

Managing a FlexUNI/EVC ATM-Ethernet Interworking Service Request

This chapter provides information on how to provision a FlexUNI/EVC ATM-Ethernet Interworking service request. It contains the following sections:

- Overview, page 11-1
- Creating a FlexUNI/EVC ATM-Ethernet Interworking Service Request, page 11-2
- Setting the Service Request Details, page 11-3
- Modifying the FlexUNI/EVC Service Request, page 11-20
- Using Templates and Data Files with a FlexUNI/EVC Service Request, page 11-20
- Saving the FlexUNI/EVC Service Request, page 11-21

Overview

A FlexUNI/EVC ATM-Ethernet Interworking service request allows you to configure interfaces on an N-PE to support the FlexUNI/EVC features described in Chapter 10, "Creating a FlexUNI/EVC ATM-Ethernet Interworking Policy." To create a FlexUNI/EVC ATM-Ethernet Interworking service request, a FlexUNI/EVC ATM-Ethernet Interworking service policy must already be defined, as described in Chapter 10, "Creating a FlexUNI/EVC ATM-Ethernet Interworking Policy." Based on the predefined FlexUNI/EVC policy, an operator creates a FlexUNI/EVC service request, with or without modifications to the policy, and deploys the service. One or more templates can also be associated to the N-PE as part of the service request.

ATM-Ethernet interworking is supported through the following configurations:

- ATM Transport Mode (VC)
 - ATM-Ethernet Pseudowire
 - ATM-ATM Local connect
 - ATM-Ethernet Local connect
- ATM Transport Mode (VP)
 - ATM-ATM Local connect

The following steps are involved in creating a FlexUNI/EVC ATM-Ethernet Interworking service request:

• Choose an existing FlexUNI/EVC ATM-Ethernet Interworking policy.

• Choose a VPN.

When working with VPN objects in the context of FlexUNI/EVC policies and service requests, only the VPN name and customer attributes are relevant. Other VPN attributes related to MPLS and VPLS are ignored.

- Specify a bridge domain configuration (if applicable).
- Specify a service request description.
- Specify automatic or manual allocation of the VC ID or VPLS VPN ID.
- Add direct connect links (if applicable).
- Add links with L2 access nodes (if applicable).
- Choose the N-PE and UNI interface for links.
- For links with L2 access nodes, choose a Named Physical Circuit (NPC) if more than one NPC exists from the N-PE or the UNI interface.
- Edit the link attributes.
- Modify the service request.
- Save the service request.

For sample configlets for FlexUNI/EVC ATM-Ethernet Interworking scenarios, see Chapter 18, "Sample Configlets."

Creating a FlexUNI/EVC ATM-Ethernet Interworking Service Request

To create a FlexUNI/EVC ATM-Ethernet Interworking service request, perform the following steps.

Step 1 Choose Operate > Service Requests > Service Request Manager.

The Service Requests window appears.

- Step 2 Click Create.
- **Step 3** Choose **FlexUNI(EVC)** from the drop-down list.

The EVC Policy Selection window appears.

If more than one FlexUNI/EVC policy exists, a list of FlexUNI/EVC policies appears. FlexUNI/EVC service requests must be associated with a FlexUNI/EVC policy. You choose a FlexUNI/EVC ATM-Ethernet Interworking policy from the policies previously created (see Chapter 10, "Creating a FlexUNI/EVC ATM-Ethernet Interworking Policy").

- **Step 4** Choose a FlexUNI/EVC ATM-Ethernet Interworking policy from the list.
- Step 5 Click OK.

The EVC Service Request Editor window appears. The new service request inherits all the properties of the chosen FlexUNI/EVC ATM-Ethernet Interworking policy, such as all the editable and non-editable features and pre-set parameters.

Step 6 Continue with the steps contained in the next section, Setting the Service Request Details, page 11-3.

Setting the Service Request Details

After you have selected the FlexUNI/EVC policy to be used as the basis of the service request, the EVC Service Request Editor window appears. It is divided into three main sections:

- Link Page
- Direct Connect Links (no NPCs)
- Links with L2 Access Nodes (involves NPCs)

This window enables you to specify options for the service request, as well as configure directly connected links and links with L2 access nodes. The options displayed in first section of the window change, depending on the MPLS Core Connectivity Type that was specified in the policy (pseudowire or local). For clarity, each of these scenarios is presented in a separate section below, to highlight the different window configurations and behavior of the displayed options.

Proceed to the appropriate section, as determined by the MPLS Core Connectivity Type for the policy:

- Pseudowire Core Connectivity, page 11-3
- Local Core Connectivity, page 11-5

Instructions for setting up direct connect links and links with L2 access nodes are presented in later sections.

Pseudowire Core Connectivity

This section covers the case in which the MPLS Core Connectivity Type for the FlexUNI/EVC ATM-Ethernet Interworking policy is PSEUDOWIRE.

To set the attributes in the first section of the EVC Service Request Editor window, perform the following steps.

The **Job ID** and **SR ID** fields are read-only. When the service request is being created for the first time, the fields display a value of NEW. When an existing service request is being modified, the values of the fields indicate the respective IDs that the Prime Fulfillment database holds within the editing flow of the service request.

Note

The **Policy** field is read-only. It displays the name of the policy on which the service request is based. Clicking on the read-only policy name displays a list of all the attribute values set within the policy.

Step 1 Click Select VPN to choose a VPN for use with this service request.

The Select VPN window appears with the VPNs defined in the system.

Γ

Note The same

The same VPN can be used by service requests with LOCAL and PSEUDOWIRE core types. If a VPN for a service request is used with VPLS core type, the same VPN cannot be used for service requests with LOCAL or PSEUDOWIRE core type.

- Step 2 Choose a VPN Name in the Select column.
- Step 3 Click Select.

The EVC Service Request Editor window appears with the VPN name displayed.

Step 4 Check the **AutoPick VC ID** check box if you want Prime Fulfillment to choose a VC ID.

If you do not check this check box, you will be prompted to provide the ID in the VC ID field, as covered in the next step.

When AutoPick VC ID is checked, Prime Fulfillment allocates a VC ID for pseudowires from the Prime Fulfillment-managed VC ID resource pool. In this case, the text field for the VC ID option is non-editable.

Step 5 If AutoPick VC ID was unchecked, enter a VC ID in the VC ID field.

Usage notes:

- The AutoPick VC ID attribute appears during the creation of a FlexUNI/EVC pseudowire service request.
- The VC ID value must be an integer value corresponding to a VC ID.
- When a VC ID is manually allocated, Prime Fulfillment verifies the VC ID to see if it lies within Prime Fulfillment's VC ID pool. If the VC ID is in the pool but not allocated, the VC ID is allocated to the service request. If the VC ID is in the pool and is already in use, Prime Fulfillment prompts you to allocate a different VC ID. If the VC ID lies outside of the Prime Fulfillment VC ID pool, Prime Fulfillment does not perform any verification about whether or not the VC ID allocated. The operator must ensure the VC ID is available.
- The VC ID can be entered only while creating a service. If you are editing the service request, the VC ID field is not editable.
- **Step 6** Check the **Configure Bridge Domain** check box to determine bridge domain characteristics.

The behavior of the Configure Bridge Domain option works in tandem with the choice you selected in the MPLS Core Connectivity Type option in the FlexUNI/EVC policy, which in this case is pseudowire core connectivity. There are two cases:

- With FlexUNI:
 - If **Configure With Bridge Domain** is checked, the policy will configure pseudowires under SVIs associated to the bridge domain.
 - If **Configure With Bridge Domain** is unchecked, the policy will configure pseudowires directly under the service instance. This will conserve the global VLAN.
- Without FlexUNI:
 - If Configure With Bridge Domain is checked, the policy will configure pseudowires under SVIs.
 - If **Configure With Bridge Domain** is unchecked, the policy will configure pseudowires directly under subinterfaces.

Pseudowires can be configured either directly under service instance of the corresponding FlexUNI-capable interface or under SVIs associated to the bridge domain.

Step 7 Check the Use Split Horizon check box to enable split horizon with bridge domain.

Usage notes:

- The Use Split Horizon attribute is disabled by default.
- The Use Split Horizon attribute can be used only when the Configure Bridge Domain check box is checked (enabled).
- When Use Split Horizon is enabled, the **bridge domain** command in the CLI will be generated with split horizon. When it is disabled, the **bridge domain** command will be generated without split horizon.
- **Step 8** Click the "Click here" link of the **Description** attribute to enter a description label for the service request.

This is useful for searching the Prime Fulfillment database for the particular service request.

A dialogue appears in which you can enter a description.

- **Step 9** To set up direct connect links, see the section Setting Direct Connect Links, page 11-7.
- **Step 10** To set up links with L2 access nodes, see the section Setting Links with L2 Access Nodes, page 11-19.

Local Core Connectivity

This section covers the case in which the MPLS Core Connectivity Type for the FlexUNI/EVC ATM-Ethernet Interworking policy is LOCAL.

To set the attributes in the first section of the EVC Service Request Editor window, perform the following steps.

Step 1 The **Job ID** and **SR ID** fields are read-only.

When the service request is being created for the first time, the fields display a value of NEW. When an existing service request is being modified, the values of the fields indicate the respective IDs that the Prime Fulfillment database holds within the editing flow of the service request.

Step 2 The **Policy** field is read-only.

It displays the name of the policy on which the service request is based.

Step 3 Click Select VPN to choose a VPN for use with this service request.

The Select VPN window appears with the VPNs defined in the system.

Note The same VPN can be used by service requests with LOCAL and PSEUDOWIRE core types. If a VPN for a service request is used with VPLS core type, the same VPN cannot be used for service requests with LOCAL or PSEUDOWIRE core type.

- Step 4 Choose a VPN Name in the Select column.
- Step 5 Click Select.

The EVC Service Request Editor window appears with the VPN name displayed.

Step 6 Check the **Configure Bridge Domain** check box to determine bridge domain characteristics.

Usage notes:

- If Configure Bridge Domain is checked, all links will have the same bridge domain ID allocated from the VLAN pool on the N-PE. All non-FlexUNI links will have the Service Provider VLAN as the bridge domain ID. On the other hand, if no FlexUNI links are added, the Service Provider VLAN will be allocated first and this will be used as the bridge domain ID when FlexUNI links are added.
- If Configure Bridge Domain is unchecked, a maximum of two links that terminate on the same N-PE can be added. (This uses the **connect** command available in the EVC infrastructure.) This is only supported for ATM-ATM local connect.

Note See the following comments for details on how Prime Fulfillment autogenerates the connect name.

Because the device only accepts a maximum of 15 characters for the connect name, the connect name is generated using the following format:

 $CustomerNameTruncatedToMaxPossibleCharacters_ServiceRequestJobID$

For example, if the customer name is NorthAmericanCustomer and the service request job ID is 56345, the autogenerated connect name would be NorthAmer_56345.

The CLI generated would be:

connect NorthAmer_56345 ATM7/0/5 11 ATM7/0/4 18

In this case, 11 and 18 are service instance VPIs.

- If the policy setting for Configure Bridge Domain is non-editable, the option in the service request will be read-only.
- **Step 7** Check the **Use Split Horizon** check box to enable split horizon with bridge domain.

Usage notes:

- The Use Split Horizon attribute is disabled by default.
- The Use Split Horizon attribute can be used only when the Configure Bridge Domain check box is checked (enabled).
- When Use Split Horizon is enabled, the **bridge domain** command in the CLI will be generated with split horizon. When it is disabled, the **bridge domain** command will be generated without split horizon.
- **Step 8** Click the "Click here" link of the **Description** attribute to enter a description label for the service request.

A dialogue appears in which you can enter a description.

- Step 9 To set up direct connect links, see the section Setting Direct Connect Links, page 11-7.
- **Step 10** To set up links with L2 access nodes, see the section Setting Links with L2 Access Nodes, page 11-19.

Setting up Links to the N-PE

The lower two sections of the EVC Service Request Editor window allow you to set up links to the N-PE. For direct connect links, the CE is directly connected to the N-PE, with no intermediate L2 access nodes. For links with L2 access nodes, there are intermediate devices present between the CE and NPE requiring NPCs to be created in Prime Fulfillment.

The Direct Connect Links section of the window is where you set up links that directly connect to the N-PE. No NPCs are involved. ATM links are supported for direct connect links.

The Links with L2 Access Nodes section is where you set up links with L2 (Ethernet) access nodes. NPCs are involved.

ATM interfaces cannot be in L2 access nodes.

See the appropriate section, depending on which type of link you are setting up:

- Setting Direct Connect Links, page 11-7
- Setting Links with L2 Access Nodes, page 11-19

Many of steps for setting up the two link types are the same. The basic workflow for setting up links, as well as the attributes to be set, are presented in the following section Setting Direct Connect Links, page 11-7. Even if you are setting up links with L2 access nodes, it will be helpful to refer to the information presented in that section, as the section on L2 access nodes only covers the unique steps for such links.

Setting Direct Connect Links

To set up the direct connect links, perform the following steps. Most of these steps apply to links with L2 access nodes also.

Step 1 Click Add to add a 1	ink.
-----------------------------	------

A new numbered row for the link attributes appears.

Step 2 Click Select N-PE in N-PE column.

The Select PE Device window appears. This window displays the list of currently defined PEs.

- a. The Show PEs with drop-down list shows PEs by Provider, PE Region Name, or by Device Name.
- **b.** The **Find** button allows a search for a specific PE or a refresh of the window.
- **c.** The **Rows per page** drop-down list allows the user to configure the number of entries displayed on the screen at one time.
- **Step 3** In the **Select** column, choose the PE device name for the link.
- Step 4 Click Select.

The EVC Service Request Editor window reappears displaying the name of the selected PE in the NPE column.

Step 5 Choose the UNI interface from the drop-down list in the UNI column.

Prime Fulfillment only displays the available interfaces for the service, based on the configuration of the underlying interfaces, existing service requests that might be using the interface, and the customer associated with the service request. You can click the **Details** button to display a pop-up window with information on the available interfaces, such as interface name, customer name, VPN name, job ID, service request ID, service request type, translation type, and VLAN ID information.

Note When the UNI is configured on an N-PE device running IOS XR, the Standard UNI Port attribute is not supported. All the CLIs related to Standard UNI Port and UNI Port Security are ignored in this case.

Step 6

Check the **FlexUNI(EVC)** check box to mark the link for configuring service instance for the links.

Note

The FlexUNI(EVC) check box is mentioned at this stage because the setting of the check box alters the behavior of the link editing function available in the Link Attributes column. This is covered in the next steps.

Editing the Link Attributes

The next steps document the use of the **Edit** link in the Link Attributes column. (In the case where the link attributes have already been set, this link changes from **Edit** to **Change**.) The link editing workflow changes depending on the status of the FlexUNI(EVC) check box for the link. If the FlexUNI(EVC) check box is checked, the editing workflow involves setting attributes in two windows, for two sets of link attributes:

- The FlexUNI(EVC) Details
- Standard UNI Details

If the FlexUNI(EVC) check box for the link is not checked, only the Standard UNI Details window is presented.

In the steps that follow, both scenarios covered.

If you are setting up and ATM link (by choosing an ATM interface as the UNI on the N-PE device, there is a different workflow. The check box in the FlexUNI(EVC) column dynamically disappears, and clicking the Edit link in the link attributes column brings up the ATM-Ethernet Attributes window. For information on using this window to set up an ATM link, see Setting the ATM Link Attributes, page 11-16.

Step 7 Click **Edit** in the Link Attributes column to specify the UNI attributes.

FlexUNI(EVC) Details Window

If the FlexUNI(EVC) check box is checked, the FlexUNI(EVC) Details window appears

All of the fields in the FlexUNI(EVC) Details window are enabled based on the policy settings. For example, if Both Tags is selected in the policy and is editable, then the Match Inner and Outer Tags check box will be selected and editable in this window. The behavior is similar for the other attributes in the FlexUNI(EVC) Details window

Step 8 Check the **AutoPick Service Instance ID** check box to specify that the service instance ID will be autogenerated and allocated to the link during service request creation.

If the check box is unchecked, you must specify the service instance ID (see the next step).

Usage notes:

- The service instance ID represents an Ethernet Flow Point (EFP) on an interface in the EVC infrastructure. The service instance ID is locally significant to the interface. This ID has to be unique only at the interface level. The ID must be a value from 1 to 8000.
- There are no resource pools available in Prime Fulfillment from which to allocate the service instance IDs.

- In the case of a manually provided service instance ID, it is the responsibility of the operator to maintain the uniqueness of the ID at the interface level.
- This attribute is not displayed for IOS XR devices.
- **Step 9** If the AutoPick Service Instance ID check box is not checked, enter an appropriate value for the service instance ID in the **Service Instance ID** field.
- **Step 10** Check the **AutoPick Service Instance Name** check box to specify that the service instance name will be autogenerated.

If the check box is unchecked, you can specify the service instance name (see the next step).

Usage notes:

- If the check box is checked, the Service Instance Name text field is disabled.
- The service instance name is autogenerated in the following pattern: *CustomerName_ServiceRequestJobID*.
- For example configlets, see FlexUNI/EVC (No AutoPick Service Instance Name, No Service Instance Name), page 18-42, FlexUNI/EVC (User-Provided Service Instance Name, Pseudowire Core Connectivity), page 18-43, and FlexUNI/EVC (User-Provided Service Instance Name, Local Core Connectivity), page 18-44.
- This attribute is not displayed for IOS XR devices.
- **Step 11** If the AutoPick Service Instance Name check box is not checked, enter an appropriate value for the service instance ID in the **Service Instance Name** field.

Usage notes:

- The text string representing the service instance name must be 40 characters or less and contain no spaces. Other special characters are allowed.
- If AutoPick Service Instance Name is unchecked and no service instance name is entered in the text field, then Prime Fulfillment does not generate the global **ethernet evc evcname** command in the device configuration generated by the service request.
- **Step 12** Check the **AutoPick Bridge Domain/VLAN ID** check box to have Prime Fulfillment autopick the VLAN ID for the service request during service request creation.

If this check box is unchecked, the you must specify a bridge domain VLAN ID (see the next step).

Usage notes:

- AutoPick Bridge Domain/VLAN ID consumes a global VLAN ID on the device.
- The bridge domain VLAN ID is picked from the existing Prime Fulfillment VLAN pool.
- This attribute is not displayed for IOS XR devices.
- Step 13 If the AutoPick Bridge Domain/VLAN ID check box is unchecked, enter an appropriate value in the Bridge Domain/VLAN ID field.

This configuration applies in conjunction with the Configure Bridge Domain option in the EVC Service Request Editor window. If the option is not enabled in that window, then AutoPick Bridge Domain/VLAN ID check box is redundant and not required.

When a VLAN ID is manually allocated, Prime Fulfillment verifies the VLAN ID to see if it lies within Prime Fulfillment's VLAN ID pool. If the VLAN ID is in the pool but not allocated, the VLAN ID is allocated to the service request. If the VLAN ID is in the pool and is already in use, Prime Fulfillment

L

prompts you to allocate a different VLAN ID. If the VLAN ID lies outside of the Prime Fulfillment VLAN ID pool, Prime Fulfillment does not perform any verification about whether the VLAN ID allocated. The operator must ensure the VLAN ID is available.

Step 14 Check the **Match Inner and Outer Tags** check box to enable service requests created with the policy to match both the inner and outer VLAN tags of the incoming frames.

If you do not check this check box, service requests created with the policy will match only the outer VLAN tag of the incoming frames.

Checking the Match Inner and Outer Tags attribute causes the Inner VLAN ID and Outer VLAN ID fields (covered in the next steps) to appear.

Step 15 If the Match Inner and Outer Tags check box is checked, enter the inner and outer VLAN tags in the Inner VLAN ID and Outer VLAN ID fields.

Usage notes:

- You can specify single values, single ranges, multiples values, multiple ranges, or combinations of these. Examples:
 - 10
 - 10, 15,17
 - 10-15
 - 10-15,17-20
 - 10,20-25
- If the Inner VLAN Ranges attribute is set to true in the policy, the Inner VLAN ID field can take a range of inner VLAN tags.
- If the Outer VLAN Ranges attribute is set to true in the policy, the Outer VLAN ID field can take a range of Outer VLAN tags.
- **Step 16** If the Match Inner and Outer Tags check box is unchecked, enter the outer VLAN tag in the **Outer VLAN ID** field.

- te The VLAN specified in Outer VLAN ID will be provisioned on the rest of the L2 access nodes (if the link has any), including the customer-facing UNI.
- Step 17 In the VLAN Rewrite section of the window, choose a Rewrite Type from the drop-down list.

The choices are:

- Pop
- Push
- Translate

The subsequent attributes in the GUI change depending on the choice of Rewrite Type, as covered in the next steps.

- **Step 18** If Pop is the Rewrite Type, two check boxes appear:
 - **a.** Check the **Pop Outer Tag** check box to pop the outer VLAN ID tag of the incoming frames that fulfill the match criteria. If this check box is unchecked, the outer tag of the incoming traffic will not be popped.
 - **b.** Check the **Pop Inner Tag** check box to pop the inner VLAN ID tag of the incoming frames that fulfill the match-criteria. If this check box is unchecked, the inner tag will not be changed.

Note

Note that if Pop Inner Tag is checked, Pop Outer Tag is automatically checked.

- **Step 19** If Push is the Rewrite Type, two text boxes appear:
 - **a.** In the text box **Outer VLAN ID**, enter an outer VLAN ID tag that will be imposed on the incoming frames that fulfill the match criteria. All service requests created with this setting push a dot1q outer tag on the incoming frames matching the match criteria. If a value is not provided, the push operation is ignored and not configured on the device.
 - **b.** In the text box **Inner VLAN ID**, enter an inner VLAN ID tag that will be imposed on the incoming frames that fulfill the match criteria. All service requests created with this setting push a dot1q inner tag on the incoming frames matching the match criteria. The Inner VLAN tag cannot be pushed without an Outer VLAN tag. That is, when pushing an Inner VLAN tag, the Outer VLAN tag also must be defined.
- Step 20 If Translate is the Rewrite Type, a Translation Type drop-down list appears.

The choices available in this list vary depending on the setting of the Match Inner and Outer Tags attribute (set in a previous step).

- a. If the Match Inner and Outer Tags check box is checked (true), choose a translation type of 1:1, 1:2, 2:1, or 2:2 from the Translation Type drop-down list.
 - If you choose 1:1 or 2:1, enter a value in the **Outer VLAN ID** text box that appears. The outer tag of all the incoming frames that fulfill the match criteria will be translated to this ID.
 - If you choose 1:2 or 2:2, enter values in the **Outer VLAN ID** and **Inner VLAN ID** text boxes that appear. The outer and inner tags of all the incoming frames that fulfill the match criteria will be translated to these IDs.
- **b.** If the Match Inner and Outer Tags check box is unchecked (false), choose a translation type of **1:1** or **1:2** from the Translation Type drop-down list.
 - If you choose 1:1, enter a value in the **Outer VLAN ID** text box that appears. The outer tag of all the incoming frames that fulfill the match criteria will be translated to this ID.
 - If you choose 1:2, enter values in the **Outer VLAN ID** and **Inner VLAN ID** text boxes that appear. The outer and inner tags of all the incoming frames that fulfill the match criteria will be translated to these IDs.
- Step 21 Clicked Next to save the settings in the FlexUNI(EVC) Details window.

The Standard UNI Details window appears.

Step 22 Continue with setting the standard UNI link attributes in the next steps.

Editing the Standard UNI Attributes

The following steps cover setting the attributes in the Standard UNI Details window. In the case of a link which is not set as a FlexUNI link (by not checking the FlexUNI(EVC) check box in the Service Request Details window), editing the link attributes begins with this window.

The attributes that appear in the Standard UNI Details window are dynamically configured by Prime Fulfillment. Some of the attributes covered in the steps below might not appear in the window, depending on the policy and service request settings or the link type. For example, if the MPLS core connectivity type of the FlexUNI/EVC policy is local, the pseudowire-related attributes will not appear. Also, setting the link as FlexUNI or non-FlexUNI will change the attributes that appear in the window. In addition, attributes are filtered based on device type (IOS or IOS XR). These cases are noted in the steps, for reference.

L

Step 23 The N-PE/U-PE Information and Interface Name fields display the PE device and interface name selected in previous steps.

These fields are read-only.

Step 24 Choose an **Encapsulation** type from the drop-down list.

The choices are:

- **DOT1QTRUNK**—Configures the UNI as a trunk with 802.1q encapsulation. If the UNI belongs to a directly connected and FlexUNI link, this setting signifies that the incoming frames are 802.1q encapsulated and that they match the VLAN ID configured for the link. This specific topology does not involve a trunk UNI as such.
- **DOT1QTUNNEL**—Configures the UNI as an 802.1q tunnel (also known as a dot1q tunnel or Q-in-Q) port.
- ACCESS—Configures the UNI as an access port.

This attribute allows you to deploy different types of UNI encapsulation on different links of a service.

Usage notes:

- In the case of direct connect links for which FlexUNI(EVC) is enabled (by checking the FlexUNI(EVC) check box in the EVC Service Request Editor window), the choices for the Encapsulation type are DOT1Q and DEFAULT.
- Step 25 In the PE/UNI Interface Description field, enter a description for the interface, if desired.
- **Step 26** Check the **UNI Shutdown** check box if you want to leave the UNI port shut during service activation (for example, when the service provider wants to deploy a service in the network but wants to activate it at a later time).
- Step 27 Specify the type of VLAN Translation for the service request by clicking the appropriate radio button.The choices are:
 - No—No VLAN translation is performed. (This is the default.)
 - **1:1**—1:1 VLAN translation.
 - **2:1**—2:1 VLAN translation.

VLAN translation, and all standard UNI and port security attributes are applicable for links with L2 access. If the UNI is on an N-PE, these attributes will not appear.

<u>Note</u>

For detailed coverage of setting up VLAN translation, see Chapter 19, "Setting Up VLAN Translation."

Step 28 Check the **N-PE Pseudo-wire on SVI** check box to have Prime Fulfillment generate forwarding commands under SVIs (switch virtual interfaces).

By default, this check box is not checked. In this case, Prime Fulfillment generates forwarding commands under the service instance.

For a FlexUNI link, the attribute N-PE Pseudo-wire on SVI is dependent on the value of the attribute Configure with Bridge Domain (this is available in the service request workflow in the EVC Service Request Editor window). N-PE Pseudo-wire on SVI, if enabled, will be reflected only when Configure with Bridge Domain is set to true. Otherwise, the service request will not be created with xconnect under SVI, even if N-PE Pseudo-wire on SVI is enabled.

Usage notes:

- For a FlexUNI link, the attribute N-PE Pseudo-wire on SVI is dependent on the value of the attribute Configure with Bridge Domain (in the EVC Service Request Editor window). N-PE Pseudo-wire on SVI, if enabled, will be reflected only when Configure with Bridge Domain is set to true. Otherwise, the service request will not be created with scanned under SVI, even if N-PE pseudo-wire on SVI is enabled.
- Prime Fulfillment supports a hybrid configuration for FlexUNI/EVC service requests. In a hybrid configuration, the forwarding commands (such as scanned) for one side of an attachment circuit can be configured under a service instance, and the xconnect configuration for the other side of the attachment circuit can be configured under a switch virtual interface (SVI).
- N-PE Pseudo-wire on SVI is applicable for all connectivity types (PSEUDOWIRE or LOCAL), but a hybrid SVI configuration is possible only for pseudowire connectivity.
- When MPLS Core Connectivity Type is set as LOCAL connectivity type, the N-PE Pseudo-wire on SVI attribute is always disabled in the policy and service request.
- For examples of these cases, see configlet examples FlexUNI/EVC (Pseudowire Core Connectivity, Bridge Domain, Pseudowire on SVI), page 18-39 and FlexUNI/EVC (Pseudowire Core Connectivity, no Bridge Domain, no Pseudowire on SVI), page 18-40.
- For additional information on the N-PE Pseudo-wire on SVI attribute, see the corresponding coverage in the FlexUNI/EVC policy chapter in the section Setting the Interface Attributes, page 8-10.
- The N-PE Pseudo-wire on SVI attribute is not supported for IOS XR devices. All the xconnect commands are configured on L2 subinterfaces/service instance.
- Step 29 Check the Use Existing PW Class check box to enable the selection of a pseudowire class.

This attribute is unchecked by default.

Usage notes:

- If Use Existing PW Class is checked, an additional attribute, **Existing PW Class Name**, appears in the GUI. Enter the name of a pseudowire class which already exists in the device.
- If Use Existing PW Class is checked, the PW Tunnel Selection and Interface Tunnel attributes will disappear from the window. This is to prevent Prime Fulfillment from generating the pseudowire class.
- The Use PseudoWireClass attribute is only available if the MPLS core connectivity type was set as PSEUDOWIRE in the Service Options window (see Pseudowire Core Connectivity, page 11-3).
- Use PseudoWireClass is only applicable for IOS XR devices.
- **Step 30** Check the **PW Tunnel Selection** check box if you want to be able to manually select the Traffic Engineering (TE) tunnel for the pseudowire connecting point-to-point N-PEs.

Usage notes:

- Checking the PW Tunnel Selection check box activates the Interface Tunnel attribute field (see the next step).
- This attribute only appears if the MPLS core connectivity type is set as pseudowire in the FlexUNI/EVC policy.
- **Step 31** If you checked the PW Tunnel Selection check box, enter the TE tunnel ID in the **Interface Tunnel** text field.

Prime Fulfillment uses the tunnel information to create and provision a pseudowire class that describes the pseudowire connection between two N-PEs. This pseudowire class can be shared by more than one pseudowire, as long as the pseudowires share the same tunnel ID and remote loopback address. During service request creation, Prime Fulfillment does not check the validity of the tunnel ID number. That is, Prime Fulfillment does not verify the existence of the tunnel.

Step 32 Check the Use PseudoWireClass check box to enable the selection of a pseudowire class.

This attribute is unchecked by default.

Usage notes:

- The pseudowire class name is used for provisioning pw-class commands on IOS XR devices. See Creating and Modifying Pseudowire Classes for IOS XR Devices, page 7-10 for additional information on pseudowire class support for IOS XR devices.
- If Use PseudoWireClass is checked, an additional attribute, **PseudoWireClass**, appears in the GUI. Click the **Select** button of PseudoWireClass attribute to choose a pseudowire class previously created in Prime Fulfillment.
- The Use PseudoWireClass attribute is only available if the MPLS core connectivity type was set as PSEUDOWIRE in the Service Options window (see Setting the Service Options, page 10-2).
- Use PseudoWireClass is only applicable for IOS XR devices.
- **Step 33** Check the **AutoPick Bridge Group Name** check box to have Prime Fulfillment autopick the bridge group name during service request creation.

If this check box is unchecked, you are prompted to specify a bridge group name during service request creation (see the next step).

Usage notes:

- This attribute only displays for IOS XR devices.
- If the AutoPick Bridge Group Name check box is unchecked, enter an bridge group name in the **Bridge Group Name** text field.
- **Step 34** Check the **AutoPick Bridge Domain/VLAN ID** check box to have Prime Fulfillment autopick the VLAN ID during service request creation.

If this check box is unchecked, you are prompted to specify a VLAN ID during service request creation (see the next step).

Usage notes:

- AutoPick Bridge Domain/VLAN ID consumes a global VLAN ID on the device.
- The bridge domain VLAN ID is picked from the existing Prime Fulfillment VLAN pool.
- The AutoPick Bridge Domain/VLAN ID attribute appears for both Cisco 7600 and ASR 9000 devices. It will be displayed only for non-FlexUNI links.
- Step 35 If the AutoPick Bridge Domain/VLAN ID check box is unchecked, enter an ID number in the Bridge Domain/VLAN ID text field.

Usage notes:

- If AutoPick Bridge Domain/VLAN ID is checked, this field is non-editable.
- When a VLAN ID is manually allocated, Prime Fulfillment verifies the VLAN ID to see if it lies within Prime Fulfillment's VLAN ID pool. If the VLAN ID is in the pool but not allocated, the VLAN ID is allocated to the service request. If the VLAN ID is in the pool and is already in use, Prime Fulfillment prompts you to allocate a different VLAN ID. If the VLAN ID lies outside of the Prime Fulfillment VLAN ID pool, Prime Fulfillment does not perform any verification about whether the VLAN ID allocated. The operator must ensure the VLAN ID is available.

- The Bridge Domain/VLAN ID text field appears for both Cisco 7600 and ASR 9000 devices. It will be displayed only for non-FlexUNI links.
- Step 36 For L2VPN Group Name choose one of the following from the drop-down list:
 - ISC
 - VPNSC

Usage notes:

• This attribute is used for provisioning the L2VPN group name on IOS XR devices.

te The choices in the drop-down list are derived from a configurable DCPL property. For information about how to define the L2VPN Group Name choices available in the drop-down list, see Defining L2VPN Group Names for IOS XR Devices, page 7-13.

- L2VPN Group Name is only applicable for IOS XR devices.
- **Step 37** Enter an **E-Line Name** to specify the point-to-point (p2p) E-line name.

Usage notes:

- If no value is specified for the **E-Line Name**, Prime Fulfillment autogenerates a default name as follows:
 - For PSEUDOWIRE core connectivity type, the format is:

DeviceName--VC_ID

- For LOCAL core connectivity type, the format is:
 - DeviceName--VLAN_ID

If the default name is more than 32 characters, the device names are truncated.

- E-Line Name is only applicable for IOS XR devices.
- **Step 38** Click **OK** to save the Standard UNI settings and return to the EVC SR window.

The value in the Link Attributes column now displays as "Changed," signifying that the link settings have been updated. You can edit the link attributes now or at a future time by clicking on the Changed link and modifying the settings in the Standard UNI Details window.

See Modifying the FlexUNI/EVC Service Request, page 11-20, for details on editing the link attributes.

- **Step 39** To add another link click the **Add** button and set the attributes for the new link as in the previous steps in this section.
- **Step 40** To delete a link, check the check box in the first column of the row for that link and click the **Delete** button.
- **Step 41** If you want to set up links with L2 access nodes for this service request, see Setting Links with L2 Access Nodes, page 11-19.
- Step 42 When you have completed setting the attributes in the EVC Service Request Editor window, click the Save button at the bottom of the window to save the settings and create the FlexUNI/EVC service request.

If any attributes are missing or incorrectly set, Prime Fulfillment displays a warning in the lower left of the window. Make any corrections or updates needed (based on the information provided by Prime Fulfillment), and click the **Save** button.

For information on modifying a FlexUNI/EVC service request see the section Modifying the FlexUNI/EVC Service Request, page 11-20. For additional information about saving a FlexUNI/EVC service request, see Saving the FlexUNI/EVC Service Request, page 11-21.

Setting the ATM Link Attributes

This section describes how to set up a direct connect link as an ATM link.

To set up the ATM link, perform the following steps.

- **Step 1** In the Direct Connect Links section of the FlexUNI(EVC) Service Request Editor window, specify the device for which you would like to set up an ATM link.
- **Step 2** Choose an ATM interface for the UNI.

Note ATM interfaces are displayed in the drop-down list in the UNI column only if the FlexUNI/EVC service request is based on an ATM-Ethernet Interworking policy type.

When you choose an ATM interface, the check box in the FlexUNI(EVC) column dynamically disappears from the GUI.

Step 3 In the Link Attributes column, click the **Edit** link of the device on which you want to add an ATM link.

The ATM UNI Details window appears.

All of the fields in the ATM UNI Details window are enabled based on the policy settings.

Step 4 Choose the **Transport Mode** from the drop-down list.

The choices are:

- VP—Virtual path mode. This is the default.
- VC—Virtual circuit mode.
- **Step 5** Choose the **ATM Encapsulation** from the drop-down list.

• AAL5SNAP

Step 6 To specify the ATM virtual channel descriptor (VCD)/subinterface number, enter a value in the **ATM VCD/Sub-Interface #** field.

The value can be from 1 to 2147483647.

Step 7 To specify the ATM virtual path identifier (VPI), enter a value in the ATM VPI field.

The value can be from 0 to 255.

Step 8 To specify the ATM virtual channel identifier (VCI), a value in the ATM VCI field.

The value can be from 32 to 65535.

Step 9 Check the **UNI Shutdown** check box if you want to leave the UNI port shut during service activation (for example, when the service provider wants to deploy a service in the network but wants to activate it at a later time).

Step 10 Check the Use Existing PW Class check box to enable the selection of a pseudowire class.

This attribute is unchecked by default.

Usage notes:

- If Use Existing PW Class is checked, an additional attribute, **Existing PW Class Name**, appears in the GUI. Enter the name of a pseudowire class which already exists in the device.
- If Use Existing PW Class is checked, the PW Tunnel Selection and Interface Tunnel attributes will disappear from the window. This is to prevent Prime Fulfillment from generating the pseudowire class.
- The Use PseudoWireClass attribute is only available if the MPLS core connectivity type was set as PSEUDOWIRE in the Service Options window (see Pseudowire Core Connectivity, page 11-3).
- Use PseudoWireClass is only applicable for IOS XR devices.
- **Step 11** Check the **N-PE Pseudo-wire on SVI** check box to have Prime Fulfillment generate forwarding commands under SVIs (switch virtual interfaces).

By default, this check box is not checked. In this case, Prime Fulfillment generates forwarding commands under the service instance.

For a FlexUNI link, the attribute N-PE Pseudo-wire on SVI is dependent on the value of the attribute Configure with Bridge Domain (this is available in the service request workflow in the EVC Service Request Editor window). N-PE Pseudo-wire on SVI, if enabled, will be reflected only when Configure with Bridge Domain is set to true. Otherwise, the service request will not be created with xconnect under SVI, even if N-PE Pseudo-wire on SVI is enabled.

Usage notes:

- For an ATM link, the attribute N-PE Pseudo-wire on SVI is dependent on the value of the attribute Configure with Bridge Domain (in the EVC Service Request Editor window). N-PE Pseudo-wire on SVI, if enabled, will be reflected only when Configure with Bridge Domain is set to true. Otherwise, the service request will not be created with xconnect under SVI, even if N-PE pseudo-wire on SVI is enabled.
- Prime Fulfillment supports a hybrid configuration for FlexUNI/EVC service requests. In a hybrid configuration, the forwarding commands (such as xconnect) for one side of an attachment circuit can be configured under a service instance, and the xconnect configuration for the other side of the attachment circuit can be configured under a switch virtual interface (SVI).
- N-PE Pseudo-wire on SVI is applicable for all connectivity types (PSEUDOWIRE or LOCAL), but a hybrid SVI configuration is possible only for pseudowire connectivity.
- When MPLS Core Connectivity Type is set as LOCAL connectivity type, the N-PE Pseudo-wire on SVI attribute is always disabled in the policy and service request.
- For examples of these cases, see configlet examples FlexUNI/EVC (Pseudowire Core Connectivity, Bridge Domain, Pseudowire on SVI), page 18-39 and FlexUNI/EVC (Pseudowire Core Connectivity, no Bridge Domain, no Pseudowire on SVI), page 18-40.
- For additional information on the N-PE Pseudo-wire on SVI attribute, see the corresponding coverage in the FlexUNI/EVC policy chapter in the section Setting the Interface Attributes, page 8-10.
- The N-PE Pseudo-wire on SVI attribute is not supported for IOS XR devices. All the xconnect commands are configured on L2 subinterfaces/service instance.
- **Step 12** Check the **PW Tunnel Selection** check box if you want to be able to manually select the Traffic Engineering (TE) tunnel for the pseudowire connecting point-to-point N-PEs.

Usage notes:

• Checking the PW Tunnel Selection check box activates the Interface Tunnel attribute field (see the next step).

L

- This attribute only appears if the MPLS core connectivity type is set as pseudowire in the FlexUNI/EVC policy.
- **Step 13** If you checked the PW Tunnel Selection check box, enter the TE tunnel ID in the **Interface Tunnel** text field.

Prime Fulfillment uses the tunnel information to create and provision a pseudowire class that describes the pseudowire connection between two N-PEs. This pseudowire class can be shared by more than one pseudowire, as long as the pseudowires share the same tunnel ID and remote loopback address. During service request creation, Prime Fulfillment does not check the validity of the tunnel ID number. That is, Prime Fulfillment does not verify the existence of the tunnel.

Step 14 Check the **AutoPick Bridge Domain/VLAN ID** check box to have Prime Fulfillment autopick the VLAN ID during service request creation.

If this check box is unchecked, you are prompted to specify a VLAN ID during service request creation (see the next step).

Usage notes:

- AutoPick Bridge Domain/VLAN ID consumes a global VLAN ID on the device.
- The bridge domain VLAN ID is picked from the existing Prime Fulfillment VLAN pool.
- Step 15 If the AutoPick Bridge Domain/VLAN ID check box is unchecked, enter an ID number in the Bridge Domain/VLAN ID text field.

Usage notes:

- If AutoPick Bridge Domain/VLAN ID is checked, this field is non-editable.
- When a VLAN ID is manually allocated, Prime Fulfillment verifies the VLAN ID to see if it lies within Prime Fulfillment's VLAN ID pool. If the VLAN ID is in the pool but not allocated, the VLAN ID is allocated to the service request. If the VLAN ID is in the pool and is already in use, Prime Fulfillment prompts you to allocate a different VLAN ID. If the VLAN ID lies outside of the Prime Fulfillment VLAN ID pool, Prime Fulfillment does not perform any verification about whether the VLAN ID allocated. The operator must ensure the VLAN ID is available.
- Step 16 Click OK to save the ATM UNI Details settings and return to the EVC Service Request Editor window.

The value in the Link Attributes column now displays as "Changed," signifying that the link settings have been updated. You can edit the link attributes now or at a future time by clicking on the Changed link and modifying the settings in the Standard UNI Details window.

See Modifying the FlexUNI/EVC Service Request, page 11-20 for details on editing the link attributes.

- **Step 17** To add another link click the **Add** button and set the attributes for the new link as in the previous steps in this section.
- **Step 18** To delete a link, check the check box in the first column of the row for that link and click the **Delete** button.
- Step 19 If you want to set up links with L2 access nodes for this service request, see Setting Links with L2 Access Nodes, page 11-19.
- **Step 20** When you have completed setting the attributes in the EVC Service Request Editor window, click the **Save** button at the bottom of the window to save the settings and create the FlexUNI/EVC service request.

If any attributes are missing or incorrectly set, Prime Fulfillment displays a warning in the lower left of the window. Make any corrections or updates needed (based on the information provided by Prime Fulfillment), and click the **Save** button.

For information on modifying a FlexUNI/EVC service request see the section Modifying the FlexUNI/EVC Service Request, page 11-20. For additional information about saving a FlexUNI/EVC service request, see Saving the FlexUNI/EVC Service Request, page 11-21.

Setting Links with L2 Access Nodes

The Links with L2 Access Nodes section of the EVC Service Request Editor window allows you to set up links with L2 (Ethernet) access nodes. These are similar to direct connect links, except that they have L2/Ethernet access nodes beyond the N-PE (towards the CE). Therefore, NPCs are involved.

Note

ATM links are not supported in L2 access nodes. ATM links must be set up as direct connect links. For more information, see Setting the ATM Link Attributes, page 11-16.

The steps for setting up links with L2 access nodes are similar to those covered in the section Setting Direct Connect Links, page 11-7. See that section for detailed steps on the following common operations:

- Adding and deleting links.
- Selecting the N-PE.
- Choosing the UNI interface.
- Setting the link as a FlexUNI link.
- Editing the standard and FlexUNI link attributes.

The main difference in setting up links with L2 access does is specifying the NPC details.

To set the NPC details for links with L2 access nodes, perform the following steps.

Step 1 The first step in the process of adding a link using NPCs is selecting the U-PE/PE-AGG device, rather than the N-PE.

If only one NPC exists for the chosen interface, that NPC is autopopulated in the Circuit Details column, and you need not choose it explicitly.

If more then one NPC is available, click **Select one circuit** in the Circuit Selection column. The NPC window appears, enabling you to choose the appropriate NPC.

Step 2 Click OK.

Each time you choose a PE and its interface, the NPC that was set up from this PE and interface is automatically displayed under **Circuit Selection**. This means that you do not have to further specify the PE to complete the link.

If you want to review the details of this NPC, click **Circuit Details** in the Circuit Details column. The NPC Details window appears and lists the circuit details for this NPC.

- **Step 3** For details about editing link attributes, adding or deleting links, or using the FlexUNI(EVC) check box, see the corresponding steps in the section Setting Direct Connect Links, page 11-7.
- **Step 4** When you have completed setting the attributes in the EVC Service Request Editor window, click the **Save** button at the bottom of the window to save the settings and create the FlexUNI/EVC service request.

L

If any attributes are missing or incorrectly set, Prime Fulfillment displays a warning in the lower left of the window. Make any corrections or updates needed (based on the information provided by Prime Fulfillment), and click the **Save** button.

For information on modifying a FlexUNI/EVC service request see the section Modifying the FlexUNI/EVC Service Request, page 11-20. For additional information about saving a FlexUNI/EVC service request, see Saving the FlexUNI/EVC Service Request, page 11-21.

Modifying the FlexUNI/EVC Service Request

You can modify a FlexUNI/EVC service request if you must change or modify the links or other settings of the service request.

To modify a FlexUNI/EVC service request, perform the following steps.

Choose **Operate > Service Requests > Service Request Manager**. Step 1 The Service Request Manager window appears, showing service request available in Prime Fulfillment. Step 2 Check a check box for a service request. Click Edit. Step 3 EVC Service Request Editor window appears. Step 4 Modify any of the attributes, as desired. See the sections start with Setting the Service Request Details, page 11-3, for detailed coverage of setting attributes in this window. Once the VC ID, VPLS VPN ID, and VLAN ID have been set in a service request they cannot Note be modified. Step 5 To add a template/data file to an attachment circuit, see the section Using Templates and Data Files with a FlexUNI/EVC Service Request, page 11-20. Step 6 When you are finished editing the FlexUNI/EVC service request, click Save. For additional information about saving a FlexUNI/EVC service request, see Saving the FlexUNI/EVC

Using Templates and Data Files with a FlexUNI/EVC Service Request

Prime Fulfillment does not support configuration of all the available CLI commands on a device being managed by the application. In order to configure such commands on the devices, you can use Prime Fulfillment Template Manager functionality. Templates can be associated at the policy level on a per-device role basis. Templates can be overridden at service request level, if the policy-level setting permits the operator to do so.

Service Request, page 11-21.

To associate templates and data files in a service request select any link in the EVC Service Request Editor window and click the **Template** button at the bottom of the window.

Note

If the template feature has not been enabled in the associated policy then the Template button will not be available for selection.

The SR Template Association window appears. In this window, you can associate templates at a per-device level.

TheTemplate Association window lists the devices comprising the link, the device roles, and the template(s)/data file(s) associated with the devices. In this case, the template(s)/data file(s) have not yet been set up.

For further instructions on how to associate templates and data files with a service request, see Chapter 49, "Using Templates and Data Files with Policies and Service Requests," especially the section Using Templates with Service Requests, page 49-8.

Saving the FlexUNI/EVC Service Request

To save a FlexUNI/EVC service request, perform the following steps.

Step 1 When you have finished setting the attributes for the FlexUNI/EVC service request, click **Save** to create the service request.

If the FlexUNI/EVC service request is successfully created, you will see the Service Request Manager window.

The newly created FlexUNI/EVC service request is added with the state of REQUESTED.

Step 2 If, however, the FlexUNI service request creation failed for some reason (for example, a value chosen is out of bounds), you are warned with an error message.

In such a case, you should correct the error and save the service request again.

Step 3 If you are ready to deploy the FlexUNI/EVC service request, see Deploying Service Requests, page 47-11.