

Cisco ASR 9000 Series Aggregation
OL-29006-02

A
 P P E N D I X 5

Using MIBs

This chapter describes how to work with MIBs on the Cisco ASR 9000 Series router. This appendix
contains the following sections:

• Cisco Unique Device Identifier Support, page 5-235

• Cisco Redundancy Features, page 5-236

• Managing Physical Entities, page 5-237

• Monitoring Quality of Service, page 5-246

• Monitoring Router Interfaces, page 5-255

• Billing Customers for Traffic, page 5-256

• Using IF-MIB Counters, page 5-260

Cisco Unique Device Identifier Support
The ENTITY-MIB supports the Cisco compliance effort for a unique device identifier (UDI) standard
stored in Identification Programmable Read-Only Memory (IDPROM).

The Cisco UDI provides a unique identity for every Cisco product. The UDI is composed of three
separate data elements that must be stored in the entPhysicalTable:

• Orderable product identifier (PID)—The alphanumeric identifier used by customers to order Cisco
products. Two examples include A9K-RSP-4G and A9K-4T-E. PID is limited to 18 characters and
must be stored in the entPhysicalModelName object.

• Version identifier (VID)— The version of the PID. The VID indicates the number of times a product
has versioned in ways that are reported to a customer. For example, the product identifier
A9K-RSP-4G may have a VID of V04. VID is limited to three alphanumeric characters and must be
stored in the entPhysicalHardwareRev object.

• Serial number (SN)—The 11-character identifier used to identify a specific part within a product
and must be stored in the entPhysicalSerialNum object. Serial number content is defined by
manufacturing part number 7018060-0000. The SN is accessed at the following website by
searching on the part number 701806-0000:

https://tools.cisco.com/emco/inbiz/inbiz/Home

Serial number format is defined in four fields:

– Location (L)

– Year (Y)
5-235
 Services Routers MIB Specifications Guide

https://tools.cisco.com/emco/inbiz/inbiz/Home

Appendix 5 Using MIBs
Cisco Redundancy Features
– Workweek (W)

– Sequential serial ID (S)

The SN label is represented as: LLLYYWWSSS.

Note The Version ID returns NULL for those old or existing cards with IDPROMs that do not have the Version
ID field. Therefore, corresponding entPhysicalHardwareRev returns NULL for cards that do not have the
Version ID field in IDPROM.

Cisco Redundancy Features
Redundancy creates a duplication of data elements and software functions to provide an alternative in
case of failure. The goal of Cisco redundancy features is to cut over without affecting the link and
protocol states associated with each interface and continue packet forwarding. The state of the interfaces
and subinterfaces is maintained, along with the state of line cards and various packet processing
hardware.

This section describes Cisco redundancy feature:

• Levels of Redundancy, page 5-236

• Verifying the Cisco ASR 9000 Series Router Redundancy, page 5-237

Levels of Redundancy
This section describes the levels of redundancy supported on the Cisco ASR 9000 Series router and how
to verify that this feature is available. The Cisco ASR 9000 Series routers supports fault resistance by
allowing a Cisco redundant Route Switch Processor (RSP) to take over if the active RSP fails.
Redundancy prevents equipment failures from causing service outages, and supports hitless maintenance
and upgrade activities. The state of the interfaces and subinterfaces is maintained along with the state of
line cards and various packet processing hardware.

Redundant systems support two RSP. One acts as the active RSPs while the other acts as the standby
RSPs.

The redundancy feature provides high availability for the Cisco routers by switching when one of the
following conditions occur:

• Cisco IOS XR Software failure

• Software upgrade

• Maintenance procedure

The Cisco ASR 9000 Series routers operates in Nonstop Forwarding/Stateful Switchover (NSF/SSO)
mode.

Nonstop Forwarding/Stateful Switchover

This section describes the Nonstop Forwarding/Stateful Switchover mode. With NSF/SSO, the Cisco
ASR 9000 Series routers can change from the active to the standby RSPs almost immediately while
continuing to forward packets. Cisco IOS XR Software NSF/SSO support on this platform enables
immediate failover.
5-236
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
In networking devices running NSF/SSO, both RSPs must be running the same configuration so that the
standby RSP is always ready to assume control following a fault on the active RSP. The configuration
information is synchronized from the active RSP to the standby RSP at startup and each timechanges to
the active RSP configuration occur.

Following an initial synchronization between the two RSPs, NFS/SSO maintains RSP state information
between them, including forwarding information.

The Cisco Nonstop Forwarding (NSF) works with Stateful Switchover (SSO) to minimize the amount of
time a network is unavailable to its users following a Route Switching Processor (RSP) fail-over in a
router with dual RSPs. NSF/SSO capability allows routers to detect a switchover and take the necessary
actions to continue forwarding network traffic and to recover route information from peer devices.

The Cisco NSF works with the Stateful Switchover (SSO) feature in Cisco IOS XR Software to minimize
the amount of time a network is unavailable to its users following a switchover. The main objective of
the Cisco NSF/SSO is to continue forwarding data packets along known routes while the routing
protocol information is restored following a route switchover.

Verifying the Cisco ASR 9000 Series Router Redundancy
To display information about the active and standby RSP engines installed in the Cisco ASR 9000 Series
router, use the show redundancy command and show redundancy states command.

Example

RSP/0/RSP0/CPU0:aus-ASR-9010-18#show redundancy
Fri Feb 20 01:15:10.213 PST PST
Redundancy information for node 0/RSP0/CPU0:
==
Node 0/RSP0/CPU0 is in ACTIVE role
Partner node (0/RSP1/CPU0) is in STANDBY role
Standby node in 0/RSP1/CPU0 is ready
Standby node in 0/RSP1/CPU0 is NSR-ready

Reload and boot info

A9K-RSP-4G reloaded Thu Feb 19 09:29:24 2009: 15 hours, 45 minutes ago
Active node booted Thu Feb 19 10:40:02 2009: 14 hours, 35 minutes ago
Last switch-over Thu Feb 19 21:45:59 2009: 3 hours, 29 minutes ago
Standby node boot Thu Feb 19 21:46:57 2009: 3 hours, 28 minutes ago
Standby node last went not ready Thu Feb 19 21:49:06 2009: 3 hours, 26 minutes ago
Standby node last went ready Thu Feb 19 21:49:06 2009: 3 hours, 26 minutes ago
Standby node last went not NSR-ready Thu Feb 19 21:49:27 2009: 3 hours, 25 minutes ago
Standby node last went NSR-ready Thu Feb 19 21:49:27 2009: 3 hours, 25 minutes ago
There have been 2 switch-overs since reload

Managing Physical Entities
This section describes how to use SNMP to manage the physical entities (components) in the router by:

• Performing Inventory Management, page 5-238

• Monitoring and Configuring FRU Status, page 5-244

• Generating SNMP Notifications, page 5-244
5-237
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
Purpose and Benefits
The physical entity management feature of the Cisco ASR 9000 Series router SNMP implementation
does the following:

• Monitors and configures the status of field-replaceable units (FRUs)

• Provides information about physical port to interface mappings

• Provides asset information for asset tagging

• Provides firmware and software information for chassis components

MIBs Used for Physical Entity Management

• CISCO-ENTITY-ASSET-MIB—Contains asset tracking information (IDPROM contents) for the
physical entities listed in the entPhysicalTable of the ENTITY-MIB. The MIB provides
device-specific information for physical entities, including orderable part number, serial number,
manufacturing assembly number, and hardware, software, and firmware information.

• CISCO-ENTITY-FRU-CONTROL-MIB—Contains objects used to monitor and configure the
administrative and operational status of field-replaceable units (FRUs), such as fans, RSPs, and
transceivers that are listed in the entPhysicalTable of the ENTITY-MIB.

• CISCO-ENTITY-SENSOR-MIB—Contains information about entities in the entPhysicalTable with
an entPhysicalClass value of sensor.

• ENTITY-MIB—Contains information for managing physical entities on the router. It also organizes
the entities into a containment tree that depicts their hierarchy and relationship to each other.
The MIB contains the following tables:

– The entPhysicalTable describes each physical component (entity) in the router. The table contains
an entry for the top-level entity (the chassis) and for each entity in the chassis. Each entry provides
information about that entity: its name, type, vendor, and a description, and a description of how
the entity fits into the hierarchy of chassis entities.

Each entity is identified by a unique index (entPhysicalIndex) that is used to access information
about the entity in this and other MIBs.

– The entAliasMappingTable maps each physical port’s entPhysicalIndex value to its
corresponding ifIndex value in the IF-MIB ifTable.

– The entPhysicalContainsTable shows the relationship between physical entities in the chassis. For
each physical entity, the table lists the entPhysicalIndex for each of the entity’s child objects.

Performing Inventory Management
To obtain information about entities in the router, perform a MIB walk on the ENTITY-MIB
entPhysicalTable.

As you examine sample entries in the ENTITY-MIB entPhysicalTable, consider the following objects:

• entPhysicalIndex—Uniquely identifies each entity in the chassis. This index is also used to access
information about the entity in other MIBs.

• entPhysicalContainedIn—Indicates the entPhysicalIndex of a component’s parent entity.

• entPhysicalParentRelPos—Shows the relative position of same-type entities that have the same
entPhysicalContainedIn value (for example, chassis slots and line card ports).
5-238
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
Note The container is applicable if the physical entity class is capable of containing one or more
removable physical entities. For example, each (empty or full) slot in a chassis is modeled as a
container. All removable physical entities should be modeled within a container entity, such as
field-replaceable modules, fans, or power supplies.

Sample of ENTITY-MIB entPhysicalTable Entries

The samples in this section show how information is stored in the entPhysicalTable. You can perform
asset inventory by examining entPhysicalTable entries.

Note The sample outputs and values that appear throughout this appendix are examples of data you can view
when using MIBs.

The following display shows the ENTITY-MIB entPhysicalTable sample entries:

entPhysicalDescr.186 = 4-Port 10GE Extended Line Card, Requires XFPs
entPhysicalDescr.187 = Ten GigabitEthernet Port
entPhysicalDescr.188 = GigeEthernet XFP container
entPhysicalDescr.189 =
entPhysicalDescr.190 = Transceiver Temperature Sensor
entPhysicalDescr.191 = Transceiver Tx Power Sensor
entPhysicalDescr.192 = Transceiver Rx Power Sensor
entPhysicalDescr.193 = Transceiver Transmit Bias Current Sensor
entPhysicalDescr.194 = Line Card host
entPhysicalDescr.195 = Inlet Temperature Sensor
entPhysicalDescr.196 = Hot Temperature Sensor
entPhysicalDescr.197 = Voltage Sensor - IBV
entPhysicalDescr.198 = Voltage Sensor - 5.0V
entPhysicalDescr.199 = Voltage Sensor - VP3P3_CAN
entPhysicalDescr.200 = Voltage Sensor - 3.3V

Where entPhysicalDescr identifies the manufacturer name for the physical entity.

entPhysicalVendorType.186 = cevModuleA9K4x10GEE
entPhysicalVendorType.187 = cevPortGEXFP
entPhysicalVendorType.188 = cevContainerXFP
entPhysicalVendorType.189 = cevXFPUnknown
entPhysicalVendorType.190 = cevSensorTransceiverTemp
entPhysicalVendorType.191 = cevSensorTransceiverTxPwr
entPhysicalVendorType.192 = cevSensorTransceiverRxPwr
entPhysicalVendorType.193 = cevSensorTransceiverCurrent
entPhysicalVendorType.194 = cevModuleASR9KHost
entPhysicalVendorType.195 = cevSensorModuleInletTemp
entPhysicalVendorType.196 = cevSensorHotTemperature
entPhysicalVendorType.197 = cevSensorModuleDeviceVoltage
entPhysicalVendorType.198 = cevSensorModuleDeviceVoltage
entPhysicalVendorType.199 = cevSensorModuleDeviceVoltage
entPhysicalVendorType.200 = cevSensorModuleDeviceVoltage

Where entPhysicalVendorType identifies the unique vendor-specific hardware type of the physical
entity.

entPhysicalContainedIn.186 = 92
entPhysicalContainedIn.187 = 186
entPhysicalContainedIn.188 = 187
entPhysicalContainedIn.189 = 188
5-239
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
entPhysicalContainedIn.190 = 189
entPhysicalContainedIn.191 = 189
entPhysicalContainedIn.192 = 189
entPhysicalContainedIn.193 = 189
entPhysicalContainedIn.194 = 186
entPhysicalContainedIn.195 = 194
entPhysicalContainedIn.196 = 194
entPhysicalContainedIn.197 = 194
entPhysicalContainedIn.198 = 194
entPhysicalContainedIn.199 = 194
entPhysicalContainedIn.200 = 194

Where entPhysicalContainedIn indicates the entPhysicalIndex of a parent entity (component).

entPhysicalClass.186 = module(9)
entPhysicalClass.187 = port(10)
entPhysicalClass.188 = container(5)
entPhysicalClass.189 = module(9)
entPhysicalClass.190 = sensor(8)
entPhysicalClass.191 = sensor(8)
entPhysicalClass.192 = sensor(8)
entPhysicalClass.193 = sensor(8)
entPhysicalClass.194 = module(9)
entPhysicalClass.195 = sensor(8)
entPhysicalClass.196 = sensor(8)
entPhysicalClass.197 = sensor(8)
entPhysicalClass.198 = sensor(8)
entPhysicalClass.199 = sensor(8)
entPhysicalClass.200 = sensor(8)

Where entPhysicalClass indicates the general type of hardware device.

entPhysicalParentRelPos.186 = 0
entPhysicalParentRelPos.187 = 1
entPhysicalParentRelPos.188 = 0
entPhysicalParentRelPos.189 = 0
entPhysicalParentRelPos.190 = 0
entPhysicalParentRelPos.191 = 1
entPhysicalParentRelPos.192 = 2
entPhysicalParentRelPos.193 = 3
entPhysicalParentRelPos.194 = 0
entPhysicalParentRelPos.195 = 0
entPhysicalParentRelPos.196 = 1
entPhysicalParentRelPos.197 = 2
entPhysicalParentRelPos.198 = 3
entPhysicalParentRelPos.199 = 4
entPhysicalParentRelPos.200 = 5

Where entPhysicalParentRelPos indicates the relative position of this child among the other entities.

entPhysicalName.186 = module 0/5/CPU0
entPhysicalName.187 = TenGigE0/5/0/1
entPhysicalName.188 = slot mau 0/5/CPU0/1
entPhysicalName.189 = module mau 0/5/CPU0/1
entPhysicalName.190 = temperature 0/5/CPU0/1
entPhysicalName.191 = power Tx 0/5/CPU0/1
entPhysicalName.192 = power Rx 0/5/CPU0/1
entPhysicalName.193 = current 0/5/CPU0/1
entPhysicalName.194 = module 0/5/CPU0
entPhysicalName.195 = temperature 0/5/CPU0
entPhysicalName.196 = temperature 0/5/CPU0
5-240
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
entPhysicalName.197 = voltage 0/5/CPU0
entPhysicalName.198 = voltage 0/5/CPU0
entPhysicalName.199 = voltage 0/5/CPU0
entPhysicalName.200 = voltage 0/5/CPU0

Where entPhysicalName provides the textual name of the physical entity.

entPhysicalHardwareRev.186 =
entPhysicalHardwareRev.187 =
entPhysicalHardwareRev.188 =
entPhysicalHardwareRev.189 =
entPhysicalHardwareRev.190 =
entPhysicalHardwareRev.191 =
entPhysicalHardwareRev.192 =
entPhysicalHardwareRev.193 =
entPhysicalHardwareRev.194 =
entPhysicalHardwareRev.195 =
entPhysicalHardwareRev.196 =
entPhysicalHardwareRev.197 =
entPhysicalHardwareRev.198 =
entPhysicalHardwareRev.199 =
entPhysicalHardwareRev.200 =

Where entPhysicalHardwareRev provides the vendor-specific hardware revision number (string) for
the physical entity.

entPhysicalFirmwareRev.186 = Version 0.63(20081010:215422)
entPhysicalFirmwareRev.187 =
entPhysicalFirmwareRev.188 =
entPhysicalFirmwareRev.189 =
entPhysicalFirmwareRev.190 =
entPhysicalFirmwareRev.191 =
entPhysicalFirmwareRev.192 =
entPhysicalFirmwareRev.193 =
entPhysicalFirmwareRev.194 =
entPhysicalFirmwareRev.195 =
entPhysicalFirmwareRev.196 =
entPhysicalFirmwareRev.197 =
entPhysicalFirmwareRev.198 =
entPhysicalFirmwareRev.199 =
entPhysicalFirmwareRev.200 =

Where entPhysicalFirmwareRev provides the vendor-specific firmware revision number (string) for
the physical entity.

entPhysicalSoftwareRev.186 = 3.7.2.24I
entPhysicalSoftwareRev.187 =
entPhysicalSoftwareRev.188 =
entPhysicalSoftwareRev.189 = 3.7.2.24I
entPhysicalSoftwareRev.190 =
entPhysicalSoftwareRev.191 =
entPhysicalSoftwareRev.192 =
entPhysicalSoftwareRev.193 =
entPhysicalSoftwareRev.194 = 3.7.2.24I
entPhysicalSoftwareRev.195 =
entPhysicalSoftwareRev.196 =
entPhysicalSoftwareRev.197 =
entPhysicalSoftwareRev.198 =
entPhysicalSoftwareRev.199 =
entPhysicalSoftwareRev.200 =
5-241
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
Where entPhysicalSoftwareRev provides the software revision number for the physical entity.

entPhysicalSerialNum.186 = FHH1213002A
entPhysicalSerialNum.187 =
entPhysicalSerialNum.188 =
entPhysicalSerialNum.189 = ECL114704JD
entPhysicalSerialNum.190 =
entPhysicalSerialNum.191 =
entPhysicalSerialNum.192 =
entPhysicalSerialNum.193 =
entPhysicalSerialNum.194 =
entPhysicalSerialNum.195 =
entPhysicalSerialNum.196 =
entPhysicalSerialNum.197 =
entPhysicalSerialNum.198 =
entPhysicalSerialNum.199 =
entPhysicalSerialNum.200 =

Where entPhysicalSerialNum provides the vendor-specific serial number (string) for the physical
entity.

entPhysicalMfgName.186 = Cisco Systems Inc.
entPhysicalMfgName.187 =
entPhysicalMfgName.188 =
entPhysicalMfgName.189 =
entPhysicalMfgName.190 =
entPhysicalMfgName.191 =
entPhysicalMfgName.192 =
entPhysicalMfgName.193 =
entPhysicalMfgName.194 =
entPhysicalMfgName.195 =
entPhysicalMfgName.196 =
entPhysicalMfgName.197 =
entPhysicalMfgName.198 =
entPhysicalMfgName.199 =
entPhysicalMfgName.200 =

Where entPhysicalMfgName provides the manufacturer name for the physical component.

entPhysicalModelName.186 = A9K-4T-E
entPhysicalModelName.187 =
entPhysicalModelName.188 =
entPhysicalModelName.189 = ONS-XC-10G-S1
entPhysicalModelName.190 =
entPhysicalModelName.191 =
entPhysicalModelName.192 =
entPhysicalModelName.193 =
entPhysicalModelName.194 =
entPhysicalModelName.195 =
entPhysicalModelName.196 =
entPhysicalModelName.197 =
entPhysicalModelName.198 =
entPhysicalModelName.199 =
entPhysicalModelName.200 =

Where entPhysicalModelName provides the vendor-specific model name string for the physical
component.

entPhysicalAlias.186 =
entPhysicalAlias.187 =
entPhysicalAlias.188 =
entPhysicalAlias.189 =
5-242
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
entPhysicalAlias.190 =
entPhysicalAlias.191 =
entPhysicalAlias.192 =
entPhysicalAlias.193 =
entPhysicalAlias.194 = host
entPhysicalAlias.195 =
entPhysicalAlias.196 =
entPhysicalAlias.197 =
entPhysicalAlias.198 =
entPhysicalAlias.199 =
entPhysicalAlias.200 =

Where entPhysicalAlias provides the alias name for the physical component.

entPhysicalAssetID.186 =
entPhysicalAssetID.187 =
entPhysicalAssetID.188 =
entPhysicalAssetID.189 =
entPhysicalAssetID.190 =
entPhysicalAssetID.191 =
entPhysicalAssetID.192 =
entPhysicalAssetID.193 =
entPhysicalAssetID.194 =
entPhysicalAssetID.195 =
entPhysicalAssetID.196 =
entPhysicalAssetID.197 =
entPhysicalAssetID.198 =
entPhysicalAssetID.199 =
entPhysicalAssetID.200 =

Where entPhysicalAssetID provides the vendor-specific asset ID for the physical component.

entPhysicalIsFRU.186 = true(1)
entPhysicalIsFRU.187 = false(2)
entPhysicalIsFRU.188 = false(2)
entPhysicalIsFRU.189 = true(1)
entPhysicalIsFRU.190 = false(2)
entPhysicalIsFRU.191 = false(2)
entPhysicalIsFRU.192 = false(2)
entPhysicalIsFRU.193 = false(2)
entPhysicalIsFRU.194 = false(2)
entPhysicalIsFRU.195 = false(2)
entPhysicalIsFRU.196 = false(2)
entPhysicalIsFRU.197 = false(2)
entPhysicalIsFRU.198 = false(2)
entPhysicalIsFRU.199 = false(2)
entPhysicalIsFRU.200 = false(2)

Where entPhysicalIsFRU indicates whether or not this physical entity is considered a field-replaceable
unit (FRU).

Note the following about the sample configuration:

• All chassis slots and line card ports have the same entPhysicalContainedIn value:

– For chassis slots, entPhysicalContainedIn = 1 (the entPhysicalIndex of the chassis).

– For line card ports, entPhysicalContainedIn = 26 (the entPhysicalIndex of the line card).

• Each chassis slot and line card port has a different entPhysicalParentRelPos to show its relative
position within the parent object.
5-243
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
Determining the ifIndex Value for a Physical Port

The ENTITY-MIB entAliasMappingIdentifier maps a physical port to an interface by mapping the port’s
entPhysicalIndex to its corresponding ifIndex value in the IF-MIB ifTable. The following sample shows
that the physical port with a entPhysicalIndex value of 35 is associated with the interface with the ifIndex
value of four:

entAliasMappingIdentifer.35.0 = ifIndex.4

Note See the MIB for detailed descriptions of possible MIB values.

Monitoring and Configuring FRU Status
View objects in the CISCO-ENTITY-FRU-CONTROL-MIB cefcModuleTable to determine the
administrative and operational status of FRUs, such as power supplies and line cards:

• cefcModuleAdminStatus—The administrative state of the FRU. This object is read-only and returns
enable.

• cefcModuleOperStatus—The current operational state of the FRU.

Figure 5-1 shows a cefcModuleTable entry for a line card with the entPhysicalIndex value of 24.

Figure 5-1 Sample cefcModuleTable Entry

See the “FRU Status Changes” section on page 5-246 for information about how the router generates
notifications to indicate changes in FRU status.

Generating SNMP Notifications
This section provides information about the SNMP notifications generated in response to events and
conditions on the router, and describes how to identify which hosts are to receive notifications.

• Identifying Hosts to Receive Notifications, page 5-244

• Configuration Changes, page 5-245

• FRU Status Changes, page 5-246

Identifying Hosts to Receive Notifications

You can use the CLI or SNMP to identify hosts to receive SNMP notifications and to specify the types
of notifications they are to receive (notifications). For CLI instructions, see the “Enabling Notifications”
section on page 4-216. To use SNMP to configure this information:

cefcModuleEntry.entPhysicalIndex

cefcModuleEntry.24
cefcModuleAdminStatus = enabled(1)
cefcModuleOperStatus = ok(2)
cefcModuleResetReason = manual reset(5)
cefcModuleStatusLastChangeTime = 7714
5-244
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Managing Physical Entities
Use SNMP-NOTIFICATION-MIB objects, including the following, to select target hosts and specify the
types of notifications to generate for those hosts:

• snmpNotifyTable—Contains objects to select hosts and notification types:

– snmpNotifyTag is an arbitrary octet string (a tag value) used to identify the hosts to receive
SNMP notifications. Information about target hosts is defined in the snmpTargetAddrTable
(SNMP-TARGET-MIB), and each host has one or more tag values associated with it. If a host
in snmpTargetAddrTable has a tag value that matches this snmpNotifyTag value, the host is
selected to receive the types of notifications specified by snmpNotifyType.

– snmpNotifyType is the type of SNMP notification to send: notification(1) or inform(2).

• snmpNotifyFilterProfileTable and snmpNotifyFilterTable—Use objects in these tables to create
notification filters to limit the types of notifications sent to target hosts.

Use SNMP-TARGET-MIB objects to configure information about the hosts to receive notifications:

• snmpTargetAddrTable—Transport addresses of hosts to receive SNMP notifications. Each entry
provides information about a host address, including a list of tag values:

– snmpTargetAddrTagList—A set of tag values associated with the host address. If a host tag
value matches snmpNotifyTag, the host is selected to receive the types of notifications defined
by snmpNotifyType.

• snmpTargetParamsTable—SNMP parameters to use when generating SNMP notifications.

Use the notification enable objects in appropriate MIBs to enable and disable specific SNMP
notifications.

Configuration Changes

If entity notifications are enabled, the router generates an entConfigChange notification (ENTITY-MIB)
when the information in any of the following tables changes (which indicates a change to the router
configuration):

• entPhysicalTable

• entAliasMappingTable

• entPhysicalContainsTable

Note A management application that tracks configuration changes checks the value of the
entLastChangeTime object to detect any entConfigChange notifications that were missed as a
result of throttling or transmission loss.

Enabling Notifications for Configuration Changes

To configure the router to generate an entConfigChange notification each time its configuration changes, enter
the snmp-sever trap entity command from the CLI. Use the no form of the command to disable the
notifications.

Router(config)# snmp-server traps entity
Router(config)# no snmp-server traps entity
5-245
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
FRU Status Changes

If FRU notifications are enabled, the router generates the following notifications in response to changes
in the status of a FRU:

• cefcModuleStatusChange—The operational status (cefcModuleOperStatus) of a FRU changes.

• cefcFRUInserted—A FRU is inserted in the chassis. The notification indicates the entPhysicalIndex
of the FRU and the container in which it was inserted.

• cefcFRURemoved—A FRU is removed from the chassis. The notification indicates the
entPhysicalIndex of the FRU and the container from which it was removed.

Note See the CISCO-ENTITY-FRU-CONTROL-MIB for more information about these notifications.

Enabling FRU Notifications

To configure the router to generate notifications for FRU events, enter the snmp-server traps fru-ctrl
command from the CLI. Use the no form of the command to disable the notifications.

Router(config)# snmp-server traps fru-ctrl
Router(config)# no snmp-server traps fru-ctrl

To enable FRU notifications through SNMP, set cefcMIBEnableStatusNotification to true(1). Disable
the notifications by setting cefcMIBEnableStatusNotification to false(2).

Monitoring Quality of Service
This section provides the following information about using Quality of Service (QoS) in your
configuration:

• Cisco ASR 9000 Series Router QoS Basics, page 5-246

• CISCO-CLASS-BASED-QOS-MIB Overview, page 5-246

• Viewing QoS Configuration Settings Using the CISCO-CLASS-BASED-QOS-MIB, page 5-248

• Monitoring QoS Using the CISCO-CLASS-BASED-QOS-MIB, page 5-249

• Considerations for Processing QoS Statistics, page 5-250

• Sample QoS Applications, page 5-252

Cisco ASR 9000 Series Router QoS Basics
The Cisco ASR 9000 Series router distributes QoS features across the line cards. Line cards are designed
to provide QoS features on packets that flow through the line cards.

CISCO-CLASS-BASED-QOS-MIB Overview
The CISCO-CLASS-BASED-QOS-MIB provides read-only access to Quality of Service (QoS)
configuration information and statistics for Cisco platforms that support the modular Quality of Service
command-line interface (modular QoS CLI).
5-246
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
CISCO-CLASS-BASED-QOS-MIB Object Relationship

To understand how to navigate the CISCO-CLASS-BASED-QOS-MIB tables, it is important to
understand the relationship among different QoS objects. QoS objects consists of:

• Match statement—Specific match criteria to identify packets for classification purposes.

• Class map—A user-defined traffic class that contains one or more match statements used to classify
packets into different categories.

• Feature action – Action taken on classified traffic. Features include police, traffic shaping,
queueing, random detect, and packet marking. After the traffic is classified actions are applied to
packets matching each traffic class.

• Policy map – A user-defined policy that associates QoS feature actions to user-defined class maps
as policy maps can have multiple class maps.

• Service policy—A policy map that has been attached to an interface.

The MIB uses the following indices to identify QoS features and distinguish among instances of those
features:

• cbQosObjectsIndex – Identifies each QoS feature on the router.

• cbQoSConfigIndex – Identifies a type of QoS configuration. This index is shared by QoS objects
that have identical configurations.

• cbQosPolicyIndex – Identifies a unique service policy.

QoS MIB Information Storage

CISCO-CLASS-BASED-QOS-MIB information is stored as:

• Configuration information— Includes all the QoS configuration objects, such as class maps, policy
map, match statements, and feature action configuration parameters. The configuration may have
multiple identical instances. Configuration objects are identified by cbQosConfigIndex attribute.
Multiple instances of the same QoS feature share a single configuration object that is identified by
the same cbQosConfigIndex value.

• Service-policy information— Includes instances of all QoS objects, such as service-policies,
classes, match statements, and feature actions. Service-policies are identified by cbQosPolicyIndex
and instances of QoS objects are identified by the combination of cbQosPolicyIndex and
cbQosObjectsIndex attributes.

QoS Hardware Configuration and Statistic Support

The CISCO-CLASS-BASED-QOS-MIB does not cover all the Cisco ASR 9000 Series router QoS
hardware configuration and statistics.

The Cisco ASR 9000 Series router supports the concept of ‘shared policy instance’ where, based on the
configuration, the resources for individual service policies are shared among multiple interfaces. The
cbQosMIB attribute does not indicate whether the service-policies are shared-policy instances or
non-shared policy instances.

The interfaces associated with the shared policy instance have a separate entry in the
cbQosServicePolicyTable. The MIB entries, associated with each interface that is a part of the same
shared-policy-instance, have the same data values, for example, everything except for the
cbQosServicePolicyTable is identical for the rows associated with the values of cbQosPolicyIndex for
such interfaces.
5-247
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
Figure 5-2 shows how the indexes provide access to QoS configuration information and statistics.

Figure 5-2 The Cisco ASR 9000 Series Router QoS Indexes

Accessing QoS Configuration Information

To access QoS configuration information and statistics for a particular QoS feature:

Step 1 Look in cbQosServicePolicyTable and find the cbQosPolicyIndex assigned to the policy in which the
feature is used.

Step 2 Use cbQosPolicyIndex to access the cbQosObjectsTable, and find the cbQosObjectsIndex and
cbQosConfigIndex assigned to the QoS feature.

a. Use cbQosConfigIndex to access configuration tables (cbQosxxxCfgTable) for information about
the QoS feature.

b. Use cbQosPolicyIndex and cbQosObjectsIndex to access QoS statistics tables
(cbQosxxxStatsTable) for information about the QoS feature.

Viewing QoS Configuration Settings Using the CISCO-CLASS-BASED-QOS-MIB
This section contains an example that shows how QoS configuration settings are stored in
CISCO-CLASS-BASED-QOS-MIB tables. The sample shows information grouped by QoS object;
however, the actual output of an SNMP query might show QoS information similar to the following.

Note This is only a partial display of all QoS information.

ASR 9000# getmany -v3 10.86.0.94 test-user ciscoCBQosMIB CbQosServicePolicyTable
cbQosIfType.1047 = subInterface(2)
cbQosIfType.1052 = subInterface(2)
cbQosPolicyDirection.1047 = input(1)
cbQosPolicyDirection.1052 = output(2)
cbQosIfIndex.1047 = 36
cbQosIfIndex.1052 = 36
cbQosFrDLCI.1047 = 0
cbQosFrDLCI.1052 = 0
cbQosAtmVPI.1047 = 0

69
73

5

cbQosServicePolicyTable

 cbQosPolicyIndex

cbQosxxxCfgTable

Configuration Information

cbQosObjectsTable

 cbQosObjectsIndex
 . . .
 cbQosConfigIndex

cbQosxxxStatsTable

QoS Statistics
5-248
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
cbQosAtmVPI.1052 = 0
cbQosAtmVCI.1047 = 0
cbQosAtmVCI.1052 = 0
cbQosConfigIndex.1047.1047 = 1045
cbQosConfigIndex.1047.1048 = 1025
cbQosConfigIndex.1047.1050 = 1027
cbQosConfigIndex.1047.1051 = 1046
cbQosConfigIndex.1052.1052 = 1045
cbQosConfigIndex.1052.1053 = 1025
cbQosConfigIndex.1052.1055 = 1027
cbQosConfigIndex.1052.1056 = 1046
cbQosObjectsType.1047.1047 = policymap(1)
cbQosObjectsType.1047.1048 = classmap(2)
cbQosObjectsType.1047.1050 = matchStatement(3)
cbQosObjectsType.1047.1051 = police(7)
cbQosObjectsType.1052.1052 = policymap(1)
cbQosObjectsType.1052.1053 = classmap(2)
cbQosObjectsType.1052.1055 = matchStatement(3)
cbQosObjectsType.1052.1056 = police(7)
cbQosParentObjectsIndex.1047.1047 = 0
cbQosParentObjectsIndex.1047.1048 = 1047
cbQosParentObjectsIndex.1047.1050 = 1048
cbQosParentObjectsIndex.1047.1051 = 1048
cbQosParentObjectsIndex.1052.1052 = 0
cbQosParentObjectsIndex.1052.1053 = 1052
cbQosParentObjectsIndex.1052.1055 = 1053
cbQosParentObjectsIndex.1052.1056 = 1053
cbQosPolicyMapName.1045 = pm-1Meg
cbQosPolicyMapDesc.1045 =
cbQosCMName.1025 = class-default
cbQosCMDesc.1025 =
cbQosCMInfo.1025 = matchAny(3)
. . .

Monitoring QoS Using the CISCO-CLASS-BASED-QOS-MIB
This section describes how to monitor QoS on the router by checking the QoS statistics in the
CISCO-CLASS-BASED-QOS-MIB tables.

Note The CISCO-CLASS-BASED-QOS-MIB may contain more information than what is displayed in the
output of CLI show commands.

Table 5-1 lists the types of QoS statistics tables.

Table 5-1 QoS Statistics Tables

QoS Table Statistics

cbQosCMStatsTable Class map—Counts of packets, bytes, and bit rate before and
after QoS policies are executed. Counts of dropped packets and
bytes.

cbQosPoliceStatsTable Police action—Counts of packets, bytes, and bit rate that
conforms to, exceeds, and violates police actions.

cbQosQueueingStatsTable Queueing—Counts of discarded packets and bytes, and queue
depths.
5-249
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
Considerations for Processing QoS Statistics
The router maintains 64-bit counters for most QoS statistics. However, some QoS counters are
implemented as a 32-bit counter with a 1-bit overflow flag. In the following samples, the counters are
shown as 33-bit counters.

When accessing QoS counter statistics, consider the following:

• SNMPv2c or SNMPv3 applications—Access the entire 64 bits of the QoS counter through
cbQosxxx64 MIB objects.

• SNMPv1 applications—Access QoS statistics in the MIB as follows:

– Access the lower 32 bits of the counter through cbQosxxx MIB objects.

– Access the upper 32 bits of the counter through cbQosxxxOverflow MIB objects.

Sample QoS Statistics Tables

The samples in this section show the counters in CISCO-CLASS-BASED-QOS-MIB statistics tables:

• Figure 5-3 shows the counters in the cbQosCMStatsTable and the indexes for accessing these and
other statistics.

• Figure 5-4 shows the counters in cbQosMatchStmtStatsTable, cbQosPoliceStatsTable,
cbQosQueueingStatsTable, cbQosTSStatsTable, and cbQosREDClassStatsTable.

For ease-of-use, the following figures show some counters as a single object even though the counter is
implemented as three objects. For example, cbQosCMPrePolicyByte is implemented as:

• cbQosCMPrePolicyByteOverflow

• cbQosCMPrePolicyByte

• cbQosCMPrePolicyByte64

cbQosTSStatsTable Traffic shaping—Counts of delayed and dropped packets and
bytes, the state of a feature, and queue size.

cbQosREDClassStatsTable Random early detection—Counts of packets and bytes dropped
when queues are full, and counts of bytes and octets transmitted.

Table 5-1 QoS Statistics Tables

QoS Table Statistics
5-250
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
Figure 5-3 QoS Class Map Statistics and Indexes

cbQosServicePolicyTable

 cbQosPolicyIndex = 1047
 . . .

Use the cbQosPolicyIndex and
cbQosObjectsIndex of a QoS
feature to access its statistics.

cbQosCMStatsTable
cbQosCMStatsEntry.cbQosPolicyIndex.cbQosObjectsIndex

cbQosCMStatsEntry.1047.1048
 cbQosCMPrePolicyPkt
 cbQosCMPrePolicyByte
 cbQosCMPrePolicyBitRate
 cbQosCMPostPolicyByte
 cbQosCMPostPolicyBitRate
 cbQosCMDropPkt
 cbQosCMDropByte
 cbQosCMDropBitRate
 cbQosCMNoBufDropPkt

cbQosObjectsTable

 cbQosObjectsIndex = 1048
 . . .

69
74

0

5-251
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
Figure 5-4 QoS Statistics Tables

Sample QoS Applications
This section presents examples of code showing how to retrieve information from the
CISCO-CLASS-BASED-QOS-MIB to use for QoS billing operations. You can use the examples to help
you develop billing applications. The topics include:

• Checking Customer Interfaces for Service Policies, page 5-253

• Retrieving QoS Billing Information, page 5-254

69
74

1
* Counts in cbQosREDClassStatsTable are maintained
 per class, not cbQosREDValue. All instances of a
 counter that have the same cbQosREDValue also have
 the same count.

cbQosMatchStmtStatsTable
cbQosMatchStmtStatsEntry.cbQosPolicyIndex
 .cbQosObjectsIndex

 cbQosMatchPrePolicyPkt
 cbQosMatchPrePolicyByte
 cbQosMatchPrePolicyBitRate

cbQosQueueingStatsTable
cbQosQueueingStatsEntry.cbQosPolicyIndex
 .cbQosObjectsIndex

 cbQosQueueingCurrentQDepth
 cbQosQueueingMaxQDepth
 cbQosQueueingDiscardByte
 cbQosQueueingDiscardPkt

cbQosPoliceStatsTable
cbQosPoliceStatsEntry.cbQosPolicyIndex
 .cbQosObjectsIndex

 cbQosPoliceConformedPkt
 cbQosPoliceConformedByte
 cbQosPoliceConformedBitRate
 cbQosPoliceExceededPkt
 cbQosPoliceExceededByte
 cbQosPoliceExceededBitRate
 cbQosPoliceViolatedPkt
 cbQosPoliceViolatedByte
 cbQosPoliceViolatedBitRate

cbQosTSStatsTable
cbQosTSStatsEntry.cbQosPolicyIndex
 .cbQosObjectsIndex

 cbQosTSStatsDelayedByte
 cbQosTSStatsDelayedPkt
 cbQosTSStatsDropByte
 cbQosTSStatsDropPkt
 cbQosTSStatsActive
 cbQosTSStatsCurrentSize

cbQosREDClassCfgTable
cbQosREDClassCfgEntry.cbQosConfigIndex
 .cbQosREDValue

cbQosREDClassCfgEntry.1042.0
 cbQosREDCfgMinThreshold 11
 cbQosREDCfgMaxThreshold 21
 cbQosREDCfgPktDropProb 9
 . . .
cbQosREDClassCfgEntry.1042.1
 . . .
cbQosREDClassCfgEntry.1042.3
 . . .
cbQosREDClassCfgEntry.1042.7
 . . .

Each cbQosREDValue is an index to
the statistics for that RED class.

cbQosREDClassStatsTable
cbQosREDClassStatsEntry.cbQosPolicyIndex
 .cbQosObjectsIndex
 .cbQosREDValue

cbQosREDClassStatsEntry.1055.1062.0
 cbQosREDRandomDropPkt
 cbQosREDRandomDropByte
 cbQosREDTailDropPkt
 cbQosREDTailDropByte
 cbQosTransmitPkt
 cbQosTransmitByte
 . . .
cbQosREDClassStatsEntry.1055.1062.1
 . . .
cbQosREDClassStatsEntry.1055.1062.3
 . . .
cbQosREDClassStatsEntry.1055.1062.7
 . . .
5-252
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
Checking Customer Interfaces for Service Policies

This section describes a sample algorithm that checks the CISCO-CLASS-BASED-QOS-MIB for
customer interfaces with service policies, and marks those interfaces for further application processing
(such as billing for QoS services).

The algorithm uses two SNMP get-next requests for each customer interface. For example, if the router
has 2000 customer interfaces, 4000 SNMP get-next requests are required to determine if those interfaces
have transmit and receive service policies associated with them.

Note This algorithm is for informational purposes only. Your application needs may be different.

Check the MIB to see which interfaces are associated with a customer. Create a pair of flags to show if
a service policy has been associated with the transmit and receive directions of a customer interface.
Mark noncustomer interfaces TRUE (so no more processing is required for them).

FOR each ifEntry DO
IF (ifEntry represents a customer interface) THEN

servicePolicyAssociated[ifIndex].transmit = FALSE;
servicePolicyAssociated[ifIndex].receive = FALSE;

ELSE
servicePolicyAssociated[ifIndex].transmit = TRUE;
servicePolicyAssociated[ifIndex].receive = TRUE;

END-IF
END-FOR

Examine the cbQosServicePolicyTable and mark each customer interface that has a service policy
attached to it. Also note the direction of the interface.

x = 0;
done = FALSE;
WHILE (!done)

status = snmp-getnext (
ifIndex = cbQosIfIndex.x,
direction = cbQosPolicyDirection.x

);
IF (status != ‘noError’) THEN

done = TRUE
ELSE

x = extract cbQosPolicyIndex from response;
IF (direction == ‘output’) THEN

servicePolicyAssociated[ifIndex].transmit = TRUE;
ELSE

servicePolicyAssociated[ifIndex].receive = TRUE;
END-IF

END-IF
END-WHILE

Manage cases in which a customer interface does not have a service policy attached to it.

FOR each ifEntry DO
IF (!servicePolicyAssociated[ifIndex].transmit) THEN

Perform processing for customer interface without a transmit service policy.
END-IF
IF (!servicePolicyAssociated[ifIndex].receive) THEN

Perform processing for customer interface without a receive service policy.
END-IF

END-FOR
5-253
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Quality of Service
Retrieving QoS Billing Information

This section describes a sample algorithm that uses the CISCO-CLASS-BASED-QOS-MIB for QoS
billing operations. The algorithm periodically retrieves post-policy input and output statistics, combines
them, and sends the result to a billing database.

The algorithm uses the following:

• One SNMP get request per customer interface—To retrieve the ifAlias.

• Two SNMP get-next requests per customer interface—To retrieve service policy indexes.

• Two SNMP get-next requests per customer interface for each object in the policy—To retrieve
post-policy bytes. For example, if there are 100 interfaces and 10 objects in the policy, the algorithm
requires 2000 get-next requests (2 x 100 x 10).

Note This algorithm is for informational purposes only. Your application needs may be different.

Set up customer billing information.

FOR each ifEntry DO
IF (ifEntry represents a customer interface) THEN

status = snmp-getnext (id = ifAlias.ifIndex);
IF (status != ‘noError’) THEN

Perform error processing.
ELSE

billing[ifIndex].isCustomerInterface = TRUE;
billing[ifIndex].customerID = id;
billing[ifIndex].transmit = 0;
billing[ifIndex].receive = 0;

END-IF
ELSE

billing[ifIndex].isCustomerInterface = FALSE;
END-IF

END-FOR

Retrieve billing information.

x = 0;
done = FALSE;
WHILE (!done)

response = snmp-getnext (
ifIndex = cbQosIfIndex.x,
direction = cbQosPolicyDirection.x

);
IF (response.status != ‘noError’) THEN

done = TRUE
ELSE

x = extract cbQosPolicyIndex from response;
IF (direction == ‘output’) THEN

billing[ifIndex].transmit = GetPostPolicyBytes (x);
ELSE

billing[ifIndex].receive = GetPostPolicyBytes (x);
END-IF

END-IF
END-WHILE
5-254
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Monitoring Router Interfaces
Determine the number of post-policy bytes for billing purposes.

GetPostPolicyBytes (policy)
x = policy;
y = 0;
total = 0;
WHILE (x == policy)

response = snmp-getnext (type = cbQosObjectsType.x.y);
IF (response.status == ‘noError’)

x = extract cbQosPolicyIndex from response;
y = extract cbQosObjectsIndex from response;
IF (x == policy AND type == ‘classmap’)

status = snmp-get (bytes = cbQosCMPostPolicyByte64.x.y);
IF (status == ‘noError’)

total += bytes;
END-IF

END-IF
END-IF

END-WHILE
RETURN total;

Monitoring Router Interfaces
This section provides information about how to monitor the status of router interfaces to see if there is
a problem or a condition that might affect service on the interface. To determine if an interface is Down
or experiencing problems, you can:

• Check the Operational and Administrative Status of Interface

• Monitor linkDown and linkUp Notifications

Check the Operational and Administrative Status of Interface
To check the status of an interface, view the following IF-MIB objects for the interface:

• ifAdminStatus—The administratively configured (desired) state of an interface. Use ifAdminStatus
to enable or disable the interface.

• ifOperStatus—The current operational state of an interface.

Monitor linkDown and linkUp Notifications
To determine if an interface has failed, you can monitor linkDown and linkUp notifications for the
interface. See the “Enabling Interface linkUp and linkDown Notifications” section on page 5-256 for
instructions on how to enable the following notifications:

• linkDown—Indicates that an interface failed or is about to fail.

• linkUp—Indicates that an interface is no longer in the down state.
5-255
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Billing Customers for Traffic
Enabling Interface linkUp and linkDown Notifications
To configure SNMP to send a notification when a router interface changes state to up (ready) or
down (not ready), perform the following steps to enable linkUp and linkDown notifications:

Step 1 Issue the following CLI command to enable linkUp and linkDown notifications for most, but not
necessarily all, interfaces:

Router(config)# snmp-server interface <Interface Type> <Interface Number> notification
linkupdown

Step 2 View the setting of the ifLinkUpDownTrapEnable object (IF-MIB ifXTable) for each interface to
determine if linkUp and linkDown notifications are enabled or disabled for that interface.

Step 3 To enable linkUp and linkDown notifications on an interface, set ifLinkUpDownTrapEnable to
enabled(1).

Step 4 To enable the Internet Engineering Task Force (IETF) standard for linkUp and linkDown notifications,
issue the snmp-server trap link ietf command. (The IETF standard is based on RFC 2233.)

Router(config)# snmp-server trap link ietf

Step 5 To disable notifications, use the no form of the snmp-server command.

Billing Customers for Traffic
This section describes how to use SNMP interface counters and QoS data information to determine the
amount to bill customers for traffic. It also includes a scenario for demonstrating that a QoS service
policy attached to an interface is policing traffic on that interface.

This section contains the following topics:

• Input and Output Interface Counts, page 5-256

• Determining the Amount of Traffic to Bill to a Customer, page 5-257

• Scenario for Demonstrating QoS Traffic Policing, page 5-257

Input and Output Interface Counts
The router maintains information about the number of packets and bytes that are received on an input
interface and transmitted on an output interface.

For detailed constraints about IF-MIB counter support, see the “IF-MIB (RFC 2863)” section on
page 3-162.

Consider the following important information about IF-MIB counter support:

• Unless noted, all IF-MIB counters are supported on the Cisco ASR 9000 Series router interfaces.

• For IF-MIB high capacity counter support, Cisco conforms to the RFC 2863 standard. The
RFC 2863 standard states that for interfaces that operate:

– At 20 million bits per second or less, 32-bit and packet counters must be supported.
5-256
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Billing Customers for Traffic
– Faster than 20 million bits per second and slower than 650 million bits per second, 32-bit packet
counters and 64-bit octet counters must be supported.

– At 650 million bits per second or faster, 64-bit packet counters and 64-bit octet counters must
be supported.

• When a QoS service policy is attached to an interface, the router applies the rules of the policy to
traffic on the interface and increments the packet and byte counts on the interface.

The following CISCO-CLASS-BASED-QOS-MIB objects provide interface counts:

• cbQosCMDropPkt and cbQosCMDropByte (cbQosCMStatsTable)—Total number of packets and
bytes that were dropped as they exceeded the limits set by the service policy. These counts include
only those packets and bytes that were dropped as they exceeded service policy limits. The counts
do not include packets and bytes dropped for other reasons.

• cbQosPoliceConformedPkt and cbQosPoliceConformedByte (cbQosPoliceStatsTable)—Total
number of packets and bytes that conformed to the limits of the service policy and were transmitted.

Determining the Amount of Traffic to Bill to a Customer
Perform the following steps to determine how much traffic on an interface is billable to a particular
customer:

Step 1 Determine which service policy on the interface applies to the customer.

Step 2 Determine the index values of the service policy and class map used to define the customer’s traffic. You
need this information in the following steps.

Step 3 Access the cbQosPoliceConformedPkt object (cbQosPoliceStatsTable) for the customer to determine the
amount of traffic on the interface that is billable to this customer.

Step 4 (Optional) Access the cbQosCMDropPkt object (cbQosCMStatsTable) for the customer to determine
how much of the customer’s traffic was dropped as it exceeded service policy limits.

Scenario for Demonstrating QoS Traffic Policing
This section describes a scenario that demonstrates the use of SNMP QoS statistics to determine how
much traffic on an interface is billable to a particular customer. It also shows how packet counts are
affected when a service policy is applied to traffic on the interface.

To create the scenario, perform the following steps (each step described in the section below):

1. Create and attach a service policy to an interface.

2. View packet counts before the service policy is applied to traffic on the interface.

3. Issue a ping command to generate traffic on the interface. Note that the service policy is applied to
the traffic.

4. View packet counts after the service policy is applied to determine how much traffic to bill the
customer for:

• Conformed packets—The number of packets within the range set by the service policy and for
which you can charge the customer.
5-257
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Billing Customers for Traffic
• Exceeded or dropped packets—The number of packets that were not transmitted because they
were outside the range of the service policy. These packets are not billable to the customer.

Note In this scenario, the Cisco ASR 9000 Series router is used as an interim device (that is, traffic
originates elsewhere and is destined for another device).

Service Policy Configuration

The following example uses policy map configuration.

policy-map police-out
 class BGPclass
 police 8000 1000 2000 conform-action transmit exceed-action drop

interface GigabitEthernet0/1/0/0.10
 description VLAN voor klant
 encapsulation dot1Q 10
 ip address 10.0.0.17 255.255.255.248
 service-policy output police-out

Packet Counts Before the Service Policy Is Applied

The following CLI and SNMP output shows the output traffic for interface before the service policy is
applied:

CLI Command Output
RSP/0/RSP0/CPU0:ios-xr#show policy-map interface GigabitEthernet0/7/0/0.1

GigabitEthernet0/7/0/0.1 input: policy-police

Class class-out
Classification statistics (packets/bytes) (rate - kbps)
Matched : 0/0 0
Transmitted : Un-determined
Total Dropped : Un-determined
Policing statistics (packets/bytes) (rate - kbps)
Policed(conform) : 0/0 0
Policed(exceed) : 0/0 0
Policed(violate) : 0/0 0
Policed and dropped : 0/0
Class class-default
Classification statistics (packets/bytes) (rate - kbps)
Matched : 0/0 0
Transmitted : Un-determined
Total Dropped : Un-determined

SNMP Output
ASR 9000# getone -v2c 10.86.0.63 public ifDescr.65
ifDescr.65 = GigabitEthernet0/6/0/0.10

Generating Traffic

The following set of ping commands generates traffic:

ASR 9000#ping
Protocol [ip]:
5-258
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Billing Customers for Traffic
Target IP address: 10.0.0.18
Repeat count [5]: 99
Datagram size [100]: 1400
Timeout in seconds [2]: 1
Extended commands [n]:
Sweep range of sizes [n]:
Type escape sequence to abort.

Sending 100, 1400-byte ICMP Echos to 10.0.0.18, timeout is 1 seconds:
..!!..!..!..!..!.!.!..!.!..!.!..!.!.!..!.!..!.!..!.!.!..!.!..!.!..!.!.!..
!.!..!.!..!.!.!..!.!..!.!..!.!
Success rate is 42 percent (42/100), round-trip min/avg/max = 1/1/1 ms

Packet Counts After the Service Policy Is Applied

After you generate traffic using the ping command, look at the number of packets that exceeded and
conformed to the committed access rate (CAR) set by the police command:

• 42 packets conformed to the police rate and were transmitted

• 57 packets exceeded the police rate and were dropped

The following CLI and SNMP output show the counts on the interface after the service policy is applied.
(In the output, conformed and exceeded packet counts are shown in boldface.)

CLI Command Output
ASR 9000# show policy-map interface g6/0/0.10

GigabitEthernet6/0/0.10

Service-policy output: police-out

Class-map: BGPclass (match-all)
 198 packets, 281556 bytes
 30 second offered rate 31000 bps, drop rate 11000 bps
 Match: access-group 101
 Police:
 8000 bps, 1000 limit, 2000 extended limit
 conformed 42 packets, 59892 bytes; action: transmit
 exceeded 57 packets, 81282 bytes; action: drop

Class-map: class-default (match-any)
 15 packets, 1086 bytes
 30 second offered rate 0 bps, drop rate 0 bps
 Match: any
 Output queue: 0/8192; 48/59940 packets/bytes output, 0 drops

SNMP Output
ASR 9000# getmany -v2c 10.86.0.63 public ciscoCBQosMIB

. . .
cbQosCMDropPkt.1143.1145 = 57

. . .
cbQosPoliceConformedPkt.1143.1151 = 42

. . .
5-259
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Using IF-MIB Counters
Using IF-MIB Counters
This section describes the IF-MIB counters and how you can use them on various interfaces and
subinterfaces. The subinterface counters are specific to the protocols. This section addresses the IF-MIB
counters for ATM interfaces.

The IF-MIB counters are defined with respect to lower and upper layers:

• ifInDiscards—The number of inbound packets that were discarded, even though no errors were
detected to prevent their being deliverable to a higher-layer protocol. One reason for discarding such
a packet is to free up buffer space.

• IfInErrors—The number of inbound packets that contained errors preventing them from being
deliverable to a higher-layer protocol for packet-oriented interfaces.

• ifInUnknownProtos—The number of packets received through the interface that were discarded
because of an unknown or unsupported protocol for packet-oriented interfaces.

• ifOutDiscards—The number of outbound packets that were discarded even though no errors were
detected to prevent their being transmitted. One reason for discarding such a packet is to free up
buffer space.

• ififOutErrors—The number of outbound packets that could not be transmitted because of errors for
packet-oriented interfaces.

The logical flow for counters works as follows:

1. When a packet arrives on an interface, check for the following:

a. Error in packet—If any errors are detected, increment ifInErrors and drop the packet.

b. Protocol errors—If any errors are detected, increment ifInUnknownProtos and drop the packet.

c. Resources (buffers)—If unable to get resources, increment ifInDiscards and drop the packet.

d. Increment ifInUcastPkts/ifInNUcastPkts and process the packet (at this point, increment
ifInOctets with the size of packet).

2. When a packet is to be sent out of an interface:

a. Increment ifOutUcastPkts/ifOutNUcastPkts (increment ifOutOctets with the size of packet).

b. Check for errors in packet and if there are any errors in packet, increment ifOutErrors and drop
the packet.

c. Check for resources (buffers) and if you cannot get resources, then increment ifOutDiscards and
drop the packet.

This following output is an example of IF-MIB entries:

IfXEntry ::=

 SEQUENCE {
 ifName DisplayString,
 ifInMulticastPkts Counter32,
 ifInBroadcastPkts Counter32,
 ifOutMulticastPkts Counter32,
 ifOutBroadcastPkts Counter32,
 ifHCInOctets Counter64,
 ifHCInUcastPkts Counter64,
 ifHCInMulticastPkts Counter64,
 ifHCInBroadcastPkts Counter64,
 ifHCOutOctets Counter64,
 ifHCOutUcastPkts Counter64,
 ifHCOutMulticastPkts Counter64,
 ifHCOutBroadcastPkts Counter64,
5-260
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Using IF-MIB Counters
 ifLinkUpDownTrapEnable INTEGER,
 ifHighSpeed Gauge32,
 ifPromiscuousMode TruthValue,
 ifAlias DisplayString,
 ifCounterDiscontinuityTime TimeStamp

Sample Counters
The high capacity counters are 64-bit versions of the basic ifTable counters. They have the same basic
semantics as their 32-bit counterparts; their syntax is extended to 64 bits.

Table 5-2 lists capacity counters object identifiers (OIDs).

Table 5-2 Capacity Counters Object Identifiers

Name Object Identifier (OID)

ifHCInOctets ::= { ifXEntry 6 }

ifHCInUcastPkts ::= { ifXEntry 7 }

ifHCInMulticastPkts ::= { ifXEntry 8 }

ifHCInBroadcastPkts ::= { ifXEntry 9 }

ifHCOutOctets ::= { ifXEntry 10 }

ifHCOutUcastPkts ::= { ifXEntry 11 }

ifHCOutMulticastPkts ::= { ifXEntry 12 }

ifHCOutBroadcastPkts ::= { ifXEntry 13 }

ifLinkUpDownTrapEnable ::= { ifXEntry 14 }

ifHighSpeed ::= { ifXEntry 15 }

ifPromiscuousMode ::= { ifXEntry 16 }

ifAlias ::= { ifXEntry 18 }

ifCounterDiscontinuityTime ::= { ifXEntry 19 }
5-261
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

Appendix 5 Using MIBs
Using IF-MIB Counters
5-262
Cisco ASR 9000 Series Aggregation Services Routers MIB Specifications Guide

OL-29006-02

	Using MIBs
	Cisco Unique Device Identifier Support
	Cisco Redundancy Features
	Levels of Redundancy
	Nonstop Forwarding/Stateful Switchover

	Verifying the Cisco ASR 9000 Series Router Redundancy

	Managing Physical Entities
	Purpose and Benefits
	Performing Inventory Management
	Determining the ifIndex Value for a Physical Port

	Monitoring and Configuring FRU Status
	Generating SNMP Notifications
	Identifying Hosts to Receive Notifications
	Configuration Changes
	FRU Status Changes

	Monitoring Quality of Service
	Cisco ASR 9000 Series Router QoS Basics
	CISCO-CLASS-BASED-QOS-MIB Overview
	CISCO-CLASS-BASED-QOS-MIB Object Relationship
	QoS MIB Information Storage
	QoS Hardware Configuration and Statistic Support

	Viewing QoS Configuration Settings Using the CISCO-CLASS-BASED-QOS-MIB
	Monitoring QoS Using the CISCO-CLASS-BASED-QOS-MIB
	Considerations for Processing QoS Statistics
	Sample QoS Statistics Tables

	Sample QoS Applications
	Checking Customer Interfaces for Service Policies
	Retrieving QoS Billing Information

	Monitoring Router Interfaces
	Check the Operational and Administrative Status of Interface
	Monitor linkDown and linkUp Notifications
	Enabling Interface linkUp and linkDown Notifications

	Billing Customers for Traffic
	Input and Output Interface Counts
	Determining the Amount of Traffic to Bill to a Customer
	Scenario for Demonstrating QoS Traffic Policing
	Service Policy Configuration
	Packet Counts Before the Service Policy Is Applied
	Generating Traffic
	Packet Counts After the Service Policy Is Applied

	Using IF-MIB Counters
	Sample Counters

