

Configuring Multiprotocol Label Switching on the PFC

This chapter describes how to configure Multiprotocol Label Switching (MPLS) on the Cisco 7600 PFC card. The information in this chapter describes MPLS operation on the PFC3B, PFC3BXL, PFC3C, and PFC3CXL cards. Unless otherwise noted, MPLS operation is the same on all of these PFC cards.

Note

For complete syntax and usage information for the commands used in this chapter, see these publications:

• The Cisco 7600 Series Routers Command References at this URL:

http://www.cisco.com/en/US/products/hw/routers/ps368/prod_command_reference_list.html

This chapter contains these sections:

- PFC MPLS Label Switching, page 24-1
- VPN Switching on the PFC, page 24-10
- Any Transport over MPLS, page 24-13

PFC MPLS Label Switching

These sections describe MPLS label switching:

- Understanding MPLS, page 24-2
- Understanding MPLS Label Switching, page 24-2
- Supported Hardware Features, page 24-4
- Supported Cisco IOS Features, page 24-5
- MPLS Guidelines and Restrictions, page 24-7
- Configuring MPLS, page 24-8
- MPLS Per-Label Load Balancing, page 24-8
- MPLS Configuration Examples, page 24-8
- Scalable EoMPLS and Port-mode EoMPLS, page 24-16
- Sample Configuration for SwEoMPLS and VPLS, page 24-16

Understanding MPLS

MPLS uses label switching to forward packets over various link-level technologies such as Packet-over-SONET (POS), Frame Relay, ATM, and Ethernet. Labels are assigned to packets based on groupings or forwarding equivalence classes (FECs). The label is added between the Layer 2 and the Layer 3 header.

In an MPLS network, the label edge router (LER) performs a label lookup of the incoming label, swaps the incoming label with an outgoing label, and sends the packet to the next hop at the label switch router (LSR). Labels are imposed (pushed) on packets only at the ingress edge of the MPLS network and are removed (popped) at the egress edge. The core network LSRs (provider, or P routers) read the labels, apply the appropriate services, and forward the packets based on the labels.

Incoming labels are aggregate or nonaggregate. The aggregate label indicates that the arriving MPLS packet must be switched through an IP lookup to find the next hop and the outgoing interface. The nonaggregate label indicates that the packet contains the IP next hop information.

Figure 24-1 shows an MPLS network of a service provider that connects two sites of a customer network.

For additional information on MPLS, see this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fswtch_c/swprt3/xcftagov.htm

Understanding MPLS Label Switching

The PFC supports Layer 3 Multiprotocol Label Switching (MPLS) virtual private networks (VPNs), and Layer 2 Ethernet over MPLS (EoMPLS), with quality of service (QoS) and security.

The MSFC on the supervisor engine performs Layer 3 control-plane functions, including address resolution and routing protocols. The MSFC processes information from the Routing and Label Distribution Protocols and builds the IP forwarding (FIB) table and the label forwarding (LFIB) table. The MSFC distributes the information in both tables to the PFC.

The PFC receives the information and creates its own copies of the FIB and LFIB tables. Together, these tables comprise the FIB TCAM. The DFC looks up incoming IP packets and labeled packets against the FIB TCAM table. The lookup result is the pointer to a particular adjacency entry. It is the adjacency entry that contains appropriate information for label pushing (for IP to MPLS path), label swapping (for MPLS to MPLS path), label popping (for MPLS to IP path), and encapsulation.

Figure 24-2 shows the various functional blocks on the PFC that support MPLS label switching. Routing protocol generates a routing information base (RIB) that is used for forwarding IP and MPLS data packets. For Cisco Express Forwarding (CEF), necessary routing information from the RIB is extracted and built into a forwarding information base (FIB). The label distribution protocol (LDP) obtains routes from the RIB and distributes the label across a label switch path to build a label forwarding information base (LFIB) in each of the LSRs and LERs.

Figure 24-2 MPLS Forwarding, Control and Data Planes

IP to MPLS

At the ingress to the MPLS network, the PFC examines the IP packets and performs a route lookup in the FIB TCAM. The lookup result is the pointer to a particular adjacency entry. The adjacency entry contains the appropriate information for label pushing (for IP to MPLS path) and encapsulation. The PFC generates a result containing the imposition label(s) needed to switch the MPLS packet.

<u>Note</u>

If MPLS load sharing is configured, the adjacency may point to a load-balanced path. See "Basic MPLS Load Balancing" section on page 24-8.

MPLS to MPLS

At the core of an MPLS network, the PFC uses the topmost label to perform a lookup in the FIB TCAM. The successful lookup points to an adjacency that swaps the top label in the packet with a new label as advertised by the downstream label switch router (LSR). If the router is the penultimate hop LSR router (the upstream LSR next to the egress LER), the adjacency instructs the PFCBXL or PFC3CXL to pop the topmost label, resulting in either an MPLS packet with the remaining label for any VPN or AToM use or a native IP packet.

MPLS to IP

At the egress of the MPLS network there are several possibilities.

For a native IP packet (when the penultimate router has popped the label), the PFC performs a route lookup in the FIB TCAM.

For a MPLS VPN packet, after the Interior Gateway Protocol (IGP) label is popped at penultimate router, the VPN label remains. The operation that the PFC performs depends on the VPN label type. Packets carrying aggregate labels require a second lookup based on the IP header after popping the aggregate label. For a nonaggregate label, the PFC performs a route lookup in the FIB TCAM to obtain the IP next hop information.

For the case of a packet with an IGP label and a VPN label, when there is no penultimate hop popping (PHP), the packet carries the explicit-null label on top of the VPN label. The PFC looks up the top label in the FIB TCAM and recirculates the packet. Then the PFC handles the remaining label as described in the preceding paragraph, depending on whether it is an aggregate or nonaggregate label.

Packets with the explicit-null label for the cases of EoMPLS, MPLS, and MPLS VPN an MPLS are handled the same way.

MPLS VPN Forwarding

There are two types of VPN labels: aggregate labels for directly connected network or aggregate routes, and nonaggregate labels. Packets carrying aggregate labels require a second lookup based on the IP header after popping the aggregate label. The VPN information (VPN-IPv4 address, extended community, and label) is distributed through the Multiprotocol-Border Gateway Protocol (MP-BGP).

Recirculation

In certain cases, the PFC provides the capability to recirculate the packets. Recirculation can be used to perform additional lookups in the ACL or QoS TCAMs, the Netflow table, or the FIB TCAM table. Recirculation is necessary in these situations:

- To push more than three labels on imposition
- To pop more than two labels on disposition
- To pop an explicit null top label
- When the VPN Routing and Forwarding (VRF) number is more than 511
- For IP ACL on the egress interface (for nonaggregate (per-prefix) labels only)

Packet recirculation occurs only on a particular packet flow; other packet flows are not affected. The rewrite of the packet occurs on the modules; the packets are then forwarded back to the PFC for additional processing.

Supported Hardware Features

The following hardware features are supported:

- Label operation— Any number of labels can be pushed or popped, although for best results, up to three labels can be pushed, and up to two labels can be popped in the same operation.
- IP to MPLS path-IP packets can be received and sent to the MPLS path.
- MPLS to IP path—Labeled packets can be received and sent to the IP path.

- MPLS to MPLS path—Labeled packets can be received and sent to the label path.
- MPLS Traffic Engineering (MPLS TE)—Enables an MPLS backbone to replicate and expand the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks.
- Time to live (TTL) operation—At the ingress edge of the MPLS network, the TTL value in the MPLS frame header can be received from either the TTL field of the IP packet header or the user-configured value from the adjacency entry. At the egress of the MPLS network, the final TTL equals the minimum (label TTL and IP TTL)-1.

Note With the Uniform mode, the TTL is taken from the IP TTL; with the Pipe mode, a value of 255, taken from the hardware register, is used for the outgoing label.

- QoS—Information on Differentiated Services (DiffServ) and ToS from IP packets can be mapped to MPLS EXP field.
- MPLS/VPN Support—Up to 1024 VRFs can be supported (over 511 VRFs requires recirculation).
- Ethernet over MPLS—The Ethernet frame can be encapsulated at the ingress to the MPLS domain and the Ethernet frame can be decapsulated at the egress.
- Packet recirculation—The PFC provides the capability to recirculate the packets. See the "Recirculation" section on page 24-4.
- Configuration of MPLS switching is supported on VLAN interfaces with the mpls ip command.

Supported Cisco IOS Features

The following Cisco IOS software features are supported on the PFC:

Multi-VPN Routing and Forwarding (VRF) for CE Routers (VRF Lite) is supported with the following features: IPv4 forwarding between VRFs interfaces, IPv4 ACLs, and IPv4 HSRP.

• Multi-VRF for CE Routers (VRF Lite)—VRF-lite is a feature that enables a service provider to support two or more VPNs (using only VRF-based IPv4), where IP addresses can be overlapped among the VPNs. See this publication:

http://www.cisco.com/en/US/products/hw/routers/ps259/prod_bulletin09186a00800921d7.html

• MPLS on Cisco routers—This feature provides basic MPLS support for imposing and removing labels on IP packets at label edge routers (LERs) and switching labels at label switch routers (LSRs). See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st21/fs_rtr.htm

• MPLS TE—MPLS traffic engineering software enables an MPLS backbone to replicate and expand upon the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks. MPLS traffic engineering thereby makes traditional Layer 2 features available to Layer 3 traffic flows. For more information, see these publications:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fswtch_c/swprt3/xcftagc.htm

http://www.cisco.com/warp/public/105/mplsteisis.html

http://www.cisco.com/warp/public/105/mpls_te_ospf.html

• MPLS TE DiffServ Aware (DS-TE)—This feature provides extensions made to MPLS TE to make it DiffServ aware, allowing constraint-based routing of guaranteed traffic. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122s/122snwft/release/122s18/fsdserv3. htm

• MPLS TE Forwarding Adjacency—This feature allows a network administrator to handle a traffic engineering, label-switched path (LSP) tunnel as a link in an Interior Gateway Protocol (IGP) network based on the Shortest Path First (SPF) algorithm. For information on forwarding adjacency with Intermediate System-to-Intermediate System (IS-IS) routing, see this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122s/122snwft/release/122s18/fstefa_3. htm

• MPLS TE Interarea Tunnels—This feature allows the router to establish MPLS TE tunnels that span multiple Interior Gateway Protocol (IGP) areas and levels, removing the restriction that had required the tunnel head-end and tail-end routers to be in the same area. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122s/122snwft/release/122s18/fsiarea3. htm

• MPLS virtual private networks (VPNs)—This feature allows you to deploy scalable IPv4 Layer 3 VPN backbone services over a Cisco IOS network. See this publication:

http://www.cisco.com/univered/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st21/fs_vpn.htm

• MPLS VPN Carrier Supporting Carrier (CSC)—This feature enables one MPLS VPN-based service provider to allow other service providers to use a segment of its backbone network. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/ftcsc8.htm

• MPLS VPN Carrier Supporting Carrier IPv4 BGP Label Distribution—This feature allows you to configure your CSC network to enable Border Gateway Protocol (BGP) to transport routes and MPLS labels between the backbone carrier provider edge (PE) routers and the customer carrier customer edge (CE) routers. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t13/ftcscl13. htm

• MPLS VPN Interautonomous System (InterAS) Support —This feature allows an MPLS VPN to span service providers and autonomous systems. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s24 /fsias24.htm

• MPLS VPN Inter-AS IPv4 BGP label distribution—This feature enables you to set up a VPN service provider network so that the autonomous system boundary routers (ASBRs) exchange IPv4 routes with MPLS labels of the PE routers. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t13/ftias113.htm

• MPLS VPN Hot Standby Router Protocol (HSRP) Support—This feature ensures that the HSRP virtual IP address is added to the correct IP routing table and not to the global routing table. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dt_hsmp.htm

• OSPF Sham-Link Support for MPLS VPN—This feature allows you to use a sham-link to connect VPN client sites that run the Open Shortest Path First (OSPF) protocol and share OSPF links in a MPLS VPN configuration. See this publication:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/ospfshmk.htm

• Any Transport over MPLS (AToM)—Transports Layer 2 packets over an MPLS backbone. See the "Any Transport over MPLS" section on page 24-13.

MPLS Guidelines and Restrictions

When configuring MPLS on the PFC follow these guidelines and restrictions:

- The PFC supports up to 15 load-shared paths. Cisco IOS releases for other platforms support only 8 load-shared paths.
- The PFC supports MTU checking and fragmentation.
- Fragmentation is supported with software (for IP to MPLS path). See the **mtu** command description in the *Cisco 7600 Series Router Cisco IOS Command Reference*.
- Observe the following maximum transmission unit (MTU) guidelines when you configure MPLS:
 - Both ends of the MPLS link must have the same MTU size; otherwise, MPLS detects a mismatch between the interfaces and it never becomes operational.

Note that MPLS over RBE allows different MTU sizes (for example, default Gigabit Ethernet and ATM). However, when running OSPF over RBE, you must include the **ip ospf mtu-ignore** command on the ATM interface; otherwise, OSPF detects a mismatch and never becomes active.

 The MPLS MTU size must be less than the MTU size of the physical interface that the MPLS link uses. Otherwise, problems can occur and MPLS packets might be dropped.

Although not recommended, you can use the **mpls mtu override** *bytes* command to set the MPLS MTU size to a value greater than the interface MTU size (where *bytes* specifies MPLS MTU size).

The **mpls mtu override** *bytes* command is available only on interfaces with a default MTU size of 1580 bytes or less (for example, Ethernet). It is not available on ATM bridged interfaces.

• For information on other restrictions, see the "MPLS VPN Guidelines and Restrictions" section on page 24-11 and the "EoMPLS Guidelines and Restrictions" section on page 24-14.

MPLS Supported Commands

MPLS on the PFC supports these commands:

- mpls ip default route
- mpls ip propagate-ttl
- mpls ip ttl-expiration pop
- mpls label protocol
- mpls label range
- mpls ip
- mpls label protocol
- mpls mtu

For information about these commands, see these publications:

http://www.cisco.com/univered/cc/td/doc/product/software/ios122/122egcr/fswtch_r/index.htm

Configuring MPLS

For information about configuring MPLS, see the *Multiprotocol Label Switching on Cisco Routers* publication at the following URL:

http://www.cisco.com/en/US/docs/ios/12_1t/12_1t3/feature/guide/rtr_13t.html

MPLS Per-Label Load Balancing

The following sections provide information on basic MPLS, MLPS Layer 2 VPN, and MPLS Layer 3 VPN load balancing.

Basic MPLS Load Balancing

The maximum number of load balancing paths is 8. The PFC forwards MPLS labeled packets without explicit configuration. If the packet has three labels or less and the underlying packet is IPv4, then the PFC uses the source and destination IPv4 address. If the underlying packet is not IPv4 or more than three labels are present, the PFC parses down as deep as the fifth or lowest label and uses it for hashing.

MPLS Layer 2 VPN Load Balancing

Load balancing is based on the VC label in the MPLS core if the first nibble of the MAC address in the customer Ethernet frame is not 4.

Load balancing is not supported at the ingress PE for Layer 2 VPNs. Load balancing is done based on the VC label and it is pre-selected.

MPLS Layer 3 VPN Load Balancing

MPLS Layer 3 VPN load balancing is similar to basic MPLS load balancing. For more information, see the "Basic MPLS Load Balancing" section on page 24-8.

MPLS Configuration Examples

The following is an example of a basic MPLS configuration:

```
*****
Basic MPLS
*****

IP ingress interface:
Router# mpls label protocol ldp
interface GigabitEthernet6/2
ip address 75.0.77.1 255.255.255.0
media-type rj45
speed 1000
end
```

Label egress interface:

```
interface GigabitEthernet7/15
mtu 9216
ip address 75.0.67.2 255.255.0
logging event link-status
mpls ip
```

Router# show ip route 188.0.0.0 Routing entry for 188.0.0.0/24, 1 known subnets

O IA 188.0.0.0 [110/1] via 75.0.77.2, 00:00:10, GigabitEthernet6/2

```
Router#sh ip ro 88.0.0.0
Routing entry for 88.0.0.0/24, 1 known subnets
```

O E2 88.0.0.0 [110/0] via 75.0.67.1, 00:00:24, GigabitEthernet7/15 [110/0] via 75.0.21.2, 00:00:24, GigabitEthernet7/16 Router#

Router	show mpls	forwarding-table	88.0.0.0		
Local	Outgoing	Prefix	Bytes tag	g Outgoing	Next Hop
tag	tag or VC	or Tunnel Id	switched	interface	è
30	50	88.0.0/24	0	Gi7/15	75.0.67.1
	50	88.0.0/24	0	Gi7/16	75.0.21.2

Router# show mls cef 88.0.0.0 detail

Codes: M - mask entry, V - value entry, A - adjacency index, P - priority bit D - full don't switch, m - load balancing modnumber, B - BGP Bucket sel V0 - Vlan 0,C0 - don't comp bit 0,V1 - Vlan 1,C1 - don't comp bit 1 RVTEN - RPF Vlan table enable, RVTSEL - RPF Vlan table select Format: IPV4_DA - (8 | xtag vpn pi cr recirc tos prefix) Format: IPV4_SA - (9 | xtag vpn pi cr recirc prefix) M(3223): E | 1 FFF 0 0 0 0 255.255.255.0 0 0 0 0 88.0.0.0): 8 | 1 0 (A:344105 ,P:1,D:0,m:1 ,B:0) V(3223): E | 1 FFF 0 0 0 255.255.255.0 M(3223 V(3223): 9 | 1 0 0 0 0 88.0.0.0 (V0:0 ,C0:0 ,V1:0 ,C1:0 ,RVTEN:0 ,RVTSEL:0) Router# show mls cef adj ent 344105

Index: 344105 smac: 0005.9a39.a480, dmac: 000a.8ad8.2340
 mtu: 9234, vlan: 1031, dindex: 0x0, l3rw_vld: 1
 packets: 109478260, bytes: 7006608640

Router# show mls cef adj ent 344105 de

Index: 344105 smac: 0005.9a39.a480, dmac: 000a.8ad8.2340
 mtu: 9234, vlan: 1031, dindex: 0x0, l3rw_vld: 1
 format: MPLS, flags: 0x1000008418
 label0: 0, exp: 0, ovr: 0
 label1: 0, exp: 0, ovr: 0
 label2: 50, exp: 0, ovr: 0
 op: PUSH_LABEL2
 packets: 112344419, bytes: 7190042816

VPN Switching on the PFC

These sections describe VPN switching on the PFC:

- VPN Switching Operation on the PFC, page 24-10
- MPLS VPN Guidelines and Restrictions, page 24-11
- MPLS VPN Supported Commands, page 24-11
- MPLS VPN Sample Configuration, page 24-12

VPN Switching Operation on the PFC

The IP VPN feature for MPLS allows a Cisco IOS network to deploy scalable IP Layer 3 VPN backbone services to multiple sites deployed on a shared infrastructure while also providing the same access or security policies as a private network. VPN based on MPLS technology provides the benefits of routing isolation and security, as well as simplified routing and better scalability.

A typical MPLS VPN network topology is shown in Figure 24-3.

At the ingress PE, the PFC makes a forwarding decision based on the packet headers. The PFC contains a table that maps VLANs to VPNs. In the Cisco 7600 series router architecture, all physical ingress interfaces in the system are associated with a specific VPN. The PFC looks up the IP destination address in the CEF table but only against prefixes that are in the specific VPN. (The table entry points to a specific set of adjacencies and one is chosen as part of the load-balancing decision if multiple parallel paths exist.)

The table entry contains the information on the Layer 2 header that the packet needs, as well as the specific MPLS labels to be pushed onto the frame. The information to rewrite the packet goes back to the ingress line card where it is rewritten and forwarded to the egress line interface.

VPN traffic is handled at the egress from the PE based upon the per-prefix labels or aggregate labels. If per-prefix labels are used, then each VPN prefix has a unique label association; this allows the PE to forward the packet to the final destination based upon a label lookup in the FIB.

The PFC allocates only one aggregate label per VRF.

If aggregate labels are used for disposition in an egress PE, many prefixes on the multiple interfaces may be associated with the label. In this case, the PFC must perform an IP lookup to determine the final destination. The IP lookup may require recirculation.

MPLS VPN Guidelines and Restrictions

When configuring MPLS VPN, follow these guidelines and restrictions:

- The PFC supports a total of 1024 VRFs per chassis a with enhanced OSMs. Using a nonenhanced OSM causes the system to default to 511 VRFs.
- The PFC recirculates VPNs when the number of VPNs is over 511.

MPLS VPN Supported Commands

The PFC supports these MPLS VPN commands:

- address-family
- exit-address-family
- import map
- ip route vrf
- ip route forwarding
- ip vrf
- neighbor activate
- rd
- route-target

Configuring MPLS VPN

For information on configuring MPLS VPN, refer to the *MPLS Virtual Private Networks* feature module at this URL:

http://www.cisco.com/en/US/docs/ios/12_1t/12_1t3/feature/guide/rtr_13t.html

If you use a Layer 3 VLAN interface as the MPLS uplink through a Layer 2 port peering with another MPLS device, then you can use another Layer 3 VLAN interface as the VRF interface.

MPLS VPN Sample Configuration

This sample configuration shows LAN, OSM, and Enhanced FlexWAN CE-facing interfaces. The PFC MPLS switching configuration is identical to configuration on other platforms.

```
!ip vrf blues
rd 100:10
route-target export 100:1
route-target import 100:1
!
mpls label protocol ldp
mpls ldp logging neighbor-changes
mls mpls tunnel-recir
interface Loopback0
ip address 10.4.4.4 255.255.255.255
Т
interface GigabitEthernet4/2
description Catalyst link to P2
no ip address
mls qos trust dscp
1
interface GigabitEthernet4/2.42
 encapsulation dot1Q 42
 ip address 10.0.3.2 255.255.255.0
tag-switching ip
interface GigabitEthernet7/3
description Catalyst link to CE2
no ip address
mls qos trust dscp
L
interface GigabitEthernet7/3.73
 encapsulation dot1Q 73
 ip vrf forwarding blues
ip address 10.19.7.1 255.255.255.0
!
interface POS8/1
description OSM link to CE3
ip vrf forwarding blues
ip address 10.19.8.1 255.255.255.252
 encapsulation ppp
mls qos trust dscp
pos scramble-atm
pos flag c2 22
!
interface POS9/0/0
description FlexWAN link to CE1
ip vrf forwarding blues
ip address 10.19.9.1 255.255.255.252
 encapsulation ppp
pos scramble-atm
pos flag c2 22
!
router ospf 100
log-adjacency-changes
network 10.4.4.4 0.0.0.0 area 0
network 10.0.0.0 0.0.255.255 area 0
Т
router ospf 65000 vrf blues
 log-adjacency-changes
 redistribute bgp 100 subnets
network 10.19.0.0 0.0.255.255 area 0
```

```
router bgp 100
no synchronization
bgp log-neighbor-changes
neighbor 10.3.3.3 remote-as 100
neighbor 10.3.3.3 description MP-BGP to PE1
neighbor 10.3.3.3 update-source Loopback0
no auto-summary
 address-family vpnv4
neighbor 10.3.3.3 activate
neighbor 10.3.3.3 send-community extended
exit-address-family
 address-family ipv4 vrf blues
redistribute connected
redistribute ospf 65000 match internal external 1 external 2
no auto-summarv
no synchronization
 exit-address-family
I
```

Any Transport over MPLS

Any Transport over MPLS (AToM) transports Layer 2 packets over an MPLS backbone. AToM uses a directed Label Distribution Protocol (LDP) session between edge routers for setting up and maintaining connections. Forwarding occurs through the use of two level labels that provide switching between the edge routers. The external label (tunnel label) routes the packet over the MPLS backbone to the egress PE at the ingress PE. The VC label is a demuxing label that determines the connection at the tunnel endpoint (the particular egress interface on the egress PE as well as the VLAN identifier for an Ethernet frame).

AToM supports the following like-to-like transport types on the PFC:

- Ethernet over MPLS (EoMPLS) (VLAN mode and port mode)
- Frame Relay over MPLS with DLCI-to-DLCI connections
- ATM AAL5 over MPLS
- ATM Cell Relay over MPLS
- PPP over MPLS
- HDLC over MPLS
- Circuit Emulation (TDM) over MPLS

Note Additional AToM types are planned in future releases.

The PFC supports hardware-based EoMPLS and OSM- or Enhanced FlexWAN-based EoMPLS. (Note that Release 12.2SR does not support FlexWAN-based EoMPLS). For more information, see:

http://www.cisco.com/en/US/docs/general/TD_Trash/lczaplys_trash/mpls.html#wp1128955

For information on other ATOM implementations (ATM AAL5 over MPLS, ATM Cell Relay over MPLS, Frame Relay over MPLS), see this publication:

http://www.cisco.com/en/US/docs/general/TD_Trash/lczaplys_trash/mpls.html#wp1279824

These sections describe AToM:

- AToM Load Balancing, page 24-14
- Understanding EoMPLS, page 24-14
- EoMPLS Guidelines and Restrictions, page 24-14
- Configuring EoMPLS, page 24-18
- Configuring 7600-MUX-UNI Support on LAN Cards, page 24-25

AToM Load Balancing

EoMPLS on the PFC does not support load balancing at the tunnel ingress; only one Interior Gateway Protocol (IGP) path is pre-selected based on the VC label.

Understanding EoMPLS

EoMPLS is one of the AToM transport types. AToM transports Layer 2 packets over a MPLS backbone using a directed LDP session between edge routers for setting up and maintaining connections. Forwarding occurs through the use of two level labels that provide switching between the edge routers. The external label (tunnel label) routes the packet over the MPLS backbone to the egress PE at the ingress PE. The VC label is a demuxing label that determines the connection at the tunnel endpoint (the particular egress interface on the egress PE as well as the VLAN identifier for an Ethernet frame).

EoMPLS works by encapsulating Ethernet PDUs in MPLS packets and forwarding them across the MPLS network. Each PDU is transported as a single packet.

Use OSM-based or Enhanced FlexWAN-based EoMPLS when you want local Layer 2 switching and EoMPLS on the same VLAN. You must configure EoMPLS on the SVI, and the core-facing card must be an OSM or an Enhanced FlexWAN module. When local Layer 2 switching is not required, use PFC-based EoMPLS configured on the subinterface or physical interface.

EoMPLS Guidelines and Restrictions

When configuring EoMPLS, consider these guidelines and restrictions:

- Ensure that the maximum transmission unit (MTU) of all intermediate links between endpoints is sufficient to carry the largest Layer 2 packet received.
- EoMPLS supports VLAN packets that conform to the IEEE 802.1Q standard. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames.
- For VLAN-based EoMPLS, the MTU size on the VLAN subinterface must be greater than 1500 (the default) if a larger MTU size is specified on the physical interface.

Note Port-channel and xconnect combinations are supported on Port-based EoMPLS. However, all the restrictions for normal PFC based EoMPLS are applicable to port-channel and xconnect as well.

• If QoS is disabled globally, both the 802.1p and IP precedence bits are preserved. When the QoS is enabled on a Layer 2 port, either 802.1q P bits or IP precedence bits can be preserved with the trusted configuration. However, by default the unpreserved bits are overwritten by the value of preserved bits. For instance, if you preserve the P bits, the IP precedence bits are overwritten with the value of the P bits. A new command allows you to configure the PFC to trust the P bits while preserving the IP precedence bits. To preserve the IP precedence bits, use the **no mls qos rewrite ip dscp** command.

The **no mls qos rewrite ip dscp** command is not compatible with the MPLS and MPLS VPN features. See Chapter 41, "Configuring PFC QoS."

Do not use the **no mls qos rewrite ip dscp** command if you have PFC-based EoMPLS and PXF-based EoMPLS services in the same system.

- EoMPLS is not supported with private VLANs.
- The following restrictions apply to using trunks with EoMPLS:
 - To support Ethernet spanning tree bridge protocol data units (BPDUs) across an EoMPLS cloud, you must disable the supervisor engine spanning tree for the Ethernet-over-MPLS VLAN. This ensures that the EoMPLS VLANs are carried only on the trunk to the customer router. Otherwise, the BPDUs are directed to the supervisor engine and not to the EoMPLS cloud.
 - The native VLAN of a trunk must not be configured as an EoMPLS VLAN. For more information on Scalable EoMPLS (SVI-based EoMPLS) and Port-mode EoMPLS and its sample configuration, see Scalable EoMPLS and Port-mode EoMPLS, page 24-16 and Sample Configuration for SwEoMPLS and VPLS, page 24-16.
- Cisco 7600 provides three different flavors of the Ethernet over MPLS (EoMPLS) solutions.
 - PFC-based EoMPLS, also known as Hardware-based EoMPLS where the Earl imposes on the Supervisor or DFC based line card
 - LAN-based EoMPLS, also known as Software-based EoMPLS, where Earl imposes on the MPLS Core-facing line card
 - Scalable EoMPLS, where the Earl imposes on customer device facing line card. The feature is supported in the SIP400, ES20, and ES40 as customer-facing line cards. Further, in ES20 and ES40 the solution is supported only in EVC-based configuration.
- On the PFC, all protocols (for example, CDP, VTP, BPDUs) are tunneled across the MPLS cloud without conditions.
- ISL encapsulation is not supported for the interface that receives EoMPLS packets.
- Unique VLANs are required across interfaces. You cannot use the same VLAN ID on different interfaces.
- EoMPLS tunnel destination route in the routing table and the CEF table must be a /32 address (host address where the mask is 255.255.255) to ensure that there is a label-switched path (LSP) from PE to PE.
- For a particular EoMPLS connection, both the ingress EoMPLS interface on the ingress PE and the egress EoMPLS interface on the egress PE have to be subinterfaces with dot1Q encapsulation or neither is a subinterface.
- 802.1Q in 802.1Q over EoMPLS is supported if the outgoing interface connecting to MPLS network is a port on an Layer 2 card.

- Shaping EoMPLS traffic is not supported if the egress interface connecting to an MPLS network is a Layer 2 LAN port (a mode known as PFC-based EoMPLS).
- EoMPLS based on a PFC does not perform any Layer 2 lookup to determine if the destination MAC address resides on the local or remote segment and does not perform any Layer 2 address learning (as traditional LAN bridging does). This functionality (local switching) is available only when using OSM and FlexWAN modules as uplinks.
- In previous releases of AToM, the command used to configure AToM circuits was **mpls l2 transport route**. This command has been replaced with the **xconnect** command. You can use the **xconnect** command to configure EoMPLS circuits.
- The AToM control word is not supported.
- EoMPLS is not supported on Layer 3 VLAN interfaces.
- Point-to-point EoMPLS works with a physical interface, subinterfaces and EVC.
- Some of the SPA-based Ethernet line cards like the ES20 support matching the outer VLAN for QinQ traffic. See the documentation for the line card you are interested in for more information.

Scalable EoMPLS and Port-mode EoMPLS

In a scalable EoMPLS scenario, you can configure cross-connect directly on the EVC on the PE routers. In a port-mode EoMPLS, you can configure a cross-connect on the physical interface or subinterface. In case of scalable and port-mode EoMPLS, it is not required to disable spanning tree, since the access facing interfaces do not participate in spanning tree protocol (STP). For more information on configuring the Spanning Tree Protocol (STP) and Multiple Spanning Tree (MST) protocol on Cisco 7600 series routers, refer Chapter 19, "Configuring STP and MST".

The next section describes sample configurations and scenarios to handle STP and allow the BPDUs to relay through the pseudowire.

Cisco 7600 series routers do not support multiple backup PWs.

Sample Configuration for SwEoMPLS and VPLS

Also termed as SVI-based EoMPLS, the following example outlines a sample topology for SwEoMPLS:

```
CE1-----PE1-----PE2----CE2
```

In a SwEoMPLS, you configure cross-connect on a SVI interface (interface VLAN). The following is a sample configuration on the CE facing interface:

```
interface FastEthernet1/13
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 110
switchport mode trunk
end
The following is a sample configuration for
```

The following is a sample configuration for the SVI interface with cross-connect.

```
interface Vlan110
no ip address
```

```
xconnect 6.6.6.6 200 encapsulation mpls end
```

Following sample shows a configuration on a core facing line card towards a P router:

```
interface GigabitEthernet2/2/0
ip address 53.53.53.1 255.255.0
mpls ip
end
```

Following sample shows a configuration on a CE facing line card for VPLS:

```
interface FastEthernet1/13
switchport switchport trunk encapsulation dot1q
switchport trunk allowed vlan 110
switchport mode trunk
end
```

Following sample shows a configuration when a cross-connect is configured within SVI:

```
interface Vlan110
description VPLS
no ip address
xconnect vfi PE1-VPLS
end
```

Based on the previous sample configurations, the VFI definitions are defined:

```
12 vfi PE1-VPLS manual
vpn id 110
neighbor 6.6.6.6 encapsulation mpls
```

Following sample shows a configuration on a CE facing line card for VFI:

```
interface GigabitEthernet2/2/0
ip address 53.53.53.1 255.255.255.0
mpls ip
end
```

In the topologies and configurations listed previously:

- The customer routers CE1 and CE2 possess ethernet connectivity.
- · Relays traffic tagged with any VLANS
- A EoMPLS pseudo wire is created between routers PE1 and PE2 to allow CE1-CE2 traffic transparently through PE1-PE2.

Managing Spanning Tree Protocol to allow Bridge Protocol Data Units

The Customer facing interfaces on the PE routers participate in the STP. To support Ethernet spanning tree bridge protocol data units (BPDUs) across an EoMPLS cloud (PE1-P-PE2), modify the methods listed below to disable the supervisor engine spanning tree:

1. If spanning tree mode is MST, then STP BPDUs are untagged.

spanning-tree mode mst

On the CE facing interface on a PE router:

```
Int Gig 1/1
switchport
switchport trunk allowed vlan 110
switchport mode trunk
```

Configure a VFI (mst-1 here) to relay the STP BPDUs.

12 vfi mst-1 manual vpn id 1 forward permit 12protocol all

Attach the VFI configured in the previous step to SVI.

interface Vlan1
no ip address
xconnect vfi mst-1

2. If spanning tree mode is PVST, STP BPDUs are tagged. For example, if the customer router's traffic is expected on VLAN110, then the BPDU's are tagged with VLAN 110.

spanning-tree mode pvst

On the access facing interface:

```
Int Gig1/1
switchport
switchport trunk allowed vlan 110
switchport mode trunk
no spanning-tree vlan 110
```

In the above scenario, **no spanning-tree vlan 110** is sufficient and a special VFI is not needed to relay BPDUs.

Configuring EoMPLS

These sections describe how to configure EoMPLS:

- Prerequisites, page 24-19
- Configuring PFC-Mode VLAN-Based EoMPLS, page 24-19
- Configuring Port-Based EoMPLS on the PFC, page 24-22

Prerequisites

Before you configure EoMPLS, ensure that the network is configured as follows:

- Configure IP routing in the core so that the PE routers can reach each other through IP.
- Configure MPLS in the core so that a label switched path (LSP) exists between the PE routers.

EoMPLS works by encapsulating Ethernet PDUs in MPLS packets and forwarding them across the MPLS network. Each PDU is transported as a single packet. Two methods are available to configure EoMPLS on the PFC:

- VLAN mode—Transports Ethernet traffic from a source 802.1Q VLAN to a destination 802.1Q VLAN through a single VC over an MPLS network. VLAN mode uses VC type 5 as default (no dot1q tag) and VC type 4 (transport dot1 tag) if the remote PE does not support VC type 5 for subinterface (VLAN) based EoMPLS.
- Port mode—Allows all traffic on a port to share a single VC across an MPLS network. Port mode uses VC type 5.

- For both VLAN mode and port mode, EoMPLS on the PFC does not allow local switching of packets between interfaces unless you use loopback ports.
- A system can have both an OSM or Enhanced FlexWAN configuration and PFC-mode configuration enabled at the same time. Cisco supports this configuration but does not recommend it.
- Unless the uplinks to the MPLS core are through OSM or Enhanced FlexWAN-enabled interfaces, OSM or Enhanced FlexWAN-based EoMPLS connections will not be active; this causes packets for OSM or Enhanced FlexWAN-based EoMPLS arriving on non-WAN interfaces to be dropped.

The PFC supports MPLS. With a PFC, LAN ports can receive Layer 2 traffic, impose labels, and switch the frames into the MPLS core without using an OSM or Enhanced FlexWAN module.

With a PFC, you can configure an OSM or an Enhanced FlexWAN module to face the core of MPLS network and use either the OSM configuration, the Enhanced FlexWAN configuration, or the PFC-mode configuration.

For more information on EoMPLS over WAN (Enhanced FlexWAN and OSM), see the following publication. (Note that Release 12.2SR does not support FlexWAN-based EoMPLS).

http://www.cisco.com/en/US/docs/general/TD_Trash/lczaplys_trash/mpls.html#wp1128955

Configuring PFC-Mode VLAN-Based EoMPLS

When configuring VLAN-based EoMPLS on the PFC, follow these guidelines and restrictions:

- The AToM control word is not supported.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.
- You must configure VLAN-based EoMPLS on subinterfaces. In addition, the MTU size on the VLAN subinterface must be greater than 1500 (the default) if a larger MTU size is specified on the physical interface.

To configure VLAN-based EoMPLS on the PFC, perform this task on the provider edge (PE) routers.

	Command	Purpose
Step 1	Router# configure terminal	Enters global configuration mode.

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 12.2SR

Step 2	Router(config)# interface gigabitethernet <i>slot/interface.subinterface</i>	Specifies the Gigabit Ethernet subinterface. Make sure that the subinterface on the adjoining CE router is on the same VLAN as this PE router.
Step 3	Router(config-if)# encapsulation dot1q vlan_id	Enables the subinterface to accept 802.1Q VLAN packets.
		The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers do not need to be on the same subnet.
Step 4	Router(config-if)# xconnect peer_router_id vcid encapsulation mpls	Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as for all other Layer 2 transports.

Here is a sample of a VLAN-based EoMPLS configuration on the PFC:

```
!
interface GigabitEthernet6/4
xconnect 13.13.13.13 4 encapsulation mpls
no shut
!
interface GigabitEthernet7/4.2
encapsulation dot1Q 3
xconnect 13.13.13.13 3 encapsulation mpls
no shut
```

```
Note
```

The IP address is configured on subinterfaces of the CE devices.

Verifying the Configuration

To verify and display the configuration of Layer 2 VLAN transport over MPLS tunnels, perform the following:

• To display a single line for each VLAN, naming the VLAN, status, and ports, enter the **show vlan brief** command.

Router# show vlan brief

VLAN	Name	Status	Ports
1	default	active	
2	VLAN0002	active	
3	VLAN0003	active	
1002	fddi-default	act/unsup	
1003	token-ring-default	act/unsup	
1004	fddinet-default	act/unsup	
1005	trnet-default	act/unsup	

• To make sure that the PE router endpoints have discovered each other, enter the **show mpls ldp discovery** command. When an PE router receives an LDP Hello message from another PE router, it considers that router and the specified label space to be "discovered."

```
Router# show mpls ldp discovery
Local LDP Identifier:
13.13.13.13:0
Discovery Sources:
Interfaces:
GE-WAN3/3 (ldp): xmit/recv
```

```
LDP Id: 12.12.12.12:0
Targeted Hellos:
13.13.13.13 -> 11.11.11 (ldp): active/passive, xmit/recv
LDP Id: 11.11.11.11:0
```

 To make sure that the label distribution session has been established, enter the show mpls ldp neighbor command. The third line of the output shows that the state of the LDP session is operational and shows that messages are being sent and received.

```
Router# show mpls ldp neighbor
    Peer LDP Ident: 12.12.12.12:0; Local LDP Ident 13.13.13.13:0
       TCP connection: 12.12.12.12.646 - 13.13.13.13.11010
       State: Oper; Msgs sent/rcvd: 1649/1640; Downstream
       Up time: 23:42:45
       LDP discovery sources:
         GE-WAN3/3, Src IP addr: 34.0.0.2
       Addresses bound to peer LDP Ident:
         23.2.1.14
                        37.0.0.2
                                       12.12.12.12
                                                         34.0.0.2
         99.0.0.1
    Peer LDP Ident: 11.11.11.11:0; Local LDP Ident 13.13.13.13:0
       TCP connection: 11.11.11.11.646 - 13.13.13.13.11013
       State: Oper; Msgs sent/rcvd: 1650/1653; Downstream
       Up time: 23:42:29
       LDP discovery sources:
         Targeted Hello 13.13.13.13 -> 11.11.11.11, active, passive
       Addresses bound to peer LDP Ident:
                        37.0.0.1
                                         23.2.1.13
         11.11.11.11
```

• To ensure that the label forwarding table is built correctly, enter the **show mpls forwarding-table** command to verify that a label has been learned for the remote PE and that the label is going from the correct interface to the correct next-hop.

Router#	show mpls :	forwarding-table			
Local	Outgoing	Prefix	Bytes tag	g Outgoing	Next Hop
tag	tag or VC	or Tunnel Id	switched	interface	è
16	Untagged	223.255.254.254/32	2 \		
			0	Gi2/1	23.2.0.1
20	Untagged	12ckt(2)	133093	V12	point2point
21	Untagged	12ckt(3)	185497	V13	point2point
24	Pop tag	37.0.0.0/8	0	GE3/3	34.0.0.2
25	17	11.11.11.11/32	0	GE3/3	34.0.0.2
26	Pop tag	12.12.12.12/32	0	GE3/3	34.0.0.2
Router	ŧ				

The output shows the following data:

- Local tag—Label assigned by this router.
- Outgoing tag or VC—Label assigned by next hop.
- Prefix or Tunnel Id—Address or tunnel to which packets with this label are going.
- Bytes tag switched— Number of bytes switched out with this incoming label.
- Outgoing interface—Interface through which packets with this label are sent.
- Next Hop—IP address of neighbor that assigned the outgoing label.
- To view the state of the currently routed VCs, enter the **show mpls l2transport vc** command.

Router# show mpls 12transport vc

Local intf	Local circuit	Dest address	VC ID	Status
V12	Eth VLAN 2	11.11.11.11	2	UP
V13	Eth VLAN 3	11.11.11.11	3	UP

```
To see detailed information about each VC, add the keyword detail.
   Router# show mpls 12transport vc detail
   Local interface: V12 up, line protocol up, Eth VLAN 2 up
     Destination address: 11.11.11.11, VC ID: 2, VC status: up
       Tunnel label: 17, next hop 34.0.0.2
       Output interface: GE3/3, imposed label stack {17 18}
     Create time: 01:24:44, last status change time: 00:10:55
     Signaling protocol: LDP, peer 11.11.11.11:0 up
       MPLS VC labels: local 20, remote 18
       Group ID: local 71, remote 89
       MTU: local 1500, remote 1500
       Remote interface description:
     Sequencing: receive disabled, send disabled
     VC statistics:
       packet totals: receive 1009, send 1019
       byte totals: receive 133093, send 138089
       packet drops: receive 0, send 0
   Local interface: V13 up, line protocol up, Eth VLAN 3 up
     Destination address: 11.11.11.11, VC ID: 3, VC status: up
       Tunnel label: 17, next hop 34.0.0.2
       Output interface: GE3/3, imposed label stack {17 19}
     Create time: 01:24:38, last status change time: 00:10:55
     Signaling protocol: LDP, peer 11.11.11.11:0 up
       MPLS VC labels: local 21, remote 19
       Group ID: local 72, remote 90
       MTU: local 1500, remote 1500
       Remote interface description:
     Sequencing: receive disabled, send disabled
     VC statistics:
       packet totals: receive 1406, send 1414
       byte totals: receive 185497, send 191917
       packet drops: receive 0, send 0
```

Configuring Port-Based EoMPLS on the PFC

When configuring port-based EoMPLS on the PFC, follow these guidelines and restrictions:

- The AToM control word is not supported.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.
- Port-based EoMPLS and VLAN-based EoMPLS are mutually exclusive. If you enable a main interface for port-to-port transport, you also cannot enter commands on a subinterface.

To support 802.1Q-in-802.1Q traffic and Ethernet traffic over EoMPLS on the PFC, configure port-based EoMPLS by performing this task:

	Command	Purpose
Step 1	Router# configure terminal	Enters global configuration mode.
Step 2	Router(config)# interface gigabitethernet <i>slot/interface</i>	Specifies the Gigabit Ethernet interface. Make sure that the interface on the adjoining CE router is on the same VLAN as this PE router.
Step 3	Router(config-if)# xconnect peer_router_id vcid encapsulation mpls	Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as for all other Layer 2 transports.

The following is an example of a port-based configuration:

EoMPLS:

Т

```
router# show mpls 12transport vc
```

Local intf	Local circuit	Dest address	VC ID	Status
Fa8/48	Ethernet	75.0.78.1	1	UP
Gi7/11.2000	Eth VLAN 2000	75.0.78.1	2000	UP

```
Port-Based EoMPLS Config:
```

```
router# show run interface f8/48
Building configuration...
Current configuration : 86 bytes
!
interface FastEthernet8/48
no ip address
xconnect 75.0.78.1 1 encapsulation mpls
end
Sub-Interface Based Mode:
router# show run interface g7/11
Building configuration...
Current configuration : 118 bytes
interface GigabitEthernet7/11
description Traffic-Generator
no ip address
logging event link-status
speed nonegotiate
end
router# show run int g7/11.2000
Building configuration...
Current configuration : 112 bytes
interface GigabitEthernet7/11.2000
 encapsulation dot1Q 2000
```

encapsulation dot1Q 2000 xconnect 75.0.78.1 2000 encapsulation mpls end

```
kb7606 \texttt{\#} show mpls l2transport vc 1 detail
```

```
Local interface: Gi7/47 up, line protocol up, Ethernet up
Destination address: 75.0.80.1, VC ID: 1, VC status: up
Tunnel label: 5704, next hop 75.0.83.1
Output interface: Te8/3, imposed label stack {5704 10038}
Create time: 00:30:33, last status change time: 00:00:43
Signaling protocol: LDP, peer 75.0.80.1:0 up
MPLS VC labels: local 10579, remote 10038
Group ID: local 155, remote 116
MTU: local 1500, remote 1500
Remote interface description:
Sequencing: receive disabled, send disabled
VC statistics:
packet totals: receive 26, send 0
byte totals: receive 13546, send 0
packet drops: receive 0, send 0
```

To obtain the VC type: $\rm kb7606\#$ remote command switch show mpls l2transport vc 1 de Local interface: GigabitEthernet7/47, Ethernet Destination address: 75.0.80.1, VC ID: 1 VC status: receive UP, send DOWN VC type: receive 5, send 5 Tunnel label: not ready, destination not in LFIB Output interface: unknown, imposed label stack {} MPLS VC label: local 10579, remote 10038 Linecard VC statistics: packet totals: receive: 0 send: 0 byte totals: receive: 0 send: 0 packet drops: receive: 0 send: 0 Control flags: receive 1, send: 31 I

Verifying the Configuration

To verify and display the configuration of Layer 2 VLAN transport over MPLS tunnels, perform the following:

• To display a single line for each VLAN, naming the VLAN, status, and ports, enter the **show vlan brief** command.

Router# show vlan brief

VLAN	Name	Status	Ports
1	default	active	Gi1/4
1002	fddi-default	act/unsup	G11/4
1003	token-ring-default	act/unsup	
1004	fddinet-default	act/unsup	
T002	LINEL-GELAUIL	act/unsup	

• To make sure the PE router endpoints have discovered each other, enter the **show mpls ldp discovery** command. When an PE router receives an LDP Hello message from another PE router, it considers that router and the specified label space to be "discovered."

```
Router# show mpls ldp discovery
Local LDP Identifier:
    13.13.13.13:0
    Discovery Sources:
    Interfaces:
        GE-WAN3/3 (ldp): xmit/recv
        LDP Id: 12.12.12.12:0
    Targeted Hellos:
        13.13.13.13 -> 11.11.11.11 (ldp): active/passive, xmit/recv
        LDP Id: 11.11.11.11:0
```

• To make sure the label distribution session has been established, enter the **show mpls ldp neighbor** command. The third line of the output shows that the state of the LDP session is operational and shows that messages are being sent and received.

```
Router# show mpls ldp neighbor
Peer LDP Ident: 12.12.12.12:0; Local LDP Ident 13.13.13.13:0
TCP connection: 12.12.12.12.646 - 13.13.13.13.11010
State: Oper; Msgs sent/rcvd: 1715/1706; Downstream
Up time: 1d00h
LDP discovery sources:
```

```
GE-WAN3/3, Src IP addr: 34.0.0.2
   Addresses bound to peer LDP Ident:
     23.2.1.14
                    37.0.0.2
                                    12.12.12.12
                                                     34.0.0.2
     99.0.0.1
Peer LDP Ident: 11.11.11.11:0; Local LDP Ident 13.13.13.13:0
   TCP connection: 11.11.11.11.646 - 13.13.13.13.11013
   State: Oper; Msgs sent/rcvd: 1724/1730; Downstream
   Up time: 1d00h
   LDP discovery sources:
     Targeted Hello 13.13.13.13 -> 11.11.11.11, active, passive
   Addresses bound to peer LDP Ident:
                                 23.2.1.13
     11.11.11.11
                     37.0.0.1
```

• To make sure the label forwarding table is built correctly, enter the **show mpls forwarding-table** command.

Router	f show mpls i	forwarding-table			
Local	Outgoing	Prefix	Bytes tag	g Outgoing	Next Hop
tag	tag or VC	or Tunnel Id	switched	interface	e
16	Untagged	223.255.254.254/32	2 \		
			0	Gi2/1	23.2.0.1
20	Untagged	12ckt(2)	55146580	V12	point2point
24	Pop tag	37.0.0.0/8	0	GE3/3	34.0.0.2
25	17	11.11.11.11/32	0	GE3/3	34.0.0.2
26	Pop tag	12.12.12.12/32	0	GE3/3	34.0.0.2

- The output shows the following data:
 - Local tag—Label assigned by this router.
 - Outgoing tag or VC—Label assigned by next hop.
 - Prefix or Tunnel Id—Address or tunnel to which packets with this label are going.
 - Bytes tag switched— Number of bytes switched out with this incoming label.
 - Outgoing interface—Interface through which packets with this label are sent.
 - Next Hop—IP address of neighbor that assigned the outgoing label.
- To view the state of the currently routed VCs, enter the show mpls l2transport vc command: Router# show mpls l2transport vc

Local intf	Local circuit	Dest address	VC ID	Status
V12	Eth VLAN 2	11.11.11.11	2	UP

Configuring 7600-MUX-UNI Support on LAN Cards

A User Network Interface (UNI) is the point where the customer edge (CE) eqipment connects to the ingress PE and an attachment VLAN is a VLAN on a UNI port.

The 7600-MUX-UNI Support on LAN Cards feature provides the ability to partition a physical port on an attachment VLAN to provide multiple Layer 2 and Layer 3 services over a single UNI.

When configuring 7600-MUX-UNI Support on LAN Cards, follow these guidelines and restrictions:

- Encapsulation on main interface has to be dot1Q and not ISL
- With dot1q encapsulation on the main interface, you cannot configure ISL on the subinterfaces; Layer 3 interfaces are unaffected

To configure 7600-MUX-UNI Support on LAN Cards, perform this task on the provider edge (PE) routers.

	Command	Purpose		
Step 1	Router# configure terminal	Enters global configuration mode.		
Step 2	Router(config)# interface type number	Selects an interface to configure and enters interface configuration mode; valid only for Ethernet ports.		
Step 3	Router(config-if)# switchport	Puts an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.		
Step 4	Router(config-if)# switchport trunk encapsulation {isl dot1q}	Configure the port to support 802.1Q encapsulation. You must configure each end of the link with the same encapsulation type. Note The valid choice for MUX-UNI Support is		
Sten 5	Router(config-if) # switchport mode trunk	Configure the port as a VI AN trunk		
Step 6	Router(config-if)# switchport trunk allowed vlan vlan-list	By default, all VLANs are allowed. Use this command to explicitly allow VLANs; valid values for vlan-list are from 1 to 4094.		
		Note Avoid overlapping VLAN assignments between main and subinterfaces. VLAN assignments between the main interface and subinterfaces must be mutually exclusive.		
Step 7	Router(config)# interface type slot/port.subinterface-number	Selects a subinterface to configure and enters interface configuration mode; valid only for Ethernet ports.		
Step 8	Router(config-if)# encapsulation dot1q vlan_id	Enables the subinterface to accept 802.1Q VLAN packets.		
		The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers do not need to be on the same subnet.		
Step 9	Router(config-if)# xconnect peer_router_id vcid encapsulation mpls	Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as for all other Layer 2 transports.		

This example for the 7600-MUX-UNI Support on LAN Cards feature shows a physical trunk port used as UNI:

```
interface Fastethernet3/1
switchport
switchport encapsulation dot1q
switchport mode trunk
switchport trunk allowed VLAN 200-250
interface Fastethernet3/1.10
encap dot1q 3000
xconnect 10.0.0.1 3000 encapsulation mpls
```

This example for the 7600-MUX-UNI Support on LAN Cards feature shows a Layer 2 port channel used as UNI:

```
interface Port-channel100
   switchport
   switchport trunk encapsulation dot1q
   switchport trunk allowed VLAN 100-200
   switchport mode trunk
   no ip address
interface Port-channel100.1
   encapsulation dot1Q 3100
   xconnect 10.0.0.30 100 encapsulation mpls
```

This example for the 7600-MUX-UNI Support on LAN Cards feature shows Layer 3 termination and VRF for Muxed UNI ports:

```
Vlan 200, 300, 400
interface Fastethernet3/1
switchport
switchport encapsulation dot1q
switchport mode trunk
switchport trunk allowed VLAN 200-500
```

interface Fastethernet3/1.10
encap dot1q 3000
xconnect 10.0.0.1 3000 encapsulation mpls

interface Vlan 200 ip address 1.1.1.3

interface Vlan 300 ip vpn VRF A ip address 3.3.3.1

interface Vlan 400
ip address 4.4.4.1
ip ospf network broadcast
mpls label protocol ldp
mpls ip

Troubleshooting

Scenarios/Problems	Solution
How do I verify whether MPLS is enabled on	Use the show mpls interfaces command. This is a sample output:
an interface?	PE1#show mpls interfaces
	Interface IP Tunnel BGP Static Operational
	GigabitEthernet1/1 Yes (ldp) Yes No No Yes
	GigabitEthernet1/1 Yes (ldp) Yes No No Yes
	Tunnel2 No Yes No No Yes
	Tunnell No Yes No No Yes
How do I verify whether LDP neighborship is	Use the show mpls ldp neighbor command. This is a sample output:
established between the PE routers?	PE1#show mpls ldp neighbor
	Peer LDP Ident: 11.11.11.11:0; Local LDP Ident 10.10.10.10:0
	TCP connection: 11.11.11.11.32784 - 10.10.10.10.646
	State: Oper; Msgs sent/rcvd: 1073/1061; UPstream
	Up time: 14:53:49
	LDP discovery sources:
	GigabitEthernet1/1, Src IP addr: 110.110.110.1
	Targeted Hello 10.10.10.10 -> 11.11.11.11, active << This should
	be 'active'.
	Addresses bound to peer LDP Ident:
	11.11.11.11 7.23.8.20 120.120.120.2 110.110.110.1

This section describes how to troubleshoot common AToMPLS, EoMPLS and MPLS VPN issues.

Scenarios/Problems	Solution
How do I verify whether the VC statuses are	Use the show mpls l2transport vc command. This is a sample output:
UP?	PE1#show mpls 12transport vc
	Local intf Local circuit Dest address VC ID Status
	ATM3/1/1 or Gi3/2/1.1004 ATM AAL5 100/100 11.11.11.11 200 UP << Shows VC status UP
	To check the detailed VC status, use the show mpls l2transport vc detail command . This example shows a sample output of the command. The important points that needs to be checked are highlighted:
	PE1 #show mpls l2transport vc 200 detail Local interface: ATM3/1/1 or Gi3/2/1.1004 up, line protocol up, ATM AAL5 100/100 up << Everything here should be up, else check AC-side interface status Destination address: 11.11.11.11, VC ID: 200, VC status: up << VC status should be UP
	Output interface: GigabitEthernet1/1, imposed label stack {17} << Outgoing interface & label stack should NEVER be blank.
	Preferred path: not configured
	Default path: active
	Next hop: point2point
	Signaling protocol: LDP, peer 11.11.11.11:0 up Targeted Hello: 10.10.10.1(LDP Id) -> 11.11.11.11, LDP is UP <<
	LDP should be UP
	LDP route watch : enabled
	Label/status state machine : established, LruRru << 'Lru'
	Indicates Local-Ready-Up, 'Rru' indicates Remote-Ready-Up
	faults, else check the fault shown.
	Last local SSS circuit status revd: No fault << Should not show
	faults, else check the fault shown.
	Last local SSS circuit status sent: No fault << Should not show
	faults, else check the fault shown.
	Last local LDP TLV status sent: No fault << Should not show
	Last remote LDP TLV status rowd: No fault << Should not show
	faults, else check the fault shown.
	Last remote LDP ADJ status rcvd: No fault << Should not show
	faults, else check the fault shown.
	MPLS VC labels: local 41, remote 17 << (Important) Shows the
	Crown ID: logal 0 remote 0
	MTU: local 4470, remote 4470 << Check if MTUs are correct
	Remote interface description:
	Sequencing: receive disabled, send disabled
	Control Word: Off
	VCCV BFD protection active << Check if VCCV-BFD is configured and
	applied on this VC.
	CC Type = 1
	CV Type - fault detection only with IP/UDP headers
	VC statistics: << Displays stats of traffic flowing through this
	vc.
	transit packet totals: receive 40366, send 1405
	transit byte totals: receive 2099032, send 84300
	CLAINSTE PACKEE GLOPS: LEGELVE U, SEQ EFFOR U, SENG U

Scenarios/Problems	Solution
How do I check the VC summary?	Use the show mpls l2transport summary command. This is a sample output:
	PE1# show mpls l2transport summary Destination address: 11.11.11, total number of vc: 1 0 unknown, 1 up, 0 down, 0 admin down, 0 recovering, 0 standby, 0 hotstandby 1 active vc on MPLS interface GigabitEthernet1/1
How do I verify whether the adjacency is present or not?	Use the show mls cef mpls labels detail command. In the command ouput check whether the EoS bit and the adjacency entry is all proper as expected. This is a sample output:
	<pre>PE1#show mls cef mpls labels 41 detail Codes: M - mask entry, V - value entry, A - adjacency index, P - FIB Priority D - FIB Don't short-cut, m - mod-num, E - ELSP? Format: MPLS - (b xtag vpn pi cr mcast label1 exp1 eos1 valid2 label2 exp2 eos2) V(2231): B 1 0 0 0 0 16 0 1 0 0 0 0 (A:262144 ,P:0,D:0,m:0 :E:1) M(2231): F 1 FFF 0 0 1 FFFFF 0 1 0 0 0 0</pre>
	In the above output, 262144 is the adjacency. To check further details of this adjacency, use the show mls cef adjacency entry command. This is a sample output:
	<pre>PE1#show mls cef adjacency entry 262144 detail Index: 262144 smac: a100.000d.0003, dmac: 0000.0000.000d mtu: 4504, vlan: 1022, dindex: 0xBF, l3rw_vld: 1 << outgoing interface's vlan, l3rw_vld = EARL does rewrite on the packet. format: MPLS, flags: 0x8600 << flags label0: 0, exp: 0, ovr: 0 label1: 0, exp: 0, ovr: 0 label2: 9, exp: 0, ovr: 0 << Label imposed op: REPLACE_LABEL2 << Label operation performed (REPLACE, PUSH, POP) packets: 558937, bytes: 36115682 << Traffic stats of packets hitting this adjacency.</pre>
How do I check the LFIB entries with the	Use the show mpls forwarding-table vrf command. This is a sample output:
specified VPN routing and forwarding (VRF) instance?	PE1# show mpls forwarding-table vrf vrf401 Local Outgoing Prefix Bytes Label Outgoing Next Hop Label Label or VC or Tunnel Id Switched interface 36 Pop Label IPv4 VRF[V] 472 aggregate/vrf401
How do I check the internal VLAN allocation?	Use the show vlan internal usage command. This example shows how to display the internal VLAN allocation for a specific VLAN:
	Router# show vlan id 1030 internal usage VLAN Usage
How do I dieplay information about the VDN	Use the show mis of ynn command. This is a comple output:
ID Cisco Express Forwarding table?	Description of the show mis cer vpn command. This is a sample output:PE1-sp#show mls cef vpn 256 166.1.1.0Codes: decap - Decapsulation, + - Push LabelIndex PrefixAdjacency3221166.1.1.0/24PO9/2/049,18

Scenarios/Problems	Solution
How do I collect the adjacency-entry information for a specified index?	Use the show mls cef adjacency entry command. This example shows the detailed adjacency-entry information:
	<pre>PE1-sp#show mls cef adjacency entry 98305 detail Index: 98305 smac: 0013.1abf.3300, dmac: 0000.0950.ffff mtu: 4488, vlan: 1034, dindex: 0x0, 13rw_vld: 1 format: MPLS, flags: 0x208418 label0: 0, exp: 0, ovr: 0 label1: 49, exp: 0, ovr: 0 label2: 18, exp: 0, ovr: 0 op: PUSH_LABEL2_LABEL1 packets: 0, bytes: 0</pre>

Scenarios/Problems	Solution
How I do debug the control plane events?	Use the debug mpls l2transport vc command. This is a sample output:
	Router# debug mpls 12transport vc event ATOM vc event debugging is on Router# debug mpls 12transport vc fsm ATOM vc fsm debugging is on Router# show debugging ATOM:
	ATOM vc event debugging is on ATOM vc fsm debugging is on *Mar 24 23:17:24.371: ATOM MGR [10.9.9.9, 50]: Event provision, state changed from idle to
	provisioned *Mar 24 23:17:24.371: ATOM MGR [10.9.9.9, 50]: Provision vc *Mar 24 23:17:24.371: ATOM SMGR [10.9.9.9, 50]: Requesting VC create, vc_handle 61A09930 *Mar 24 23:17:24.371: ATOM MCR [10.9.9.9.50]: Event local up
	<pre>Mar 24 23:17:24.371: ATOM MGR [10.9.9.9, 50]: Event Tocal up, state changed from provisioned to local standby *Mar 24 23:17:24.371: ATOM MGR [10.9.9.9, 50]: Update local vc label binding</pre>
	*Mar 24 23:17:24.371: ATOM SMGR [10.9.9.9, 50]: sucessfully processed create request *Mar 24 23:17:24.875: %SYS-5-CONFIG_I: Configured from console by
	<pre>console *Mar 24 23:17:25.131: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial3/0, changed state to up</pre>
	*Mar 24 23:17:28.567: ATOM MGR [10.9.9.9, 50]: Event ldp up, state changed from local standby to local ready
	*Mar 24 23:17:28.567: ATOM MGR [10.9.9.9, 50]: Advertise local vc label binding *Mar 24 23:17:28.567: ATOM MGR [10.9.9.9, 50]: Event remote up,
	<pre>state changed from local ready to establishing *Mar 24 23:17:28.567: ATOM MGR [10.9.9.9, 50]: Remote end up *Mar 24 23:17:28.567: ATOM MGR [10.9.9.9, 50]: Event remote</pre>
	<pre>validated, state changed from establishing to established *Mar 24 23:17:28.567: ATOM MGR [10.9.9.9, 50]: Validate vc, activating data plane</pre>
	*Mar 24 23:17:28.567: ATOM SMGR [10.9.9.9, 50]: Processing imposition update, vc_handle 61A09930, update_action 3, remote_vc_label 21
	*Mar 24 23:17:28.567: ATOM SMGR [10.9.9.9, 50]: Imposition Programmed, Output Interface: PO5/0 *Mar 24 23:17:28 567: ATOM SMCP [10.9.9.9.50]: Proceeding
	disposition update, vc_handle 61A09930, update_action 3, local_vc_label 22 *Mar 24 23:17:28.571: ATOM SMGR: Processing TELB event for 10 9 9 9
	*Mar 24 23:17:28.571: ATOM SMGR [10.9.9.9, 50]: Imposition Programmed, Output Interface: PO5/0

Scenarios/Problems	Solution
How do I debug xconnect segments?	Use the debug ssm cm command. This example shows the events that occur on the CM and SM when an AToM VC is provisioned and then unprovisioned:
	Router# debug ssm cm events
	SSM Connection Manager events debugging is on
	Router# debug ssm sm events
	SSM Segment Manager events debugging is on
	Router# configure terminal
	<pre>Router(config)# interface ethernet1/0</pre>
	Router(config-if)# xconnect 10.55.55.2 101 pw-class mpls
	16:57:34: SSM CM: provision switch event, switch id 86040
	16:57:34: SSM CM: [Ethernet] provision first segment, id 12313
	16:57:34: SSM CM: CM FSM: state Idle - event Provision segment
	16:57:34: SSM CM: [SSS:Ethernet:12313] provision segment 1
	16:57:34: SSM SM: [SSS:Ethernet:12313] event Provison segment
	16:57:34: SSM CM: [SSS:Ethernet] shQ request send ready event
	16:57:34: SSM CM: SM msg event send ready event
	16:57:34: SSM SM: [SSS:Ethernet:12313] segment ready
	16:57:34: SSM SM: [SSS:Ethernet:12313] event Found segment data
	16:57:34: SSM CM: Query AToM to Ethernet switching, enabled
	16:57:34: SSM CM: [AToM] provision second segment, id 16410
	16:57:34: SSM CM: CM FSM: state Down - event Provision segment
	16:57:34: SSM CM: [SSS:AToM:16410] provision segment 2
	16:57:34: SSM SM: [SSS:AToM:16410] event Provison segment
	16:57:34: SSM CM: [AToM] send client event 6, id 16410
	16:57:34: label_oce_get_label_bundle: flags 14 label 19
	16:57:34: SSM CM: [SSS:AToM] shQ request send ready event
	16:57:34: SSM CM: SM msg event send ready event
	16:57:34: SSM SM: [SSS:AToM:16410] segment ready
	16:57:34: SSM SM: [SSS:AToM:16410] event Found segment data
	16:57:34: SSM SM: [SSS:AToM:16410] event Bind segment
	16:57:34: SSM SM: [SSS:Ethernet:12313] event Bind segment
	16:57:34: SSM CM: [ATOM] send client event 3, id 16410

Scenarios/Problems	Solution
	Router# configure terminal
	<pre>Router(config)# interface e1/0</pre>
	Router(config-if)# no xconnect
	16:57:26: SSM CM: [Ethernet] unprovision segment, id 16387
	16:57:26: SSM CM: CM FSM: state Open - event Free segment
	16:57:26: SSM CM: [SSS:Ethernet:16387] unprovision segment 1
	16:57:26: SSM SM: [SSS:Ethernet:16387] event Unprovison segment
	16:57:26: SSM CM: [SSS:Ethernet] shQ request send unprovision
	complete event
	16:57:26: SSM CM: [SSS:AToM:86036] unbind segment 2
	16:57:26: SSM SM: [SSS:ATOM:86036] event Unbind segment
	16:57:26: SSM CM: SM msg event send unprovision complete event
	16:57:26: SSM SM: [SSS:Ethernet:16387] free segment class
	16:57:26: SSM SM: [SSS:Ethernet:16387] free segment
	16:57:26: SSM SM: [SSS:Ethernet:16387] event Free segment
	16:57:26: SSM SM: last segment class freed
	16:57:26: SSM CM: unprovision switch event, switch id 12290
	16:57:26: SSM CM: [SSS:ATOM] shQ request send unready event
	16:57:26: SSM CM: SM msg event send unready event
	16:57:26: SSM SM: [SSS:ATOM:86036] event Unbind segment
	16:57:26: SSM CM: [AToM] unprovision segment, id 86036
	16:57:26: SSM CM: CM FSM: state Down - event Free segment
	16:57:26: SSM CM: [SSS:AToM:86036] unprovision segment 2
	16:57:26: SSM SM: [SSS:AToM:86036] event Unprovison segment
	16:57:26: SSM CM: [SSS:ATOM] shQ request send unprovision complete
	event
	16:57:26: SSM CM: SM msg event send unprovision complete event
	16:57:26: SSM SM: [SSS:AToM:86036] free segment class
	16:57:26: SSM SM: [SSS:AToM:86036] free segment
	16:57:26: SSM SM: [SSS:AToM:86036] event Free segment
	16:57:26: SSM SM: last segment class freed