

Addresses, Protocols, and Ports Reference

This appendix provides a quick reference for the following categories:

- IP Addresses and Subnet Masks, page D-1
- Protocols and Applications, page D-5
- TCP and UDP Ports, page D-6
- ICMP Types, page D-9

IP Addresses and Subnet Masks

This section describes how to use IP addresses in the Firewall Services Module (FWSM). An IP address is a 32-bit number written in dotted decimal notation: four 8-bit fields (octets) converted from binary to decimal numbers, separated by dots. The first part of an IP address identifies the network on which the host resides, while the second part identifies the particular host on the given network. The network number field is called the network prefix. All hosts on a given network share the same network prefix but must have a unique host number. In classful IP, the class of the address determines the boundary between the network prefix and the host number.

This section includes the following topics:

- Classes, page D-1
- Private Networks, page D-2
- Subnet Masks, page D-2

Classes

IP host addresses are divided into three different address classes: Class A, Class B, and Class C. Each class fixes the boundary between the network prefix and the host number at a different point within the 32-bit address. Class D addresses are reserved for multicast IP.

- Class A addresses (1.xxx.xxx through 126.xxx.xxx) use only the first octet as the network prefix.
- Class B addresses (128.0.xxx.xxx through 191.255.xxx.xxx) use the first two octets as the network prefix.
- Class C addresses (192.0.0.xxx through 223.255.255.xxx) use the first three octets as the network prefix.

Because Class A addresses have 16,777,214 host addresses, and Class B addresses 65,534 hosts, you can use subnet masking to break these huge networks into smaller subnets.

Private Networks

If you need large numbers of addresses on your network, and they do not need to be routed on the Internet, you can use private IP addresses that the Internet Assigned Numbers Authority (IANA) recommends (see RFC 1918). The following address ranges are designated as private networks that should not be advertised:

- 10.0.0.0 through 10.255.255.255
- 172.16.0.0 through 172.31.255.255
- 192.168.0.0 through 192.168.255.255

Subnet Masks

A subnet mask lets you convert a single Class A, B, or C network into multiple networks. With a subnet mask, you can create an extended network prefix that adds bits from the host number to the network prefix. For example, a Class C network prefix always consists of the first three octets of the IP address. But a Class C extended network prefix uses part of the fourth octet as well.

Subnet masking is easy to understand if you use binary notation instead of dotted decimal. The bits in the subnet mask have a one-to-one correspondence with the Internet address:

- The bits are set to 1 if the corresponding bit in the IP address is part of the extended network prefix.
- The bits are set to 0 if the bit is part of the host number.

Example 2: If you want to use only part of the third octet for the extended network prefix, then you must specify a subnet mask like 111111111111111111000.00000000, which uses only 5 bits of the third octet for the extended network prefix.

You can write a subnet mask as a dotted decimal mask or as a */bits* ("slash *bits*") mask. In Example 1, for a dotted decimal mask, you convert each binary octet into a decimal number: 255.255.255.0. For a */bits* mask, you add the number of 1s: /24. In Example 2, the decimal number is 255.255.248.0 and the /bits is /21.

You can also supernet multiple Class C networks into a larger network by using part of the third octet for the extended network prefix. For example, 192.168.0.0/20.

Determining the Subnet Mask

To determine the subnet mask based on how many hosts you want, see Table D-1.

Table D-1 Hosts, Bits, and Dotted Decimal Masks

Hosts ¹	/Bits Mask	Dotted Decimal Mask
16,777,216	/8	255.0.0.0 Class A Network
65,536	/16	255.255.0.0 Class B Network
32,768	/17	255.255.128.0
16,384	/18	255.255.192.0
8,192	/19	255.255.224.0
4,096	/20	255.255.240.0
2,048	/21	255.255.248.0
1,024	/22	255.255.252.0
512	/23	255.255.254.0
256	/24	255.255.255.0 Class C Network
128	/25	255.255.255.128
64	/26	255.255.255.192
32	/27	255.255.255.224
16	/28	255.255.255.240
8	/29	255.255.255.248
4	/30	255.255.255.252
Do not use	/31	255.255.255.254
1	/32	255.255.255.255 Single Host Address

1. The first and last number of a subnet are reserved, except for /32, which identifies a single host.

Determining the Address to Use with the Subnet Mask

The following sections describe how to determine the network address to use with a subnet mask for a Class C-size and a Class B-size network:

- Class C-Size Network Address, page D-4
- Class B-Size Network Address, page D-4

Class C-Size Network Address

For a network between 2 and 254 hosts, the fourth octet falls on a multiple of the number of host addresses, starting with 0. For example, the 8-host subnets (/29) of 192.168.0.x are as follows:

Subnet with Mask /29 (255.255.255.248)	Address Range ¹
192.168.0.0	192.168.0.0 to 192.168.0.7
192.168.0.8	192.168.0.8 to 192.168.0.15
192.168.0.16	192.168.0.16 to 192.168.0.31
192.168.0.248	192.168.0.248 to 192.168.0.255

1. The first and last address of a subnet are reserved. In the first subnet example, you cannot use 192.168.0.0 or 192.168.0.7.

Class B-Size Network Address

To determine the network address to use with the subnet mask for a network with between 254 and 65,534 hosts, you need to determine the value of the third octet for each possible extended network prefix. For example, you might want to subnet an address like 10.1.x.0, where the first two octets are fixed because they are used in the extended network prefix, and the fourth octet is 0 because all bits are used for the host number.

To determine the value of the third octet, follow these steps:

Step 1 Calculate how many subnets you can make from the network by dividing 65,536 (the total number of addresses using the third and fourth octet) by the number of host addresses you want.

For example, 65,536 divided by 4096 hosts equals 16.

Therefore, there are 16 subnets of 4096 addresses each in a Class B-size network.

Step 2 Determine the multiple of the third octet value by dividing 256 (the number of values for the third octet) by the number of subnets:

In this example, 256/16 = 16.

The third octet falls on a multiple of 16, starting with 0.

Therefore, the 16 subnets of the network 10.1 are as follows:

Subnet with Mask /20 (255.255.240.0)	Address Range ¹
10.1.0.0	10.1.0.0 to 10.1.15.255
10.1.16.0	10.1.16.0 to 10.1.31.255
10.1.32.0	10.1.32.0 to 10.1.47.255
10.1.240.0	10.1.240.0 to 10.1.255.255

1. The first and last address of a subnet are reserved. In the first subnet example, you cannot use 10.1.0.0 or 10.1.15.255.

Protocols and Applications

This section provides information about the protocols and applications with which you may need to work when configuring the FWSM. It includes the following topics:

Possible literal values are **ahp**, **eigrp**, **esp**, **gre**, **icmp**, **igmp**, **igrp**, **ip**, **ipinip**, **ipsec**, **nos**, **ospf**, **pcp**, **snp**, **tcp**, and **udp**. You can also specify any protocol by number. The **esp** and **ah** protocols only work in conjunction with Private Link.

```
<u>Note</u>
```

The FWSM does not pass multicast packets. Many routing protocols use multicast packets for data transfer. If you need to send routing protocols across the FWSM, configure the routers with the Cisco IOS software **neighbor** command. We consider it inherently dangerous to send routing protocols across the FWSM. If the routes on the unprotected interface are corrupted, the routes transmitted to the protected side of the firewall will pollute routers there as well.

Table D-2 lists the numeric values for the protocol literals.

Literal	Value	Description
ah	51	Authentication Header for IPv6, RFC 1826
eigrp	88	Enhanced Interior Gateway Routing Protocol
esp	50	Encapsulated Security Payload for IPv6, RFC 1827
gre	47	generic routing encapsulation
icmp	1	Internet Control Message Protocol, RFC 792
igmp	2	Internet Group Management Protocol, RFC 1112
igrp	9	Interior Gateway Routing Protocol
ip	0	Internet Protocol
ipinip	4	IP-in-IP encapsulation
nos	94	Network Operating System (Novell's NetWare)
ospf	89	Open Shortest Path First routing protocol, RFC 1247
рср	108	Payload Compression Protocol
snp	109	Sitara Networks Protocol
tcp	6	Transmission Control Protocol, RFC 793
udp	17	User Datagram Protocol, RFC 768

Table D-2 Protocol Literal Values

Protocol numbers can be viewed online at the IANA website:

http://www.iana.org/assignments/protocol-numbers

TCP and UDP Ports

Table D-3 lists the literal values and port numbers; either can be entered in FWSM commands. See the following caveats:

- The FWSM uses port 1521 for SQL*Net. This is the default port used by Oracle for SQL*Net. This value, however, does not agree with IANA port assignments.
- The FWSM listens for RADIUS on ports 1645 and 1646. If your RADIUS server uses the standard ports 1812 and 1813, you can configure the FWSM to listen to those ports using the **aaa-server** radius-authport and aaa-server radius-acctport commands.
- To assign a port for DNS access, use **domain**, not **dns**. The **dns** keyword translates into the port value for **dnsix**.

Port numbers can be viewed online at the IANA website:

http://www.iana.org/assignments/port-numbers

Literal	TCP or UDP?	Value	Description
aol	ТСР	5190	America On-line
bgp	ТСР	179	Border Gateway Protocol, RFC 1163
biff	UDP	512	Used by mail system to notify users that new mail is received
bootpc	UDP	68	Bootstrap Protocol Client
bootps	UDP	67	Bootstrap Protocol Server
chargen	ТСР	19	Character Generator
citrix-ica	ТСР	1494	Citrix Independent Computing Architecture (ICA) protocol
cmd	ТСР	514	Similar to exec except that cmd has automatic authentication
ctiqbe	ТСР	2748	Computer Telephony Interface Quick Buffer Encoding
daytime	ТСР	13	Day time, RFC 867
discard	TCP, UDP	9	Discard
domain	TCP, UDP	53	DNS (Domain Name System)
dnsix	UDP	195	DNSIX Session Management Module Audit Redirector
echo	TCP, UDP	7	Echo
exec	ТСР	512	Remote process execution
finger	ТСР	79	Finger
ftp	ТСР	21	File Transfer Protocol (control port)
ftp-data	ТСР	20	File Transfer Protocol (data port)

Table D-3Port Literal Values

Literal	TCP or UDP?	Value	Description	
gopher	ТСР	70	Gopher	
https	ТСР	443	Hyper Text Transfer Protocol (SSL)	
h323	ТСР	1720	H.323 call signalling	
hostname	ТСР	101	NIC Host Name Server	
ident	ТСР	113	Ident authentication service	
imap4	ТСР	143	Internet Message Access Protocol, version 4	
irc	ТСР	194	Internet Relay Chat protocol	
isakmp	UDP	500	Internet Security Association and Key Management Protocol	
kerberos	TCP, UDP	750	Kerberos	
klogin	ТСР	543	KLOGIN	
kshell	ТСР	544	Korn Shell	
ldap	ТСР	389	Lightweight Directory Access Protocol	
ldaps	ТСР	636	Lightweight Directory Access Protocol (SSL)	
lpd	ТСР	515	Line Printer Daemon - printer spooler	
login	ТСР	513	Remote login	
lotusnotes	ТСР	1352	IBM Lotus Notes	
mobile-ip	UDP	434	MobileIP-Agent	
nameserver	UDP	42	Host Name Server	
netbios-ns	UDP	137	NetBIOS Name Service	
netbios-dgm	UDP	138	NetBIOS Datagram Service	
netbios-ssn	ТСР	139	NetBIOS Session Service	
nntp	ТСР	119	Network News Transfer Protocol	
ntp	UDP	123	Network Time Protocol	
pcanywhere-status	UDP	5632	pcAnywhere status	
pcanywhere-data	ТСР	5631	pcAnywhere data	
pim-auto-rp	TCP, UDP	496	Protocol Independent Multicast, reverse path flooding, dense mode	
pop2	ТСР	109	Post Office Protocol - Version 2	
pop3	ТСР	110	Post Office Protocol - Version 3	
pptp	ТСР	1723	Point-to-Point Tunneling Protocol	
radius	UDP	1645	Remote Authentication Dial-In User Service	
radius-acct	UDP	1646	Remote Authentication Dial-In User Service (accounting)	

 Table D-3
 Port Literal Values (continued)

Literal	TCP or UDP?	Value	Description
rip	UDP	520	Routing Information Protocol
secureid-udp	UDP	5510	SecureID over UDP
smtp	ТСР	25	Simple Mail Transport Protocol
snmp	UDP	161	Simple Network Management Protocol
snmptrap	UDP	162	Simple Network Management Protocol - Trap
sqlnet	ТСР	1521	Structured Query Language Network
ssh	ТСР	22	Secure Shell
sunrpc (rpc)	TCP, UDP	111	Sun Remote Procedure Call
syslog	UDP	514	System Log
tacacs	TCP, UDP	49	Terminal Access Controller Access Control System Plus
talk	TCP, UDP	517	Talk
telnet	ТСР	23	RFC 854 Telnet
tftp	UDP	69	Trivial File Transfer Protocol
time	UDP	37	Time
uucp	ТСР	540	UNIX-to-UNIX Copy Program
who	UDP	513	Who
whois	ТСР	43	Who Is
WWW	ТСР	80	World Wide Web
xdmcp	UDP	177	X Display Manager Control Protocol

Table D-3 Po	ort Literal Values	(continued)
--------------	--------------------	-------------

ICMP Types

Table D-4 lists the ICMP type numbers and names that you can enter in FWSM commands:

ICMP Number	ICMP Name
0	echo-reply
3	unreachable
4	source-quench
5	redirect
6	alternate-address
8	echo
9	router-advertisement
10	router-solicitation
11	time-exceeded
12	parameter-problem
13	timestamp-request
14	timestamp-reply
15	information-request
16	information-reply
17	mask-request
18	mask-reply
31	conversion-error
32	mobile-redirect

Table D-4 ICMP Types