SYSTEMS

@ IRONPORT

IronPort Encryption Appliance 6.5
APPLICATION DEVELOPER’S
REFERENCE MANUAL

COPYRIGHT

All contents copyright © 2009 by IronPort Systems® LLC
Part Number: 421-0236

Revision Date: August 6, 2009

The IronPort logo, IronPort Systems, Messaging Gateway, Virtual Gateway, SenderBase, Mail Flow Monitor, Virus Outbreak Filters,
Context Adaptive Scanning Engine (CASE), IronPort Anti-Spam, AsyncOS, PostX, PostX Envelope, the PostX logo, PostX SecureEmail,
PostX SecureDocument, PostX InteractionHub, PostX WebSafe, PxMail, Cisco Registered Envelope Service, SecureCompose,
SecureResponse, SecureRecover, Secure Envelope, Secure Reply, IronPort Encryption Appliance, IronPort PXE Encryption, IronPort
Public Key Encryption, and IronPort Secure Mailbox are all trademarks or registered trademarks of IronPort Systems, Inc.

All other trademarks, service marks, trade names, or company names referenced herein are used for identification only and are the
property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Teodor Danciu (http://jasperreports.sourceforge.net).

This product includes software developed by the Acegi Security System for Spring Project (http://acegisecurity.org).
This product uses the <display:*> tag library, available from http:/displaytag.sourceforge.net/.

This product includes code licensed from RSA Data Security.

This publication and the information contained herein is furnished “AS IS” and is subject to change without notice. Publication of this
document should not be construed as a commitment by IronPort Systems, Inc. IronPort Systems, Inc., assumes no responsibility or
liability for any errors or inaccuracies, makes no warranty of any kind with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and non-infringement of third-party rights.

Some software included within IronPort AsyncOS is distributed under the terms, notices, and conditions of software license
agreements of FreeBSD, Inc., Stichting Mathematisch Centrum, Corporation for National Research Initiatives, Inc., and other third
party contributors, and all such terms and conditions are incorporated in IronPort license agreement.

The full text of these agreements can be found here:

https://support.ironport.com/3rdparty/AsyncOS_User_Guide-1-1.html. Portions of the software within IronPort AsyncOS is based
upon the RRDtool with the express written consent of Tobi Oetiker. Portions of this document are reproduced with permission of Dell
Computer Corporation. Portions of this document are reproduced with permission of Symantec Incorporated. Portions of this
document are reproduced with permission of Sophos Plc. Portions of this document are reproduced with permission of Brightmail
Incorporated. Brightmail Anti-Spam is protected under U.S. Patent No. 6,052,709.

’ﬂ IRONPORT

SYSTEMS

IRONPORT SYSTEMS®, INC. CONTACTING IRONPORT CUSTOMER SUPPORT

IronPort Systems, Inc. If you have purchased support directly from IronPort Systems, you can request

Y! , Y/ p pp y Y Yy q
950 Elm Ave. support by phone, email, or online 24 hours a day, 7 days a week. During office hours
San Bruno, CA 94066 (24 hours per day, Monday through Friday, excluding U.S. holidays), an engineer will

contact you within an hour of your request. To report a critical issue that requires
urgent assistance outside of our office hours, contact IronPort using the following
information.

U.S. toll-free:1 (877) 641-IRON (4766)

International: www.ironport.com/support/contact_support.html

Support Portal: www.ironport.com/support

If you have purchased support through a reseller or other entity, contact the supplier
for support of your IronPort products.

Table of Contents

1. Message Personalization. i, 1
OVEIVIBW . . L 2
Setting Up Message Personalization 3

Message Personalization Configuration Parameters. 3
Configuring the Variable Map for Text Personalization. 3
Template ENgineso 6
OVEIVIEW « . oo 6
Simple Template Engine oot 6

2.MIMEEnvelopeBuilder it rrnns 9
About the MIME Envelope Buildero 10
Compression Headers 11

X-PostX-Crypt-Compression 11
X-PostX-Plain-Compression i 11
Keys and Encryption Headers. 12
X-PostX-KeySize 12
X-PostX-Key . .. 12
X-PostX-SHAedKeYo 12
Multiple Passwords. 12
X-PostX-PRNG e 13
X-PostX-Max-Bad-Passwordst 13
X-PostX-Algorithm Header 14
X-PostX-Identityo 14
X-PostX-Accountld 14
X-PostX-Message-Sensitivity 14
X-PostX-SKipRules. 15
X-POstX-TOKEN . . oo 15
X-lronPort Headers for Incoming Mail 16
X-lronPort-Encrypt=SMIME. 16
X-lronPort-Encrypt=PGP 16

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

X-lronPort-Encrypt=SecureMailbox 16
X-lronPort-Encrypt=RegEnvelope 16
X-lronPort Headers for Outgoing Mail 16
X-IronPort-Encrypt=Success 16
X-lronPort-Encrypt=Failure. 16
Secure Envelope Headers 17
X-PostX-EnvelopeFileEncoding.o 17
X-PostX-Line-Endings. i 17
X-POStX-Prefix . .o 17
X-PostX-Envelope-Profile-Name. 18
X-PostX-ExpirationDate 19
X-PostX-ReadNotificationDate 19
Disposition-Notification-To 19
Payload Headers o 20
X-PostX-Name e 20
X-PostX-Add-Message-Bart 20
X-PostX-No-Message-Bar. 20
X-PostX-AttachmentName 20
X-PostX-AttachmentEncoding.ot 20
X-PostX-BodyFile o 20
X-PostX-BodyFileEncoding. 20
X-PostX-BodyFileFields 20
X-PostX-MessageTextCharsetot 20
X-PostX-MessageFileEncoding 20
X-PostX-MessageEncoding 20
Attachment Headers 21
3.PasswordSchemas i it 23
OVEIVIBW . . 24
Clear Passwords 25
SHA-T Hashed Passwordsot e e e e e 26
User ID and Passwordottt 27
Multiple Passwords per Envelopeo 28
Multiple Clear Passwords. ot 28
Multiple SHA-1 Hashed Passwords i 28

4. Payload Types. . . . - . - - i ittt it st s s e nm s e e 31
OVEIVIBW . 32
Sending Different Types of Payloads 33
TextPayload 33
HTML Payload.o e 35
Binary Payload. e 36
Multiple Attachment Payload. 36

B.Secure Response.ttt nnnnrrnnnnnnnnnnnnnns 39

IntrodUuction 40
Secure Response Behavior 43
Secure Response Form 44
HTML Form Values. 44

SSL/TLS Certificate 45

6. Controlling the WebSafe Application 47
Optional Standard Parameters Per Incoming Email. 48
Optional Custom Parameters Per Incoming Email. 49
WebSafe Header for Sending Notifications. 51
Indext i i et i s s e 53

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

vi

CHAPTER

Message Personalization

This chapter describes how to set up email message personalization in the SMTP mail
component of the IronPort Encryption appliance.

This chapter contains the following sections:
e “Overview” on page 2
e “Setting Up Message Personalization” on page 3

e “Template Engines” on page 6

CHAPTER 1: MESSAGE PERSONALIZATION 1

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

OVERVIEW

The IronPort Encryption appliance includes a set of template components for producing
customized text messages, documents and statements. These mechanisms are primarily
focused on plain text and HTML documents and can be extended to include other formats
such as PDF.

Template documents are usually defined in text files on disk and can be plain text files, HTML
files or XML files as required. Within the template document, certain fields are declared as
being substitution variables. These are replaced with the corresponding data value when the
template is read. The exact syntax for specifying these variables depends on which template
engine is being used.

Each template engine takes two main inputs, one is a template document and the other is a
map of variable names to variable values. When these are passed to the template engine, the
variable substitution takes place and a fully personalized document is returned.

The data values are provided and set up by the component that calls the template engine. In
the case of the mail server component, the Secure Envelope Sender sets up the variable map
that is passed to the template engine. Each variable consists of a name and a value, for

example:
Variable Name Variable Value
firstname John
Email John.Doe@doecorp.com

As well as simple name/value pairs, some template engines support list values, also known as
vectors. The exact syntax for handling list values depends on the template engine being used.

SETTING UP MESSAGE PERSONALIZATION

SETTING UP MESSAGE PERSONALIZATION

This section describes how to set up email message personalization in the SMTP mail
component. The IronPort Encryption appliance supports the delivery of documents that are
secured and delivered inside a Secure Envelope. The envelope is sent to the consumer as an
HTML attachment to a multipart MIME email message. The main body part of the email
contains an unencrypted message, which consists of either plain text or text and HTML. This
message is typically used to explain the purpose and content of the entire package. The
IronPort Encryption appliance includes the ability to personalize the content of a message.

The IronPort Encryption appliance can be used to deliver secure documents or secure email
messages, in the latter case, the text of the sender’s email message should be encrypted and
included in the payload of the Secure Envelope. In this case the envelope payload now
contains a text message and optionally a number of attachment files, all encrypted. It is
possible to use a template to control the look and content of the text message included in the
envelope payload.

From here on, the term ‘email message text’ will be used to refer to the unencrypted plain text
message that is in the MIME body part of the email message. ‘Envelope message text’ will be
used to refer to the optional, encrypted text message that is in the IronPort PXE message
payload for secure email applications.

Message Personalization Configuration Parameters

Message Personalization is configured per application. For example, to access the message
personalization configuration parameters for the Envelope application, you would click the
Configuration tab and click Configuration > SMTP Adaptor > Applications > Registered
Envelope - Enrolled > Message Personalization. Please refer to “Appendix A: Configuration
Parameters” in the lronPort Encryption Appliance Configuration Manual for a list of
parameters.

Configuring the Variable Map for Text Personalization
The IronPort Encryption appliance mail component allows a certain amount of flexibility in
setting up variable names used for message personalization. Information is stored in the
variablemap.propertiesfile, located in <install_dir>/conf. Each application can
define its own mapping file. Field names can be appended with certain prefixes which will
result in pre-processing of the value of the field before being personalized.

The following prefixes are allowed:

e Secure - This will encrypt the value of the field. This is not applicable to all fields and only
the fields added to the default variablemap.properties with this prefix are supported.

e HTMLEscape - This will HTML escape the value of the field. This is applicable to all
"Message", "Secure" and "Response" fields.

e URLEscape - This will URL Encode the value of the field. This is applicable to all
"Message", "Secure" and "Response" fields.

CHAPTER 1: MESSAGE PERSONALIZATION 3

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

The following table lists the personalization mappings in the variablemap.properties file. If
some of these values are not being used for message personalization, then they can be

removed from this map file.

Field Name/Definition

Description

email=Recipient

Recipient’s email address.

firstname=Message.Header.X-PostX-firstname

Recipient’s first name. This field is used to
demonstrate the use of X-Headers in the variable
map properties file.

lastname=Message.Header.X-PostX-lastname

Recipients last name. This field is used to
demonstrate passing an X-Headers into the
variable map properties file.

subject=Message.Subject

Subject of the email.

toList=Message.To

List of all ‘To’ recipient’s email addresses,
separated by commas.

cc=Message.Cc

List of all ‘Cc’ recipient’s email addresses,
separated by commas.

from=Message.From

Email address of the sender.

fromPersonal=Message.From.Personal

Personal name from the From address.

date=Message.Header.Date

Date of the incoming email message.

messageSensitivity=Message.messageSensitivity

The sensitivity of the message. This determines
the actions required to open the envelope
(password requirements, etc.)

textmessage=Envelope.Message.Text

Message text

htmlmessage=Envelope.Message.Html

HTML message

toc-attachments=Envelope.Attachments

For Secure Direct applications, a list of the
names of any attachments to the email message
that are encrypted inside the envelope payload.
This list is a Java Vector and should be used as
such by templates.

replyEnabled=Response.ReplyEnabled

Indicates if Secure Reply is enabled.

replyAllEnabled=Response.ReplyAllEnabled

Indicates if Secure Reply All is enabled.

forwardEnabled=Response.ForwardEnabled

Indicates if Secure Forward is enabled.

replyWebService=Response.ReplyWebService

Indicates if reply for web services is enabled.

CONFIGURING THE VARIABLE MAP FOR TEXT PERSONALIZATION

Field Name/Definition

Description

replyURL=Response.URL

The Server Reply URL used for connecting to the
server.

helpHostURL=Help.helpHostURL

URL for the help file.

secureFrom=Secure.From

Encrypted versions of the message properties.

secureReplyTo=Secure.Reply-To

Encrypted versions of the message properties.

secureToList=Secure.To

Encrypted versions of the message properties.

secureCclList=Secure.Cc

Encrypted versions of the message properties.

secureSubject=Secure.Subject

Encrypted versions of the message properties.

secureEmail=Secure.Recipient

Encrypted versions of the message properties.

encryptalgorithm=Secure.Algorithm

Encryption algorithm used for Secure Reply
variables.

encryptiontoken=Secure.EncryptToken

Encryption token used for Secure Reply
variables.

encryptionEnabled=Secure.EncryptionEnabled

Encryption enabled or not for Secure Reply.

secureKeyType=Secure.KeyType

Determines if Secure Reply characters are
encrypted with a token or an encryption key.

accountld=Secure.Accountld

A token’s account ID.

messageBarForgetMeURL=Secure.MessageBarFo
rgetMeURL

URL that instructs the key server to remove the
cookie.

CHAPTER 1: MESSAGE PERSONALIZATION 5

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

TEMPLATE ENGINES

Overview

The IronPort Encryption appliance offers several template engine options for personalizing
information in configured templates (such as messagebar.html). The options differ in the
approach they use to personalize the data. More information on these different options is
given below. The Velocity template engine is the most sophisticated of the lot and is the
preferred option for most cases. The default options selected in the configuration need not be
changed unless there is a specific need to prefer one option over the other.

Simple Template Engine
This template engine is suitable for simple text substitution but it cannot handle list values.
The template document is a plain text file that contains the document to be personalized.
Variable data fields are declared by enclosing them in ${..}. Here is a sample template:

Dear ${FIRST_NAME},
Hello,
Thank you for registering. Please use your user ID and password to
login.

Thanks
${URL}

In this example, the field ${FIRST_NAME} is a substitution variable that will have the
corresponding data value placed into it at execution time. If this field contains the value
‘Steve’ then the resultant document will look like this:

Dear Steve,

Hello,

Thank you for registering. Please use your user ID and password to
login.

Thanks
${URL}
Since the $ character is used to mark the beginning of a variable name, any occurrences of $

in the source document that are not variables must be escaped by entering them $$. So
$10,000 would be written as $$10,000.

SIMPLE TEMPLATE ENGINE

Velocity Template Engine

The Apache Jakarta Velocity template engine uses variables of the form ${...}, and it can also
handle lists. Here is an example extract from an HTML template that uses a simple variable
and a list variable:

<table border="1">
<tr>
<td>
<table width="300" border="0" cellpadding="2" cellspacing="0">
<tr>
<td bgcolor="#CCCCCC"">
<pre>
${textmessage}
</pre>
</td>
</tr>
<tr>
<td bgcolor="#003366""><p>Attachments</
span></p></td>
</tr>
#foreach ($attachment in ${attachments})
<tr><td> </td></tr>
<tr><td>$attachment</td></tr>
<tr><td> </td></tr>
#end
</table>
</td>
</tr>
</table>

Note that in this case the variable $attachment is local to the template and does not have its
value defined by the caller.

More information about the Velocity template engine can be found in the documentation
section of the Velocity web site:

http://velocity.apache.org/

XMLC Template Engine

The XMLC engine uses a different approach from the Simple and Velocity engines described
above. XMLC is a compiler that takes a DOM document as input, either HTML or XML, and
creates a Java class file that can be used to instantiate in memory a DOM representation of

that document. For more information about DOM see http://www.w3.0org/DOM. Variable
data fields are identified using the id attribute of their DOM node, in the case of simple text in

CHAPTER 1: MESSAGE PERSONALIZATION 7

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

an HTML file, the text needs to be bracketed by a tag like this some
text.

More information about the Enhydra XMLC DOM can be found at http://www._xmlc.org.

CHAPTER

MIME Envelope Builder

This chapter provides information about using the MIME Envelope Builder for packaging
documents.

This chapter contains the following sections:

e “About the MIME Envelope Builder” on page 10

e “Compression Headers” on page 11

e “Keys and Encryption Headers” on page 12

e “X-PostX-Algorithm Header” on page 14

e “X-lIronPort Headers for Incoming Mail” on page 16
e “X-IronPort Headers for Outgoing Mail” on page 16
e “Secure Envelope Headers” on page 17

* “Payload Headers” on page 20

e “Attachment Headers” on page 21

CHAPTER 2: MIME ENVELOPE BUILDER 9

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

ABOUT THE MIME ENVELOPE BUILDER

The MIME Envelope Builder is controlled by a number of application-specific message
headers (“X headers”) as described in the following sections. Unless otherwise noted, if a
header appears multiple times, the last occurrence is used.

10

COMPRESSION HEADERS

COMPRESSION HEADERS

Documents included in the payload are grouped into secure documents and non-secure
documents. Non-secure documents are defined as documents that do not contain customer-
specific information and therefore do not need to be encrypted. The following two headers
control whether or not each group is compressed:

X-PostX-Crypt-Compression
This header helps determine whether or not the secure documents are compressed. Valid

values are:
Value Definition
"1" or "compress" Compress the secure documents
"0" or "none" Do not compress the secure documents
"-1"or Compress the secure documents only if compression will actually
"conditional" make them smaller

X-PostX-Plain-Compression
This header helps determine whether or not the non-secure documents are compressed. Valid

values are:
Value Definition
"1" or "compress" Compress the non-secure documents
"0" or "none" Do not compress the non-secure documents
"-1"or Compress the non-secure documents only if compression will actually
"conditional" make them smaller

CHAPTER 2: MIME ENVELOPE BUILDER 11

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

KEYS AND ENCRYPTION HEADERS

When encrypting the secure documents, the SHA-1 message digest of the user’s key (for
example, a password or PIN) is used to encrypt a random session key, the SHA-1 of which is
used to encrypt the documents. The following headers are used to specify the user’s key and
the size of the key used to perform the actual encryption.

X-PostX-KeySize
This header contains the size of the key, in bytes, to use. A value of 0 indicates to use the
maximum size (currently 20). A positive integer specifies the size of the key in bytes. If this
header isn’t present, a default key size of 0 is used.

X-PostX-Key

This header contains the user’s key. The SHA-1 of the user’s key is used to encrypt a random

string, which is used to encrypt the secure documents. The same key must be entered by the
user (or constructed from information entered by the user) to successfully decrypt the random
string and hence the entire payload.

X-PostX-SHAedKey

This header contains the base64 encoded SHA-T message digest of the user’s key. The user’s
key is used to encrypt a random string, which is used to encrypt the secure documents. The
key used to generate the message digest must be entered by the user (or constructed from
information entered by the user) to successfully decrypt the random string and hence the
payload.

If both X-PostX-SHAedKey and X-PostX-Key are present, X-PostX-SHAedKey is used.

The following example shows the generation of an SHA-1 key in python:

Python

>>> import base64,sha

>>> clear_passwd="postx"”

>>> base64 sha_passwd=base64.encodestring(
.. .sha.new(clear_passwd) .digest())

>>> print base64_sha_passwd

Output:

gx5yG4zSyp+x0z3wDVS9D/VKOmMQ=

Multiple Passwords

If X-PostX-Key or X-PostX-SHAedKey appears multiple times, each of the passwords specified
can be used to decrypt the resulting document. For example, if the following headers appear
in the input message, then both the key postx and the key seamus can be used to decrypt
the envelope:

12

X-POSTX-PRNG

X-PostX-Key: postx
X-PostX-Key: seamus

X-PostX-PRNG

This header is used to specify the pseudo-random number generator used to generate the salt
used when encrypting the secure documents and the random key. Valid values can take three

forms:
Value Definition
algorithm Just an algorithm is specified, the default size is used
algorithm,size The header determines both the algorithm and the size
size Only the size is specified

If the algorithm is specified, it must be one of the algorithms provided by the Java 2 Standard
Edition (currently only “SHATPRNG”). If the algorithm isn’t specified, java.util.Random is
used. If the size is specified, it must be 0 (indicating the default size should be used) or a
positive integer.

Note — This is not the size of the key used for encryption; therefore; there are no export
considerations.

X-PostX-Max-Bad-Passwords
This header specifies the maximum number of bad passwords that the envelope allows.

Note — This header is ignored for Registered Envelopes.

CHAPTER 2: MIME ENVELOPE BUILDER 13

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

X-POSTX-ALGORITHM HEADER

This header specifies the name of a cryptographic algorithm. The header value has the
following format:

<algorithm type>=< algorithm name>[; < algorithm
type>=< algorithm name>]...

The valid algorithm types and algorithm names are shown in the table below. The algorithm
name in bold is the default.

Algorithm Type Description Algorithm Names
SaltGen random salt generation Random, SHATPRNG
IVGen initialization vector generation Random, SHATPRNG
SessionKeyGen session key generation Random, SHATPRNG
SessionKeyEnc session key encryption ARC4, AES, RSA'
PayloadEnc payload encryption ARC4, AES
SessionKeyVer session key verification CRC-32, SHA-1
PayloadVer payload verification CRC-32, SHA-1
KeyServerKeyHash key hashing between an envelope and | plain, SHA-1
the key server
Note: RSA session key encryption is for special applications and requires
configuration beyond just specifying the algorithm.

The types are case-insensitive, but the names are case-sensitive. Whitespace surrounding the
types and names is ignored. Each X-PostX-Algorithm header is used.

X-PostX-ldentity
Used for Registered Envelopes when using external authentication providers such as
Kerberos. The value for this would be the username to be authenticated against. For example,
‘jsmith’.

X-PostX-Accountld
Specifies the account to use for the message.

X-PostX-Message-Sensitivity
Specifies the sensitivity of the message. The header's value should be between 0 and 50,
inclusive.

14

X-POSTX-SKIPRULES

X-PostX-SkipRules
If present, no rule checking is performed for the message.

X-PostX-Token

This header contains the alias of the token to use when sending the message.

CHAPTER 2: MIME ENVELOPE BUILDER 15

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

X-IRONPORT HEADERS FOR INCOMING MAIL

The IronPort Encryption appliance scans for the following headers in incoming mail. It uses
these headers to direct mail to the appropriate application for encryption.

X-IronPort-Encrypt=SMIME
This header can be used to direct the message to the S/MIME application.

X-IronPort-Encrypt=PGP
This header can be used to direct the message to the PGP application.

X-IronPort-Encrypt=SecureMailbox

This header can be used to direct the message to the Secure Mailbox (formerly WebSafe)
application.

X-IronPort-Encrypt=RegEnvelope

This header can be used to direct the message to the Registered Envelope application.
X-IRONPORT HEADERS FOR OUTGOING MAIL
The IronPort Encryption appliance inserts the following headers in outgoing mail.

X-IronPort-Encrypt=Success
The appliance inserts this header if the message was encrypted without errors.

X-IronPort-Encrypt=Failure
The appliance inserts this header if an error occurred during encryption.

WARNING: The X-lronPort-Encrypt=Failure header is particularly important if you
configure the appliance to use an IronPort Email security appliance as the mail gateway. If the
IronPort Encryption appliance adds the X-IronPort-Encrypt=Fai lure header to a
message, then the IronPort Email Security appliance must be configured to recognize the
header and handle the error. Otherwise, highly sensitive messages intended for encryption
might inadvertently be sent unencrypted.

16

SECURE ENVELOPE HEADERS

SECURE ENVELOPE HEADERS

The following headers contain information about the envelope itself.

X-PostX-EnvelopeFileEncoding

This header contains the name of the character encoding to use for the envelope attachment
to the outgoing e-mail message. The value of this header, if present, is placed in the charset
attribute of the Content-Type header of the MIME part containing the envelope.

X-PostX-Line-Endings
This header determines the line endings used for the envelope. Valid values are:

Value Definition

“d” or “DOS” carriage return, linefeed (“\r\n”)
“m”, “Mac”, or carriage return (“\r”)
“Macintosh”

“u” or “Unix” linefeed (“\n”)

If this header is not present, the default is DOS line endings. Except for special purpose
applications, the default should be used.

X-PostX-Prefix
Each envelope is constructed from four or five parts, which are contained in files. The files

are:

File Name Description

prolog.html This file contains what will be the first part of the final envelope. It
should start the HTML document, open the <HEAD> section (but not
close it), contain any style sheets, and open (but not close) a
<SCRIPT> tag.

lib/*.js This directory contains the pieces of the IronPort Encryption appliance
JavaScript library which is used to decode and decrypt the payload
and to control the applet (if the applet is required). Each file must be
pure JavaScript.

js or cust.js This file contains JavaScript specific to the application the envelope
embodies. It must also be pure JavaScript (and JavaScript data).

text.js This optional file contains a JavaScript object containing user-visible
text.

CHAPTER 2: MIME ENVELOPE BUILDER 17

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

File Name Description

epilog.html This file contains the final part of the envelope. It should close the
<SCRIPT> tag and the <HEAD> section opened in prolog.html,
contain the entire <BODY> section, and finally close the <HTML>
document.

When the final envelope is constructed, it consists of the contents of prolog.html, any
necessary files from lib, and the contents of js (or cust.js), text.js (if present) and epilog.html.

The value of the X-PostX-Prefix header is the path prefix to the files. If the value of the header
ends with a slash, it should be a path to a directory containing the parts of the envelope. If the
value of this header does not end in a slash, a period and the name of each part is appended
to the prefix.

Example

If the value of the X-PostX-Prefix header is “../../samples/default_envelope/” then the files are:
../../samples/default_envelope/prolog.html
../../samples/default_envelope/lib/*._js
../../samples/default_envelope/js
../../samples/default_envelope/epilog.html

If the value of X-PostX-Prefix header is “../../samples/default_envelope” (note no trailing slash)
then the files are:

../../samples/default_envelope.prolog.html
../../samples/default_envelope.lib/*_js
../../samples/default_envelope.js
../../samples/default_envelope.epilog.html

If this header isn't present, a locally configured default is used.

X-PostX-Envelope-Profile-Name
This header contains the name of the envelope profile to use when generating the Secure
Envelope. Each Secure Envelope appearing in the Configuration tree (Configuration > SMTP
Adaptor > Envelopes) generates an envelope profile. This header determines which of those
envelopes will be used.

18

X-POSTX-EXPIRATIONDATE

X-PostX-ExpirationDate
This header contains the date upon which a message expires. This date uses the following

formats:

Value Definition

+<days> Relative number of days

+<hh:mm:ss> Relative number of hours:minutes:seconds

<date>,<format> Absolute date specified with a certain format. The format
symbols must match those supported by
java.util.SimpleDateFormat

<Milliseconds> Absolute date specified as milliseconds since Jan 1, 1970

X-PostX-ReadNotificationDate

This header contains the date upon which a notification is sent if an email remains unread.
This date uses the following formats:

Value Definition

+<days> Relative number of days

+<hh:mm:ss> Relative number of hours:minutes:seconds
<date>,<format> Absolute date specified with a certain format. The format

symbols must match those supported by
java.util.SimpleDateFormat

<Milliseconds> Absolute date specified as milliseconds since Jan 1, 1970

Disposition-Notification-To
If present when building a registered envelope, a return receipt will be sent when the
envelope is open. For now, the value of the header is ignored.

CHAPTER 2: MIME ENVELOPE BUILDER 19

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

PAYLOAD HEADERS

The final headers specify the actual documents to be included in the envelope. The first
headers appear in the input message itself, the remaining headers appear in each of the
attachments to the input message.

X-PostX-Name

This header contains the name of the payload. This is currently only used to suggest a
directory name when the user saves the payload and the payload contains multiple
documents. If this header isn’t present, the name of the “main” document—the document
with 2 or 8 in the flags—is used (see “X-PostX-Flags” on page 21).

X-PostX-Add-Message-Bar
A flag indicating whether to generate a message bar and add it to the payload.

X-PostX-No-Message-Bar

A flag indicating no message bar should be added to the payload, regardless of the encryption
server configuration.

X-PostX-AttachmentName
This header contains the file name of the attachment to include in the email.

X-PostX-AttachmentEncoding
This header contains the file encoding of the attachment to include in the email.

X-PostX-BodyFile

This header contains the email message file.

X-PostX-BodyFileEncoding

This header contains the encoding of the email message file.

X-PostX-BodyFileFields
This header contains the parameter values for the message file variables.

X-PostX-MessageTextCharset
This header pertains to message personalization.

X-PostX-MessageFileEncoding
This header pertains to message personalization.

X-PostX-MessageEncoding
This header pertains to message personalization.

20

ATTACHMENT HEADERS

ATTACHMENT HEADERS

The remaining headers appear on the attachment to the input message. Each attachment
contains one of the documents to be placed in the payload. The body of the attachment
contains the document’s data. The headers examined are:

X-PostX-Flags

This header contains the flags, represented as an integer, for the document. The flags should
be a sum of the following values:

Flags Description

1 This document is secure (that is, it will be encrypted). If this flag isn’t
set, the document isn’t encrypted.

2 The document should be written to the window containing the
envelope.

4 The document should be written to disk.

8 The document should be launched (the browser told to open in a new

window a file containing a URL pointing to this document).
If flag 8 is used then flag 4 must also be used.

16 This value is reserved for future use and should not be included.

32 This flag is deprecated and is ignored whether or not it is set.

If the X-PostX-Flags header isn’t specified, a default of 3 (secure, and write to envelope
window) is used for text and HTML files, and a default of 13 (secure, write to disk, launch in
new window) is used for binary files.

X-PostX-HTML-Description

This header contains an HTML description of the document. The HTML description is
currently not used.

X-PostX-Text-Description

This header contains a text description of the document. The text description is currently not
used.

Content-Type

This header is not specific to the IronPort Encryption appliance; rather, it is the standard MIME
header. It is used to determine the type of document. Valid values are:

File Name Description

text/plain The document is plain text.

CHAPTER 2: MIME ENVELOPE BUILDER 21

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

File Name Description

text/html The document is HTML.

multipart/* The attachments contained within this attachment are recursively
parsed.

message/rfc822 The attachment contained within this attachment is recursively parsed.

All other types result in a binary document.

22

CHAPTER

Password Schemas

This chapter contains the following sections:
* “Overview” on page 24

e “Clear Passwords” on page 25

e “SHA-1 Hashed Passwords” on page 26
e “User ID and Password” on page 27

e “Multiple Passwords per Envelope” on page 28

CHAPTER 3: PASSWORD SCHEMAS 23

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

OVERVIEW

This chapter provides a number of example messages that show the various password forms.
These examples use mime_builder.py script to send the messages.

mime_builder.py is a command line Python script that can be used to construct and send test
e-mail messages to an encryption server. It supports a number of options for formatting the
header, body, and attachments to the e-mail and controlling how the e-mail is sent. In
addition to this chapter, mime_builder.py contains built in documentation. You can display a
brief summary of each of mime_builder.py’s options using the -2 option:

mime_builder.py -?

More detailed usage information can be displayed using the --usage option:
mime_builder.py --usage

A number of examples can be displayed using the --examples option:
mime_builder.py --examples

Each of the examples below contains a command line and output. The first line of each
example command is shown starting with the ‘$ * command prompt, and each subsequent
line with the continuation prompt ‘> ’, to differentiate them from output. The prompt aren't
entered, and may be different than those shown here, depending upon your operating system
and configuration.

Each command is also broken over multiple lines with new lines escaped by a backslash. The
commands may be entered this way on Unix-like systems (Linux, Solaris, Cygwin, etc.). On
Windows, the command must be entered on a single line with the backslashes removed.

Each of the examples includes the —w option, which instructs mime_builder.py to write the e-
mail message to standard output in addition to sending it to the specified SMTP server. The -w
option may be omitted to just send the message, or replaced with -W to just display the
message.

The boundary attribute in each Content-Type: header in the sample output is generated
randomly and will be different each time mime_builder.py is run.

24

CLEAR PASSWORDS

CLEAR PASSWORDS

To send passwords in the clear to the encryption server, add the following X-Header:
X-PostX-key: <key>
mime_builder.py does this automatically with the key argument.

Example

$ mime_buirlder.py -froot@localhost \
> -m"localhost, root@localhost -w \
> postx mime_builder.py

Sample Output

Subject: Test Mail from Enterprise

From: root@localhost

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: postx

X-PostX-Obfuscate: O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206.3856.1110908744.108.1"

--10.10.1.225.12206.3856.1110908744.108.1

Content-Transfer-Encoding: base64

Content-Type: text/plain;
name="mime_builder.py"

[base64 encoded lines omitted]

--10.10.1.225.12206.3856.1110908744.108.1--

CHAPTER 3: PASSWORD SCHEMAS 25

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

SHA-1 HASHED PASSWORDS

To send SHA encrypted passwords to the encryption server, add the following X-Header:
X-PostX-SHAedKey: <base64 encoded hashed key>
mime_builder.py does this automatically when you include the —S option.

Example

$ mime_buirlder.py -froot@localhost \
> -m"localhost,root@localhost” -S -w \
> postx mime_builder.py

Sample Output

Subject: Test Mail from Enterprise

From: root@localhost

To: root@localhost

X-PostX-Secure: true

X-PostX-SHAedKey: qx5yG4zSyp+x0z3wDVS9D/VKImMQ=

X-PostX-Obfuscate: O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206.2820-1110918369.219.1"

-- 10.10.1.225.12206.2820-.1110918369.219.1

Content-Transfer-Encoding: base64

Content-Type: text/plain;
name="mime_builder.py"

[base64 encoded lines omitted]

-- 10.10.1.225.12206.2820.1110918369.219.1--

26

USER ID AND PASSWORD

USER ID AND PASSWORD

Creating an envelope that requests a user id and password does not require any additional X-
PostX headers, but it does require a different envelope. This envelope is covered in the MIME
Envelope Builder chapter.

To build the user ID and password, you must concatenate the user ID and password together
and use the separator specified in the envelope. The example below uses the following
values:

user id = engine
password = postx

separator =~

Example

$ mime_builder.py -froot@localhost \
> -m"localhost, root@localhost™ -w \
> engine”postx mime_builder.py

Sample Output

Subject: Test Marl from Enterprise
From: root@localhost
To: root@localhost
X-PostX-Secure: true
X-PostX-Key: engine”postx
X-PostX-Obfuscate: 0
X-PostX-Line-Endings: d
Content-Type: multipart/mixed;
oundary="" 10.10.1.225.12206.2820.1110918369.219.1""

-- 10.10.1.225.12206.2820.1110918369.219.1

Content-Transfer-Encoding: base64

Content-Type: text/plain;
name="mime_builder.py"

[base64 encoded lines omitted]

-- 10.10.1.225.12206.2820.1110918369.219.1--

CHAPTER 3: PASSWORD SCHEMAS 27

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

MULTIPLE PASSWORDS PER ENVELOPE

Allowing an envelope to accept multiple passwords requires each password to appear in an
X-PostX-Key or X-PostX-SHAedKey header. Passwords sent in the clear should be placed in X-
PostX-Key headers and SHA-1 hashed passwords should be placed in X-PostX-SHAedKey
headers.

Multiple Clear Passwords

The following example adds three clear passwords. Any one of the three passwords may be
used to open the resulting envelope. Note that mime_builder.py splits the key specified on the
command line on commas and adds each resulting key.

Example

$ mime_builder.py -froot@localhost \
> -m"localhost, root@localhost -w \
> engine,postx,envelope mime_builder.py

Sample Output

Subject: Test Mail from Enterprise

From: root@localhost

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: engine

X-PostX-Key: postx

X-PostX-Key: envelope

X-PostX-Obfuscate: 0O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="" 10.10.1.225.12206.1152.1110918421.307.-1""

-- 10.10.1.225.12206.1152.1110918421.307 -1

Content-Transfer-Encoding: base64

Content-Type: text/plain;
name="mime_builder.py"

[base64 encoded lines omitted]

-- 10.10.1.225.12206.1152.1110918421.307.1--

Multiple SHA-1 Hashed Passwords

The following example adds two SHA-1 hashed passwords. Either of the passwords may be
used to open the resulting envelope.

28

MULTIPLE SHA-1 HASHED PASSWORDS

Example

$ mime_burlder.py -froot@localhost \
> -m"localhost, root@localhost” -S -w \
> engine,postx mime_builder.py

Sample Output

Subject: Test Mail from Enterprise
From: root@localhost
To: root@localhost
X-PostX-Secure: true
X-PostX-SHAed-Key: xkAzZy9cqYTF6WKQINGWHoAS8MU=
X-PostX-SHAed-Key: qx5yG4zSyp+x0z3wDVS9D/VKImQ=
X-PostX-Obfuscate: O
X-PostX-Line-Endings: d
Content-Type: multipart/mixed;
boundary=" 10.10.1.225.12206.1152.1110918421.307.1"

-- 10.10.1.225.12206.1152.1110918421.307 -1

Content-Transfer-Encoding: base64

Content-Type: text/plain;
name="mime_builder.py"

[base64 encoded lines omitted]

-- 10.10.1.225.12206.1152.1110918421.307.1--

CHAPTER 3: PASSWORD SCHEMAS 29

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

30

CHAPTER

Payload Types

This chapter contains examples showing how to send email messages containing different
types of payloads using the mime_builder.py command line tool. For a browser-based tool to
construct and send email, please see the IronPort Encryption Appliance Operations Manual.

This chapter contains the following sections:
e “Overview” on page 32

¢ “Sending Different Types of Payloads” on page 33

CHAPTER 4: PAYLOAD TYPES 31

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

OVERVIEW

This chapter provides a number of example messages that show the various payload types.
These examples use mime_builder.py script to send the messages.

mime_builder.py is a command line Python script that can be used to construct and send test
email messages to an encryption server. It supports a number of options for formatting the
header, body, and attachments to the email and controlling how the email is sent. In addition
to this chapter, mime_builder.py contains built in documentation. You can display a brief
summary of each of mime_builder.py’s options using the -2 option:

mime_builder.py -?

More detailed usage information can be displayed using the --usage option:
mime_builder.py --usage

A number of examples can be displayed using the --examples option:
mime_builder.py --examples

Each of the examples below contains a command line and output. The first line of each
example command is shown starting with the ‘$ * command prompt, and each subsequent
line with the continuation prompt ‘> ’, to differentiate them from output. The prompt aren't
entered, and may be different than those shown here, depending upon your operating system
and configuration.

Each command is also broken over multiple lines with new lines escaped by a backslash. The
commands may be entered this way on Unix-like systems (Linux, Solaris, Cygwin, etc.). On
Windows, the command must be entered on a single line with the backslashes removed.

Each of the examples includes the —w option, which instructs mime_builder.py to write the
email message to standard output in addition to sending it to the specified SMTP server. The —
w option may be omitted to just send the message, or replaced with -W to just display the
message.

The boundary attribute in each Content-Type: header in the sample output is generated
randomly and will be different each time mime_builder.py is run.

32

SENDING DIFFERENT TYPES OF PAYLOADS

SENDING DIFFERENT TYPES OF PAYLOADS

This section contains examples showing how to send emails containing different types of
payloads using the mime_builder.py command line tool.

Text Payload

Example

$ mime_builder.py -froot@localhost \
> -m"localhost, root@localhost” -tt -w \
> postx mime_builder.py

Sample Output

Subject: Test Mail from Enterprise

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: postx

X-PostX-Obfuscate: 0O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206.3856.1110908744.108.1"

--10.10.1.225.12206-.3856.1110908744.108.1

Content-Transfer-Encoding: base64

Content-Type: text/plain;
name="mime_builder.py"

[base64 encoded lines omitted]

--10.10.1.225.12206.3856.1110908744.108.1--

CHAPTER 4: PAYLOAD TYPES 33

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

If a payload is not specified, you will be prompted for input. Enter <ctrl-d> to end input on
Unix-like systems, or <ctrl-z><return> on Windows

Example

$ mime_builder.py -froot@localhost \

> -m"localhost, root@localhost™ -tt -w postx
Reading payload from stdin

hello world

<ctrl-d>

Sample Output

Subject: Test Mail from Enterprise

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: postx

X-PostX-Obfuscate: 0O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206.476.1110909521.329.1"

--10.10.1.225.12206.476.1110909521.329.1
Content-Transfer-Encoding: base64
Content-Type: text/plain;
aGVshbG8gd29ybGQK

--10.10.1.225.12206.476.1110909521.329.1—

34

HTML PAYLOAD

HTML Payload

Example

$ mime_builder.py -froot@localhost \
> -m"localhost, root@localhost” -th -w postx
Reading payload from stdin
<html><body>hello world</body></html>
<ctrl-d>

Sample Output

Subject: Test Mail from Enterprise

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: postx

X-PostX-Obfuscate: 0O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206.3808.1110910895.287.1"

--10.10.1.225.12206.3808.1110910895.287.1
Content-Transfer-Encoding: base64

Content-Type: text/html;

PGhObWw+PGJvZHk+PG 1+aGVsbG8gd29ybGQ8L21+PC9ib2R5P jwvaHRtbD4K

--10.10.1.225.12206.3808.1110910895.287 .1—

CHAPTER 4: PAYLOAD TYPES 35

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

Binary Payload

Binary payloads require that the recipient either have Java available and download a one-time
Java applet. Alternatively, you can make “open online” available.

Example

$ mime_burlder.py -tfroot@localhost \
> -m"localhost, root@localhost™ -tb -w postx logo.gif

Sample Output

Subject: Test Mail from Enterprise

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: postx

X-PostX-Obfuscate: 0O

X-PostX-Line-Endings: d

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206-3500-.1110911268.236.1"

--10.10.1.225.12206.3500.1110911268.236.1

Content-Transfer-Encoding: base64

Content-Type: application/octet-stream;
name="logo.gif"

[base64 encoded lines omitted]

--10.10.1.225.12206.3500.1110911268.236.1—

Multiple Attachment Payload

The individual parts of a multiple attachment payload must have an X-PostX-Flags header that
determines the disposition of the part. mime_builder.py uses a directory containing a __toc__
file to generate the multiple attachments and the flags for each part.

Multiple attachment payloads also require that the recipient either have Java available and
download a one-time Java applet. Alternatively, you can make “open online” available.

36

MULTIPLE ATTACHMENT PAYLOAD

Example

$ mkdir test

$ cd test

$ touch test.gif

$ touch test.html

$ cat > toc__

[DEFAULT]

payloadname = Multi Attachment

flags = FLAG_WRITE

[test.html]

flags = FLAG_WRITE | FLAG_SECURE | FLAG_LAUNCH
<ctrl-d>

$cd ..

$ mime_builder.py -froot@localhost \

> -m"localhost, root@localhost™ —w postx test/

Sample Output

Subject: Test Mail from Enterprise

To: root@localhost

X-PostX-Secure: true

X-PostX-Key: postx

X-PostX-Obfuscate: 0O

X-PostX-Line-Endings: d

X-PostX-Name: Multi Attachment

Content-Type: multipart/mixed;
boundary="10.10.1.225.12206.2724.1110911955.303.1"

--10.10.1.225.12206.2724.1110911955.303.1

Content-Transfer-Encoding: base64

X-PostX-Flags: 4

Content-Type: application/octet-stream;
name=""test.gif"

--10.10.1.225.12206.2724.1110911955.303.1
Content-Transfer-Encoding: base64
X-PostX-Flags: 13
Content-Type: text/html;

name=""test._html"

--10.10.1.225.12206.2724.1110911955.303.1--

CHAPTER 4: PAYLOAD TYPES 37

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

38

CHAPTER

Secure Response

The chapter describes how the Secure Response application works and explains the server
portion of the mechanism for Secure Reply messages.

This chapter contains the following sections:
¢ “Introduction” on page 40

* “Secure Response Behavior” on page 43
* “Secure Response Form” on page 44

e “SSL/TLS Certificate” on page 45

CHAPTER 5: SECURE RESPONSE 39

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

INTRODUCTION

Secure Response allows a recipient of a Secure Envelope to reply to the sender in a manner as
secure as the original message without using any special software. The recipient uses a
standard SSL- and JavaScript-enabled web browser to send the Secure Reply message.

A specially constructed link included in the payload placed in a Secure Envelope provides the
ability to send a Secure Reply. The link calls a JavaScript function that constructs an HTML
form that is posted to an SSL-secured web page that allows the recipient to enter the reply.
The reply email is then sent to the encryption server to secure the email before sending it to
the original sender (or other recipient specified in the original payload). The envelope
containing the reply may also allow a Secure Reply to the initial reply. Optionally, the Secure
Reply message can be sent in the clear, without encryption. That way, you can enable reply
email messages sent within the organization to be unencrypted.

The following Secure Response options are available:

¢ Secure Reply - Enables the Reply button on the envelope contents. The reply is sent to the
sender only.

e Secure Reply to All - Enables the Reply All button on the envelope. The reply is sent to the
sender and all of the recipients in the To and CC lists.

¢ Secure Forward - Enables the Secure Forward button on the envelope which allows the
recipient to forward the message to other users. Note: Attachments are not currently
forwarded.

Note — For information on configuring SSL, please see the lronPort Encryption Appliance
Configuration Manual.

40

INTRODUCTION

The following diagram gives an overview of the steps taken in receiving a Secure Envelope
and responding to it with a Secure Reply message.

Trusted Messaging Statement System Email Originator

8
\ | /
IronPort Encryption Appliance Email Recipient
2 1
Encryption Server > Email Client
7 4 4 v 3
Web Server 5 » Web Browser
“6

The steps in the process are:
1. The data required for generating a secure email is sent to the encryption server.

2. The encryption server constructs an email message with a Secure Envelope that contains
the payload as an attachment. The encryption server is configured so that, when the
payload is decrypted, it enables the recipient to send a Secure Reply. The email message is
sent to the recipient.

3. The recipient opens the Secure Envelope in a web browser and enters a password to
decrypt and display the payload.

4. The recipient clicks the link to send a Secure Reply. The link calls a JavaScript function
that opens a new browser window and sends an initial POST to the Secure Reply web
application on the web server.

5. Based on the configuration file, the web application generates an HTML form with some
of the fields completed using values specified in the payload. The web application then
sends the form back to the recipient’s web browser.

6. The recipient enters the reply and submits the form, which creates an HTTP POST back to
the Secure Response web application. The web application examines the submitted

CHAPTER 5: SECURE RESPONSE 41

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

information. It regenerates the form if there are errors with the submitted information, and
it repeats steps 5 and 6 as necessary. When the submitted information is free of errors, the
web application constructs an email message using the entered data and any attached
files.

7. The message is sent to the encryption server for delivery. Depending on the configuration,
the server encrypts the message in a Secure Envelope. Secure Response can be configured
to send the reply message unencrypted.

8. The reply message is delivered to the sender of the original email using the address
specified in the original message.

Note — When encrypted messages are sent using Secure Response, the originator might reply
to a Secure Reply message. In that case, the originator may receive a Secure Envelope with a
payload that allows Secure Reply messages. An email exchange with multiple messages and
replies can occur with all the messages protected in Secure Envelopes.

42

SECURE RESPONSE BEHAVIOR

SECURE RESPONSE BEHAVIOR

Secure Response behavior is determined by three elements: the Secure Reply configuration as
set in the encryption server, the HTML form values passed by the JavaScript when it initially
posts to the page, and the certificate associated with the SSL server.

CHAPTER 5: SECURE RESPONSE 43

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

SECURE RESPONSE FORM

The Secure Response form is invoked by clicking on the Reply, Reply All, or Forward buttons
on the payload. A form is displayed that allows you to respond to or forward the message and
manage multiple attachments.

HTML Form Values

Communication between the Secure Reply web application and the user is via an HTTP
POST. The initial POST may establish a value for any of the fields, some of the field values are
derived from the configuration file entries, and user entered values provide the remaining
fields.

to

The To field contains the destination of the Secure Reply. The To field can only be edited if
you are responding using the Forward button.

bcc

This field allows entry of space, comma, or semi-colon separated addresses to be placed in
the Bcc: header of the reply. This field is only available if the Offer BCC parameter is checked
within the encryption server. If Freeze Bcc is checked, this field is shown as non-editable.

CcC

This field allows entry of space, comma, or semi-colon separated addresses to be placed in
the Cc: header of the reply. This field is only available if the Offer CC parameter is checked
within the encryption server. If Freeze CC is checked, this field is shown as non-editable.

from

The from field contains the email address of the recipient opening the Secure Envelope. This
field is not editable.

subject

The subject field contains the subject of the email message containing the Secure Envelope
containing the Secure Reply. The subject is always displayed but is only editable if the Freeze
Subject parameter is not checked within the encryption server.

sendsecure

This field specifies whether the reply email should be sent as a secure email or as a plain
email. Absence of this field will result in the decision of securing the email being made on the
domain list matching.

44

SSL/TLS CERTIFICATE

SSL/TLS CERTIFICATE

In the standard configuration, the Secure Reply is served using the HTTPS protocol on an SSL-
secured connection. Such a connection requires an X.509 certificate. The certificate must be
stored in the JKS file called keystore in the conf directory. The certificate should be stored
under the alias “pxessl”, the algorithm must be RSA, and the keystore and key passwords must
be “pxessl”.

The default keystore file contains a sample certificate suitable for testing, but a real certificate
should be placed in the keystore file before deployment.

CHAPTER 5: SECURE RESPONSE 45

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

46

CHAPTER

Controlling the WebSafe Application

This chapter contains the following sections:
e “Optional Standard Parameters Per Incoming Email” on page 48
L[]

“Optional Custom Parameters Per Incoming Email” on page 49

* “WebSafe Header for Sending Notifications” on page 51

CHAPTER 6: CONTROLLING THE WEBSAFE APPLICATION 47

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

OPTIONAL STANDARD PARAMETERS PER INCOMING EMAIL

WebSafe enables you to edit certain global parameters in SMTP headers on a per message

basis.

SMTP headers have the following format:

<header>:<value>

The parameters are specified as SMTP headers to the incoming message and are as follows:

Parameter

Definition

X-PostXWS-AppName

This specifies the application name for the incoming
email and is stored along with the email.

X-PostXWS-ExpiryDays

This specifies the content expiry duration in number of
days for this email and overrides the global value
“ExpiryDurationInDays”.

X-PostXWS- RRNotifyDays

This specifies the return receipt notification expiry
duration in number of days for this email and overrides
the global value “NotifyNoRRInDays".

Disposition-Notification-To

This is a standard SMTP header recognized by
WebSafe, which indicates the need for a return receipt
for this email.

48

OPTIONAL CUSTOM PARAMETERS PER INCOMING EMAIL

OPTIONAL CUSTOM PARAMETERS PER INCOMING EMAIL

WebSafe enables you to use custom fields and values per message, which are stored in the
database. These parameters are specified as SMTP headers in the incoming message and are
of the format <header>:<value>, as follows:

X-PostXWS-<FieldName>:<Fieldvalue>
For example: X-PostXWS-Caseld:00000123321
Time-Sensitive Emails: Monitoring Aging and Missing Return Receipts

The encryption server hosts a “WebSafeService” Mbean that monitors for aged content data
and marks it for deletion from the database. The emails marked for deletion are not shown to
the recipient. It also monitors for return receipts received and if the return receipt has not
been received within the specified “NotifyNoRRInDays” it notifies the sender appropriately.

The default version of this service runs only once a day and not continuously.

You can configure the Mbean by going to the Configuration tab and clicking Scheduling >
Scheduled Tasks > WebSafe Service.

Templates for Compose

WebSafe supports templates to be used when composing a new email. The default compose
button uses a template XML file “plain.xml” stored at the “Compose Template Path” location
specified in WebSafe Client Configuration. The XML template allows an enterprise to change
its default compose screen behavior and/or add new compose screens easily. The templates
can specify each newly composed email to:

e Have certain pre-filled values for fields

¢ Not show certain parameters like cc or attachments

¢ Make certain fields read-only

¢ Specify custom parameters

e List allowable or restricted attachments

¢ Specify a maximum limit for attachment size, and so forth.

These templates are defined in XML format and an example is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<1-- $I1d: plain.xml,v 1.1 2002/10/14 18:17:16 ashish Exp $ -->

<WebSafe-compose version="$Revision: 1.1 $'">
<application>Direct Deposit Account</application>
<form>
<offer-to>true</offer-to>
<offer-cc readonly="true'>true</offer-cc>
<offer-bcc>false</offer-bcc>
<offer-subject>true</offer-subject>

CHAPTER 6: CONTROLLING THE WEBSAFE APPLICATION 49

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

<offer-attachment>true</offer-attachment>
<custom name="Account™ readonly="true'></custom>
<custom name='"'Caseld"></custom>
<custom name="Branchld"'></custom>
</form>
<defaults>
<to>
<value id="1">ashish@postx.com</value>
<value id="2">shankar@postx.com</value>
<value id="3">kumar@postx.com</value>
</to>
<cc>
<value id="1">ashish@postx.com</value>
</cc>
<subject>
<value i1d="1">Account Balance</value>
<value id="2">Resend Cheques</value>
</subject>
<Caseld>
<value i1d=""1">Case00l1</value>
<value i1d="2">Case002</value>
<value i1d="3">Case003</value>
</Caseld>
<Account>
<value id=""1">Acct00l</value>
</Account>
<Branchld>
<value i1d="1">Br001</value>
</Branchld>
<attachments>
<allowed>*_htm,*.txt,*.pdf</al lowed>
<not-al lowed></not-al lowed>
<max-size-al lowed>5000000</max-size-al lowed>
</attachments>
<domains>
<restrict>enterprisedomain.com</restrict>
</domains>
<sender-confirm>true</sender-confirm>
</defaul ts>
</WebSafe-compose>

50

WEBSAFE HEADER FOR SENDING NOTIFICATIONS

WEBSAFE HEADER FOR SENDING NOTIFICATIONS

By default, the X-PostX-NoSecure: true header is used by the encryption server to
identify email messages that are to be sent out to the users in the standard non-encrypted
format. The HasHeader PostX-NoSecure matcher is located in the Check for Send Clear rule
in the root ruleset, and it processes the message in the SMTP Delivery application for remote
delivery in an unencrypted format. WebSafe typically uses this header to send out email
notifications to external email addresses, informing them that a new message has arrived.

CHAPTER 6: CONTROLLING THE WEBSAFE APPLICATION 51

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

52

Index

A

attachments
headers 21, 36

C

compression 11

D
Disposition-Notification-To 19, 48

K
keys and encryption 12, 23

M

message personalization 1
overview 2

MIME Envelope Builder 9
about 10

0
optional custom parameters 49
optional standard parameters 48

P

passwords
multiple 12

payload
headers 20
X-PostX-Add-Message-Bar headers 20
X-PostX-AttachmentEncoding headers 20
X-PostX-AttachmentName headers 20
X-PostX-BodyFile headers 20
X-PostX-BodyFileEncoding headers 20
X-PostX-BodyFileFields headers 20
X-PostX-MessageEncoding headers 20
X-PostX-MessageFileEncoding headers 20
X-PostX-MessageTextCharset headers 20
X-PostX-Name headers 20

PostX Envelope
X-PostX-Line-Endings headers 17

S
Secure Envelope

headers 17
Secure Forward 40
Secure Reply 40

HTML Form Values 44
secure reply

introduction 40
Secure Reply to All 40
secure response behavior 43
SecureResponse 39
Simple Template Engine 6
SSL/TLS certificate 45

T

template engines 6
Simple 6
Velocity 7
XMLC 7

text personalization
configuring the variable map 3

Vv
Velocity 7
Velocity Template Engine 7

w
WebSafe 51
optional custom parameters 49
optional parameters 49
optional standard parameters 48
WebSafe Headers
sending notifications 51

X

XMLC Template Engine 7
X-PostX-Accountld 14
X-PostX-Algorithm 14
X-PostX-Crypt-Compression 11
X-PostX-EnvelopeFileEncoding 17
X-PostX-Envelope-Profile-Name 18
X-PostX-ExpirationDate 19
X-PostX-Identity 14

X-PostX-Key 12

X-PostX-KeySize 12
X-PostX-Line-Endings 17
X-PostX-Max-Bad-Passwords 13
X-PostX-Message-Sensitivity 14
X-PostX-Name 20
X-PostX-No-Message-Bar 20
X-PostX-NoSecure header 51

INDEX 53

IRONPORT ENCRYPTION APPLIANCE 6.5 APPLICATION DEVELOPER’S REFERENCE MANUAL

X-PostX-Plain-Compression 11
X-PostX-Prefix 17

X-PostX-PRNG 13
X-PostX-ReadNotificationDate 19
X-PostX-SHAedKey 12
X-PostX-SkipRules 15
X-PostX-Token 15

X-PostXWS- RRNotifyDays 48
X-PostXWS-AppName 48
X-PostXWS-ExpiryDays 48

54

	Message Personalization
	Overview
	Setting Up Message Personalization
	Message Personalization Configuration Parameters
	Configuring the Variable Map for Text Personalization

	Template Engines
	Overview
	Simple Template Engine

	MIME Envelope Builder
	About the MIME Envelope Builder
	Compression Headers
	X-PostX-Crypt-Compression
	X-PostX-Plain-Compression

	Keys and Encryption Headers
	X-PostX-KeySize
	X-PostX-Key
	X-PostX-SHAedKey
	Multiple Passwords
	X-PostX-PRNG
	X-PostX-Max-Bad-Passwords

	X-PostX-Algorithm Header
	X-PostX-Identity
	X-PostX-AccountId
	X-PostX-Message-Sensitivity
	X-PostX-SkipRules
	X-PostX-Token

	X-IronPort Headers for Incoming Mail
	X-IronPort-Encrypt=SMIME
	X-IronPort-Encrypt=PGP
	X-IronPort-Encrypt=SecureMailbox
	X-IronPort-Encrypt=RegEnvelope

	X-IronPort Headers for Outgoing Mail
	X-IronPort-Encrypt=Success
	X-IronPort-Encrypt=Failure

	Secure Envelope Headers
	X-PostX-EnvelopeFileEncoding
	X-PostX-Line-Endings
	X-PostX-Prefix
	X-PostX-Envelope-Profile-Name
	X-PostX-ExpirationDate
	X-PostX-ReadNotificationDate
	Disposition-Notification-To

	Payload Headers
	X-PostX-Name
	X-PostX-Add-Message-Bar
	X-PostX-No-Message-Bar
	X-PostX-AttachmentName
	X-PostX-AttachmentEncoding
	X-PostX-BodyFile
	X-PostX-BodyFileEncoding
	X-PostX-BodyFileFields
	X-PostX-MessageTextCharset
	X-PostX-MessageFileEncoding
	X-PostX-MessageEncoding

	Attachment Headers

	Password Schemas
	Overview
	Clear Passwords
	SHA-1 Hashed Passwords
	User ID and Password
	Multiple Passwords per Envelope
	Multiple Clear Passwords
	Multiple SHA-1 Hashed Passwords

	Payload Types
	Overview
	Sending Different Types of Payloads
	Text Payload
	HTML Payload
	Binary Payload
	Multiple Attachment Payload

	Secure Response
	Introduction
	Secure Response Behavior
	Secure Response Form
	HTML Form Values

	SSL/TLS Certificate

	Controlling the WebSafe Application
	Optional Standard Parameters Per Incoming Email
	Optional Custom Parameters Per Incoming Email
	WebSafe Header for Sending Notifications

	Index

