 16:02:36 msdc-leaf-r
msdc-leaf-r1 login: 
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PoAP Considerations
The following PoAP considerations are recommended.

 • No “default” config using PoAP

 – If no admin user is configured during PoAP - you’ll lock yourself out of the box.

 – No CoPP policy applied to box by default – you must have it in your config.

 – Any IP address received via DHCP during PoAP is discarded when PoAP is complete.

 • DHCP Relay issues on N7k

 – CSCtx88353 – DHCP Relay; Boot Reply packet not forwarded over L3 interface

 – CSCtw55298 – With broadcast flag set, dhcp floods resp pkt with dmac=ch_addr

 • System configuration after aborted PoAP

 – If PoAP initiated because ‘write erase’, config will be blank

 – If PoAP initiated by ‘boot poap enable’, config will be in unknown state. Cannot fall-back to 
previous config.

 • Ensure you have enough free space on bootflash for script logs, downloaded images, and 
downloaded configs.

Fabric Protocol Scaling
This section discusses ways to tell if a MSDC is approaching meltdown. Refer to the “Scale” section on 
page 1-31 for designing MSDC networks to mitigate issues with churn. Figure 2-3 through Figure 2-11 
shows and defines the routing and processing subsystems of a packets journey.

Churn
Figure 2-3 is used to describe the day in the life of a packet and how it relates to various routing events 
and actions. 

Figure 2-3 Day in the Life of a Packet Through Routing and Processing Subsystems
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Several terms are used to describe a routing protocol failure; meltdown, cascading failures, etc. The 
underlying problem in each of these is the network reaches the point where the protocol can no longer 
keep up. It is so far backed up and sending updates that it becomes the cause of problems instead of 
routing packets around problems. From an application point of view, this manifests as communication 
failures between endpoints. But how can one tell from the router point of view that this is occurring?  
Every routing protocol does three basic things; receive updates, compute new route tables based on these 
updates, and send out new updates. The most obvious item to check is CPU utilization. If CPU is pegged 
at 100% computing new route tables, then the limit has obviously been reached. There are, however, 
other potential breakpoints from when new updates are taken off the wire, to when those updates are 
processed by the routing protocol, to when new RIB and FIB and generated and pushed to hardware, to 
when new updates are sent out.

Line Card Input Queues

The first place a packet goes when it comes off the wire is the port’s input queue. The architecture of 
each linecard and platform is different, so the specifics won’t be covered here.4 

Figure 2-4 Line Card Input Queues

CoPP

Control Plane Policing (CoPP) protects the supervisor from becoming overwhelmed by DDOS type 
attacks using hardware rate-limiters. The CoPP configuration is user customizable. The default N7k 
CoPP policy puts all routing protocol packets into the copp-system-p-class-critical class. By default this 
class is given the strict policy of 1 rate and 2 color and has a BC value of 250ms. The default N3k CoPP 
policy divides the routing protocol packets into several classes based on each protocol. Should the 
routing protocol exceed configured rates, packets will be dropped. Dropped Hello's can lead to entire 
neighbor session being dropped. Dropped updates/LSAs can lead to increased load due to 
retransmissions or inconsistent routing state.

4.  Refer to Appendix C, “F2/Clipper Linecard Architecture,”
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Figure 2-5 CoPP Path

CoPP Commands

On the N7k the show policy-map interface control-plane class copp-system-p-class-critical command 
displays counters for default CoPP class regulating routing protocol traffic. A violated counter that is 
continuously incrementing indicates network churn rate is approaching meltdown.

msdc-spine-r9# show pol int cont class copp-system-p-class-critical | begin mod
      module 3 :
        conformed 14022805664 bytes; action: transmit 
        violated 0 bytes; action: drop 

      module 4 :
        conformed 8705316310 bytes; action: transmit 
        violated 0 bytes; action: drop 

On the N3k, the show policy-map interface control-plane command displays counters for all CoPP 
classes. A routing protocol class DropPackets counter that is continuously incrementing indicates the 
network churn rate is approaching meltdown.

msdc-leaf-r21# show policy-map interface control-plane  | begin copp-s-igmp
    class-map copp-s-igmp (match-any)
      match access-grp name copp-system-acl-igmp
      police pps 400 
        OutPackets    0
        DropPackets   0
    class-map copp-s-eigrp (match-any)
      match access-grp name copp-system-acl-eigrp
      match access-grp name copp-system-acl-eigrp6
      police pps 200 
        OutPackets    0
        DropPackets   0
    class-map copp-s-pimreg (match-any)
      match access-grp name copp-system-acl-pimreg
      police pps 200 
        OutPackets    0
        DropPackets   0
    class-map copp-s-pimautorp (match-any)
      police pps 200 
        OutPackets    0
        DropPackets   0
    class-map copp-s-routingProto2 (match-any)
      match access-grp name copp-system-acl-routingproto2
      police pps 1300 
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        OutPackets    0
        DropPackets   0
    class-map copp-s-v6routingProto2 (match-any)
      match access-grp name copp-system-acl-v6routingProto2
      police pps 1300 
        OutPackets    0
        DropPackets   0
    class-map copp-s-routingProto1 (match-any)
      match access-grp name copp-system-acl-routingproto1
      match access-grp name copp-system-acl-v6routingproto1
      police pps 1000 
        OutPackets    1208350
        DropPackets   0
    class-map copp-s-arp (match-any)
      police pps 200 
        OutPackets    9619
        DropPackets   0
    class-map copp-s-ptp (match-any)
      police pps 1000 
        OutPackets    0
        DropPackets   0
    class-map copp-s-bfd (match-any)
      police pps 350 
        OutPackets    24226457
        DropPackets   0
<snip>

Supervisor Inband Interface

After making it through CoPP, control plane packets are sent to the supervisor via its inband interface. 
As the level of network churn increases, it is expected the number of Updates/LSAs sent and received 
by the device should also increase. A corresponding increase is seen in RX and TX utilization on the 
inband interface. Should this interface become overwhelmed, throttling occurs and packets will be 
dropped. Dropped Hello's may lead to entire neighbor sessions being dropped. Dropped updates/LSAs 
may also lead to increased load due to retransmissions or inconsistent routing state.

Figure 2-6 Inband Interface Path
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Supervisor Inband Interface Commands

On the N7k, the inband rate limit for Sup1 is 32kpps, while the limit for Sup2 is 64kpps. The show 
hardware internal cpu-mac inband stats command gives a vast array of statics regarding the inband 
interface, specifically statistics about throttling. Seeing the rate limit reached counter incrementing 
indicates the network churn rate is approaching meltdown.

msdc-spine-r1# show hard int cpu-mac inband stats | be Throttle | head
Throttle statistics
-----------------------------+---------
Throttle interval ........... 2 * 100ms
Packet rate limit ........... 32000 pps
Rate limit reached counter .. 0
Tick counter ................ 2217856
Active ...................... 0
Rx packet rate (current/max)  261 / 3920 pps
Tx packet rate (current/max)  618 / 4253 pps

Netstack

Netstack is the set of NX-OS processes that implement all protocol stacks required to send and receive 
control plane packets. Routing protocols register with the IP Process to receive their Hello and Update 
packets. MTS is used to pass these updates between IP Process and routing protocols.  When routing 
protocols are too busy processing previous messages or doing route recalculations to receive these 
messages, they can be dropped. Dropped Hello's can lead to entire neighbor session being dropped. 
Dropped updates/LSAs can lead to increased load due retransmissions or inconsistent routing state. Each 
routing protocol registers as a client of IP process to receive these messages. Statistics are available on 
a per-client basis.

Figure 2-7 Netstack Path

Netstack Output Commands

The show ip client command lists all the processes that have registered to receive IP packets. Seeing the 
failed data messages counter incrementing is an indication that the network churn rate is approaching 
meltdown.

msdc-spine-r9# show ip client ospf

Client: ospf-msdc, uuid: 1090519321, pid: 4242, extended pid: 4242
  Protocol: 89, client-index: 12, routing VRF id: 65535
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  Data MTS-SAP: 324, flags 0x3
  Data messages, send successful: 737284, failed: 0

msdc-spine-r8# show ip client tcpudp

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
  Protocol: 1, client-index: 6, routing VRF id: 65535
  Data MTS-SAP: 2323, flags 0x1
  Data messages, send successful: 462, failed: 0
  Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
  Protocol: 2, client-index: 7, routing VRF id: 65535
  Data MTS-SAP: 2323, flags 0x1
  Data messages, send successful: 0, failed: 10
  Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
  Protocol: 6, client-index: 4, routing VRF id: 65535
  Data MTS-SAP: 2323, flags 0x1
  Data messages, send successful: 14305149, failed: 0
  Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
  Protocol: 17, client-index: 5, routing VRF id: 65535
  Data MTS-SAP: 2323, flags 0x1
  Data messages, send successful: 588710, failed: 0
  Recv fn: tcp_process_ip_data_msg (0x8369da6)

Client: tcpudp, uuid: 545, pid: 4416, extended pid: 4416
  Protocol: 112, client-index: 8, routing VRF id: 65535
  Data MTS-SAP: 2323, flags 0x1
  Data messages, send successful: 0, failed: 0
  Recv fn: tcp_process_ip_data_msg (0x8369da6)

CPU Utilization

Once the update has reached its final destination, the routing protocol requires compute time on the 
supervisor to run its SPF or best-path algorithms. As the network converges more frequently, the more 
load will be put on CPU. However, each platform has a different type of CPU so load will be different 
on each platform. Also, the location of the device in the network has an impact (routers in an OSPF 
totally stubby area are insulated from churn in other areas). Thus CPU utilization is one metric to 
carefully examine, but monitoring all devices is required until it is determined which platform+roles will 
be high water marks. If the network melts before any devices have pegged the CPU, then one of the other 
breakpoints are being reached first.
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Figure 2-8 CPU Usage

CPU Utilization Commands

The following CPU usage commands were used:

 • show process cpu sort

 • show process cpu hist

 • show system resources module all
msdc-spine-r1# show proc cpu sort | exc 0.0%

PID    Runtime(ms)  Invoked   uSecs  1Sec    Process
-----  -----------  --------  -----  ------  -----------
 3929          229        87   2641    6.8%  netstack
 4347      4690520   3655116   1283    2.9%  statsclient
 3824      5842819   2004444   2914    2.0%  diagmgr
 4223      9112189  35562230    256    2.0%  stp
   26       507049   1086599    466    0.9%  kide/1
 3983     33557935   1148416  29221    0.9%  sac_usd
 4034      5259725   1575385   3338    0.9%  oc_usd
 4218      1484069   4998255    296    0.9%  diag_port_lb
 4235      1991337   1127732   1765    0.9%  udld

CPU util  :   5.0% user,   4.5% kernel,   90.5% idle
Please note that only processes from the requested vdc are shown above
msdc-spine-r1# show proc cpu hist
                                                                
     1     11  226 2  111 211    111      4554 353 2  2 1 3     
    696787708864288269140716978855989375663843527196860868197579
100                                                             
 90                                                             
 80                                                             
 70              #                                              
 60              #                         #    #               
 50              #                         ##   #               
 40              #                        ####  #               
 30              #                        #### ### #      #     
 20  #      #  ### #      ###    ###      #### ### #  # # #     
 10 ################################# ##########################
    0....5....1....1....2....2....3....3....4....4....5....5....
              0    5    0    5    0    5    0    5    0    5    

               CPU% per second (last 60 seconds)
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                      # = average CPU%

                                       1            1     11    
    777877697797678967989767785988798980787586978798098788009679
    166077546715148676827549868699342800060935474641066850000773
100                *  * *      *     * *            **    **    
 90        *  *   **  * *    * *** * * * *    *   * *** * ***  *
 80  ***** *****  ** ***** *** *** ***** *  * *************** **
 70 ************ ********* *** ************ ********************
 60 ************************************************************
 50 ************************************************************
 40 **#****#**********#******#*#*****#******#*#*****#*****##***#
 30 **##*#*##*#***#***#*##***#*###***#*###**#*###***#*#***##**##
 20 ###############*############################################
 10 ############################################################
    0....5....1....1....2....2....3....3....4....4....5....5....
              0    5    0    5    0    5    0    5    0    5    

               CPU% per minute (last 60 minutes)
              * = maximum CPU%   # = average CPU%

    111111111111 1111111 111111111111111111111111111111111111111111111111111
    000000000000900000009000000000000000000000000000000000000000000000000000
    000000000000900000006000000000000000000000000000000000000000000000000000
100 **************************##########################********************
 90 **************************##########################********************
 80 **************************###########################*******************
 70 *************************############################*******************
 60 *************************############################*******************
 50 ******#*****************################################################
 40 ******#****************#################################################
 30 ###*###*####***********#################################################
 20 ########################################################################
 10 ########################################################################
    0....5....1....1....2....2....3....3....4....4....5....5....6....6....7.
              0    5    0    5    0    5    0    5    0    5    0    5    0 

                   CPU% per hour (last 72 hours)
                  * = maximum CPU%   # = average CPU%

msdc-spine-r1# show system resources module all
CPU Resources:
-----------------------------------------------------------
  CPU utilization:  Module  5 seconds  1 minute  5 minutes
-----------------------------------------------------------
                       1        25        15         14
                       2        21        15         15
                       3        26        23         21
                       4        14        14         14
                       5        21        15         14
                       6        11        13         13
                       7        11        13         13
                       8        11        12         12
                      10        27        18         19
                      11        23        13         12
                      12        17        11         12
                      13        10        13         12
                      14        10        13         13
                      15        11        12         13
                      16        11        12         12
                      17        11        13         13
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-----------------------------------------------------------
  Processor memory:   Module   Total(KB)   Free(KB)  % Used
-----------------------------------------------------------
                         1      2075900    1339944      35
                         2      2075900    1340236      35
                         3      2075900    1333976      35
                         4      2075900    1339780      35
                         5      2075900    1341112      35
                         6      2075900    1344648      35
                         7      2075900    1344492      35
                         8      2075900    1344312      35
                        10      8251592    6133856      25
                        11      2075900    1344604      35
                        12      2075900    1344904      35
                        13      2075900    1344496      35
                        14      2075900    1344496      35
                        15      2075900    1344808      35
                        16      2075900   •show process cpu sort

 • show process cpu hist

 • show system resources module all

msdc-spine-r1# show proc cpu sort | exc 0.0%

PID    Runtime(ms)  Invoked   uSecs  1Sec    Process
-----  -----------  --------  -----  ------  -----------
 3929          229        87   2641    6.8%  netstack
 4347      4690520   3655116   1283    2.9%  statsclient
 3824      5842819   2004444   2914    2.0%  diagmgr
 4223      9112189  35562230    256    2.0%  stp
   26       507049   1086599    466    0.9%  kide/1
 3983     33557935   1148416  29221    0.9%  sac_usd
 4034      5259725   1575385   3338    0.9%  oc_usd
 4218      1484069   4998255    296    0.9%  diag_port_lb
 4235      1991337   1127732   1765    0.9%  udld

CPU util  :   5.0% user,   4.5% kernel,   90.5% idle
Please note that only processes from the requested vdc are shown above
msdc-spine-r1# show proc cpu hist
                                                                
     1     11  226 2  111 211    111      4554 353 2  2 1 3     
    696787708864288269140716978855989375663843527196860868197579
100                                                             
 90                                                             
 80                                                             
 70              #                                              
 60              #                         #    #               
 50              #                         ##   #               
 40              #                        ####  #               
 30              #                        #### ### #      #     
 20  #      #  ### #      ###    ###      #### ### #  # # #     
 10 ################################# ##########################
    0....5....1....1....2....2....3....3....4....4....5....5....
              0    5    0    5    0    5    0    5    0    5    

               CPU% per second (last 60 seconds)
                      # = average CPU%

                                       1            1     11    
    777877697797678967989767785988798980787586978798098788009679
    166077546715148676827549868699342800060935474641066850000773
100                *  * *      *     * *            **    **    
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 90        *  *   **  * *    * *** * * * *    *   * *** * ***  *
 80  ***** *****  ** ***** *** *** ***** *  * *************** **
 70 ************ ********* *** ************ ********************
 60 ************************************************************
 50 ************************************************************
 40 **#****#**********#******#*#*****#******#*#*****#*****##***#
 30 **##*#*##*#***#***#*##***#*###***#*###**#*###***#*#***##**##
 20 ###############*############################################
 10 ############################################################
    0....5....1....1....2....2....3....3....4....4....5....5....
              0    5    0    5    0    5    0    5    0    5    

               CPU% per minute (last 60 minutes)
              * = maximum CPU%   # = average CPU%

    111111111111 1111111 111111111111111111111111111111111111111111111111111
    000000000000900000009000000000000000000000000000000000000000000000000000
    000000000000900000006000000000000000000000000000000000000000000000000000
100 **************************##########################********************
 90 **************************##########################********************
 80 **************************###########################*******************
 70 *************************############################*******************
 60 *************************############################*******************
 50 ******#*****************################################################
 40 ******#****************#################################################
 30 ###*###*####***********#################################################
 20 ########################################################################
 10 ########################################################################
    0....5....1....1....2....2....3....3....4....4....5....5....6....6....7.
              0    5    0    5    0    5    0    5    0    5    0    5    0 

                   CPU% per hour (last 72 hours)
                  * = maximum CPU%   # = average CPU%

msdc-spine-r1# show system resources module all
CPU Resources:
-----------------------------------------------------------
  CPU utilization:  Module  5 seconds  1 minute  5 minutes
-----------------------------------------------------------
                       1        25        15         14
                       2        21        15         15
                       3        26        23         21
                       4        14        14         14
                       5        21        15         14
                       6        11        13         13
                       7        11        13         13
                       8        11        12         12
                      10        27        18         19
                      11        23        13         12
                      12        17        11         12
                      13        10        13         12
                      14        10        13         13
                      15        11        12         13
                      16        11        12         12
                      17        11        13         13

-----------------------------------------------------------
  Processor memory:   Module   Total(KB)   Free(KB)  % Used
-----------------------------------------------------------
                         1      2075900    1339944      35
                         2      2075900    1340236      35
                         3      2075900    1333976      35
                         4      2075900    1339780      35
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                         5      2075900    1341112      35
                         6      2075900    1344648      35
                         7      2075900    1344492      35
                         8      2075900    1344312      35
                        10      8251592    6133856      25
                        11      2075900    1344604      35
                        12      2075900    1344904      35
                        13      2075900    1344496      35
                        14      2075900    1344496      35
                        15      2075900    1344808      35
                        16      2075900    1344416      35
                        17      2075900    1344536      35
msdc-spine-r1# 1344416      35
                        17      2075900    1344536      35
msdc-spine-r1#

URIB

When there is a lot of network instability urib-redist can run out of shared memory waiting for acks 
caused by routing changes. urib-redist uses 1/8 of the memory allocated to urib, which can be increased 
by modifying the limit for 'limit-resource u4route-mem' (urib).

This data shows urib-redist with 12292 allocated, which is 1/8 of urib (98308)
n7k# show processes memory shared 
Component           Shared Memory      Size              Used  Available    Ref
                          Address   (kbytes)         (kbytes)   (kbytes)  Count
smm                    0X50000000      1028                 4       1024     41
cli                    0X50101000     40964*            25151      15813     12
npacl                  0X52902000        68                 2         66      2
u6rib-ufdm             0X52913000       324*              188        136      2
u6rib                  0X52964000      2048+ (24580)      551       1497     11
urib                   0X54165000      7168+ (98308)     5161       2007     22
u6rib-notify           0X5A166000      3076*              795       2281     11
urib-redist            0X5A467000     12292*            11754        538     22
urib-ufdm              0X5B068000      2052*                0       2052      2

Protocols often express interest in notifications whenenever there is a change in the status of their own 
routes or routes of others (redistribution). Previously,  no flow control in this notification mechanism 
existed, that is, urib kept sending notifications to protocols without checking whether the protocol was 
able to process the notifications or not. These notifications use shared memory buffers which may 
encounter situations where shared memory was exhausted. Part of this feature, urib will now allow only 
for a fixed number of unacknowledged buffers. Until these buffers are acknowledged additional 
notifications will not be sent.
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Figure 2-9 URIB Path

EOBC

Once a new FIB has been generated from the RIB, updates are sent to the forwarding engine on each 
linecard via the Ethernet Out of Band Channel (EOBC) interface on the supervisor. Many other internal 
system processes utilize the EOBC as well. As the level of network churn increases, it is expected the 
number of FIB updates increase. Thus it is expected an increase in RX and TX utilization on the EOBC 
interface to happen. Should this interface become overwhelmed, throttling will occur and packets will 
be dropped. This delays programming new entries into the forwarding engine, causing packet misrouting 
and increased convergence times.

Figure 2-10 EOBC Path

EOBC Commands

On the N7k, the EOBC rate limit for SUP1 is 16kpps, while the limit for SUP2 is significantly higher. 
The show hardware internal cpu-mac eobc stats command gives a vast array of statics regarding the 
EOBC interface. Statistics about throttling are specifically sought after. Seeing the Rate limit reached 
counter incrementing indicates the network churn rate is approaching meltdown.

msdc-spine-r8# show hard int cpu-mac eobc stats | be Throttle | head
Throttle statistics
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-----------------------------+---------
Throttle interval ........... 3 * 100ms
Packet rate limit ........... 16000 pps
Rate limit reached counter .. 0
Tick counter ................ 6661123
Active ...................... 0
Rx packet rate (current/max)  30 / 6691 pps
Tx packet rate (current/max)  28 / 7581 pps

Linecard FIB Programming

Each linecard and platform has its own programming algorithms for its forwarding engines. The 
architecture of each is different, so the specifics won’t be covered here.5

Figure 2-11 Linecard FIB Programming

OSPF
Open Shortest Path First (OSPF) testing focused around control plane scale at a real MSDC customer 
network, herein to be referred as ACME_16. ACME_1 has an OSPF network that runs at a higher scale 
than Cisco originally published for the N7K platform as supported, and is growing at a rapid pace.

This testing verification ensures Nexus 7000 capabilities of handling ACME_1s specific scenario.

This version of ACME_1 testing includes the following primary technology areas:

 • OSPF Scale

 • Unicast Traffic

 • ECMP

DDTS caveats discovered and/or encountered in this initial testing effort are identified in the “Defects 
Enountered” section of the external test results document.7

5.  Refer to Appendix C, “F2/Clipper Linecard Architecture,”
6.  To protect the names of the innocent, as well as comply with MNDA requirements, ACME_1 will be used.  If 

other real MSDC customers are referred to in this document, they will be notated as “ACME_2”, “ACME_3”, 
etc.

7.  For a detailed discussion of testing results, please refer to the document “Cisco ACME_1 Control Plane Scale 
Testing, Phase 1 Test Results”.  This guide is intended to provide a summary only of overall considerations.
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Table 2-1shows project scale number for OSPF scale parameters.

All routing protocols are susceptible to scale limitation in the number of routes in the table and the 
number of peers to which they are connected. Link state protocols like OSPF are also susceptible to 
limitations in the number of routers and links within each area. The ACME_1 topology pushes all these 
limits, as is typical of most MSDC customers.

Summary of Test plan

OSPF Scale testing focused on 7 major considerations in this phase:

1. OSPF Baselining

2. Type-5 LSA Rout Injections/Withdrawals

3. Domain Stability

4. External Influences on OSPF Domain Stability

5. Unicast Traffic Patterns

6. ECMP

7. BFD

Each test group (test set) had a series of individual tests.  The reader may refer to a subsequent document 
detailing all tests and results upon request.

Summary of Results

OSPF testing results demonstrated that the network remains stable up to 30k LSAs, and can scale to 60k 
LSAs if BFD is enabled. OSPF and OSPF with BFD enabled showed some instability in a few instances 
with steady-state flaps and LSA propagation delays; however, both those issues are addressed in 
NX-OS 6.2.

BGP
Another MSDC customer, ACME_2, was selected to examine alternative BGP arrangements for 
increasing scale of an MSDC without compromising convergence. Both resiliency and reliability were 
also top concerns needing attention, and are discussed below. The test topology was not a 
straightforward three-stage Clos, but rather closer to a “reduced” five-stage Clos with multiple Spine 
“networks”, never the less, the same high-level topological principles apply (Figure 2-12). It was run 
within the test topology.

Table 2-1 Project Scale Number for OSPF Scale Parameters

OSPF Scale Parameters Value

Area 0 Type-1 LSA >1000

Type-5 External 20,000->30,000

Neighbors ~45
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Figure 2-12 BGP Testing: Resilliency and Reliability

The system was composed of 3 physical Podsets8, Podsets 1, 2 and 3. Each Podset consisted of 4 Nexus 
3064 Leaf nodes and a mixture of Nexus 3064/3048 ToRs. Podset 1 had over a dozen TORs while Podset 
2 and 3 had 3 ToRs. IXIA IXNetwork was used to bring the total number of real and simulatied ToRs to 
17 for each Podset. Route-maps were configured on each ToR to advertise four /24 directly connected 
prefixes. A 300x VM Hadoop cluster was also connected to Podset 1 (also used for TCP incast and buffer 
utilization testing). Each VM connected to the ToR via a /30 connected subnet, configured through 
DCHP.  

Note /30 masks were used to provide location awareness for Hadoop nodes.

Based on the DHCP forwarding address, backend servers map requests to specific racks, and position in 
the rack. Inband management was used for the Hadoop cluster, out of band was utilized for network 
devices. Each Leaf node connected to a single Spine. Depending on the Leaf node there were either two 
or three parallel connections to the Spine layer (ACME_2 requirement). IXNetwork was used to simulate 
up to 32 BGP spine sessions for each Leaf node.

Scaling was done to 140 POD sets at the Spine layer using combinations of real and simulated 
equipment. Each Spine node connected three non-simulated Leaf nodes, and the remaining nodes, 137 
of them, were simulated using IXIA. All Leafs advertised 68 /24 ipv4 prefixes to each Spine node, and 
each Spine node received over 9000 BGP prefixes, in total, from the Leaf layer.

8. A Podset would be comprised of hundreds of servers.  ToRs for each rack were N3064s.   Pod sets connect to 
an infrastructure based on the three-stage Clos topology.  For the purposes of testing, a smaller-scale version 
of the customer has in production was used.
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With the exception of the programmable BGP Speakers (pBS), BFD was enabled across the topology for 
each BGP session. BFD is enabled for all ToR <-> Leaf, Leaf <-> Spine, and Spine <-> Border 
connections. 

pBSes were simulated using IXIA. Each Spine and Leaf node peered with a pBS. There were 32 BGP 
sessions with the pBS, per device, broken down into two groups, with each group consisting of sixteen 
BGP sessions. All 32 BGP sessions advertised hundreds of /32 VIPs used for service loadbalancing to 
the server. For all VIPS advertised, Group1 advertises prefix with MED 100 while Group 2 advertised 
MED 200. Each VIP had 16 equal cost paths in the route table; NH reachability for all VIPs point to the 
physical IP address of the load balancer(s).

To reach the final goal of 16,000 IPV4 prefixes, IXIA injected 4700 prefixes at the Border Leaf layer. 
Nexus 3000 limits the route size to 8K in hardware if uRPF is enabled (default). To get to the target of 
16K routes, urpf had to be disabled on Leaf and ToR nodes.

Two types of traffic were used in testing:

1. Background server-to-server traffic

a. Podset 2 <-> Podset 1

b. Podset 3 <-> Podset 1

c. Podset 3 <-> Podset 2

2. VIP traffic from servers to loadbalancers

a. Podset 2 -> VIP

b. Podset 1 -> VIP

c. Podset 3 -> VIP

With the entire system configured as outlined above, these were the 3 major test sets executed:

1. Baseline tests

2. Route Convergence

3. Multi-Factor Reliability

Note Test sets are defined as a broad characterization of individual tests; in other words, Test set 1 had 17 
individual tests (BGP steady state with and without churn, BGP soft clearing, Link Flapping, ECMP path 
addition and reduction, etc), Test set 2 had 7, Test set 3 had 6. 

Summary of Results

All platforms must be considered when examining routing scale limits. For the N7K9; 2 session limits 
exist when running BGP with and without BFD. BFD is limited to 200 sessions per module, and 1000 
sessions were supported per system. For BGP, 1000 neighbors per system were supported. Limits for 
N3K were less than N7K.

Observations

 • Peering at both Spine and Leaf provides greater granularity of available hardware loadbalancing. 
However, peering at the Spine, requires customizing route-maps to change next-hop which  is less 
scalable.

4. SDU validated these numbers in testing:

9. http://www.cisco.com/en/US/docs/switches/datacenter/sw/verified_scalability/b_Cisco_Nexus_7000_Series_
NX-OS_Verified_Scalability_Guide.html#concept_2CDBB777A06146FA934560D7CDA37525
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 • The overall test topology as a whole:

 – N7K—Up to 128 sessions of BGP+BFD were validated per linecard.  Note: BGP Updates do 
not terminate on the linecard, unlike BFD sessions.  Thus the 128 session limit is what BFD 
could do.  Per system, tests were scaled to 768 sessions (768 IXIA sessions + 12 real sessions).  
All were run rith BFD at 500ms timers.

 – N3K—16 BGP sessions on leaf-r1, the remaining Leafs at 8 sessions.

5. Convergence with BGP (w/ BFD enabled) was well below the 10 second target.

6. Convergence with BGP alone (without BFD) did not converge under the targeted 10 seconds.

7. FIB overflow can cause inconsistency or unpredictable convergence.  It should be avoided if 
possible or worked around.  This is due to new entries learned after FIB exhaustion that would be 
otherwise forced to software route. Once mapped in software these would never reprogram back into 
the FIB, unless they were lost and relearned. The workaround is to clear all IP routes, forcing a 
TCAM reload/reprogram. This workaround causes temporary neighbor-loss with BFD configured 
(when we used 500/3 timers). This workaround can be done manually or through an EEM script, 
like this:

event manager applet fib-exception
  event syslog pattern "<put-to-FIB-exception-gone-syslog>"
  action 1.0 cli clear ip route *
  action 1.1 syslog msg FIB Re-downloaded to HW

Features are available in IOS-XR which would benefit NX-OS development, which address FIB 
issues encountered above.

8. FIB and MAC tables are not coupled. Recommendation is to configure identical aging timer to 
maintain synchronization. Options are; either increase MAC aging or decrease ARP aging. 
Primarily applies to unidirectional flow.

9. If BFD is implemented in the network, BFD echo packets needs to be assigned to priority queue to 
ensure network stability under load.

10. URPF must be disabled to support 16K routes in hardware on the N3K.

11. To work around an ECMP polarization issue, hashing algorithms must be different between ToR and 
Leaf layers.  A new CLI command was created to configure different hash offsets to avoid the ECMP 
polarization.

Refer to subsequent testing documentation for complete details about ACME_2 testing.

BFD
Bidirectional Forwarding Detection (BFD), a fast failure detection technology, was found to allow for 
relaxed routing protocol timers. This in turn creates room for scaling routing protocols.

Summary of Results

BFD testing occurred between test instrumentation hardware and the Spine. 384 sessions were validated 
at the spine with both BGP and OSPF. A 500ms interval was configured based on overall system 
considerations for other LC specific processes.
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Incast Simulation and Conclusions
Since SDU-MSDC’s objective was provide meaningful network architecture guidance in this space, it is 
necessary to simulate as close to the real thing as possible. This presents difficulties in MSDC space 
because of the sheer volume of servers (endpoints, or nodes) that are required to make the problem 
appear in the first place.

Servers
Servers are distributed throughout the fabric with 10G connectivity. Refer to Server and Network 
Specifications, page A-1 for server specifications, configurations, and Hadoop applications details.

Intel recommends the following based on real world applications: 
http://www.intel.com/content/dam/doc/application-note/82575-82576-82598-82599-ethernet-controller
s-interrupts-appl-note.pdf

Note File transfer buffering behaviors were observed – kernel controls how frequently data is dumped from 
cache; with default kernel settings, the kernel wasn’t committing all memory available, thus there was a 
difference between committed memory vs. what it’s able to burst up to. As a result, VMs that hadn’t 
committed everything behaved worse than those that did. To keep all experiments consistent, all VMs 
were configured to have all memory 100% “committed”.

TCP receive buffers were configured at 32MB. It was set higher because the goal was to remove receive 
window size as a potential limitation on throughput and to completely rely on CWND. This is not 
realistic for a production deployment, but it made tracking key dependencies easier. Refer to Incast 
Utility Scripts, IXIA Config, page E-1 for relevant sysctl.conf items.

The formula for TCP receive window is:

Below shows TCP RX window is set correctly:
   [root@r09-p02-vm01 tmp]# more /proc/sys/net/ipv4/tcp_adv_win_scale
   2

Based on theeformula, 75% of buffer size is used for TCP receive window (25MB window scale 
factor 10).  This value is never reached as CWND is always the limiting factor.

Note Regarding window size, as of linux kernel 2.6.19 and above, CUBIC is the standard implementation for 
congestion control.

Other TCP parameters were as follows:

 • TCP selective ACK is enabled:
[root@r09-p02-vm01 ipv4]# more tcp_sack
1

 • IP forward disabled:
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[root@r09-p02-vm01 ipv4]# more ip_forward
0

 • Misc settings:
[root@r09-p02-vm01 ipv4]# more tcp_congestion_control
Cubic
[root@r09-p02-vm01 ipv4]# more tcp_reordering
3

 • RTT averaged 0.5ms as reported by ping.

All VMs were configured with 4 VCPU and 20G memory.   Since the Hadoop jobs were not CPU bound, 
one vcpu would have been sufficient. IO was the biggest bottleneck especially when less than 20G 
assigned and during cluster failure; hence moving to 20G masked that. For comparison purposes, to copy 
a 1G file from hdfs to local disk iowait peak was at 75% with 3G memory, barely over 1% @20G. This 
is because linux page cache relies on pdflush to write data of cache to disk, and this is nominally 30 
seconds or 10% dirty pages. Depending on the type of job write interval can be tuned up or down, as 
required :

Note This link outlines additional issues to be aware of when hot plugging vcpu: 
https://bugzilla.redhat.com/show_bug.cgi?id=788562

To manage failures and their impact to Incast events, two scripts were written to track the status of a job: 
“fail-mapper.sh” and “find-reducer.sh”. fail-mapper.sh reloads 15% of the VMs immediately before the 
reduce phase, and find-reducer.sh launches tcpdump on the reducer. Tcpdump output was used to analyze 
TCP windowing behavior during Incast events.

Following logic was implemented in fail-mapper.sh:

1. User inputs two job ids (example 0051, 0052)

2. Query each map task and generate a unique list of VMs responsible for each job. There will be two 
lists generated, one per job.

3. Compare the two lists, generate a third list by suppress common VMs.

4. Query the job status, once map tasks reaches 100% completion (96% for cascading failure), reload 
15% of the VMs based on #3.

Find-reducer.sh determines the location of the reducer and launches tcpdump.

Topology
Figure 2-13 shows a standard 3-stage folded Clos topology, with 8 Spines and 16 Leafs.
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Figure 2-13 Incast Lab Setup

Note Physical servers are arranged in logical racks, numbered “r01-r16”. Even though a physical server spans 
two logical racks, it is the physical NICs (and the VMs mapped to them) that are actually assigned to a 
logical rack. For example, the first server shown in the top-leftmost position has NIC_1 which is “in” 
rack r01 and NIC_2 in r02.

Initially, there was noise traffic sent to exhaust both “bandwidth” and “buffer utilization”, but it was 
determined exercising buffers was sufficient, along with Hadoop traffic, to create Incast events. For 
completeness, the “bandwidth utilization” noise floor traffic method is described in Bandwidth 
Utilization Noise Floor Traffic Generation, page F-1.

The border devices represent “external” networks and are injecting a default route, effectively acting as 
a sensor for spurious traffic.

Buffer Utilization

Figure 2-14 shows an IXIA shared buffer setup.
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Figure 2-14 IXIA Shared Buffer Setup

The IXIA is connected to each Leaf indirectly, and using a series of oscillating traffic bursts, in 
conjunction with the bandwidth “noise” traffic above, both dedicated and shared buffers on the Leafs are 
consumed at will (oscillating traffic is needed because the IXIA wasn’t able to consistently consume 
N3K buffers with steady-stream traffic). The purposes of sending traffic through the border leaf and to 
the Spines are two-fold:

1. IXIA didn’t have enough 10G ports to connect to every Leaf.

2. Sending traffic via ECMP towards the Spine, and then the Spine downto the Leafs, simulates real 
traffic flow, albeit uni-directional (IXIA is both the source and sink).

In detail, this is how the IXIA is configured for shared buffer impairment traffic:

2x 10G interfaces, in total, are used to Send (Ix3/7) and Recv (Ix3/8) uni-directional UDP traffic.  The 
source traffic comes into an N5K fanout  switch (this switch held other experiments to the border, so it 
was left intact – technically, the IXIA could be connected directly to the border leaf, achieving the same 
result) to Border leaf-r1 (msdc-leaf-r17), which connects to Spines r1 – r8. 

 • Refer to the following example for Leaf dest IP 10.128.4.131:
msdc-leaf-r17# show ip route 10.128.4.131
IP Route Table for VRF "default"
'*' denotes best ucast next-hop
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'**' denotes best mcast next-hop
'[x/y]' denotes [preference/metric]
'%<string>' in via output denotes VRF <string>

10.128.4.128/25, ubest/mbest: 8/0
    *via 10.1.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.2.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.3.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.4.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.5.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.6.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.7.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512
    *via 10.8.1.32, [20/0], 8w0d, bgp-64617, external, tag 64512

 • Traffic is sourced from the same IP (10.128.128.151), but there are 3 unique dest IP’s for each leaf 
(msdc-leaf-r1-16), Vlans 11-13:

msdc-leaf-r1# show ip int brief
IP Interface Status for VRF "default"(1)
Interface            IP Address      Interface Status   
Vlan11               10.128.4.129    protocol-up/link-up/admin-up       
Vlan12               10.128.5.1      protocol-up/link-up/admin-up       
Vlan13               10.128.6.1      protocol-up/link-up/admin-up

msdc-leaf-r2# show ip int brief
IP Interface Status for VRF "default"(1)
Interface            IP Address      Interface Status
Vlan11               10.128.8.129    protocol-up/link-up/admin-up       
Vlan12               10.128.9.1      protocol-up/link-up/admin-up       
Vlan13               10.128.10.1     protocol-up/link-up/admin-up       

 • All Leaf switches have 3x 100Mb links connected to an N3K fan-in switch, which connects to IXIA 
(Ix3/8):

msdc-leaf-r1# show cdp neighbors 
Capability Codes: R - Router, T - Trans-Bridge, B - Source-Route-Bridge
                  S - Switch, H - Host, I - IGMP, r - Repeater,
                  V - VoIP-Phone, D - Remotely-Managed-Device,
                  s - Supports-STP-Dispute

Device-ID             Local Intrfce Hldtme Capability  Platform      Port ID
msdc-leaf-r42(FOC1550R05E)
                       Eth1/46       131    R S I s   N3K-C3048TP-1 Eth1/1       
msdc-leaf-r42(FOC1550R05E)
                       Eth1/47       135    R S I s   N3K-C3048TP-1 Eth1/2       
msdc-leaf-r42(FOC1550R05E)
                       Eth1/48       133    R S I s   N3K-C3048TP-1 Eth1/3   

Two traffic items are configured:

1. Shared_Buffer

2. Shared_Buffer_Xtra

Shared_Buffer (Figure 2-15) has 48 endpoints that send UDP traffic unidirectional (3 streams to each 
leaf) at ~ 100Mb. This causes dedicated buffers to be consumed for that port, but does not dip into the 
system-wide shared buffer pool.
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Figure 2-15 IXIA Flows for Shared_Buffer

Shared_Buffer_Xtra (Figure 2-16) has the same 48 endpoints and traffic profile except that it sends 
traffic at ~ 800Kb.

Figure 2-16 IXIA Flows for Shared_Buffer_Xtra

This exceeds the interface throughput when combined with the first profile and starts to consume shared 
buffers. To achieve a shared buffer impairment without running out of buffers an IXIA script is used to 
stop and start the Xtra traffic stream, while the Shared_Buffer stream runs continuously (Figure 2-17).

Figure 2-17 IXIA Shared Buffer Impairment Timing

The timing of the script first loads up the shared buffers to ~8.5k for each of the 3 interfaces and then 
switches to a pattern where it alternates between bleeding off and increasing the buffer usage. This 
allows for a majority of the shared buffers to be used without exceeding the limit and dropping packets. 
The process forms a saw tooth pattern of usage shown in Figure 2-18.
2-30
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Chapter 2      MSDC Solution Details and Testing Summary
  Incast Simulation and Conclusions
Figure 2-18 IXIA Shared Buffer Impairment Traffic Oscillation

Buffer Allocation
Because the primary objective in these tests is to observe buffer behavior on the N3K Leaf layer, it must 
be ensured that dedicated buffers are consumed and shared buffer space is being exercised.

Figure 2-19 shows the overall schema of shared vs dedicated buffers on the N3K

Figure 2-19 N3K Buffers

This means the noise floor will consume all 128 dedicated buffers per port and has the capability of 
leeching into shared space, at will. With this control, Incast traffic can be pushed over the tipping point 
of consuming the remainder of available buffer space, i.e. – shared buffers, thus causing an Incast event. 
Table 2-2 shows how buffers are allocated system-wide.
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Note There is a defined admission control related to when shared buffer space is consumed by each port.

Admission control criteria are:

1. Queue Reserved space available

2. Queue dynamic limit not exceeded

3. Shared Buffer Space available 

N3064-E imposes dynamic limits on a per queue basis for each port. The dynamic limit is controlled by 
the alpha parameter, which is set to 2. In dynamic mode, buffers allocated per interface cannot exceed 
the value based on this formula:

See N3K datasheets for a more detailed treatment of buffer admission control.

Monitoring
Standard Hadoop, Nagios, Graphite and Ganglia tools were used to monitor all VMs involved. Custom 
Python scripts, running on the native N3K Python interpreter, were created to monitor shared buffer 
usage.

Incast Event
Figure 2-20 shows a logical representation of the Incast event created.

Table 2-2 How Buffers are Carved Up on N3K 

Reserved Memory Physical Port CPU Port Loopback Port Total MB

# (For 3064 )         64 1 1

Queue/Port 15 (10+5) 48 5

Total # of Qs 960 48 5 1013

Cells 7680 384 40 8104

Bytes 1597440 79872 8320 1685632

Reserved Shared Total

Cells 8104 37976 46080

Bytes 1685632 7899088 9584640 (9.14 MB)
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Figure 2-20 Incast Event with M Mappers and R Reducers

Incast events were created by one of three methods:

1. Fail x number of Mapper (M) VMs.

2. Fail y number of racks where M VMs live.

3. Fail z number of Leafs where M VMs live.

The test results in this section show two examples of a 33:1 Incast event created by inducing failures, as 
listed above, between the 33 M VMs to the 1 Reducer (R) VM: copying a 1GB file.

Note Actual locations of M or R VMs is determined by the Hadoop system when a job is created, thus 
monitoring scripts must first query for the locations before executing their code.

For the first example (Figure 2-21, Figure 2-22), two Hadoop jobs were executed: _0026 and _0027. Job 
26 was tracked, and when the Map phase reached 96% of completion a script would kill 15% of the Map 
nodes only used in job 27. This would force failures on that particular job and cause block replication 
(data xfer) throughout the network. This was an attempt to introduce a cascading failure. However, it did 
not occur – Job 26 experienced the expected incast event, but no additional failure events were seen. 
Though numerous errors due to force-failed datanodes were observed in Job27, it too completed once it 
was able to recover after the Incast event.
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Figure 2-21 33 Mappers to 1 Reducer

Figure 2-22 Task Ran to Completion Once it Recovered

The Reduce Copy phase is when the reducer requests all Map data in order to sort and merge the resulting 
data to be written to the output directory. The Incast burst occurs during this ‘Copy’ phase, which occurs 
between the Start time and Shuffle Finished time (Figure 2-23). Due to tuning parameters used to 
maximize network throughput bursting, the 1GB data transfer completed within a few seconds during 
the time window of 11s.
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Figure 2-23 Traffic Received from Perspective of Reducer

Interfaces on the Leaf switch which connects to servers are 1-33 – 37, map to r02-p0(1-5)_vm01, 
respectively, thus Leaf interfaces which connect to the Reducer is 1-35. Figure 2-24 shows packet loss 
seen by the switch interface during event. Because data points for packets dropped are plotted every 10s 
by Graphite, and reported every 1s by the switch, the time period is slightly skewed.

Figure 2-24 Packet Loss, as Seen by Leaf Device

Figure 2-25 shows global instant cell usage and max cell usage, observed as the sharp burst in traffic, 
for the Reducer (Leaf-R2). The instant cell data point doesn’t show up for this interface because the 
event occurs quickly then clears before the data point can be captured. However, max cell usage is 
persistent and reflects the traffic event.
2-35
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Chapter 2      MSDC Solution Details and Testing Summary
  Incast Simulation and Conclusions
Figure 2-25 Instant and Max Cell (Buffer) Usage, as Seen on the N3K

Figure 2-26 is a zoomed-in view of the spike. The additional spiking after the event is due to block 
replication that occurs from the force-failed VMs.

Figure 2-26 Max Cell Usage Zoom on the Spike

The reason why the spike didn't use all 37976 shared buffers available on the N3K system is because of 
buffer admission control – cannot exceed 2x available buffer per interface.

Lastly, for Job26, Figure 2-27 shows a Wireshark Expert Analysis of this job from a trace taken on the 
Reducer. Throughput collapse is evidenced by “Zero window” parameter (this means the TCP 
connection has a window-size of 0 and no payload can be transmitted/acknowledged); after which TCP 
slow-start mechanism kicks in.
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Figure 2-27 TCP Statistics

The second example is Job47 (Figure 2-28, Figure 2-29), which looks similar to Job26, but there is an 
additional comparison to the Control at the end. As before, there are 33 Mappers and 1 Reducer. One 
Hadoop job was launched with the IXIA shared buffer impairment running without any force failures. 
The Reduce copy phase produced a spike causing drops and degradation.

Due to the tuning parameters used to maximize network throughput bursting the 1GB data transfer was 
complete within a few seconds during the time window of 12s.

Figure 2-28 Job47: 33 Mappers and 1 Reducer
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Figure 2-29 Completed Successfully After it Recovered From the Incast Event

As with Job26, the burst received by Reducer (r16-p02_vm01) is seen in Figure 2-30:

Figure 2-30 Traffic Burst to the Reducer

Figure 2-31 shows packet loss for the Incast event.
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Figure 2-31 Packet Loss for Job47 During Incast Event

Figure 2-32 shows instant and max cell (buffer) usage.

Figure 2-32 Zoom In on Spike in Max Cell Usage

Note Detailed analysis that follows is based on TCP sessions which contribute to the overall whole of the 
Hadoop job.

Figure 2-33 shows TCP connection stats throughput collapse.
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Figure 2-33 TCP Stats as Reported by Wireshark of Packet Capture File

The following configuration is a parsed tcptrace CLI output on VMs, with important metrics highlighted:
TCP connection 6:
        host k:        r16-p02-vm01.dn.voyager.cisco.com:43809
        host l:        r10-p01-vm01.dn.voyager.cisco.com:50060
        complete conn: yes
        first packet:  Fri Nov  9 14:44:48.479320 2012
        last packet:   Fri Nov  9 14:45:02.922288 2012
        elapsed time:  0:00:14.442968
        total packets: 3107
        filename:      job_0047.pcap
   k->l:                              l->k:
     total packets:          1476           total packets:          1631      
     ack pkts sent:          1475           ack pkts sent:          1631      
     pure acks sent:         1473           pure acks sent:            1      
     sack pkts sent:           40           sack pkts sent:            0      
     dsack pkts sent:           0           dsack pkts sent:           0      
     max sack blks/ack:         1           max sack blks/ack:         0  
     unique bytes sent:       302           unique bytes sent:  33119860      
     actual data pkts:          1           actual data pkts:       1628      
     actual data bytes:       302           actual data bytes:  33158956      
     rexmt data pkts:           0           rexmt data pkts:           5      
     rexmt data bytes:          0           rexmt data bytes:      39096      
     zwnd probe pkts:           0           zwnd probe pkts:           0      
     zwnd probe bytes:          0           zwnd probe bytes:          0      
     outoforder pkts:           0           outoforder pkts:           0      
     pushed data pkts:          1           pushed data pkts:         60      
     SYN/FIN pkts sent:       1/1           SYN/FIN pkts sent:       1/1      
     req 1323 ws/ts:          Y/Y           req 1323 ws/ts:          Y/Y      
     adv wind scale:           10           adv wind scale:           10      
     req sack:                  Y           req sack:                  Y      
     sacks sent:               40           sacks sent:                0      
     urgent data pkts:          0 pkts      urgent data pkts:          0 pkts 
     urgent data bytes:         0 bytes     urgent data bytes:         0 bytes
     mss requested:          1460 bytes     mss requested:          1460 bytes
     max segm size:           302 bytes     max segm size:         26064 bytes
     min segm size:           302 bytes     min segm size:          1448 bytes
     avg segm size:           301 bytes     avg segm size:         20367 bytes
     max win adv:         3950592 bytes     max win adv:           16384 bytes
     min win adv:            1024 bytes     min win adv:           16384 bytes
2-40
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Chapter 2      MSDC Solution Details and Testing Summary
  Incast Simulation and Conclusions
     zero win adv:              0 times     zero win adv:              0 times
     avg win adv:         1953866 bytes     avg win adv:           16384 bytes
     max owin:                303 bytes     max owin:             983193 bytes
     min non-zero owin:         1 bytes     min non-zero owin:         1 bytes
     avg owin:                  1 bytes     avg owin:             414083 bytes
     wavg owin:                 0 bytes     wavg owin:             59842 bytes
     initial window:          302 bytes     initial window:        14480 bytes
     initial window:            1 pkts      initial window:            1 pkts 
     ttl stream length:       302 bytes     ttl stream length:  33119860 bytes
     missed data:               0 bytes     missed data:               0 bytes
     truncated data:          246 bytes     truncated data:     33067788 bytes
     truncated packets:         1 pkts      truncated packets:      1628 pkts 
     data xmit time:        0.000 secs      data xmit time:        3.594 secs 
     idletime max:        10728.5 ms        idletime max:        10842.2 ms   
     throughput:               21 Bps       throughput:          2293148 Bps  

     RTT samples:               3           RTT samples:            1426      
     RTT min:                 0.6 ms        RTT min:                 0.1 ms   
     RTT max:                 1.0 ms        RTT max:                64.5 ms   
     RTT avg:                 0.8 ms        RTT avg:                13.5 ms   
     RTT stdev:               0.2 ms        RTT stdev:               9.3 ms   

     RTT from 3WHS:           0.6 ms        RTT from 3WHS:           0.3 ms   

     RTT full_sz smpls:         2           RTT full_sz smpls:         2      
     RTT full_sz min:         0.6 ms        RTT full_sz min:         0.1 ms   
     RTT full_sz max:         0.9 ms        RTT full_sz max:         0.3 ms   
     RTT full_sz avg:         0.8 ms        RTT full_sz avg:         0.2 ms   
     RTT full_sz stdev:       0.0 ms        RTT full_sz stdev:       0.0 ms   

     post-loss acks:            0           post-loss acks:            0      
     segs cum acked:            0           segs cum acked:          199      
     duplicate acks:            0           duplicate acks:           36      
     triple dupacks:            0           triple dupacks:            1      
     max # retrans:             0           max # retrans:             4      
     min retr time:           0.0 ms        min retr time:           0.0 ms   
     max retr time:           0.0 ms        max retr time:          89.2 ms   
     avg retr time:           0.0 ms        avg retr time:          35.5 ms   
     sdv retr time:           0.0 ms        sdv retr time:          47.7 ms   

Note the RTT was quite large, especially considering all VMs for these tests are in the same datacenter.

Figure 2-34 shows a scatterplot taken from raw tcptrace data as sampled on the Reducer – thoughput 
collapse and ensuring TCP slow-start are easily visible. Yellow dots are raw, instantaneous, throughput 
samples. Red line is the average throughput based on the past 10 samples. Blue line (difficult to see) is 
the average throughput up to that point in the lifetime of the TCP connection.
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Figure 2-34 Scatterplot of TCP Throughput (y-axis) vs Time (x-axis)

By way of comparison, here is the Control for the test: a copy of the same 1GB job between the Reducer 
to the output directory, as assigned by HDFS, and no Incast event was present (it’s a one to many, not 
many to one, communication).

TCP connection 46:
        host cm:       r16-p02-vm01.dn.voyager.cisco.com:44839
        host cn:       r10-p05-vm01.dn.voyager.cisco.com:50010
        complete conn: yes
        first packet:  Fri Nov  9 14:45:13.413420 2012
        last packet:   Fri Nov  9 14:45:15.188133 2012
        elapsed time:  0:00:01.774713
        total packets: 4542
        filename:      job_0047.pcap
   cm->cn:                            cn->cm:
     total packets:          2146           total packets:          2396      
     ack pkts sent:          2145           ack pkts sent:          2396      
     pure acks sent:          100           pure acks sent:         1360      
     sack pkts sent:            0           sack pkts sent:            0      
     dsack pkts sent:           0           dsack pkts sent:           0      
     max sack blks/ack:         0           max sack blks/ack:         0      
     unique bytes sent:  67659222           unique bytes sent:     12399      
     actual data pkts:       2044           actual data pkts:       1034      
     actual data bytes:  67659222           actual data bytes:     12399      
     rexmt data pkts:           0           rexmt data pkts:           0      
     rexmt data bytes:          0           rexmt data bytes:          0      
     zwnd probe pkts:           0           zwnd probe pkts:           0      
     zwnd probe bytes:          0           zwnd probe bytes:          0      
     outoforder pkts:           0           outoforder pkts:           0      
     pushed data pkts:        928           pushed data pkts:       1034      
     SYN/FIN pkts sent:       1/1           SYN/FIN pkts sent:       1/1      
     req 1323 ws/ts:          Y/Y           req 1323 ws/ts:          Y/Y      
     adv wind scale:           10           adv wind scale:           10      
     req sack:                  Y           req sack:                  Y      
     sacks sent:                0           sacks sent:                0      
     urgent data pkts:          0 pkts      urgent data pkts:          0 pkts 
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     urgent data bytes:         0 bytes     urgent data bytes:         0 bytes
     mss requested:          1460 bytes     mss requested:          1460 bytes
     max segm size:         65160 bytes     max segm size:            12 bytes
     min segm size:           210 bytes     min segm size:             3 bytes
     avg segm size:         33101 bytes     avg segm size:            11 bytes
     max win adv:           15360 bytes     max win adv:          195584 bytes
     min win adv:           15360 bytes     min win adv:           16384 bytes
     zero win adv:              0 times     zero win adv:              0 times
     avg win adv:           15360 bytes     avg win adv:          183357 bytes
     max owin:             174158 bytes     max owin:                 37 bytes
     min non-zero owin:         1 bytes     min non-zero owin:         1 bytes
     avg owin:              65325 bytes     avg owin:                 10 bytes
     wavg owin:             66250 bytes     wavg owin:                 0 bytes
     initial window:          241 bytes     initial window:            3 bytes
     initial window:            1 pkts      initial window:            1 pkts 
     ttl stream length:  67659222 bytes     ttl stream length:     12399 bytes
     missed data:               0 bytes     missed data:               0 bytes
     truncated data:     67544758 bytes     truncated data:            0 bytes
     truncated packets:      2044 pkts      truncated packets:         0 pkts 
     data xmit time:        1.755 secs      data xmit time:        1.766 secs 
     idletime max:           18.7 ms        idletime max:           19.2 ms   
     throughput:         38124036 Bps       throughput:             6986 Bps  

     RTT samples:            1086           RTT samples:             891      
     RTT min:                 0.2 ms        RTT min:                 0.1 ms   
     RTT max:                 3.0 ms        RTT max:                 8.0 ms   
     RTT avg:                 1.3 ms        RTT avg:                 0.7 ms   
     RTT stdev:               0.5 ms        RTT stdev:               1.0 ms   

     RTT from 3WHS:           0.3 ms        RTT from 3WHS:           0.2 ms   

     RTT full_sz smpls:         2           RTT full_sz smpls:         2      
     RTT full_sz min:         0.3 ms        RTT full_sz min:         0.2 ms   
     RTT full_sz max:         0.8 ms        RTT full_sz max:         0.3 ms   
     RTT full_sz avg:         0.5 ms        RTT full_sz avg:         0.2 ms   
     RTT full_sz stdev:       0.0 ms        RTT full_sz stdev:       0.0 ms   

     post-loss acks:            0           post-loss acks:            0      
     segs cum acked:          960           segs cum acked:          145      
     duplicate acks:            1           duplicate acks:            0      
     triple dupacks:            0           triple dupacks:            0      
     max # retrans:             0           max # retrans:             0      
     min retr time:           0.0 ms        min retr time:           0.0 ms   
     max retr time:           0.0 ms        max retr time:           0.0 ms   
     avg retr time:           0.0 ms        avg retr time:           0.0 ms   
     sdv retr time:           0.0 ms        sdv retr time:           0.0 ms   
================================

It comes as no surprise that RTT is significantly less than when there was Incast: 3ms down from ~60ms, 
what one would expect for a 1:1 interaction.

Finally, Figure 2-35 shows the scatterplot of the TCP connection while the file was being copied.
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Figure 2-35 Example of Good TCP Throughput for 1:1 Control Test

The reason for the dip ¼ the way through is inconclusive, but the important point is that it doesn’t go to 
zero, nor is slow-start seen after the dip (as one would expect if collapse had occurred), and the file copy 
for the Control test completed in 1.7 seconds (with reasonable RTT), as opposed to 14 seconds for Job47.

Incast Testing Summary
The objectives of performing Incast testing for Phase 1 were achieved, that is:

1. Hadoop was successfully used as a generic Incast traffic generator.

2. The Incast event was correctly identified and tracked using open tools, including Graphite, 
Wireshark, tcpdump, tcptrace, and SNMP stats from the N3K.  Also, custom Python scripts for 
shared buffer monitoring were successfully executed directly on the N3K platform (refer to Incast 
Utility Scripts, IXIA Config, page E-1).

3. The N3K was shown to be able to deal with Incast insofar that it could allocate shared buffer enough 
to ensure the transaction completed.

Future Phases of MSDC testing may include additional Incast research. Such research would potentially 
explore additional tuning on both Linux and NX-OS platforms to better signal when Incast events occur, 
and perhaps even deal with Incast more proactively using technologies like ECN and buffer usage 
trending.
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MSDC Conclusion
The purpose of this document was to:

1. Examine the characteristics of a traditional data center and a MSDC and highlight differences in 
design philosophy and characteristics.

2. Discuss scalability challenges unique to a MSDC and provide examples showing when an MSDC is 
approaching upper limits. Design considerations which improve scalability are also reviewed.

3. Present summaries and conclusions to SDU’s routing protocol, provisioning and monitoring, and 
TCP Incast testing.

4. Provide tools for a network engineer to understand scaling considerations in MSDCs.

It achieved that purpose.

 • Customers’ top-of-mind concerns were brought into consideration and effective use of Clos 
topologies, particularly the 3-stage folded Clos, we examined and demonstrated how they enable 
designers to meet east-west bandwidth needs and predictable traffic variations.

 • The Fabric Protocol Scaling section outlined considerations with Churn, OSPF, BGP, and BFD with 
regard to scaling.

 • OSPF was tested and shown were current system-wide limits contrast with BGP today. For BGP, it 
was demonstrated how the customer’s peering, reliability, and resiliency requirements could be met 
with BGP + BFD.

 • Along with (3), the N3K was shown to have effective tools for buffer monitoring and signaling when 
and where thresholds are crossed.

Using underlying theory, coupled with hands-on examples and use-cases, knowledge and tools are given 
to help network architects be prepared to build and operate MSDC networks.
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A
 P P E N D I X A

Server and Network Specifications

This appendix provides MSDC phase 1 server testing requirements and specifications, network 
configurations, and buffer monitoring with configurations.

Servers
The lab testbed has forty (40) Cisco M2 Servers. Each server, 48GB RAM and 2.4Ghz, runs CentOS 6.2 
64-bit OS and KVM hypervisor. There are 14 VMs configured per server and each VM is assigned 3GB 
RAM and allocated to one HyperThread each. The servers connect to the network via two (2) 10G NICs, 
capable of TSO/USO and multiple receive and transmit queues.

Figure A-1 UCS M2 Server

Server Specs

2x Xeon E5620, X58 Chipset 

 • Per CPU

 – 4 Cores, 2 HyperThreads/Core

 – 2.4Ghz

 – 12M L2 cache

 – 25.6GB/s memory bandwidth

 – 64-bit instructions

 – 40-bit addressing
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48GB RAM

 • 6x 8GB DDR3-1333-MHz RDIMM/PC3-10600/2R/1.35v

3.5TB (LVM)

 • 1x 500GB Seagate Constellation ST3500514NS HD

 – 7200RPM

 – SATA 3.0Gbps

 • 3x 1TB Seagate Barracuda ST31000524AS HDs

 – 7200RPM

 – SATA 6.0Gbps

 • Partitions

Dual 10G Intel 82599EB NIC

 • TSO/USO up to 256KB

 • 128/128 (tx/rx) queues

 • Intel ixgbe driver, v3.10.16

Dual 1G Intel 82576 NIC

 • 16/16 (tx/rx) queues

Operating System

CentOS 6.2, 64-bit

 • 2.6.32-220.2.1.el6.x86_64

Operating System Tuning

10G NIC tuning parameters (targeted at Intel 82599EB NICs):

 • eth0
echo 1 > /proc/irq/62/smp_affinity
echo 2 > /proc/irq/63/smp_affinity
echo 4 > /proc/irq/64/smp_affinity
echo 8 > /proc/irq/65/smp_affinity
echo 10 > /proc/irq/66/smp_affinity
echo 20 > /proc/irq/67/smp_affinity
echo 40 > /proc/irq/68/smp_affinity
echo 80 > /proc/irq/69/smp_affinity
echo 1 > /proc/irq/70/smp_affinity
echo 2 > /proc/irq/71/smp_affinity
echo 4 > /proc/irq/72/smp_affinity
echo 8 > /proc/irq/73/smp_affinity
echo 10 > /proc/irq/74/smp_affinity
echo 20 > /proc/irq/75/smp_affinity
echo 40 > /proc/irq/76/smp_affinity
echo 80 > /proc/irq/77/smp_affinity
echo 40 > /proc/irq/78/smp_affinity

 • eth1
echo 100 > /proc/irq/79/smp_affinity
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echo 200 > /proc/irq/80/smp_affinity
echo 400 > /proc/irq/81/smp_affinity
echo 800 > /proc/irq/82/smp_affinity
echo 1000 > /proc/irq/83/smp_affinity
echo 2000 > /proc/irq/84/smp_affinity
echo 4000 > /proc/irq/85/smp_affinity
echo 8000 > /proc/irq/86/smp_affinity
echo 100 > /proc/irq/87/smp_affinity
echo 200 > /proc/irq/88/smp_affinity
echo 400 > /proc/irq/89/smp_affinity
echo 800 > /proc/irq/90/smp_affinity
echo 1000 > /proc/irq/91/smp_affinity
echo 2000 > /proc/irq/92/smp_affinity
echo 4000 > /proc/irq/93/smp_affinity
echo 8000 > /proc/irq/94/smp_affinity
echo 1000 > /proc/irq/95/smp_affinity

 • /etc/sysctl.conf
fs.file-max = 65535 
net.ipv4.ip_local_port_range = 1024 65000 
net.ipv4.tcp_sack = 0 
net.ipv4.tcp_timestamps = 0 
net.ipv4.tcp_rmem = 10000000 10000000 10000000 
net.ipv4.tcp_wmem = 10000000 10000000 10000000 
net.ipv4.tcp_mem = 10000000 10000000 10000000 
net.core.rmem_max = 524287 
net.core.wmem_max = 524287 
net.core.rmem_default = 524287 
net.core.wmem_default = 524287 
net.core.optmem_max = 524287 
net.core.netdev_max_backlog = 300000

# service irqbalance stop
# service cpuspeed stop
# chkconfig irqbalance off
# chkconfig cpuspeed off

Virtual Machines

KVM

 • libvirt-0.9.4-23.el6_2.1.x86_64

 • qemu-kvm-0.12.1.2-2.209.el6_2.1.x86_64

 14 VMs/server

Per VM:

 • 3GB RAM

 • 230.47GB 213GB HD

 • Single {Hyper}Thread

Iptables Configurations

N/A.
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Incast Tool Configurations

Cloudera CDH3 (Hadoop  0.20-0.20.2+923+194) with Oracle Java SE 1.7.0_01-b08

 • /etc/hadoop-0.20/conf.rtp_cluster/core-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
  <name>fs.default.name</name>
  <value>hdfs://namenode.nn.voyager.cisco.com:8020/</value>
</property>
<property>
  <name>hadoop.tmp.dir</name>
  <value>/data/tmp</value>
</property>
<property>
  <name>topology.script.file.name</name>
  <value>/etc/hadoop-0.20/conf/rackaware.pl</value>
</property>
<property>
  <name>topology.script.number.args</name>
  <value>1</value>
</property>
</configuration>

 • /etc/hadoop-0.20/conf/rackaware.pl
#!/usr/bin/perl
use strict;
use Socket;

my @addrs = @ARGV;
foreach my $addr (@addrs){
    my $hostname = $addr;
    if ($addr =~ /^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/){
        # We have an IP.
        $hostname = gethostbyaddr(inet_aton($1), AF_INET);
    }
    get_rack_from_hostname($hostname);
}

sub get_rack_from_hostname () {
    my $hostname = shift;
    if ($hostname =~ /^(r\d+)/){
       print "/msdc/$1\n";
    } else {
       print "/msdc/default\n";
    }
}

 • /etc/hadoop-0.20/conf.rtp_cluster1/hdfs-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
  <name>dfs.name.dir</name>
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  <value>/data/namespace</value>
</property>
<property>
  <name>dfs.data.dir</name>
  <value>/data/data</value>
</property>
<property>
  <name>dfs.heartbeat.interval</name>
  <value>3</value>
  <description> DN heartbeat interval in seconds default 3 second  </description>
</property>
<property>
  <name>heartbeat.recheck.interval</name>
  <value>80</value>
  <description> DN heartbeat interval in seconds default 5 minutes </description>
</property>
<property>
  <name>dfs.namenode.decommission.interval</name>
  <value>10</value>
  <description> DN heartbeat interval in seconds </description>
</property>
</configuration>

 • /etc/hadoop-0.20/conf.rtp_cluster1/mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
<property>
  <name>mapred.child.java.opts</name>
  <value>-Xmx5120m</value>
</property>

<property>
  <name>io.sort.mb</name>
  <value>2047</value>
</property>

<property>
  <name>io.sort.spill.percent</name>
  <value>1</value>
</property>

<property>
  <name>io.sort.factor</name>
  <value>900</value>
</property>

<property>
  <name>mapred.job.shuffle.input.buffer.percent</name>
  <value>1</value>
</property>

<property>
  <name>mapred.map.tasks.speculative.execution</name>
  <value>false</value>
</property>

<property>
  <name>mapred.job.reduce.input.buffer.percent</name>
  <value>1</value>
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</property>

<property>
  <name>mapred.reduce.parallel.copies</name>
  <value>200</value>
</property>

<property>
  <name>mapred.reduce.slowstart.completed.maps</name>
  <value>1</value>
</property>

<property>
  <name>mapred.local.dir</name>
  <value>/data/mapred</value>
</property>
<property>
  <name>mapred.job.tracker</name>
  <value>jobtracker.jt.voyager.cisco.com:54311</value>
</property>
<property>
  <name>mapred.system.dir</name>
  <value>/data/system</value>
</property>
<property>
  <name>mapred.task.timeout</name>
    <value>1800000</value>
</property>
</configuration>

Network
The following network configuration were used.

F2/Clipper References
The following F2/Clipper references are available.

 • Clipper ASIC Functional Specification—EDCS: 588596 

 • Clipper Device Driver Software Design Specification—EDCS-960101

 • Packet Arbitration in Data Center Switch. Kevin Yuan

F2/Clipper VOQs and HOLB
Figure A-2 shows an abstract of F2 VOQs as well as HOLB.
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Figure A-2 Abstracted Diagram of F2 VOQs as well as HOLB

Python Code, Paramiko
This code implements a nested SSH session with Paramike to attach to a linecard and issue line module 
specific commands:

def nxos_connect(nexus_host, nexus_ssh_port, nexus_user, nexus_password):
    """
    Makes an SSHv2 connection to a Nexus switch.
    """
    man = paramiko.SSHClient()
    man.set_missing_host_key_policy(paramiko.AutoAddPolicy())
    if args.verbosity > 0:
        logger.debug("nxos connect inputs are nexus_host = %s ssh port = %d User
 = %s passwd = %s" % (nexus_host, nexus_ssh_port, nexus_user, nexus_password ))
    try:
        if args.key_file:
             man.connect(nexus_host, port=nexus_ssh_port,
                         username=nexus_user, password=nexus_password,
                         allow_agent=False, key_filename=args.key_file)
        elif args.password:
             man.connect(nexus_host, port=nexus_ssh_port,
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                         username=nexus_user, password=nexus_password,
                         allow_agent=False, look_for_keys=False)
        else:
             man.connect(nexus_host, port=nexus_ssh_port,
                         username=nexus_user, password=nexus_password)
    except paramiko.SSHException:
        return 4, man
    except paramiko.BadHostKeyException:
        return 4, man
    except paramiko.AuthenticationException:
        return 4, man
    except socket.error:
        return 4, man

    return 1, man

def attach_module(ssh, mod, check_exit_status=True, verbose=True):
    chan = ssh.invoke_shell()
    attach_cmd="attach module "+mod+"\n"

    while not chan.recv_ready():
        logger.debug("wating for channel\n")
        time.sleep(2)

    chan.send(attach_cmd)
    if args.verbosity > 0:
        logger.debug("attaching to module %s\n" % mod)
    prompt = "module-" + mod + "# "
    buff = ''
    while not buff.endswith(prompt):
        resp = chan.recv(9999)
        buff += resp

    if args.verbosity > 0:
        logger.debug("buffer output is %s" % (buff))
        logger.debug("chan is %s status is %d" % (chan, chan.recv_ready()))
    return chan

def run_lc_command(channel, mod, cmd, check_exit_status=True, verbose=True):
    processed_cmd = "term len 0 ; " + cmd
    prompt = "module-" + mod + "#"
    chan = channel
    logger.debug("prompt is %s\n" % (prompt))
    chan.send(processed_cmd)

    if args.verbosity > 0:
        logger.debug("processed command is %s" % (processed_cmd))

    buff = ''
    resp = ''

Spine Configuration
Forthcoming in supplemental documentation.

Leaf Configuration
Forthcoming in supplemental documentation.
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Buffer Monitoring Code and Configuration Files

The following buffer monitoring code and configuration files are available for consideration:

 • buffer_check.py, page B-1

 • check_process.py, page B-11

 • NX-OS Scheduler Example, page B-14

 • Collectd Configuration, page B-15

 – collectd.conf, page B-15

 – Puppet Manifest, page B-16

 • Graphite Configuration, page B-17

 – carbon.conf, page B-18

 – graphite.wsgi, page B-19

 – graphite-vhost.conf, page B-19

 – local_settings.py, page B-20

 – relay-rules.conf, page B-20

 – storage-schemas.conf, page B-21

 – Puppet Manifest (init.pp), page B-22

buffer_check.py
#!/usr/bin/python
#
# A script for monitoring buffer utilization on the Cisco Nexus 3000
# platform. Tested with Nexus 3064 and Nexus 3048 switches. Intended
# to be run on the switch. Reports data to Graphite via pickled data
# over TCP (or any other data sink that can read pickle data).
#
# Written by Mark T. Voelker
# Copyright 2012 Cisco Systems, Inc.
#

import os
import sys
import re
import logging
import argparse
import time
B-1
Massively Scalable Data Center (MSDC)



 

Appendix B      Buffer Monitoring Code and Configuration Files
  buffer_check.py
import cPickle
import socket
import struct
import copy
import xml.parsers.expat
from cisco import CLI

def daemonize():
    """
    Daemonizes the process by forking the main execution off
    into the background.
    """
    try:
        pid = os.fork()
    except OSError, e:
        raise OSError("Can't fork(%d): %s" % (e.errno, e.strerror))

    if (pid == 0):
        # This is the child process.
        # Become the session leder/process group leader and ensure
        # that we don't have a controlling terminal.
        os.setsid()

        # Now do some work.
    else:
        # This is the parent.
        # Write the pid of the child before we quit.
        write_pidfile(pid)
        global logger
        logger.debug(
            "Parent (%d) spawned child (%d) successfully" % (os.getpid(), pid)
            )
        exit(0)

def write_pidfile(pid=os.getpid()):
    """
    Writes a pid file to /bootflash/buffer_check.py.pid.
    The file contains one line with the PID.
    """
    global args
    f = open(args.pidfile, 'w')
    f.write(str(pid))
    f.close()

def set_exit_code(value, current_code):
    """
    Returns an exit code taking into account any previous conditions
    that set an exit code.
    """
    if exit_code >= 2:
        # Nothing can change this.
        logger.debug("exit code is already set to 2")
        return 2
    else:
        logger.debug("exit code set to %s" % (current_code))
        return current_code

def start_element(name, attrs):
    """
    Callback routine to handle the start of a tag.
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    """
    global current_tag
    current_tag = copy.copy(name)
    #logger.debug("Current tag: '%s'" % (current_tag))

def end_element(name):
    """
    Callback routine for handling the end of a tagged element.
    """
    global current_tag
    current_tag = ''

def char_data(data):
    """
    Callback routine to handle data within a tag.
    """
    global current_tag
    global current_int
    global parsed_data
    #logger.debug("char_data handler called [current_tag = %s] on '%s'" % (
    #    current_tag, data)
    #    )
    if current_tag == 'total_instant_usage':
        parsed_data['instant_cell_usage'] = int(copy.copy(data))
        logger.debug("FOUND TOTAL INSTANT CELL USAGE: %s" % (data))
    elif current_tag == 'max_cell_usage':
        parsed_data['max_cell_usage'] = int(copy.copy(data))
        logger.debug("FOUND TOTAL MAX CELL USAGE: %s" % (data))
    elif current_tag == 'rem_instant_usage':
        parsed_data['rem_instant_usage'] = int(copy.copy(data))
        logger.debug("FOUND REMAINING INSTANT USAGE: %s" % (data))
    elif current_tag == 'front_port':
        current_int = int(copy.copy(data))
        parsed_data[current_int] = 0
        logger.debug("Started a new front port: %s" % (data))
    elif re.search('^[m|u]cast_count_\d$', current_tag):
        logger.debug("Found queue counter (port %s): %s" % (current_int, data))
        if current_int in parsed_data:
            parsed_data[current_int] += int(copy.copy(data))
        else:
            parsed_data[current_int] = int(copy.copy(data))
        logger.debug("Added %s to counter for port %s (total: %s)" % (
            data, current_int, parsed_data[current_int])
            )

def int_char_data(data):
    """
    Callback routine to handle data within a tag.
    """
    global interface_rates
    global current_tag
    global current_int
    global get_cmd_timestamp
    global pickle_data
    global logger

    # List of the tags we care about.
    keepers = ['eth_outbytes', 'eth_inbytes', 'eth_outpkts', 'eth_inpkts']

    if current_tag in keepers:
        # Set up some data storage.
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        logger.debug("Working on %s for %s..." % (current_tag, current_int))
        if current_int not in interface_rates:
            interface_rates[current_int] = dict()
            logger.debug("   allocating space for %s" % (current_int))
        if 'last' not in interface_rates[current_int]:
            interface_rates[current_int]['last'] = dict()
            interface_rates[current_int]['last']['timestamp'] = 0.0
            logger.debug("Initializing %s last timestamp to 0." % (
                current_int))

        # Before we start working on the data, go ahead and pickle
        # the raw counter stat.
        pickle_data.append(
            tuple(['iface_%s.1-%s.%s' % (
                current_tag, current_int, hostname),
                tuple([get_cmd_timestamp, data])]))
        logger.debug("Pickled iface_%s.1-%s.%s: %s" % (
               current_tag, current_int, hostname, data
               ))

        # Make sure we're set up to hold this data properly.
        if current_tag not in interface_rates[current_int]['last']:
            interface_rates[current_int]['last'][current_tag] = 0

        # Calculate the rates of change.
        logger.debug("Calculating rate for %s/%s using (%s-%s)/(%s-%s)" % (
            current_tag, current_int, data,
            interface_rates[current_int]['last'][current_tag],
            get_cmd_timestamp,
            interface_rates[current_int]['last']['timestamp']
            ))
        rate = (float(data) - \
            int(interface_rates[current_int]['last'][current_tag])) / \
            (get_cmd_timestamp - \
            interface_rates[current_int]['last']['timestamp'])
        pickle_data.append(
            tuple(['iface_%s_rate.1-%s.%s' % (
                current_tag, current_int, hostname),
                tuple([get_cmd_timestamp, rate])]))
        logger.debug("Pickled iface_%s_rate.1-%s.%s: %s" % (
           current_tag, current_int, hostname, rate
           ))

        # Per user request, we convert byte rates to bit rates.
        if re.search('bytes$', current_tag):
            logger.debug(
                "Calculating bitrate for %s/%s using (%s-%s)/(%s-%s)*8" % (
                current_tag, current_int, data,
                interface_rates[current_int]['last'][current_tag],
                get_cmd_timestamp,
                interface_rates[current_int]['last']['timestamp']
                ))
            rate = (float(data) - \
                int(interface_rates[current_int]['last'][current_tag])) / \
                (get_cmd_timestamp - \
                interface_rates[current_int]['last']['timestamp']) * 8
            bitname = copy.copy(current_tag)
            bitname = re.sub('bytes$', 'bits', bitname)
            pickle_data.append(
                tuple(['iface_%s_rate.1-%s.%s' % (
                    bitname, current_int, hostname),
                    tuple([get_cmd_timestamp, rate])]))
            logger.debug("Pickled bitrate iface_%s_rate.1-%s.%s: %s" % (
               bitname, current_int, hostname, rate
B-4
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Appendix B      Buffer Monitoring Code and Configuration Files
  buffer_check.py
               ))

        # Now store the current data.
        interface_rates[current_int]['last'][current_tag] = \
            int(copy.copy(data))

def get_show_queuing_int():
    """
    Parses output from 'show queuing interface' and reports stats.
    Unicast drop stats are reported for each interface given in the
    list of interfaces on the command line.  Drop stats for multicast,
    unicast, xon, and xoff are added up for all interfaces (including
    those not specified on the command line) to provide switch-level
    totals for each.

    Note that there is no XML output for 'show queuing interface' at
    present, so we're forced to parse plaintext from the CLI.  XML
    output does exist for 'show queuing interface x/y | xml', however
    this would require issuing one command for each interface on the box
    since we need to provide switch-level totals.  As this would be
    a performance bottleneck due to the number of commands to be issued
    and parsed, we've avoided that approach here.
    """
    global pickle_data
    global logger
    global args

    logger.debug("Issuing 'show queuing interface' command...")
    get_cmd_timestamp = time.time()
    cli_obj = CLI('show queuing interface', False)
    cli_output = cli_obj.get_output()

    # As we parse, remember what interface we're working with.
    current_int = ''

    # Set up switch-level total counters.
    switch_counters = dict()
    switch_counters['ucast_pkts_dropped'] = 0
    switch_counters['ucast_bytes_dropped'] = 0
    switch_counters['mcast_pkts_dropped'] = 0
    switch_counters['mcast_bytes_dropped'] = 0
    switch_counters['xon'] = 0
    switch_counters['xoff'] = 0

    for line in cli_output:
        match = re.match('Ethernet(\d+\/\d+) queuing information', line)
        if match:
            current_int = match.group(1).replace('/', '-')
            logger.debug("Working on queuing stat for int %s" % (current_int))
            continue
        match = re.search('drop-type:\s+drop,\s+xon:\s*(\d+),\s+xoff:\s*(\d+)',
            line)
        if match:
            # As of this revision, we don't collect individual
            # interface counters per interface.
            switch_counters['xon'] += int(match.group(1))
            switch_counters['xoff'] += int(match.group(2))
            continue
        match = re.search('([UM]cast) (pkts|bytes) dropped\s+:\s*(\d+)', line)
        if match:
            stat_name = "%s_%s_dropped.%s.%s" % (
                match.group(1).lower(), match.group(2).lower(),
                current_int, hostname
B-5
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Appendix B      Buffer Monitoring Code and Configuration Files
  buffer_check.py
                )
            switch_stat_name = "%s_%s_dropped" % (match.group(1).lower(),
                match.group(2).lower())

            # If it's a unicast stat and this interface is
            # in the list given in the CLI, pickle it.
            if re.match('ucast_', stat_name):
                int_on_lc = re.match('\d+\-(\d+)', current_int)
                int_on_lc = int(int_on_lc.group(1))
                if int_on_lc in args.interfaces:
                    pickle_data.append(
                        tuple([
                            stat_name,
                            tuple(
                                [get_cmd_timestamp,
                                int(match.group(3))])]))
                    logger.debug("Pickled %s: %s" % (stat_name,
                        match.group(3)))

            # Add to our switch-level counters.
            switch_counters[switch_stat_name] += int(match.group(3))

    # Output parsing complete...pickle the switch-level stats.
    for stat_name in switch_counters:
        pickle_data.append(
            tuple([
                stat_name + '.' + hostname,
                tuple([get_cmd_timestamp, switch_counters[stat_name]])]))
        logger.debug("Pickled %s.%s: %s" % (stat_name, hostname,
            switch_counters[stat_name]))

def get_int_counters():
    """
    Parses stats from the output of 'show interface x/y | xml'.
    """
    global args
    global pickle_data
    global logger
    global interface_rates
    global current_int
    global current_tag
    global get_cmd_timestamp

    # Sift through each interface.
    for port_num in args.interfaces:
        # Now handle any interface-specific counters for this port.
        try:
            current_int = port_num
            get_cmd_timestamp = time.time()
            cli_obj = CLI("show int e1/%s | xml" % (port_num), False)

            # Get the reply.
            get_cmd_reply = cli_obj.get_raw_output()
            logger.debug("-----\nReply received:\n-----" + str(get_cmd_reply))

            # Clean off trailing junk...is this an NX-OS bug?
            get_cmd_reply = get_cmd_reply.rstrip(">]\n") + '>'

            # Set up an XML parser and parse.
            int_xml_parser = xml.parsers.expat.ParserCreate()
            int_xml_parser.StartElementHandler = start_element
            int_xml_parser.EndElementHandler = end_element
            int_xml_parser.CharacterDataHandler = int_char_data
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            int_xml_parser.Parse(get_cmd_reply, 1)

            # Remember the timestamp of this command for the next go around.
            if port_num not in interface_rates:
                interface_rates[port_num] = dict()
            if 'last' not in interface_rates[port_num]:
                interface_rates[port_num]['last'] = dict()
                logger.debug("Initializing %s last dict for " % (
                    port_num))
            interface_rates[port_num]['last']['timestamp'] = \
                copy.copy(get_cmd_timestamp)
            logger.debug("Set last timestamp for %s to %s" % (
                port_num, get_cmd_timestamp))
        except SyntaxError:
            print """
    WARNING: can't get output for interface 1/%s.  Does it exist?
    """ % (port_num)

def get_buffer_stats():
    """
    Parses stats from the output of 'show hardware internal buffer pkt-stats detail | 
xml'.
    """
    global args
    global pickle_data
    global logger
    global interface_rates
    global exit_code

    # Frame up the command snippet we need to send to the switch.
    get_message = "show hardware internal buffer info pkt-stats detail | xml"

    # Set up the CLI object and issue the command.
    get_cmd_timestamp = time.time()
    cli_obj = CLI(get_message, False)

    # Before we process the reply, send another message to clear the counters
    # unless we've been told not to do so.
    if args.clear_counters:
        clear_obj = CLI(clear_message)
        clear_cmd_reply = clear_obj.get_raw_output()
        logger.debug("Result of clear command:\n%s" % (clear_cmd_reply))

    # Parse the reply.
    get_cmd_reply = cli_obj.get_raw_output()
    logger.debug("-----\nReply received:\n-----" + str(get_cmd_reply))

    # Clean off trailing junk...is this an NX-OS bug?
    get_cmd_reply = get_cmd_reply.rstrip(">]\n") + '>'

    # Start up an expat parser to quickly grock the XML.
    xml_parser = xml.parsers.expat.ParserCreate()
    xml_parser.StartElementHandler = start_element
    xml_parser.EndElementHandler = end_element
    xml_parser.CharacterDataHandler = char_data
    xml_parser.Parse(get_cmd_reply, 1)

    # Form a pickle-protocol data structure.
    output_string = ""

    # Pickle max buffer usage if necessary.
    if args.get_max_buf:
        logger.debug("Max cell usage is %s" % (parsed_data['max_cell_usage']))
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        output_string += "Max cell usage: %s" % (parsed_data['max_cell_usage'])
        pickle_data.append(tuple(['max_cell_usage.%s' % (hostname),
            tuple([get_cmd_timestamp, parsed_data['max_cell_usage']])])
            )
        exit_code = set_exit_code(
            int(parsed_data['max_cell_usage']), exit_code
            )

    # Now do instant cell usage.
    if args.get_instant_buf:
        logger.debug("Instant cell usage is %s" % (
            parsed_data['instant_cell_usage'])
            )
        if args.get_max_buf:
            output_string += ', '
        output_string += "Instant cell usage: %s" % (
            parsed_data['instant_cell_usage']
            )
        pickle_data.append(tuple(['instant_cell_usage.%s' % (hostname),
            tuple([get_cmd_timestamp, parsed_data['instant_cell_usage']])])
            )
        exit_code = set_exit_code(
            int(parsed_data['instant_cell_usage']), exit_code
            )

    # Now get per-port stats.  We add together each of the
    # 8 buffer queues for simplicity here, if that doesn't
    # suit your purposes please feel free to modify.
    for port_num in args.interfaces:
        if int(port_num) in parsed_data:
            # Pickle that port data.
            pickle_data.append(
                tuple(
                    ['iface_instant_cell_usage.1-%s.%s' % (port_num, hostname),
                tuple([get_cmd_timestamp, int(parsed_data[int(port_num)])])])
                )
            logger.debug("Pickled instant cell usage for 1/%s: %s" % (
                port_num, parsed_data[int(port_num)]
                ))

            # We're also doing a metric for the percentage of
            # alpha threshhold used.  In a nutshell, a packet
            # is only admitted to the buffer if an threshhold is
            # not exceeded.  The threshhold is the remaining
            # instant usage (taken from the <rem_instant_usage> tag
            # in the output we parsed) times 2.  Because this threhshold
            # is dependent on how much buffer is actually in use at
            # any given time, we graph the current buffer utilization
            # on the port as a percentage of the threshhold.  When
            # we hit 100%, no more packets will be admitted to the buffer
            # on this port even if there is buffer available on the box.
            percent_used = float(parsed_data[int(port_num)]) / (
                int(parsed_data['rem_instant_usage']) * 2) * 100
            pickle_data.append(
                tuple([
                    'percent_buf_threshold.1-%s.%s' % (port_num, hostname),
                    tuple([get_cmd_timestamp, percent_used])
                    ]))
            logger.debug("Pickled percent of threshhold for 1/%s: %f" % (
                port_num, percent_used
                ))
        else:
            print """
    WARNING: requested interface %s not found in command output.
B-8
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Appendix B      Buffer Monitoring Code and Configuration Files
  buffer_check.py
    """ % (port_num)

def do_switch_commands():
    """
    A hook function for executing any switch-level command necessary.
    Commands for individual interfaces are handled elsewhere.
    """
    global args
    # TODO (mvoelker): add CLI options here to determine which
    # commands get run.
    if args.get_queuing_stats:
        get_show_queuing_int()
    if args.get_buffer_stats:
        get_buffer_stats()

def do_interface_commands():
    """
    A hook function for executing any per-interface command necessary.
    Commands for handling switch-level stats and commands which
    provide data for multiple interfaces are generally handled in
    do_switch_commands().
    """
    global args
    if args.get_int_counters:
        get_int_counters()

# Provide usage and parse command line options.
usage = "\n%prog [options] [arg1 arg2 ...]"
usage += """

Arguments are the numbers of the ports you want to collect
buffer queue stats for.  If unspecified, no per-port stats
will be displayed.

This script is intended to be run on a Cisco Nexus 3000-series switch
(tested on 3064 and 3048 models).  It can be run manually or via
the NX-OS scheduler.  It will report buffer utilization stats
parsed from the output of "show hardware internal buffer pkt-stats detail"
via the pickle protocol over TCP to Graphite (or another data
sink of your choice that can grock pickled data).

Example:
%prog -H myN3K.mydomain.com -l admin -p password \\
   -m -i 46 47 48
"""
parser = argparse.ArgumentParser(description=usage)
parser.add_argument("-H", "--hostname", dest="hostname",
    help="Hostname or IP address", required=True)
parser.add_argument("-p", "--pidfile", dest="pidfile",
    help="File in which to write our PID", default="/bootflash/buffer_check.py.pid")
parser.add_argument("-v", "--verbose", dest="verbosity", action="count",
    help="Enable verbose output.", default=0)
parser.add_argument("-b", "--clear_buffer_counters", dest="clear_counters",
    help="Clear buffer counters after checking", default=False,
    action="store_true")
parser.add_argument("-m", "--max_buffer", dest="get_max_buf",
    help="Show max buffer utilization", default=False,
    action="store_true")
parser.add_argument("-i", "--instant_buffer", dest="get_instant_buf",
    help="Show instant buffer utilization", default=False,
    action="store_true")
parser.add_argument("interfaces", metavar="N", type=int, nargs='*',
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    help='List of interfaces to check.')
parser.add_argument("-s", "--sleep_interval", dest="sleep_interval",
    help="Interval to sleep between polls (higher reduces CPU hit)",
    type=float, default=0)
parser.add_argument("-q", "--queuing_stats", dest="get_queuing_stats",
    help="Get stats from 'show queuing interface'", default=False,
    action="store_true")
parser.add_argument("-c", "--interface_counters", dest="get_int_counters",
    help="Get stats from 'show interface x/x'", default=False,
    action="store_true")
parser.add_argument("-f", "--buffer_stats", dest="get_buffer_stats",
    help="Get stats from 'show hardware internal buffer pkts-stats detail'",
    default=False, action="store_true")
args = parser.parse_args()

# Set up a logger.
logger = logging.getLogger('n3k_buffer_check')
logging.basicConfig()

# Since this started out purely as a script for buffer monitoring commands,
# certain command options imply others.  Fix things up here.
if args.get_instant_buf:
    args.get_buffer_stats = True
    logger.debug("CLI: assuming -f because I received -i.")
if args.get_max_buf:
    args.get_buffer_stats = True
    logger.debug("CLI: assuming -f because I received -m.")
if args.clear_counters:
    args.get_buffer_stats = True
    logger.debug("CLI: assuming -f because I received -b.")

# Daemonize ourself if we've gotten this far.
daemonize()

# Set the hostname.
hostname = socket.gethostname()

# If we're doing verbose output, set that up.
if args.verbosity == 3:
    # Hmm...do....something?
    logger.setLevel(logging.DEBUG)
if args.verbosity >= 2:
    # Hmm...do...something else?
    logger.setLevel(logging.DEBUG)
if args.verbosity >= 1:
    logger.setLevel(logging.DEBUG)
if args.verbosity == 0:
    # Redirect standard I/O streams to /dev/null.
    os.close(0)
    os.close(1)
    os.close(2)
    os.open(os.devnull, os.O_RDWR)
    os.dup2(0, 1)
    os.dup2(0, 2)

# Add a message for clearing the counters.
clear_message = "clear counters buffers"

# Set up some data holders to be used by XML parsing callback routines.
parsed_data = dict()
interface_rates = dict()
current_int = 0
current_tag = ''
charbuff = ''
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port_num = 0
get_cmd_timestamp = 0.0

# A place to hold data we'll send back over the wire.
pickle_data = list()

# Set up a default exit code.
exit_code = 0

# Start up a socket over which to send data.
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((args.hostname, 2004))

while True:
    # Clear out old pickled data.
    pickle_data = list()

    # If we have other interface-level commands to do, do them
    # here.
    logger.debug("Doing interface-level commands...")
    do_interface_commands()

    # If we have other switch-level commands to do, do them here.
    logger.debug("Doing switch-level commands...")
    do_switch_commands()

    if args.verbosity > 0:
        logger.debug(pickle_data)

    # Pickle the data.
    payload = cPickle.dumps(pickle_data)
    logger.debug("Size of picked data: %s" % sys.getsizeof(payload))
    header = struct.pack("!L", len(payload))
    message = header + payload

    # Batch the data off to Graphite.
    # Unfortunately Carbon doesn't listen for pickle data on UDP
    # sockets. =(  If we can fix that, uncomment the next two lines
    # and comment out the three after that to use UDP instead of TCP.
    #sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    #sock.sendto(message, (args.hostname, 2004))
    sock.sendall(message)

    # Go to sleep if we've been told to do so.
    time.sleep(args.sleep_interval)

check_process.py
#!/usr/bin/python
import os
import sys
import re
import argparse
from cisco import CLI

usage = "\n%prog [options]"
usage += """

This script checks to see if the buffer_check.py script
is running by reading it's pidfile and pinging the listed pid.
If buffer_check.py isn't running, this script will start it.
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If buffer_check.py is running, this script can optionally
kill it if run with the -k option.

Example:
%prog -k
"""

parser = argparse.ArgumentParser(description=usage)
parser.add_argument("-k", "--kill", dest="kill",
    help="Kill buffer_check.py if running", default=False,
    action="store_true")
args = parser.parse_args()

def start_process():
    """
    Starts the buffer_check.py script.  For our implementation, we
    start three instances: one to check buffer stats, one to check
    interface stats on server-facing ports, and one to check interface
    stats on other ports and queuing stats (at lower granularity).
    """

    cmd = 'python bootflash:buffer_check.py -H 172.18.117.181 -m -i -b -s 0.8 ' \
        '-f -p /bootflash/buffer_check.py.pid 1 2 3 4 5 6 7 8 17 18 19 20 21 ' \
        '33 34 35 36 37 46 47 48 57 58 59 60 61 62 63 64 '
    cli_obj = CLI(cmd, False)
    print "Started %s" % (cmd)

    cmd = 'python bootflash:buffer_check.py -H 172.18.117.181 -c -s 0.8 ' \
        '-p /bootflash/buffer_check.py-1.pid 33 34 35 36 37'
    cli_obj = CLI(cmd, False)
    print "Started %s" % (cmd)

    cmd = 'python bootflash:buffer_check.py -H 172.18.117.181 -c -q -s 5 ' \
        '-p /bootflash/buffer_check.py-2.pid 1 2 3 4 5 6 7 8 17 18 19 20 21' \
        '33 34 35 36 37 46 47 48 57 58 59 60 61 62 63 64 '
    cli_obj = CLI(cmd, False)
    print "Started %s" % (cmd)

def check_pid():
    """
    Checks to see if the buffer_check.py script is running.
    """

    pidfiles = ['/bootflash/buffer_check.py.pid', '/bootflash/buffer_check.py-1.pid',
                '/bootflash/buffer_check.py-2.pid']

    retval = True

    for pf in pidfiles:
        # Try to open our pidfile.
        try:
            f = open(pf, 'r')
        except IOError:
            print "No pidfile %s found!" % (pf)
            retval = False

        # Read the pid from the file and grock it down to an int.
        pid = f.readline()
        pidmatch = re.search('^(\d+)\s*$', pid)
        if pidmatch:
            pid = pidmatch.group(1)
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            print "Pid from pidfile is %s" % (pid)
            global options
            try:
                if args.kill:
                    os.kill(int(pid), 9)
                    print "Killed %s" % (pid)
                else:
#!/usr/bin/python
import os
import sys
import re
import argparse
from cisco import CLI

usage = "\n%prog [options]"
usage += """

This script checks to see if the buffer_check.py script
is running by reading it's pidfile and pinging the listed pid.
If buffer_check.py isn't running, this script will start it.

If buffer_check.py is running, this script can optionally
kill it if run with the -k option.

Example:
%prog -k
"""

parser = argparse.ArgumentParser(description=usage)
parser.add_argument("-k", "--kill", dest="kill",
    help="Kill buffer_check.py if running", default=False,
    action="store_true")
args = parser.parse_args()

def start_process():
    """
    Starts the buffer_check.py script.  For our implementation, we
    start three instances: one to check buffer stats, one to check
    interface stats on server-facing ports, and one to check interface
    stats on other ports and queuing stats (at lower granularity).
    """

    cmd = 'python bootflash:buffer_check.py -H 172.18.117.181 -m -i -b -s 0.8 ' \
        '-f -p /bootflash/buffer_check.py.pid 1 2 3 4 5 6 7 8 17 18 19 20 21 ' \
        '33 34 35 36 37 46 47 48 57 58 59 60 61 62 63 64 '
    cli_obj = CLI(cmd, False)
    print "Started %s" % (cmd)

    cmd = 'python bootflash:buffer_check.py -H 172.18.117.181 -c -s 0.8 ' \
        '-p /bootflash/buffer_check.py-1.pid 33 34 35 36 37'
    cli_obj = CLI(cmd, False)
    print "Started %s" % (cmd)

    cmd = 'python bootflash:buffer_check.py -H 172.18.117.181 -c -q -s 5 ' \
        '-p /bootflash/buffer_check.py-2.pid 1 2 3 4 5 6 7 8 17 18 19 20 21' \
        '33 34 35 36 37 46 47 48 57 58 59 60 61 62 63 64 '
    cli_obj = CLI(cmd, False)
    print "Started %s" % (cmd)

def check_pid():
    """
    Checks to see if the buffer_check.py script is running.
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    """

    pidfiles = ['/bootflash/buffer_check.py.pid', '/bootflash/buffer_check.py-1.pid',
                '/bootflash/buffer_check.py-2.pid']

    retval = True

    for pf in pidfiles:
        # Try to open our pidfile.
        try:
            f = open(pf, 'r')
        except IOError:
            print "No pidfile %s found!" % (pf)
            retval = False

        # Read the pid from the file and grock it down to an int.
        pid = f.readline()
        pidmatch = re.search('^(\d+)\s*$', pid)
        if pidmatch:
            pid = pidmatch.group(1)
            print "Pid from pidfile is %s" % (pid)
            global options
            try:
                if args.kill:
                    os.kill(int(pid), 9)
                    print "Killed %s" % (pid)
                else:
                    os.kill(int(pid), 0)
            except OSError:
                print "%s is dead." % (pid)
                retval = False
            else:
                if not args.kill:
                    print "%s is alive." % (pid)
        else:
            print "No pid found!"
            retval = False

    return retval

if check_pid():
    # We can exit, the scripts are running.
    exit(0)
else:
    # We need to start the scripts.
    if not args.kill:
        start_process()
    exit(1)

NX-OS Scheduler Example
milliways-3k-1# show scheduler config 
config terminal
  feature scheduler
  scheduler logfile size 16
end

config terminal
 scheduler job name buffer_check
python bootflash:/check_process.py
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 show scheduler config 

end

config terminal
  scheduler schedule name every_minute
    time start 2012:09:10:09:58 repeat 1

Collectd Configuration
The following collectd configurations are available for consideration:

 • collectd.conf, page B-15

 • Puppet Manifest, page B-16

collectd.conf
BaseDir     "/var/lib/collectd"
PIDFile     "/var/run/collectd.pid"
PluginDir   "/usr/lib64/collectd"
TypesDB     "/usr/share/collectd/types.db"
Interval     1
ReadThreads  5
LoadPlugin syslog
LoadPlugin cpu
LoadPlugin disk
LoadPlugin ethstat
LoadPlugin libvirt
LoadPlugin load
LoadPlugin memory
LoadPlugin write_graphite
<Plugin disk>

Disk "/^[hs]d[a-f][0-9]?$/"
IgnoreSelected false

</Plugin>

<Plugin ethstat>
Interface "eth0"

        Interface "eth1"
        Map "rx_packets" "pkt_counters" "rx_packets"
        Map "tx_packets" "pkt_counters" "tx_packets"
        Map "rx_bytes" "byte_counters" "rx_bytes"
        Map "tx_bytes" "byte_counters" "tx_bytes"
        Map "rx_errors" "error_counters" "rx_errors"
        Map "tx_errors" "error_counters" "tx_errors"
        Map "rx_dropped" "drop_counters" "rx_dropped"
        Map "tx_dropped" "drop_counters" "tx_dropped"
        Map "collisions" "error_counters" "collisions"
        Map "rx_over_errors" "error_counters" "rx_over_errors"
        Map "rx_crc_errors" "error_counters" "rx_crc_errors"
        Map "rx_frame_errors" "error_counters" "rx_frame_errors"
        Map "rx_fifo_errors" "error_counters" "rx_fifo_errors"
        Map "rx_missed_errors" "error_counters" "rx_missed_errors"
        Map "tx_aborted_errors" "error_counters" "tx_aborted_errors"
        Map "tx_carrier_errors" "error_counters" "tx_carrier_errors"
        Map "tx_fifo_errors" "error_counters" "tx_fifo_errors"
        Map "tx_heartbeat_errors" "error_counters" "tx_heartbeat_errors"
        Map "rx_pkts_nic" "pkt_counters" "rx_pkts_nic"
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        Map "tx_pkts_nic" "pkt_counters" "tx_pkts_nic"
        Map "rx_bytes_nic" "byte_counters" "rx_bytes_nic"
        Map "tx_bytes_nic" "byte_counters" "tx_bytes_nic"
        Map "lsc_int" "misc_counters" "lsc_int"
        Map "tx_busy" "error_counters" "tx_busy"
        Map "non_eop_descs" "misc_counters" "non_eop_descs"
        Map "broadcast" "pkt_counters" "broadcast"
        Map "rx_no_buffer_count" "error_counters" "rx_no_buffer_count"
        Map "tx_timeout_count" "error_counters" "tx_timeout_count"
        Map "tx_restart_queue" "error_counters" "tx_restart_queue"
        Map "rx_long_length_errors" "error_counters" "rx_long_length_errors"
        Map "rx_short_length_errors" "error_counters" "rx_short_length_errors"
        Map "tx_flow_control_xon" "misc_counters" "tx_flow_control_xon"
        Map "rx_flow_control_xon" "misc_counters" "rx_flow_control_xon"
        Map "tx_flow_control_xoff" "misc_counters" "tx_flow_control_xoff"
        Map "rx_flow_control_xoff" "misc_counters" "rx_flow_control_xoff"
        Map "rx_csum_offload_errors" "error_counters" "rx_csum_offload_errors"
        Map "alloc_rx_page_failed" "error_counters" "alloc_rx_page_failed"
        Map "alloc_rx_buff_failed" "error_counters" "alloc_rx_buff_failed"
        Map "rx_no_dma_resources" "error_counters" "rx_no_dma_resources"
        Map "hw_rsc_aggregated" "misc_counters" "hw_rsc_aggregated"
        Map "hw_rsc_flushed" "misc_counters" "hw_rsc_flushed"

MappedOnly true
</Plugin>

<Plugin libvirt>
Connection "qemu:///system"
RefreshInterval 5
IgnoreSelected false

          HostnameFormat hostname name
</Plugin>

<Plugin write_graphite>
  <Carbon>
    Host "voyager-graphite.hosts.voyager.cisco.com"
    Port "2003"
    Prefix "collectd"
    Postfix "collectd"
    StoreRates false
    AlwaysAppendDS false
    EscapeCharacter "_"
  </Carbon>
</Plugin>

Include "/etc/collectd.d"

Puppet Manifest
class collectd {

    package { "collectd":
       name     => "collectd",
       ensure   => 'latest',
       require  => [File['/etc/yum.conf']]
    }

    package { "collectd-graphite":
       name     => "collectd-graphite",
       ensure   => 'latest',
       require  => [File['/etc/yum.conf']]
    }
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    package { "collectd-ethstat":
       name     => "collectd-ethstat",
       ensure   => 'latest',
       require  => [File['/etc/yum.conf']]
    }

    package { "collectd-libvirt":
       name     => "collectd-libvirt",
       ensure   => 'latest',
       require  => [File['/etc/yum.conf']]
    }

    service { "collectd":
        enable  => 'true',
        ensure  => 'running',
        start   => '/etc/init.d/collectd start',
        stop    => '/etc/init.d/collectd stop',
        require => [Package['collectd'], Package['collectd-graphite'], 
Package['collectd-ethstat'], File['/etc/collectd.conf']]
    }

    if $fqdn =~ /^r05+-p0[1-5]\.hosts\.voyager\.cisco\.com$/ {
        file { '/etc/collectd.conf':
            #source  => 'puppet:///modules/collectd/collectd.conf.enabled',
            source  => 'puppet:///modules/collectd/collectd.conf',
            owner   => 'root',
            group   => 'root',
            mode    => '644',
            notify  => Service['collectd'],
            require => Package['collectd']
        }
    } else {
        file { '/etc/collectd.conf':
            source  => 'puppet:///modules/collectd/collectd.conf',
            owner   => 'root',
            group   => 'root',
            mode    => '644',
            notify  => Service['collectd'],
            require => Package['collectd']
        }
    }
}

Graphite Configuration
The following graphite configurations are available for consideration:

 • carbon.conf, page B-18

 • graphite.wsgi, page B-19

 • graphite-vhost.conf, page B-19

 • local_settings.py, page B-20

 • relay-rules.conf, page B-20

 • storage-schemas.conf, page B-21

 • Puppet Manifest (init.pp), page B-22
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carbon.conf
[cache]
USER =
MAX_CACHE_SIZE = inf
MAX_UPDATES_PER_SECOND = 50000
MAX_CREATES_PER_MINUTE = 500
LINE_RECEIVER_INTERFACE = 0.0.0.0
LINE_RECEIVER_PORT = 2103
ENABLE_UDP_LISTENER = True
UDP_RECEIVER_INTERFACE = 0.0.0.0
UDP_RECEIVER_PORT = 2103
PICKLE_RECEIVER_INTERFACE = 0.0.0.0
PICKLE_RECEIVER_PORT = 2104
USE_INSECURE_UNPICKLER = False
CACHE_QUERY_INTERFACE = 0.0.0.0
CACHE_QUERY_PORT = 7102
USE_FLOW_CONTROL = True
LOG_UPDATES = False
WHISPER_AUTOFLUSH = False

[cache:b]
LINE_RECEIVER_PORT = 2203
PICKLE_RECEIVER_PORT = 2204
CACHE_QUERY_PORT = 7202
UDP_RECEIVER_PORT = 2203

[cache:c]
LINE_RECEIVER_PORT = 2303
PICKLE_RECEIVER_PORT = 2304
CACHE_QUERY_PORT = 7302
UDP_RECEIVER_PORT = 2303

[cache:d]
LINE_RECEIVER_PORT = 2403
PICKLE_RECEIVER_PORT = 2404
CACHE_QUERY_PORT = 7402
UDP_RECEIVER_PORT = 2403

[cache:e]
LINE_RECEIVER_PORT = 2503
PICKLE_RECEIVER_PORT = 2504
CACHE_QUERY_PORT = 7502
UDP_RECEIVER_PORT = 2503

[cache:f]
LINE_RECEIVER_PORT = 2603
PICKLE_RECEIVER_PORT = 2604
CACHE_QUERY_PORT = 7602
UDP_RECEIVER_PORT = 2603

[cache:g]
LINE_RECEIVER_PORT = 2703
PICKLE_RECEIVER_PORT = 2704
CACHE_QUERY_PORT = 7702
UDP_RECEIVER_PORT = 2703

[cache:h]
LINE_RECEIVER_PORT = 2803
PICKLE_RECEIVER_PORT = 2804
CACHE_QUERY_PORT = 7802
UDP_RECEIVER_PORT = 2803
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[cache:i]
LINE_RECEIVER_PORT = 2903
PICKLE_RECEIVER_PORT = 2904
CACHE_QUERY_PORT = 7902
UDP_RECEIVER_PORT = 2903

[cache:j]
LINE_RECEIVER_PORT = 3003
PICKLE_RECEIVER_PORT = 3004
CACHE_QUERY_PORT = 8002
UDP_RECEIVER_PORT = 3003

[relay]
LINE_RECEIVER_INTERFACE = 0.0.0.0
LINE_RECEIVER_PORT = 2003
PICKLE_RECEIVER_INTERFACE = 0.0.0.0
PICKLE_RECEIVER_PORT = 2004
RELAY_METHOD = rules
REPLICATION_FACTOR = 1
DESTINATIONS = 127.0.0.1:2104:a, 127.0.0.1:2204:b, 127.0.0.1:2304:c, 127.0.0.1:2404:d, 
127.0.0.1:2504:e, 127.0.0.1:2604:f, 127.0.0.1:2704:g, 127.0.0.1:2804:h, 
127.0.0.1:2904:i, 127.0.0.1:3004:j
MAX_DATAPOINTS_PER_MESSAGE = 500
MAX_QUEUE_SIZE = 10000
USE_FLOW_CONTROL = True

[aggregator]
LINE_RECEIVER_INTERFACE = 0.0.0.0
LINE_RECEIVER_PORT = 2023
PICKLE_RECEIVER_INTERFACE = 0.0.0.0
PICKLE_RECEIVER_PORT = 2024
DESTINATIONS = 127.0.0.1:2004
REPLICATION_FACTOR = 1
MAX_QUEUE_SIZE = 10000
USE_FLOW_CONTROL = True
MAX_DATAPOINTS_PER_MESSAGE = 500
MAX_AGGREGATION_INTERVALS = 5

graphite.wsgi
import os, sys
sys.path.append('/opt/graphite/webapp')
os.environ['DJANGO_SETTINGS_MODULE'] = 'graphite.settings'
import django.core.handlers.wsgi
application = django.core.handlers.wsgi.WSGIHandler()
from graphite.logger import log
log.info("graphite.wsgi - pid %d - reloading search index" % os.getpid())
import graphite.metrics.search

graphite-vhost.conf
<IfModule !wsgi_module.c>
    LoadModule wsgi_module modules/mod_wsgi.so
</IfModule>

WSGISocketPrefix run/wsgi

<VirtualHost *:80>
        ServerName voyager-graphite
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        ServerAlias voyager-graphite.cisco.com
        DocumentRoot "/opt/graphite/webapp"
        ErrorLog /opt/graphite/storage/log/webapp/error.log
        CustomLog /opt/graphite/storage/log/webapp/access.log common

        WSGIDaemonProcess graphite processes=16 threads=16 display-name='%{GROUP}' 
inactivity-timeout=120
        WSGIProcessGroup graphite
        WSGIApplicationGroup %{GLOBAL}
        WSGIImportScript /opt/graphite/conf/graphite.wsgi process-group=graphite 
application-group=%{GLOBAL}
        WSGIScriptAlias / /opt/graphite/conf/graphite.wsgi 

        Alias /content/ /opt/graphite/webapp/content/
        <Location "/content/">
                SetHandler None
        </Location>

        Alias /media/ "@DJANGO_ROOT@/contrib/admin/media/"
        <Location "/media/">
                SetHandler None
        </Location>

        <Directory /opt/graphite/conf/>
                Order deny,allow
                Allow from all
        </Directory>

</VirtualHost>

local_settings.py
TIME_ZONE = 'America/New_York'
DEBUG = True
USE_LDAP_AUTH = True
LDAP_SERVER = "ldap.cisco.com"
LDAP_PORT = 389
LDAP_SEARCH_BASE = "OU=active,OU=employees,ou=people,o=cisco.com"
LDAP_USER_QUERY = "(uid=%s)"  #For Active Directory use "(sAMAccountName=%s)"
CARBONLINK_HOSTS = ["127.0.0.1:7102:a", "127.0.0.1:7202:b", "127.0.0.1:7302:c", 
"127.0.0.1:7402:d", "127.0.0.1:7502:e", "127.0.0.1:7602:f", "127.0.0.1:7702:g", 
"127.0.0.1:7802:h", "127.0.0.1:7902:i", "127.0.0.1:8002:j"]

relay-rules.conf
[collectd01-02]
pattern = collectdr01.*
destinations = 127.0.0.1:2104:a

[collectd03-04]
pattern = collectdr03.*
destinations = 127.0.0.1:2204:b

[collectd05-06]
pattern = collectdr05.*
destinations = 127.0.0.1:2304:c

[collectd07-08]
pattern = collectdr07.*
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destinations = 127.0.0.1:2404:d

[collectd09-10]
pattern = collectdr09.*
destinations = 127.0.0.1:2504:e

[collectd11-12]
pattern = collectdr11.*
destinations = 127.0.0.1:2604:f

[collectd13-14]
pattern = collectdr13.*
destinations = 127.0.0.1:2704:g

[collectd15-16]
pattern = collectdr15.*
destinations = 127.0.0.1:2804:h

[iface_eth_inb]
pattern = iface_eth_inb.*
destinations = 127.0.0.1:2904:i

[iface_eth_inp]
pattern = iface_eth_inp.*
destinations = 127.0.0.1:2904:i

[iface_eth_outb]
pattern = iface_eth_outb.*
destinations = 127.0.0.1:3004:j

[iface_eth_outp]
pattern = iface_eth_outp.*
destinations = 127.0.0.1:3004:j

[max_cell]
pattern = max_cell.*
destinations = 127.0.0.1:2504:e

[instant_cell]
pattern = instant_cell.*
destinations = 127.0.0.1:2604:f

[percent_buf]
pattern = percent_buf.*
destinations = 127.0.0.1:2704:g

[carbon]
pattern = carbon.*
destinations = 127.0.0.1:3004:j

[default]
default = true
destinations = 127.0.0.1:2904:i

storage-schemas.conf
[carbon]
pattern = ^carbon\.
retentions = 60:90d

[interface_max_buffer]
pattern = ^max_cell_usage* 
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retentions = 1s:10d,1m:30d

[interface_instant_buffer]
pattern = ^instant_cell_usage* 
retentions = 1s:10d,1m:30d

[interface_percent_threshhold]
pattern = ^iface_instant_cell_usage*
retentions = 1s:10d,1m:30d

[collectd]
pattern = ^collectd*
retentions = 1s:10d,1m:30d

[selective_in_byte_count]
pattern = ^iface_eth_inbytes+?\.1-3\d*
retentions = 1s:10d,1m:30d

[selective_out_byte_count]
pattern = ^iface_eth_outbytes+?\.1-3\d*
retentions = 1s:10d,1m:30d

[selective_in_bit_count]
pattern = ^iface_eth_inbits_rate\.1-3\d*
retentions = 1s:10d,1m:30d

[selective_out_bit_count]
pattern = ^iface_eth_outbits_rate\.1-3\d*
retentions = 1s:10d,1m:30d

[default_1min_for_1day]
pattern = .*
retentions = 10s:10d,1m:30d

Puppet Manifest (init.pp)
class graphite {
    package { "mod_wsgi":
       name     => "mod_wsgi",
       ensure   => "installed"
    }

    package { "gcc":
       name     => "gcc",
       ensure   => "installed",
    }

    package { "pycairo":
       name     => "pycairo",
       ensure   => 'installed',
    }

    package { "mod_python":
       name     => "mod_python",
       ensure   => 'installed',
    }

    package { "Django":
       name     => "Django",
       ensure   => 'installed',
    }
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    package { "django-tagging":
       name     => "django-tagging",
       ensure   => 'installed',
    }

    package { "python-ldap":
       name     => "python-ldap",
       ensure   => 'installed',
    }

    package { "python-memcached":
       name     => "python-memcached",
       ensure   => 'installed',
    }

    package { "python-sqlite2":
       name     => "python-sqlite2",
       ensure   => 'installed',
    }

    package { "bitmap":
       name     => "bitmap",
       ensure   => 'installed',
    }

    package { "bitmap-fixed-fonts":
       name     => "bitmap-fixed-fonts",
       ensure   => 'installed',
    }

    package { "bitmap-fonts-compat":
       name     => "bitmap-fonts-compat",
       ensure   => 'installed',
    }

    package { "python-devel":
       name     => "python-devel",
       ensure   => 'installed',
    }

    package { "python-crypto":
       name     => "python-crypto",
       ensure   => 'installed',
    }

    package { "pyOpenSSL":
       name     => "pyOpenSSL",
       ensure   => 'installed',
    }

    package { "graphite-web":
       name     => "graphite-web",
       ensure   => 'installed',
       provider => 'pip',
       require  => [Package['pycairo'], Package['mod_python'], Package['Django'], 
Package['python-ldap'], Package['python-memcached'], Package['python-sqlite2'], 
Package['bitmap'], Package['bitmap-fonts-compat'], Package['bitmap-fixed-fonts']]
    }

    package { "carbon":
       name     => "carbon",
       ensure   => 'installed',
       provider => 'pip',
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       require  => [Package['pycairo'], Package['mod_python'], Package['Django'], 
Package['python-ldap'], Package['python-memcached'], Package['python-sqlite2'], 
Package['bitmap'], Package['bitmap-fonts-compat'], Package['bitmap-fixed-fonts']]
    }

    package { "whisper":
       name     => "whisper",
       ensure   => 'installed',
       provider => 'pip',
       require  => [Package['pycairo'], Package['mod_python'], Package['Django'], 
Package['python-ldap'], Package['python-memcached'], Package['python-sqlite2'], 
Package['bitmap'], Package['bitmap-fonts-compat'], Package['bitmap-fixed-fonts']]
    }

    file { '/opt/graphite/conf/carbon.conf':
        source  => 'puppet:///modules/graphite/carbon.conf',
        owner   => 'apache',
        group   => 'root',
        mode    => '644',
        require => Package['carbon']
    }

    file { '/opt/graphite/conf/storage-schemas.conf':
        source  => 'puppet:///modules/graphite/storage-schemas.conf',
        owner   => 'apache',
        group   => 'root',
        mode    => '644',
        require => Package['whisper']
    }

    file { '/opt/graphite/conf/graphite.wsgi':
        source  => 'puppet:///modules/graphite/graphite.wsgi',
        owner   => 'apache',
        group   => 'root',
        mode    => '655',
        require => Package['graphite-web']
    }

    file { '/opt/graphite/webapp/local_settings.py':
        source  => 'puppet:///modules/graphite/local_settings.py',
        owner   => 'apache',
        group   => 'root',
        mode    => '655',
        require => Package['graphite-web']
    }

    file { '/etc/httpd/conf.d/graphite-vhost.conf':
        source  => 'puppet:///modules/graphite/graphite-vhost.conf',
        owner   => 'root',
        group   => 'root',
        mode    => '655',
        require => Package['graphite-web'],
        notify  => Service['httpd']
    }

    service { "httpd":
        enable  => 'true',
        ensure  => 'running',
        start   => '/etc/init.d/httpd start',
        stop    => '/etc/init.d/httpd stop',
        require => [Package['graphite-web'], 
File['/etc/httpd/conf.d/graphite-vhost.conf']]
    }
}
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A
 P P E N D I X C

F2/Clipper Linecard Architecture

Since the F2 linecard is an important aspect of building high-density, line-rate, Spines in the MSDC 
space, further discussion is warranted. This section explores unicast forwarding [only] in greater detail 
within the F2 linecard.

F2 topics which are beyond the scope of this document include:

1. FIB lookup success/failure

2. EOBC/inband

3. TCAM programming

Traffic sources and bursts are extremely random and non-deterministic for a typical distributed 
application in MSDCs. As an example, consider a Hadoop workload. Map and reduce nodes are 
determined during runtime by the job tracker based on data block location and server memory/cpu 
utilization. As a workload enters the shuffle phase, network "hotspots" can occur on any physical link(s) 
across the L3 fabric. Since congestion control is closely aligned with egress interface buffers, deep 
buffers are required on all physical interfaces. Insufficient buffer size can cause application 
degradation1. But on the other hand, buffers that are too large can hinder predictability due to increased 
latencies, and latency variations. As such, careful examination of how buffering works on key MSDC 
building blocks is essential.

F2 Architecture Overview
The F2 line module consists of 12 dedicated System on Chip (SoC) ASICs, each ASIC supports 4 line 
rate 10GE interfaces and has the following characteristics (Figure C-1): 

 • Embedded SRAM, DRAM and TCAM

 • Ingress / Egress Buffering and congestion management

 • L2 key features2: 4 VDC profiles, 4K VLAN, 16K MAC Table, 16 SPAN sessions

 • L3 key features: 4K LIF, 32K IP Prefix, 16K ACL, 1K Policers

Other features include3:

 • FCoE

1. The following whitepaper explains the impact of buffer on TCP throughput: 
http://www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-07-105.pdf

2. L2 features listed aren't important to MSDCs, but are mentioned here for completeness. MSDCs are 
L3-only—L2 doesn't scale to the magnitude needed for MSDC networks.

3. FCoE, TRILL, and FEX are not relevant to MSDC, but are mentioned here for completeness.
C-1
Massively Scalable Data Center (MSDC)



 

Appendix C      F2/Clipper Linecard Architecture
  F2 Architecture Overview
 • TRILL

 • VN-Tag/FEX

 • SFLOW 

Figure C-1 F2 Architecture Overview

With regard to data forwarding, each SoC has two dedicated connections:

1. To the arbitration aggregator

2. To a (8x 6.5Gbps) bundled connection to the 1st stage fabric, local to the module.

Similar to previous generation M or F series modules, traffic destined between F2 line cards are sent 
across the crossbar (xbar)-fabric module (2nd stage fabric). Each F2 I/O module has up to 10x 55G 
connections towards the 2nd stage Fabric (Figure C-2). Five fabric connections are referred to as channel 
0 connections, the remaining five are classified as channel 1 connections. Second stage fabric is either 
a 1st gen FAB1 or 2nd gen FAB2 module. While F2 is compatible with both, FAB2 cards are required 
for line-rate deployment scenarios; FAB2's are used in the SDU MSDC test topology. Except for 
migration purposes Cisco does not recommend deployments with a mixture of FAB1 and FAB2 modules.

F2 requires deploying an F2-only VDC, thus interoperability of F2 with M or F1 cards, in the same VDC, 
is not supported. If an F2 module is inserted in a chassis with M modules, all interfaces will be in 
unallocated state until placed in a dedicated F2-only VDC.
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Figure C-2 Linecard to Fabric Connections

Arbitration is required for all unicast flows. The purpose of arbitration is to avoid Head-of-line Blocking 
(HOLB)4 within the switch fabric and to provide Quality of Service (QoS) differentiation based on 
traffic class. Arbitration ASICs on linecards perform arbitration tasks among local SoC requesters and 
act as a proxy to request credit on behalf of all SoCs on the same linecard, with the central arbiter on the 
Supervisor (SUP). Unicast packets are only transmitted to fabric when credits are available. Broadcast, 
unicast flood, and multicast traffic do not require arbitration.

Life of a Packet in F2—Data Plane
At a high-level packet forwarding in F2 follows these four steps:

1. Ingress queuing (SoC)

2. Packet lookup (DE) (SoC)

3. Packet Arbitration (Arbitration ASIC)

4. Egress packet processing (SoC)

Packets are stored in the ingress buffer when received from the network. Packet headers are extracted 
and sent to the decision engine to perform L2/L3 forwarding lookup. Once the forwarding decision is 
made, packet is rewritten and queued to a virtual output queue based on traffic type and QoS. If a packet 
is multicast, it is sent directly across the fabric. Before sending across the fabric, unicast packets ingress 
the linecard and queries the arbitration engine to ensure sufficient egress buffers are available. If there 
are multiple ingress sources sending traffic to a common egress destination the arbitration engine 
provides fairness and order-of-transmission. As mentioned earlier, this section only focuses on unicast 
traffic.

The lookup process returns the following [required] information:

1. Advanced Class of Service (ACoS)

2. Destination Virtual output interface (VQI)

Introduction to Queueing
Figure C-3 shows there are three widely supported buffer/queue models in datacenter switches: shared, 
ingress and egress queuing.

Channel 0 , 1
Channel 0 – ports 1 – 24
Channel 1 – Ports 25 - 48

Egress
Linecard

550 Gbps

X

Ingress
Linecard

X

X X X X X

550 Gbps

Stage 1 Fabric
Stage 3 Fabric

4. Refer to Figure 1-15 and Figure A-2 for an example of HOLB.
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Figure C-3 Three Buffer Models: Ingress, Egress, and Shared

Since this section is examing F2 (and F2 does not employ a shared buffer model), the remaining 
discussion for this sub-section will discuss Ingress and Egress buffering. See TCP Incast discussion 
further down in this document for an examination of how N3064s utilize shared buffering.

In egress buffering methods, traffic is pushed through the switch fabric; output scheduling and queuing 
occurs on the egress interface. Most egress based buffer implementations allocate fixed size buffers to 
each interface, and consequently the amount of burst interfaces can absorb is limited by the size of the 
egress buffer.

Unlike egress buffering, ingress buffering architectures absorb congestion on ingress via distributed 
buffer pools. The amount of buffer available is a function of traffic flow. For example, in a 2:1 Incast 
scenario, there are 2x input buffers to absorb the burst. As the number of source interfaces increase, the 
amount of ingress buffers increases accordingly. If we add one additional sender to create a 3:1 Incast 
scenario, we have 3x input buffers. The simplest way to characterize ingress buffering is: the amount of 
available buffers equal to number of interfaces sending traffic to a single destination. Traffic bursts 
which exceed the egress capacity will be dropped on the ingress interface. Ingress queuing in general 
scales well in an environment with large fan-outs. F2 implementation is based on ingress buffering. Each 
port is assigned ~1.5MB of ingress buffer.

Queueing in F2 Hardware
Packet queuing occurs at multiple stages when transmitting across a F2 based system. Figure C-4 shows 
key queuing points with F2 10G I/O modules.
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Figure C-4 Queueing in Hardware

Virtual Lane—separated into ingress (iVL) /egress (oVL). VL enables the ability to support traffic 
differentiation based CoS or DSCP on a physical link. There are three mechanisms to classify a packet 
into iVL:

1. On a trusted interface, if a packet is 1Q tagged, Ethernet COS concept is extended to support VL, 
three bits in the .1p header identifies VL for a frame. 

2. If a port is not trusted or untagged, traffic is assigned to VL0 based on FIFO.

3. Starting from NX-OS 6.1.1, DSCP based classification for ipv4 is supported.

Packet classification for oVL depends on the type of traffic. Default classification is based on received 
CoS for bridged traffic. For routed traffic, received CoS is rewritten based on DSCP, derived CoS is used 
for egress queuing.

Flow Control—Flow control is a congestion avoidance mechanism to signal to the remote station to stop 
sending traffic due to high buffer usage. There are two types of flow control, Priority Flow Control 
(PFC) / Link Flow Control (LFC). LFC is at the link level and independent of the COS. PFC is based on 
VL, typically implemented to provide lossless service such as FCOE. PFC / LFC are mutually exclusive. 
F2 does not support flow control per COS value.

ACoS (Advanced Class of Service)—This is the internal classification and treatment of a packet within 
the data path of the switch, it is carried end to end as part of the DC3 internal header across the data path. 
ACOS values are often derived from configured inbound policies during the forwarding lookup process.

CCoS—CCoS is derived from the ACoS. Based on CL (fabric qos level) Switch maintains a static 
mapping table between the ACoS and CCoS. Combination of VQI:CCoS makes up the VoQ.

Credited / Un-credited Traffic—Credited traffic are unicast traffic that has gone through full 
arbitration process. Un-credited traffics are those that do not require arbitration. Typically multicast, 
broadcast and unknown unicast are transmitted as un-credited traffic flows. If an interface has both 
credited and un-credited traffic, configured DWRR weight determines amount of traffic to send for each 
type.

VQI and VoQ—A VQI (virtual queue index) is the index or destination port group id over the fabric.   
A VQI always maps to a port group, representing 10G worth of bandwidth. Each port group consists of 
multiple interfaces (M1 series 10G shared mode or 12X 1GE) or a single dedicated interface (M1 series 
running in dedicate mode or F series line cards). Number of QoS levels per VQI varies between 
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hardware: M series supports 4 COS / VQI, while F2 supports 8. The mapping of VQI to CCoS is often 
referred to as VoQ. A line card can have up to QoS Level * VQI number of VoQs. Specific to the F2 Line 
card:

1. Each port group maps to a single 10GE interface, a single VQI per interface.

2. Up to 1024 VQI/destinations and up to 8 qos level per VQI. This translates to 8000 VoQs. 

3. Packets are queued into one of the VoQs based on destination (VQI) and CCoS.

In practice, the number of usable VoQ is based on fabric QoS levels. Current implementation in the 
Nexus 7000 family supports 4 Credit Loop (QoS level), this implies the number of usable VOQ is 4 * 
1024 or 4096 VOQs.

LDI—LDI is an index local to the Linecard. An interface is defined by a 6 bit LDI in SUP-1, 7 bit LDI 
in SUP-2. When communicating with the central arbiter, linecards use LDIs to indicate interface id.   On 
the central arbiter, every LDI maps to a unique VQI. This mapping is based on the received interface of 
the arbitration message and LDI.

Ingress Logic

Nexus 7000 F2 implementation is based on ingress buffering. In the case of F2 I/O module, the VoQ 
buffer is the input port buffer. Each SoC has 6MB of buffer which is shared by the 4 front-panel port 
results in ~1.5MB of ingress buffer per port, represented as 3584 pages of input buffer at 384 bytes per 
page. 6 MB is equivalent to 1.25 ms buffering. There is also a 1MB skid buffer per SoC, 250KB per 
interface; this is only used with PFC. Buffer pages are assigned to various input queues depending on 
the system / port queue configuration. Using the default 2q4t (two input queue and 4 threshold per 
queue) configuration with 90/10 queue limit, 3195 pages are assigned to queue 0 (90%) and 338 pages 
are assigned to queue 5 (10%).

Ingress Queuing for Ethernet1/1 [System]
-------------------------------------------
Trust: Trusted
DSCP to Ingress Queue: Disabled
-----------------------------------
Que# Group Qlimit% IVL      CoSMap
-----------------------------------
   0     1      90   0         0-4
   1     0      10   5         5-7

Traffic to ingress queue mapping can be based on CoS (default) or DSCP (starting from nxos 6.1.1).   
Packets are queued to corresponding iVL awaiting lookup results based on the following mapping:

UP 0 - 4 -> IVL 0
UP 5 - 7 -> IVL 5

iVL buffer utilization can be monitored by attaching to the linecard. Refer to Monitor F2 drop section 
for details.
C-6
Massively Scalable Data Center (MSDC)

Design and Implementation Guide



 

Appendix C      F2/Clipper Linecard Architecture
  Life of a Packet in F2—Data Plane
Figure C-5 CLI Output

Once lookup results are received from the decision engine, packet headers are rewritten and forwarded 
to corresponding VoQs for arbitration. ACoS values are used to determine QoS levels across the fabric. 
There are three lookup tables, 8cl, 4cl, and 4clp - the CL mode determines which table to query. 8cl is 
used for 8 queue (CL) mode while 4cl and 4clp are for 4 queue mode (p indicates if priority bit set or not).

module-1# show hardware internal qengine inst 0 vq acos_ccos_4cl
 
ACOS   CCOS
----   ----
0      3
1      3
2      2
3      1
4      1
5      0
6      0
7      0
8 - 15     3
16 - 23   2
24 - 39   1
40 - 63   0

msdc-spine-r1# show hardware internal qengine asic 0 gb pri-mapping
00000000: 03 03 02 01 01 00 00 00 - 03 03 03 03 03 03 03 03
00000010: 02 02 02 02 02 02 02 02 - 01 01 01 01 01 01 01 01
00000020: 01 01 01 01 01 01 01 01 - 00 00 00 00 00 00 00 00
00000030: 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
msdc-spine-r1#
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This mapping has to be the same on all I/O modules and SUP across the entire switch. CSCuc07329 
details some of the issues that can occur when mismatch occurs. 

Once CCoS is determined, packet is queued into the corresponding VoQ (VQI: CCoS) for central 
arbitration. Current generation SoCs do not allow drops on the VoQ, all congestion related drops can 
only occur at iVL for unicast traffic. iVL drops show up as indiscards on the physical interface and queue 
drops under qos queuing policy.  Future F2 series I/O modules will support VoQ drops. Before accepting 
a packet into the VoQ, WRED and tail checks are performed based on instant buffer usage. If the instant 
buffer usage is greater than the buffer threshold or number of packets in the output queue is higher than 
packet count threshold, incoming packet are dropped. It is important to highlight that WRED and tail 
drop applies to droppable VLs only if PFC is enabled. Central arbitration occurs once packets are 
accepted into the VoQ. Refer to Introduction to Arbitration Process for arbitration details.

Egress Logic

On the egress side, there are additional 755 pages of FIFO buffer for credited and 512 pages for 
broadcast / multicast traffic. Credited traffic consists of Super frames (packets or Jumbo frames with 
segments), and buffer space is reserved and managed by the Arbiter. Credited traffic is sent to an egress 
linecard only when it has been granted buffer space by the central arbiter and can only be destined to 
one VQI. The egress buffer must be returned to the arbiter once egress interface completes its transfer. 
If traffic arrives out of order on the egress line card, it is the responsibility of the egress logic to re-order 
packets before being transmitted out of the output interface.

If an interface has both credited and un-credited traffic, configured DWRR weights determine the 
amount of traffic to send for each type.

DWRR weight for credited and uncredited traffic:
DWRR weights:
       Q#     Credited   Uncredited
       0      8190       5460
       1      8190       5460
       2      8190       5460
       3      8190       5460

Egress QoS policy controls how various classes of traffic are prioritized when being transmitted out of 
an interface. Default egress queue structure is based on 1p3q4t (one priority queue and 3 normal queues 
- each queue has 4 drop threshold), CoS 5, 6, 7 are mapped to the priority queue, DWRR is implemented 
between queue Q1-3. For bridged traffic, received CoS is used for both ingress and egress classification 
by default. If ingress classification is changed to DSCP, by default egress CoS value for bridged traffic 
remains unchanged. On the egress side, received CoS will remain for egress queue selection, and DSCP 
is ignored. An example of this would be a bridged packet marked with CoS 0 / 46 DSCP as it enters the 
switch, then it will be treated as premium data on the ingress based on DSCP classification. On the egress 
side, it will continue to be mapped to the default queue due to COS 0. A policy map can be applied at 
the egress interface if DSCP based queuing on the egress is required. For routed traffic, either CoS or 
DSCP can be used for ingress queue selection. DSCP is used to rewrite the CoS on the egress interface. 
Derived CoS will be used for egress queue selection. 

WRED is not supported on F2 modules. The following output highlights F2 output queue information. 

Flexible Scheduler config:
      System Queuing mode: 4Q
      Q 0: VLs (5,6,7) priority Q HI,
      Q 1: VLs (3,4) DWRR weight 33,
      Q 2: VLs (2) DWRR weight 33,
      Q 3: VLs (0,1) DWRR weight 33
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In a unicast-only environment, no drops occur on the egress for credited traffic. Arbitration processes 
ensure traffic is only sent over the fabric if egress buffers exist. This is a by-product of ingress based 
queuing; traffic exceeding egress bandwidth of the egress port will only consume necessary fabric 
bandwidth, and will be dropped at the ingress. Egress queuing policy on F2 controls how much an egress 
port receives from ingress ports. If a mixture of priority and best-effort traffic exists, egress policy 
assigns higher precedence to priority traffic.

Introduction to Arbitration Process
By nature packet switching is uncoordinated and clusters of traffic often contend for the same switching 
resource. When contention occurs, it becomes impossible to honor service level agreements (SLAs) or 
guarantee packet forwarding fairness. Thus lossless switching required for consolidated services such as 
FCoE is not possible. This is the reason arbitration engines are required in datacenter switches. An 
Arbiter decides the order packets are sent across the switch. In a credited system, a packet is moved from 
ingress to egress through the switching fabric only if the egress port has sufficient buffering available.   
All the input ports send requests to the Arbiter. Based on availability of buffers, and other requestors, 
the Arbiter accepts or denies the request. Packet arbitration ensures fairness in the systems and avoids 
resource deadlock and provides near-lossless delivery of packets

Arbitration policy and pattern of traffic entering the switch often impact switching performance and 
throughput per slot. Available products today are generally based on centralized arbiters; it scales well 
to 100G line-rate. Credit-ID and credit-counter based central arbitration are implemented in the Nexus 
product family. Credit-ID based arbitration assigns 3 bit grant id (GID) to each buffer page. The input 
port includes the GID as part of the linecard header when transmitting packets to the egress port. Once 
a packet is transmitted, egress buffers credit back the tokens (GIDs) to the central arbiter. 

Credit recovery is based on timeouts. Credit-counter based arbitration assigns buffer pages with a 
counter, both central arbiter and linecard maintains the number of outstanding tokens in-flight. Similar 
to credit-id based arbitration, egress buffer credits back the token to the central arbiter upon 
transmission. To recover a lost token, the central arbiter issues a CreditQuery messages to the egress 
linecard, and compares its counter with the corresponding CreditReply response from the line card.

Figure C-6 shows the high level concepts involved in a centralized arbitration system.

Figure C-6 Centralized Arbitration
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For unicast packet forwarding, once a lookup decision is made on ingress, packets containing output 
VQIs and Credit Loops (QoS levels) are sent to the central arbiter seeking permission for transmission 
across the fabric. If egress buffers are available the central arbiter grants (GNT) the permission to 
transmit (a GNT message) to the arbitration aggregator on the linecard. The ingress linecard starts 
transmission across the fabric upon receiving the GNT message. Super frames are used if multiple small 
packets are destined for the same egress VOQ, performed in the same arbitration cycle. Packets are 
stored in egress buffers once it reaches the egress linecard. Once it's processed, packets are then sent via 
egress port logic and a token (GID) is returned to the central arbiter via buffer available (CRD) 
messages.

As the industry increases demand for 100G, requirements for high density 100G lineorate interfaces will 
correspondingly increase as well. High density 100G interfaces require substantial increases in slot and 
system throughput. Increases in capacity requirements are accomplished with distributed flow 
arbitration. Distributed flow arbitration removes the central arbiter and integrates the buffer/token 
allocation with the flow status on the ingress / egress linecard. Buffer management is based on flow 
status - sequence number, and/or TCP window sizes, are used to control the rate of data transmission.    
When implemented properly flow status alleviates egress congestion and enables dead-lock avoidance 
at multi-Tbps throughput. Distributed arbitration is a roadmap item and is not required for current 
throughput demands.

Additional information Specific to F2 implementation

Depending on system configuration F2 works either in Credit-ID or Credit-counter based arbitration. F2 
works in Credit-ID based mode in SUP1 based systems, Credit-counter mode in SUP2 based systems. 
When working in SUP1 based systems, 8 tokens (Credits per {VQI, CL}) are required to sustain 10GE 
line rate with super framing. The central arbiter keeps track of tokens based on GID and will not issue 
additional grants to a destination if it has already issued 8 outstanding grants. Additional tokens are only 
granted once the egress linecard indicates there is a free buffer available (CRD). SUP2 based systems 
increase the number of outstanding tokens to 256.

Network administrators and operators need to be aware of the following information:

1. When transmitting frames from ingress linecard to egress linecard, the ingress linecard always 
copies arbitration tokens into the internal switch headers and sends it, along with the frame, to the 
egress linecard. Egress line cards strip the tokens from the received frames and return them to the 
central arbiter.

2. Credit-ID arbitration is supported on all shipping Nexus 7000 hardware and software.

3. F2 supports both Credit-ID and counter based arbitration. 

4. Based on Supervisor and linecard, a production system can implement counter only, Credit-ID only, 
or a combination of counter and ID based arbitration.

5. If the central arbiter is capable of both Credit-ID and counter based arbitration (SUP-2), the central 
arbiter is responsible for ensuring interoperability between different arbitration protocols. If the 
egress linecard supports Credit-ID, grant messages to ingress linecards need to contain a credit id. 
If the egress linecard is counter based, grant messages to ingress linecards need to contain the 
necessary token counter.

Monitoring Packet Drops
This section presents tools network engineers use to understand various aspects of F2's behavior.
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IVL/Pause Frames
Port QoS configuration indicates flow control status:

module-1# show hardware internal mac port 1 qos configuration
QOS State for port 1 (Asic 0 Internal port 1)
  GD
    TX PAUSE:
    VL#    ENABLE  RESUME  REFRESH  REF_PERIOD   QUANTA
     0     OFF     OFF     OFF        0x0        0x0
     1     OFF     OFF     OFF        0x0        0x0
     2     OFF     OFF     OFF        0x0        0x0
     3     OFF     OFF     OFF        0x0        0x0
     4     OFF     OFF     OFF        0x0        0x0
     5     OFF     OFF     OFF        0x0        0x0
     6     OFF     OFF     OFF        0x0        0x0
     7     OFF     OFF     OFF        0x0        0x0
    LFC     ON      ON      ON        0x1000     0xffff
    RX PAUSE:
     VL 0-7 ENABLE: OFF OFF OFF OFF OFF OFF OFF OFF LFC: ON

As discussed previously, the system sends pause frames when buffers run low. The number of pause 
states entered is viewed from the show hardware command. ID 2125-2130 indicates which UP are in 
internal pause state due to high buffer usage. UP0 - UP4 maps to iVL0:

module-1# show hardware internal statistics device mac congestion port 1
|------------------------------------------------------------------------|
| Device:Clipper MAC              Role:MAC                     Mod: 1    |
| Last cleared @ Wed Sep 12 10:04:03 2012
| Device Statistics Category :: CONGESTION
|------------------------------------------------------------------------|
Instance:0
ID    Name                                          Value             Ports
--    ----                                          -----             -----
 2125 GD uSecs port is in internal pause tx state   0000000041585643  1 -
 2126 GD uSecs UP0 is in internal pause tx state    0000000041585643  1 -
 2127 GD uSecs UP1 is in internal pause tx state    0000000041585643  1 -
 2128 GD uSecs UP2 is in internal pause tx state    0000000041585643  1 -
 2129 GD uSecs UP3 is in internal pause tx state    0000000041585643  1 -
 2130 GD uSecs UP4 is in internal pause tx state    0000000041585643  1 -

module-1# show hardware internal mac qos configuration
  UP 2 IVL:
        DE 0  UP 0 IVL 0
        DE 1  UP 0 IVL 0
        DE 0  UP 1 IVL 0
        DE 1  UP 1 IVL 0
        DE 0  UP 2 IVL 0
        DE 1  UP 2 IVL 0
        DE 0  UP 3 IVL 0
        DE 1  UP 3 IVL 0
        DE 0  UP 4 IVL 0
        DE 1  UP 4 IVL 0
        DE 0  UP 5 IVL 5
        DE 1  UP 5 IVL 5
        DE 0  UP 6 IVL 5
        DE 1  UP 6 IVL 5
        DE 0  UP 7 IVL 5
        DE 1  UP 7 IVL 5
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Ingress Buffer
Since F2 is based on the ingress buffering model, visibility into input buffer usage is critical to determine 
overall performance of a distributed application. When input buffers are consumed (due to the egress 
endhost is receiving more traffic than it can handle) it is important to proactively identify a set of 
interfaces which contribute to congestion and re-route workloads to another system that has excess 
capacity. F2 input buffer usage is viewed by issuing a show hardware internal mac command. This 
command reports the number of input buffers allocated and used based on iVL:

module-1# show hardware internal mac port 1 qos configuration
  IB
    Port page limit : 3584 (1376256 Bytes)
    VL#  HWM pages(bytes)  LWM pages(bytes) Used PL_STOP(HWM & LWM)
                                              Pages                    THR
     0    3195 ( 1226880)   3075 ( 1180800)    21     3195   3075
     1       2 (     768)      1 (     384)     0        2      1
     2       2 (     768)      1 (     384)     0        2      1
     3       2 (     768)      1 (     384)     0        2      1
     4       2 (     768)      1 (     384)     0        2      1
     5     338 (  129792)    266 (  102144)     0      338    266
     6       2 (     768)      1 (     384)     0        2      1

The number of drops per iVL or interface is tracked via input QoS policy; use the show policy-map 
command to get the total number of ingress drops at ingress queue:

msdc-spine-r1# show policy-map interface ethernet 1/1
Global statistics status :   enabled

Ethernet1/1
    Service-policy (queuing) input:   default-4q-8e-in-policy

    Class-map (queuing):   2q4t-8e-in-q1 (match-any)
      queue-limit percent 10
      bandwidth percent 50
      queue dropped pkts : 0

    Class-map (queuing):   2q4t-8e-in-q-default (match-any)
      queue-limit percent 90
      bandwidth percent 50
      queue dropped pkts : 342737

Alternatively, show interface also displays the number of input drops:
  RX
    230574095573 unicast packets  10261 multicast packets  46 broadcast packets
    230574092331 input packets  99092487394083 bytes
    0 jumbo packets  0 storm suppression packets
    0 runts  0 giants  0 CRC  0 no buffer
    0 input error  0 short frame  0 overrun   0 underrun  0 ignored
    0 watchdog  0 bad etype drop  0 bad proto drop  0 if down drop
    0 input with dribble  342737 input discard
    0 Rx pause

The total number of packets received across iVL is tracked via the show hardware internal statistics 
device mac all port command:

module-1# show hardware internal statistics device mac all port 1 | i PL

12329 PL ingress_rx_total (vl0)                     0000230219507695  1 -
12334 PL ingress_rx_total (vl5)                     0000000000010246  1 -
12345 PL ingress_rx_bytes (vl0)                     0098940369532487  1 -
12350 PL ingress_rx_bytes (vl5)                     0000000002042488  1 -
12369 PL ingress_rx_total_bcast (vl0)               0000000000000046  1 -
12382 PL ingress_rx_total_mcast(vl5)                0000000000010246  1 -
12385 PL ingress_rx_total_ucast (vl0)               0000230219509065  1 -
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12409 PL ingress_congestion_drop_nde_vl0            0000000000342737  1 -
12441 PL ingress_congestion_drop_bytes_nde_vl0      0000000154973799  1 -

The show hardware internal statistics device fabric errors command is used with FAB2 to display 
the number of times a frame with a bad CRC enters the fabric ASIC.

To display the number of bad frames received by egress engines, use the show hardware internal 
statistics module-all device qengine errors command.

VOQ Status
In F2's case, VQI index tracks interface LTL index. Both indexes are assigned by the Port manager:

msdc-spine-r1# show system internal ethpm info interface ethernet 1/1
Information from GLDB Query:
  Platform Information:
    Slot(0), Port(0), Phy(0x2)
    LTL(0x77), VQI(0x77), LDI(0x1), IOD(0x358)
  Backplane MAC address in GLDB: 6c:9c:ed:48:c9:28
  Router MAC address in GLDB:    00:24:98:6c:72:c1

Packets requiring central arbitration are queued in respective VoQs awaiting tokens. The number of 
outstanding frames per VOQ are monitored based on VQI:CCoS: 

module-3# show hardware internal qengine voq-status
VQI:CCOS CLP0  CLP1  CLP2  CLP3  CLP4  CLP5  CLP6  CLP7  CLP8  CLP9  CLPA  CLPB
-------- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
0033:3   0     2     0     0     0     0     0     0     0     0     0     0
0033:4   0     0     0     0     0     0     0     0     0     0     0     0

module-3# show hardware internal qengine inst 0 voq-status
VQI:CCOS  BYTE_CNT  PKT_CNT  TAIL  HEAD  THR
--------  --------  -------  ----  ----  ---
0001:1    0         0        9844  9844  0
0001:2    0         0        9081  9081  0
0001:3    991       146      15412 5662  0
0002:3    10        2        416   547   0
0005:0    949       148      12148 19137 0
0017:3    0         0        5166  5166  0
0023:1    33        2        20149 9697  0

Note Due to a known hardware limitation, the VoQ counters above are not implemented correctly in the F2. 
This limitation is addressed in F2E and beyond.

A summary view of VQI-to-module and LDI mappings are obtained by querying the VQI map table:
module-3# show hardware internal qengine vqi-map | i 33
VQI   SUP  SLOT  LDI  EQI  FPOE  NUM  XBAR   IN   ASIC  ASIC  SV  FEA_
NUM   VQI  NUM   NUM  NUM  BASE  DLS  MASK   ORD  TYPE  IDX   ID  TURE
----  ---  ----  ---  ---  ----  ---  -----  ---  ----  ----  --  ----
33    no   2     33   2    162   1    0x155  0    CLP   8     0   0x80

Pktflow output provides a breakdown of ingress / egress traffic based on credited / uncredited, packet 
drops per VL:

module-1# show hardware internal statistics device mac pktflow port 1
|------------------------------------------------------------------------|
| Device:Clipper MAC              Role:MAC                     Mod: 1    |
| Last cleared @ Wed Sep 12 10:04:03 2012
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| Device Statistics Category :: PKTFLOW
|------------------------------------------------------------------------|
Instance:0
ID    Name                                          Value             Ports
--    ----                                          -----             -----
12329 PL ingress_rx_total (vl0)                     0001012580843327  1 -
12334 PL ingress_rx_total (vl5)                     0000000000656778  1 -
18480 IB ingress_vq_ib_credited                     0001031905221385  1-4 -
18481 IB ingress_vq_ib_uncredited                   0000000005146827  1-4 -
20515 EB egress_credited_tx_q_#0                    0000000031475810  1 -
20516 EB egress_credited_tx_q_#1                    0000000000142135  1 -
20517 EB egress_credited_tx_q_#2                    0000084546959536  1 -
20518 EB egress_credited_tx_q_#3                    0001057602983438  1 -

The show hardware queueing drops ingress | egress command reports the total number of drops per 
VoQ. Since existing F2 modules do not drop packets at the VoQ, this command does not apply. This 
command is used directly from the SUP when monitoring future F2 I/O modules.

Central Arbitration
Each linecard has up to 2 SERDES links to send and receive arbitration messages from the central 
arbiter. One link goes to the primary SUP and the other goes to the secondary SUP (if present). The 
technical term for those links is called a "group". In an 18 slot system (N7018), there are up to 16 port 
groups for linecards and 2 ports groups for SUPs on the central arbiter. The mapping of group to linecard 
connections is determined during boot time:

msdc-spine-r1# test hardware arbiter print-map-enabled
be2_ch_type:10 Sup slot:9
Slots with groups Enabled
-------------------------
Slot 10 GROUP: 0 gp: 9
Slot 1 GROUP: 1 gp: 0
Slot 3 GROUP: 2 gp: 2
Slot 4 GROUP: 3 gp: 3
Slot 2 GROUP:15 gp: 1
-------------------------

Bucket Count (BKT) is used to count the number of received request, grant, and credit messages. The 
request and grant message bucket lookup uses a 10 bit LDi from the arbitration message, concatenated 
with the fabric CoS to form a 12 bit bucket table index. A dedicated BKT table exists per group 
(linecard).

REQ messages contain a 2 bits CoS field which maps to three levels of priority. Mapped output "CoS 0" 
has absolute priority. CoS1, CoS2 and CoS3 have the same priority level during arbitration:

msdc-spine-r2#  show hardware internal arbiter counters 2
GROUP:2
LDI COS  OUT_REQ   CREDIT CREDITNA
  1   3        1 122087645       63
  3   3        1 120508256       63
 Bkt Cos  Gresend            Grant          Request  Rresend
   0   0        0            39459            39459        0
   0   1        0                1                1        0
   0   2        0                1                1        0
   0   3        0        686452080        686452776        0
  64   0        0            23740            23740        0
  64   1        0                1                1        0
  64   2        0                1                1        0
  64   3        0           203618           203618        0
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For credit id based arbitration, CRD messages carry unique tags per buffer id, plus the LDI and CoS for 
the credit. The central arbiter maintains all received GIDs per {LDI, CoS}. When a GNT is issued the 
arbiter removes a GID from the table. It is possible to query credits available in the arbiter by looking 
at GID usage:

msdc-spine-r2# show hardware internal arbiter gid 2 1
Gid Group:2 carb:2 cgp:0
LDI COS     LGID     UGID   B2 PTR   B1 PTR   CNAGID
----------------------------------------------------
  1   0        f        f        7        0        0
  1   1        f        e        2        0        0
  1   2        f        e        2        0        0
  1   3        0        0        1        0        0   <<<<<< Bit map of available GID 
- In this case, all token has been assigned.

msdc-spine-r2# show hardware internal arbiter gid 2 1
Gid Group:2 carb:2 cgp:0
LDI COS     LGID     UGID   B2 PTR   B1 PTR   CNAGID
----------------------------------------------------
  1   0        b        f        6        0        0
  1   1        f        f        2        0        0
  1   2        f        f        2        0        0
  1   3        f        f        7        0        0 <<<< once traffic stops. All toke 
are now available.

Egress Output Queue
Egress classification and output scheduling are viewed from the output of interface queueing output. 
Queue 0 is the strict priority queue. Egress bandwidth is equally shared between Queue 1-3:

msdc-spine-r1# show queuing interface ethernet 1/1

Egress Queuing for Ethernet1/1 [System]
-------------------------------------------
Template: 4Q8E
-------------------------------------------------
Que# Group Bandwidth% PrioLevel Shape%     CoSMap
-------------------------------------------------
   0     0          -      High      -        5-7
   1     1         33         -      -        3-4
   2     2         33         -      -          2
   3     3         33         -      -        0-1

If DSCP based classification is enabled on ingress, a known limitation exists such that DSCP 5, 6, and 
7 are treated as priority data on egress.

Use show hardware internal statistics command to see which egress queue is processing the majority 
of traffic. In the following example, a majority of traffic belongs to queue #3. Unfortunately, as of this 
writing, per CoS statistics are not available by default:

module-1# show hardware internal statistics device mac all port 1 | i EB
20480 EB egress_credited_fr_pages_ucast             0000035840088269  1-4 -
20482 EB egress_uncredited_fr_pages_ucast           0000000000002004  1-4 -
20484 EB egress_rw_cred_fr0_pages_ucast (small cnt) 0000035840088278  1-4 -
20488 EB num credited page returned by RO           0000035840088287  1-4 -
20515 EB egress_credited_tx_q_#0                    0000000000529420  1 -
20516 EB egress_credited_tx_q_#1                    0000000000000209  1 -
20517 EB egress_credited_tx_q_#2                    0000000000000159  1 -
20518 EB egress_credited_tx_q_#3                    0000181154592683  1 -
module-1#
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The show policy map interface command is used to view output drops; however in unicast 
environments drops should not occur in the egress path. For completeness fabric utilization can also be 
monitored:

msdc-spine-r1# show hardware fabric-utilization
------------------------------------------------
Slot        Total Fabric        Utilization
            Bandwidth      Ingress % Egress %
------------------------------------------------
1             550 Gbps          1.50     1.50
2             550 Gbps          1.50     1.50
3             550 Gbps          1.50     1.50
4             550 Gbps          1.50     1.50
10            115 Gbps          0.00     0.00

In unicast only environments the N7k fabric should never be over-subscribed due to arbitration and 
traffic load balancing over available xbar modules.

Nagios Plugin
For monitoring dropped packet counts across F2, several methods exist to retrieve stats. A majority of 
tats are available via netconf, some are available via snmp and netconf, while a small percentage are 
available via CLI only. Nagios is an excellent, highly configurable, open source tool and is easily 
customized to collect statistics via any access mechanism. Nagios stores device performance and status 
information in a central database. Real time and historical device information is retrieved directly from 
a web interface. It is also possible to configure email or SMS notifications if an aberrant event occurs.

Nagios' strengths include:

 • Open Source

 • Robust and Reliable

 • Highly Configurable

 • Easily Extensible

 • Active Development

 • Active Community

SNMP monitoring is enabled via straightforward config files.5 

For input drops on F2, IF-MIB tracks critical ifstats (inDiscards, OutDiscards, inOctets, etc) numbers.

Developing Nagios plug-ins for CLI based statistics is slightly more involved. 3 general steps include:

Step 1 SSH connectivity to device under monitoring.

This needs to be developed once, and can be reused for all future CLI based plugins.

Step 2 Output retrieval and parsing.

Requires customization for each CLI. Refer to Appendix B, “Buffer Monitoring Code and Configuration 
Files,” for sample Python based scripts.

Step 3 Formatting performance data and presenting final data to Nagios.

Use the following guidelines http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN201.

5. Detailed examples on how to enable custom plug-in via SNMP can be found here: 
http://conshell.net/wiki/index.php/Using_Nagios_with_SNMP
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Competitive Landscape

While comprehensive analysis of Cisco’s competition is beyond the scope of this document, it is worth 
quickly mentioning what the competitive landscape looks like. It is also worth noting that MSDC 
customers are themselves looking into building their own devices based on merchant silicon. 

Dell/Force10
Dell/Force10 (formerly just “Force10”) has made its name with high-density gigE and 10G switches. 
Primary MSDC focal points from within their portfolio are:

 • Z-Series Core Switches, such as the Z9000. Cheap 128x non-blocking 10G ports. Leaf and Spine.

 • E-Series Virtualized Core Switching, such as the E600i. 224x non-blocking 10G ports. Spine.

 • The C300 Chassis-based Switch. Glorified Leaf, such as an “end of row” Leaf.

Arista
Arista has traditionally been very focused on 3 things: low-footprint/high-density 10G chassis, ultra 
low-latency, and modular software. Strengths they bring to the table are:

 • 7500. 192x linerate 10G.

 • EOS Network Operating System. Complete separation of networking state and route & packet 
processing. Extensible and customizable.

 • 7150S. 64x 10G linerate ports. SDN-aware.

Juniper
Juniper made its splash into the industry with their M-series, pure routers, and their unified Network 
Operating System, JUNOS. They have traditionally held a large portion of the Service Provider segment, 
but have since branched out into MSDCs, namely with their proprietary Q-Fabric. The primary 
competitive concerns they bring are:

 • Q-Fabric. 6000x 10G ports:

 – QFabric Scenario 1 - QFX3500 standalone mode as an ethernet switch

 – QFabric Scenario 2 - QFX3600 standalone mode as an ethernet switch
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 – QFabric Scenario 3 - QFX3600 and QFX3500 standalone mode as an ethernet switches in a 
solution 

 – QFabric Scenario 4 - QFX3000M QFinterconnect node plus QFX3100 QFdirector), QFX3500 
QFnode and EX4200 (needed for management) as a "real mini-QFabric solution 

 – QFabric Scenario 5 - QFX3008 QFinterconnect node plus QFX3100 QFdirector), QFX3500 
QFnode and EX4200 (needed for management) as a "real QFabric solution

 • Incremental Scalability.

 • JUNOS. There is a lot of momentum behind the JUNOS religion.

 • Programmable buffers, albeit deep buffers.

Brocade
Brocade, formerly Foundry Networks, has long been among market leaders in the density battle.  Their 
VCS/VDX family of switches are the foundation of their datacenter switching fabric portfolio.  For 
example:

 • VDX 8770-8, 384x 10G ports.

 • 15RU.

 • Focusing on flatter “Ethernet fabrics”.

 • Virtual Cluster Switching (VCS), similar to Juniper’s Q-Fabric.  “Self-healing” and resilient fabrics.

HP
Not to be left out of the large datacenter fabric market, HP has rolled out their 5900 series switch which 
provides a low-cost, 64x 10G low-latency ToR platform that competes directly with Cisco’s Nexus 3064.
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Incast Utility Scripts, IXIA Config

This appendix includes scripts used for setting up and creating Incast events in the lab. “fail-mapper.sh” 
fails relevant Hadoop mappers (VMs), thus causing a shift in traffic. “find-reducer.sh” determines the 
location of relevant reducers. “tcp-tune.sh” and “irqassign.pl” help prepare the servers for the lab 
environment.

fail-mapper.sh
#!/bin/bash

URL=http://jobtracker.jt.voyager.cisco.com:50030/jobdetails.jsp?jobid=job_201211051628
_
RURL=http://jobtracker.jt.voyager.cisco.com:50030/taskdetails.jsp?tipid=task_201211051
628_
JOB_ID=$1
JOB_ID2=$2
RLOG=_r_000000
MLOG=_m_0000
W=0
counter=0

for i in {0..77};
do
   printf -v MID "%03d" $i
   wget $RURL$JOB_ID$MLOG$MID
   wget $RURL$JOB_ID2$MLOG$MID
done

grep attempt taskdetails.jsp?tipid=task_201211051628_$JOB_ID* | awk -F '<' '{print 
$6}' | cut -c 67-78 |
sort -u | sed 's/vm*/vm-/'> vmnames1

grep attempt taskdetails.jsp?tipid=task_201211051628_$JOB_ID2* | awk -F '<' '{print 
$6}' | cut -c 67-78 |
 sort -u | sed 's/vm*/vm-/'> vmnames2

'rm' task*

diff --suppress-common-lines vmnames1 vmnames2 | grep ">" | sed 's/> //' > vmnames
while [ $W -lt 96 ]
do
   wget $URL$JOB_ID
   W1=`grep "jobtasks.jsp?jobid=job_201211051628_$JOB_ID&type=map&pagenum=1" 
jobdetails.jsp?jobid=job_201
211051628_$JOB_ID | awk -F 'align="right">' '{print $2}' | cut -c 1-5`
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  fail-mapper.sh
   rm jobdetails.jsp?jobid=job_201211051628_$JOB_ID
   if [ -z $W1 ]; then
      W=0
   else
      W=${W1/\.*}
   fi
   echo -e "\n currently at ******** $W \n"
done

echo "physical breakdown"
for i in {1..15..2}
do
  let j=$i+1
  for z in {1..5}
    do
      unset HOSTS
      unset HOSTS2
      if (( $i < 10 ))
        then
          HOSTS=($(cat vmnames | grep r0$i-p0$z | cut -c 9-13))
          HOSTS2=($(cat vmnames | grep r0$j-p0$z | cut -c 12-13 | awk '{printf 
"vm-%02d\n", $1+7}'))
      if (( $j == 10 ))
        then
          unset HOSTS2
          HOSTS2=($(cat vmnames | grep r$j-p0$z | cut -c 12-13 | awk '{printf 
"vm-%02d\n", $1+7}'))

      fi
      fi

      if (( $i > 10 ))
        then
          HOSTS=($(cat vmnames | grep r$i-p0$z | cut -c 9-13))
          HOSTS2=($(cat vmnames | grep r$j-p0$z | cut -c 12-13 | awk '{printf 
"vm-%02d\n", $1+7}'))
      fi

     if [[ ! -z $HOSTS ]]; then
        for h in ${HOSTS[@]}
          do
            if [ -z "$WW" ]; then
              printf -v WW  "virsh destroy $h"
              printf -v WW1  "virsh start $h"
            else
              printf -v WW "virsh destroy $h ; $WW"
              printf -v WW1 "virsh start $h ; $WW1"
            fi
          done
     fi

     for h2 in ${HOSTS2[@]}
      do
        if [ -z "$WW" ]; then
          printf -v WW "virsh destroy $h2"
          printf -v WW1 "virsh start $h2"
        else
          printf -v WW "virsh destroy $h2 ; $WW"
          printf -v WW1 "virsh start $h2 ; $WW1"
        fi
      done

     if [ ! -z "$WW" ] && (( $counter < 10 )); then
      counter=$counter+1
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  find-reducer.sh
      printf -v HOSTN "%02d" $i
      printf "ssh  -o StrictHostkeyChecking=no r$HOSTN-p0$z.hosts.voyager.cisco.com \" 
$WW1 \""
      ssh  -o StrictHostkeyChecking=no r$HOSTN-p0$z.hosts.voyager.cisco.com " $WW "
     fi

  unset WW
  unset WW2
  done
done

'rm' task*

find-reducer.sh
#!/bin/bash

URL=http://jobtracker.jt.voyager.cisco.com:50030/jobdetails.jsp?jobid=job_201211051628
_
RURL=http://jobtracker.jt.voyager.cisco.com:50030/taskdetails.jsp?tipid=task_201211051
628_
JOB_ID=$1
RLOG=_r_000000
MLOG=_m_0000
W=0
counter=0
while [ $W -lt 100 ]
do
   wget $URL$JOB_ID
   W1=`grep "jobtasks.jsp?jobid=job_201211051628_$JOB_ID&type=map&pagenum=1" 
jobdetails.jsp?jobid=job_201211051628_$JOB_ID | awk -F 'align="right">' '{print $2}' | 
cut -c 1-5`
   rm jobdetails.jsp?jobid=job_201211051628_$JOB_ID
   if [ -z $W1 ]; then
      W=0
   else
      W=${W1/\.*}
   fi
   date;
   echo -e "\n currently at ******** $W \n"
done

while [ "$Reducer1" == "" ]
do
   wget $RURL$JOB_ID$RLOG
   Reducer1=`grep "<td>attempt_201211051628_$JOB_ID$RLOG" 
taskdetails.jsp?tipid=task_201211051628_$JOB_ID$RLOG | awk -F "</*td>" '{print $4}' | 
cut -c 17-28`
   Reducer=`echo $Reducer1 | cut -c 1-7`
   RACK=`echo $Reducer1 | cut -c 2-3`
   POD=`echo $Reducer1 | cut -c 6-7`
   'rm' taskdetails.jsp?tipid=task_201211051628_$JOB_ID$RLOG
done

EVENODD=`expr $RACK % 2`
echo -e "\n reducer is at Physical host ***** $Reducer $Reducer1 \n"
if [ $RACK -eq 13 -o $RACK -eq 14 ]; then
   if [ $EVENODD -eq 1 ]; then
     ssh -o StrictHostkeyChecking=no $Reducer.hosts.voyager.cisco.com "date ; tcpdump 
-s128 -i eth2 -n -w bla3"
   else
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  tcp-tune.sh
      RACK=`expr $RACK - 1`
      printf -v RACKID "%02d" $RACK
      ssh -o StrictHostkeyChecking=no r$RACKID-p$POD.hosts.voyager.cisco.com "date ; 
tcpdump -s128 -i eth3 -n -w bla3-eth1"
   fi
else
   if [ $EVENODD -eq 1 ]; then
      ssh -o StrictHostkeyChecking=no $Reducer.hosts.voyager.cisco.com "date ; tcpdump 
-s128 -i eth0 -n -w bla3"
   else
      RACK=`expr $RACK - 1`
      printf -v RACKID "%02d" $RACK
      ssh -o StrictHostkeyChecking=no r$RACKID-p$POD.hosts.voyager.cisco.com "date ; 
tcpdump -s128 -i eth1 -n -w bla3-eth1"
   fi
fi

tcp-tune.sh
#!/bin/bash

date >> /tmp/setup_tcp.log
# setting tcp send and receive rules.
echo "setting rmem wmem default and max..." >> /tmp/setup_tcp.log
echo 524287 > /proc/sys/net/core/rmem_default
echo 524287 > /proc/sys/net/core/wmem_default
echo 33554432 > /proc/sys/net/core/rmem_max
echo 33554432 > /proc/sys/net/core/wmem_max
echo 33554432 > /proc/sys/net/core/optmem_max
echo 3000000 > /proc/sys/net/core/netdev_max_backlog
echo "setting tcp rmem and tcp_wmem..." >> /tmp/setup_tcp.log
echo "33554432  33554432  33554432" > /proc/sys/net/ipv4/tcp_rmem
echo "33554432  33554432  33554432" > /proc/sys/net/ipv4/tcp_wmem
echo "33554432  33554432  33554432" > /proc/sys/net/ipv4/tcp_me

irqassign.pl
#!/usr/bin/perl
use strict;
use POSIX;

# Open a logfile.
my $log;
open($log, '>>/tmp/irq_assign.log') or die "Can't open logfile: $!";
print $log strftime('%m/%d/%Y %H:%M:%S', localtime), ": Starting run.\n";

my %irqmap = (
   79 => 2, # Start of eth1
   80 => 200,
   81 => 8,
   82 => 800,
   83 => 20,
   84 => 2000,
   85 => 80,
   86 => 8000,
   87 => 2,
   88 => 200,
   89 => 8,
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  VM configuration
   90 => 800,
   91 => 20,
   92 => 2000,
   93 => 80,
   94 => 8000,
   95 => 2, # End of eth1
   62 => 1,    # Start of eth0
   63 => 100,
   64 => 4,
   65 => 400,
   66 => 10,
   67 => 1000,
   68 => 40,
   69 => 4000,
   70 => 1,
   71 => 100,
   72 => 4,
   73 => 400,
   74 => 10,
   75 => 1000,
   76 => 40,
   77 => 4000,
   78 => 40,   # End of eth0
);

foreach my $irq (sort(keys(%irqmap))){
   my $fh;
   open($fh, "+>/proc/irq/$irq/smp_affinity") or die "Can't read $irq: $!";
   my $value = <$fh>;
   chomp($value);
   print $log "Current value of IRQ $irq = $value, setting to $irqmap{$irq}.\n";
   truncate($fh, 0);
   seek($fh, 0, 0);
   print $fh $irqmap{$irq};
   close($fh);
}

# And for good measure, enable forwarding.
my $fh;
open($fh, "+>/proc/sys/net/ipv4/ip_forward") or die "Can't read ip_forward: $!";
my $value = <$fh>;
chomp($value);
print $log "Current value of ip_forward = $value, setting to 1.\n";
truncate($fh, 0);
seek($fh, 0, 0);
print $fh '1';
close($fh);

VM configuration
   for z in {1..16..2};
   do
      for i in {1..5};
      do
         printf -v RACK "%02d" $z;
         ssh r$RACK-p0$i.hosts.voyager.cisco.com " virsh setvcpus vm-01 4 --maximum 
--config;
         virsh setvcpus vm-08 4 --maximum --config";
      done;
   done
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  VM configuration
   for z in {1..16..2};
   do
      for i in {1..5};
      do
         printf -v RACK "%02d" $z;
         ssh r$RACK-p0$i.hosts.voyager.cisco.com " virsh setmaxmem vm-01 24576000;
         virsh setmaxmem vm-08 24576000";
      done;
   done

   for z in {1..16..2};
   do
      for i in {1..5};
      do
         printf -v RACK "%02d" $z;
         ssh r$RACK-p0$i.hosts.voyager.cisco.com " virsh setvcpus vm-01 4 --config;
         virshsetvcpus vm-08 4 --config";
      done;
   done

   for z in {1..16..2};
   do
      for i in {1..5};
      do
         printf -v RACK "%02d" $z;
         ssh r$RACK-p0$i.hosts.voyager.cisco.com " virsh setmem vm-01 20480000 
--config;
         virsh setmem vm-08 20480000 --config";
      done;
   done
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Bandwidth Utilization Noise Floor Traffic 
Generation

Figure F-1 shows a walk-through of how noise traffic is generated by utilizing both IXIA and iptables 
on the servers:

Figure F-1 Noise (offset) Traffic Generation

1. IXIA sends 6-8Gbps traffic down each of the 5 links connected to leaf-r2, with ip_dst set to servers 
hanging off leaf-r3.  ip_src is set to a range owned by the IXIA ports.

2. Since ip_dsts don’t live off leaf-r2, traffic is attracted to Spine layer in ECMP fashion.
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3. Spine layer sends traffic to leaf-r3.

4. Virtual servers (r03-{p01-p05}-n01) hanging off leaf-r3 receive traffic.

5. Incoming traffic travels up the tcpip stack, the Linux bridge subsystem receives packets, then 
iptables (ip_forward) performs packet rewrite, changing ip_dst to be servers off leaf-r2.

6. Packets reflected back to leaf-r3

7. Since ip_dsts don’t live off leaf-r3, traffic is attracted to Spine layer in ECMP fashion.

8. Spine layer send traffic to leaf-r2.

9. Virtual servers (r02-{p01-p05}-n02) hanging off leaf-r2 receive traffic.

10. iptables re-writes ip_dst (IXIA) and ip_src (themselves).

11. Traffic is forwarded back to IXIA.

Testing shows 99% linerate is achieved with this method, albeit at an [acceptable] 5% hit on server CPU 
resources.  The desired noise floor was adjusted, as necessary, by tweaking packet rates on the IXIA – 
no changes required on the servers.
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