CHAPTER 7

Java API Client Use Cases

This chapter describes the most common Prime Cable Provisioning API use cases that are directly
related to device provisioning and device management.

Many system configuration and management operations, such as managing Class of Service, DHCP
Criteria, and licenses, are not addressed here because these operations do not require integration with
BSS and OSS. You can use the Prime Cable Provisioning admin UI to perform most of these activities.
For more information on Prime Cable Provisioning admin UI, see the Cisco Prime Cable Provisioning
5.0 User Guide.

For more details on related API calls and sample API client code segments explaining individual API
calls and features, refer to these resources that are available in the Prime Cable Provisioning installation
directory:

e APIJavadocs, located at BAC_50_Linux/docs/BAC_Javadoc_API_Provisioning on a Linux machine
and at BAC_50_Solaris/docs/BAC_Javadoc_API_Provisioning on a Solaris machine.

e Sample API client code, located at BPR_HOME/rdu/samples/provapi.

BPR_HOME is the home directory in which you install Prime Cable Provisioning. The default home
directory is /opt/CSCObac.

This chapter lists various API constants and their functions. To execute any API, you must follow the
steps described in the Getting Started with the Prime Cable Provisioning API chapter.

Provisioning Operations

This section describes the following provisioning operation use cases:

The classfiles referenced in these use cases; for example, the AddDeviceExample.java classfile that
illustrates how you can add a device record to the RDU, are only samples that are bundled with the
Prime Cable Provisioning software.

e Adding a device record to the RDU—See Table 7-1.

e Modifying a device record in the RDU—See Table 7-2.

e Retrieving discovered device data from the RDU—See Table 7-3.
¢ Deleting device from the RDU—See Table 7-4.

e Retrieve Devices Matching Vendor Prefix—See Table 7-5.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

http://www.cisco.com/en/US/docs/net_mgmt/prime/network_registrar/8.1/user/guide/CPNR_8_1_User_Guide.html
http://www.cisco.com/en/US/docs/net_mgmt/prime/cable_provisioning/5.0/user/guide/user_guide.html
http://www.cisco.com/en/US/docs/net_mgmt/prime/cable_provisioning/5.0/user/guide/user_guide.html

Chapter7 Java API Client Use Cases |

M Provisioning Operations

Table 7-1 Adding a Device Record to the RDU
Classfile API
AddDeviceExample.java IPDevice.add()

Adds a new device record to the RDU database. Uses the IPDevice.add() API and submits the batch
synchronously with the NO_ACTIVATION flag. This operation causes the RDU to generate
instructions for the device, which are then cached in the DPE. Figure 7-1 explains adding or modifying
a device record in the RDU with Activation mode = No_ ACTIVATION.

Figure 7-1 Change Device Class of Service (Activation mode= NO_ACTIVATION)

Change Device CoS (Activation mode =
NO_ACTIVATION)

Operation
i i Record to db
:, Response :
w
z
&
Table 7-2 Modifying a Device Record in the RDU
Classfile API
ModifyDeviceExample.java IPDevice.changeProperties()

Changes the properties of a device record stored in the RDU. Uses the IPDevice.changeProperties()
API and submits the batch synchronously with the NO_ACTIVATION flag. This operation causes the
RDU to generate instructions for the device, which are then cached in the DPE.

Table 7-3 Retrieving Discovered Device Data in the RDU
Classfile API
QueryDeviceExample.java IPDevice.getDetails()

Retrieves the discovered data of a device that is stored in the RDU. Uses the IPDevice.getDetails() API
and submits the batches synchronously using the on-connect mode with the NO_ACTIVATION flag.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning APl Use Cases

Table 7-4 Delete Device from the RDU
Classfile API
DeleteDeviceExample.java IPDevice.delete()

Deletes a device from the RDU. Uses the IPDevice.delete() API and submits the batch synchronously

with the NO_ACTIVATION flag.

Table 7-5 Retrieve Devices Matching Vendor Prefix
Classfile API
RetriveDevicesMatchingVendorPrefix.java IPDevice.searchDevice()

Searches for devices that exist in the database. Uses the IPDevice.searchDevice() API to query a list

of devices that exist in the database.

Provisioning APl Use Cases

This section presents a series of the most common provisioning application programming interface (API)

use cases. See the Cisco Prime Cable Provisioning 5.0 API Javadoc for more details and sample Java

code segments explaining individual API calls and features.

These use cases are directly related to device provisioning, service provisioning, or both. Many
administrative operations, such as managing Class of Service, DHCP Criteria, and licenses are not

addressed here. We recommend that you go through the API javadoc for more details on the related API

calls. You can also use the administrator user interface to perform most of these activities.

This section describes:

e How to Create an API Client, page 7-3

e Use Cases, page 7-6

How to Create an API Client

Before going through the use cases, you must familiarize yourself with how to create an API client. Use
the workflow described in this section to create the API client.

Step1 Create a connection to the Provisioning API Command Engine (PACE).

/7
/7
/7
/7
/7
/7

The PACE connection to use throughout the example. When
executing multiple batches in a single process, it is advisable
to use a single PACE connection that is retrieved at the start
of the application. When done with the connection, YOU MUST
explicitly close the connection with the releaseConnection()
method call.

PACEConnection connection = null;

/7
/7
/7
/7
/7

Connect to the Regional Distribution Unit (RDU) .

The parameters defined at the beginning of this class are
used here to establish the connection. Connections are
maintained until releaseConnection() is called. If

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

// multiple calls to getInstance() are called with the same
// arguments, you must still call releaseConnection() on each
// connection you received.

//

// The call can fail for one of the following reasons:

// - The hostname / port is incorrect.

// - The authentication credentials are invalid.

// - The maximum number of allowed sessions for the user

// has already been reached.

// However, the number of session validation for an user can be
// avoided by using the following overloaded method

//
// PACEConnectionFactory.getInstance (
// RDU host rduHost,
// RDU port rduPort,
// User name userName,
// Password password
// Is immediate authentication required authenticateImmediately
// create a session forcefully forceLogin
//)
try
{
connection = PACEConnectionFactory.getInstance (
// RDU host rduHost,
// RDU port rduPort,
// User name userName,
// Password password) ;
}
catch (PACEConnectionException e)
{

// Handle connection error:

System.out.println("Failed to establish a PACEConnection to [" +
userName + "@" + rduHost + ":" + rduPort + "]; " +
e.getMessage ()) ;

System.exit (1) ;
}

Step2 Create a new instance of a batch.

// To perform any operations in the Provisioning API, you must
// first create a batch. As you add commands to the batch,
// nothing gets executed until you post the batch.
// Multiple batches can be started concurrently against a
// single connection to the RDU.
Batch myBatch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

Step3 Register an API command with the batch. The example featured in this step uses the getDetails(...) call.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases
Provisioning APl Use Cases
// Use the Provisioning API to get all of the information for
// the specified MAC address. Since methods aren't actually
// executed until the batch is posted, the results are not
// returned until after post() completes. The getCommandStatus ()
// followed by getData() calls must be used to access the results
// once the batch is posted.
final DeviceID modemMACAddress = DeviceID.getInstance("1,6,00:11:22:33:44:55",
KeyType .MAC_ADDRESS) ;
List options = new ArrayList();
options.add (DeviceDetailsOption.INCLUDE_LEASE_INFO) ;
myBatch.getDetails (modemMACAddress, options) ;
Stepd Post the batch to the Regional Distribution Unit (RDU) server.
// Executes the batch against the RDU. All of the
// methods are executed in the order entered.
BatchStatus bStatus = null;
try
{
// Post batch in synchronous fashion without a timeout. This method will block until
// results are returned. Other API calls are available to submit a batch with timeout
// or in asynchronous (non-blocking) fashion.
bStatus = myBatch.post();
}
catch (ProvisioningException pe)
{
System.out.println("Failed to query for modem with MAC address [" +
modemMACAddress + "]; " + pe.getMessage());
System.exit (2);
}
Step5 Check the status of the batch.
// Check if any errors occurred during the execution of the
// batch. Exceptions occur during post() for truly exceptional
// situations such as failure of connectivity to RDU.
// Batch errors occur for inconsistencies such as no lease
// information for a device requiring activation. Command
// errors occur when a particular method has problems, such as
// trying to add a device that already exists.
//check batchStatus and commandStatus
//for any error
CommandStatus commandStatus = null;
if (batchStatus.getCommandCount () > 0)
{
commandStatus = batchStatus.getCommandStatus (0) ;
}
if (batchStatus.isError ()
|| commandStatus == null
|| commandStatus.isError())
{
System.out.println("Failed to query for modem with MAC address [" +
modemMACAddress + "]; " + bs.getStatusCode().toString() + ", "
+ bs.getErrorMessage()) ;
for (int i = 0; i < bs.getCommandCount (); i++)
{
Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
| oL-26279-01

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

CommandStatus cs = bs.getCommandStatus (i) ;
System.out.println("Cmd " + 1 + ": status code "
+ cs.getStatusCode() .toString() + ", " + cs.getErrorMessage());

If there is no error, the batch call returns a successful result.

// Successfully queried for device.

System.out.println("Queried for DOCSIS modem with MAC address ["+
modemMACAddress + "1");

// Display the results of the command (TreeMap is sorted). The
// data returned from the batch call is stored on a per-command
// basis. In this example, there is only one command, but if

// you had multiple commands all possibly returning results, you
// could access each result by the index of when it was added.
// The first method added is always index 0. From the status of
// each command, you can then access the accompanying data by

// using the getData() call. Since methods can return data of

// different types, you will have to cast the response to the

// type indicated in the Provisioning API documentation.

Map deviceData = (Map)bStatus.getCommandStatus(0).getDatal() ;
// Created a sorted map view

Map<String, Object> deviceDetails = new TreeMap (deviceData) ;
for (String key: deviceDetails.keySet())

System.out.println(" " + key + "=" + deviceDetails.get(key));

Step6 Release the connection.

Use Cases

// Once the last batch has been executed, the connection can
// be closed to the RDU. It is important to explicitly

// close connections since it helps ensure clean shutdown of
// the Java virtual machine.

connection.releaseConnection () ;

This section includes these use cases:

Self-Provisioned Modem and Computer in Fixed Standard Mode, page 7-7
Adding a New Computer in Fixed Standard Mode, page 7-10

Disabling a Subscriber, page 7-13

Preprovisioning Modems/Self-Provisioned Computers, page 7-15
Modifying an Existing Modem, page 7-17

Unregistering and Deleting a Subscriber’s Devices, page 7-18
Self-Provisioning First-Time Activation in Promiscuous Mode, page 7-22

Bulk Provisioning 100 Modems in Promiscuous Mode, page 7-25

[l Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

0L-26279-01

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

e Preprovisioning First-Time Activation in Promiscuous Mode, page 7-27
e Replacing an Existing Modem, page 7-29

¢ Adding a Second Computer in Promiscuous Mode, page 7-31

e Self-Provisioning First-Time Activation with NAT, page 7-31

¢ Adding a New Computer Behind a Modem with NAT, page 7-32

e Move Device to Another DHCP Scope, page 7-32

e Log Device Deletions Using Events, page 7-33

e Monitoring an RDU Connection Using Events, page 7-34

e Logging Batch Completions Using Events, page 7-35

e Getting Detailed Device Information, page 7-35

e Searching Using the Device Type, page 7-40

e Searching for Devices Using Vendor Prefix or Class of Service, page 7-41
e Preprovisioning PacketCable eMTA, page 7-42

e SNMP Cloning on PacketCable eMTA, page 7-44

e Incremental Provisioning of PacketCable eMTA, page 7-45

e Preprovisioning DOCSIS Modems with Dynamic Configuration Files, page 7-47
e Optimistic Locking, page 7-49

e Temporarily Throttling a Subscriber’s Bandwidth, page 7-51

e Preprovisioning CableHome WAN-MAN, page 7-53

e (CableHome with Firewall Configuration, page 7-54

e Retrieving Device Capabilities for CableHome WAN-MAN, page 7-55
e Self-Provisioning CableHome WAN-MAN, page 7-57

¢ RBAC Administration and Operational Access Control, page 7-59

e Update Protection for Properties at Device Level, page 7-65

e Domain Administration and Instance Level Access Control, page 7-68

Self-Provisioned Modem and Computer in Fixed Standard Mode

Step 1
Step 2

Step 3

The subscriber has a computer installed in a single-dwelling unit and has purchased a DOCSIS cable
modem. The computer has a web browser installed.

Desired Outcome

Use this workflow to bring a new unprovisioned DOCSIS cable modem and computer online with the
appropriate level of service.

The subscriber purchases and installs a DOCSIS cable modem at home and connects a computer to it.

The subscriber powers on the modem and the computer, and Prime Cable Provisioning gives the modem
restricted access. The computer and modem are assigned IP addresses from restricted access pools.

The subscriber starts a web browser, and a spoofing DNS server points the browser to a service
provider’s registration server (for example, an OSS user interface or a mediator).

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Stepd The subscriber uses the service provider’s user interface to complete the steps required for registration,
including selecting Class of Service.

Step5 The service provider's user interface passes the subscriber’s information, such as the selected Class of
Service and computer IP address, to Prime Cable Provisioning, which then registers the subscriber’s
modem and computer.

// First we query the computer's information to find the
// modem's MAC Address. We use the computer IP Address (the web browser

// received this when the subscriber opened the service provider’s
// web interface

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeme");

// NO_ACTIVATION is the activation mode because this is a query.
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the device.
// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.
Batch batch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// register getAllForIPAddress to the batch
batch.getAllForIPAddress("10.0.14.38");
BatchStatus batchStatus = null;
// post the batch to RDU server
try

{
batchStatus = batch.post();

}

catch(ProvisioningException e)
{

e.printStackTrace() ;

}
// Get the LeaseResults object after posting a batch.

CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;
LeaseResults computerLease = (LeaseResults)commandStatus.getDataf() ;
// Derive the modem MAC address from computer's network

// information. The "1,6" is a standard prefix for an Ethernet

// device. The fully qualify MAC Address is required by BACC
StringBuffer modemMACAddress = new StringBuffer () ;

modemMACAddress.append ("1,6,") ;
modemMACAddress.append (computerLease.getSingleLease () .get ("relay-agent-remote-id")) ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

// Create MacAddress object from the string
MACAddress modemMACAddressObject = new MACAddress (modemMACAddress.toString()) ;

List<DeviceID> modemDeviceIDList = new ArrayList<DeviceID>() ;
modemDeviceIDList.add (modemMACAddressObject) ;

// Create a new batch to add modem device
batch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// Register add API to the batch

batch.add (DeviceType.DOCSIS, modemDeviceIDList,
null, null, "0123-45-6789", "silver", "provisioned-cm", null);

// post the batch to RDU server
// Derive computer MAC address from computer's network information.

String computerMACAddress =
(String) computerLease.getSingleLease () .get (DeviceDetailsKeys.MAC_ADDRESS) ;

// Create a map for computer property.

Map<String, Object> properties = new HashMap<String, Object>();
properties.put (IPDeviceKeys.MUST BE_BEHIND_DEVICE, modemMACAddress.toString());

List<DeviceID> compDeviceIDList = new ArrayList<DeviceID> () ;
MACAddress computerMACAddressObject = new MACAddress (computerMACAddress) ;
compDeviceIDList.add (computerMACAddressObject) ;

// Register add API to the batch

batch.add (DeviceType.COMPUTER, compDeviceIDList,
null, null, "0123-45-6789", null, "provisioned-cpe", properties);
try
{
batchStatus = batch.post();
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

Step6 The provisioning client calls performOperation(DeviceOperation deviceOperation, DevicelD devicelD,
Map<String,Object> parameters to reboot the modem and gives the modem provisioned access.

// Reset the computer
// Create a new batch

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Step 7

batch = connection.newBatch (
// No reset
ActivationMode.AUTOMATIC,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION) ;
// Register performOperation command to the batch
batch.performOperation (DeviceOperation.RESET, modemMACAddressObject, null);
// Post the batch to RDU server
try

{
batchStatus = batch.post();

}
catch(ProvisioningException e)
{

e.printStackTrace() ;

}

The user interface prompts the subscriber to reboot the computer.

After rebooting, the computer receives a new IP address, and both cable modem and computer are now
provisioned devices. The computer has access to the Internet through the service provider’s network.

Adding a New Computer in Fixed Standard Mode

Step 1
Step 2

Step 3

Step 4

A Multiple System Operator (MSO) lets a subscriber have two computers behind a cable modem. The
subscriber has one computer already registered and then brings home a laptop from work and wants
access. The subscriber installs a hub and connects the laptop to it.

Desired Outcome

Use this workflow to bring a new unprovisioned computer online with a previously provisioned cable
modem so that the new computer has the appropriate level of service.

The subscriber powers on the new computer and Prime Cable Provisioning gives it restricted access.

The subscriber starts a web browser on the new computer and a spoofing DNS server points it to the
service provider's registration server (for example, an OSS user interface or a mediator).

The subscriber uses the service provider’s user interface to complete the steps required to add a new
computer.

The service provider’s user interface passes the subscriber’s information, such as the selected Class of
Service and computer IP address, to Prime Cable Provisioning, which then registers the subscriber’s
modem and computer.

// First we query the computer's information to find the

// modem's MAC Address. We use the computer IP address (the web browser

// received this when the subscriber opened the service provider’s
// web interface.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeme");

// NO_ACTIVATION is the activation mode because this is a query
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the device
// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.
Batch batch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;

// register getAllForIPAddress to the batch

batch.getAllForIPAddress("10.0.14.39");
BatchStatus batchStatus = null;

// post the batch to RDU server

try
{

batchStatus = batch.post() ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;
}

// Get the LeaseResults object after posting a batch.

CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;

LeaseResults computerLease = (LeaseResults)commandStatus.getDataf();

// derive the modem MAC address from computer's network

// information. The "1,6" is a standard prefix for an Ethernet

// device. The fully qualify MAC Address is required by BACC

StringBuffer modemMACAddress = new StringBuffer () ;

modemMACAddress.append("1,6,");

modemMACAddress . append (computerLease.getSingleLease () .get ("relay-agent-remote-id")) ;

// derive computer MAC address from computer's network information.

String computerMACAddress =
(String) computerLease.getSinglelLease () .get (DeviceDetailsKeys.MAC_ADDRESS) ;

//Create a map for computer property.
Map<String, Object> properties = new HashMap<String, Object>();
// setting IPDeviceKeys.MUST_BE_BEHIND_ DEVICE on the computer ensures

// that when the computer boots, it will only receive its provisioned
// access when it is behind the given device. If it is not behind

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

// the given device, it will receive default access (unprovisioned)
// and hence fixed mode.

properties.put (IPDeviceKeys.MUST_BE_BEHIND_ DEVICE, modemMACAddress) ;
// the IPDeviceKeys.MUST_BE_IN_PROV_GROUP ensures that the computer
// will receive its provisioned access only when it is brought up in
// the specified provisioning group. This prevents the computer
// (and/or) the modem from moving from one locality to another
// locality.
properties.put (IPDeviceKeys.MUST_ BE_IN_PROV_GROUP, "bostonProvGroup") ;
List<DeviceID> compDeviceIDList = new ArrayList<DeviceID> () ;
MACAddress computerMACAddressObject = new MACAddress (computerMACAddress) ;
compDeviceIDList.add (computerMACAddressObject) ;
batch = connection.newBatch (

// No reset

ActivationMode.NO_ACTIVATION,

// No need to confirm activation

ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

// register add API to the batch

batch.add(
DeviceType.COMPUTER, // deviceType: Computer
compDeviceIDList, // compDeviceIDList: the list of DeviceIDs derived from
// computerLease
null, // hostName: not used in this example
null, // domainName: not used in this example
"0123-45-6789", // ownerName
null, // class of service: get the default COS
"provisionedCPE", // dhpcCriteria: Network Registrar uses this to
// select a modem lease granting provisioned IP address
properties // device properties

)

// post the batch to RDU server

try
{

batchStatus = batch.post () ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

}

Step5 The user interface prompts the subscriber to reboot the new computer so that Prime Cable Provisioning
can give the computer its registered service level.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

The computer is now a provisioned device with access to the appropriate level of service.

Disabling a Subscriber

Step 1

Step 2

A service provider needs to disable a subscriber from accessing the Internet due to recurring
nonpayment.

Desired Outcome

Use this workflow to disable an operational cable modem and computer, so that the devices temporarily
restrict Internet access for the user. Additionally, this use case can redirect the user’s browser to a special
page that could announce:

You haven’t paid your bill so your Internet access has been disabled.

The service provider’s application uses a provisioning client program to request a list of all of the
subscriber’s devices from Prime Cable Provisioning.

The service provider’s application then uses a provisioning client to individually disable or restrict each
of the subscriber’s devices.

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

//get all for owner ID

Batch batch = conn.newBatch() ;
batch.getAllForOwnerID("0123-45-6789") ;

BatchStatus batchStatus = null;
try
{
batchStatus = batch.post() ;
}
catch (Exception e)
{
e.printStackTrace() ;
}

CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;

//batch success without error, retrieve the result

RecordSearchResults rcSearchResult = (RecordSearchResults)commandStatus.getDatal() ;
List<RecordData> resultList = rcSearchResult.getRecordDatal() ;
if (resultList != null)

{
// getting the data

for (int 1=0; i<resultList.size(); i++)
{
RecordData rd = resultList.get(i);
Map<String, Object> detailMap = rd.getDetails();

//get the deviceType from the detail map

String deviceType =
(String)detailMap.get (DeviceDetailsKeys.DEVICE_TYPE) ;

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Key primaryKey = rd.getPrimaryKey () ;

//only interest in DOCSIS
if (DeviceType.getDeviceType (deviceType)
.equals (DeviceType.DOCSIS))

//change COS

batch = conn.newBatch() ;
batch.changeClassOfService((DevicelID)primaryKey, "DisabledCOS") ;

//change DHCPCriteria
batch.changeDHCPCriteria((DevicelID)primaryKey, "DisabledDHCPCriteria");

batchStatus = null;
try
{
batchStatus = batch.post () ;
}
catch (Exception e)

{

e.printStackTrace() ;

}

//disable computer

else if (DeviceType.getDeviceType (deviceType)
.equals (DeviceType.COMPUTER))

//change DHCPCriteria

batch = conn.newBatch() ;

batch.changeClassOfService ((DevicelID)primaryKey,
"DisabledComputerCOS") ;

batch.changeDHCPCriteria ((DevicelID)primaryKey,
"DisabledComputerDHCPCriteria") ;

batchStatus = null;
try
{
batchStatus = batch.post() ;
}
catch (Exception e)
{

e.printStackTrace() ;

Note You may need to consider the impact on the CPE behind the modem when defining the characteristics
of DisabledCOS and resetting the modem. This is especially important if you have voice endpoints
behind the modem, because disrupting the cable modem might affect the telephone conversation in
progress at that time.

The subscriber is now disabled.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

Preprovisioning Modems/Self-Provisioned Computers

Step 1
Step 2
Step 3

Step 4
Step 5
Step 6

Step 7

A new subscriber contacts the service provider and requests service. The subscriber has a computer
installed in a single-dwelling unit. The service provider preprovisions all its cable modems in bulk.

Desired Outcome

Use this workflow to bring a preprovisioned cable modem, and an unprovisioned computer, online in the
roaming standard mode. This must be done so that both devices have the appropriate level of service and
are registered.

The service provider chooses a subscriber username and password for the billing system.
The service provider selects services that the subscriber can access.

The service provider’s field technician installs the physical cable to the new subscriber's house and
installs the preprovisioned device, connecting it to the subscriber’s computer.

The technician turns on the modem and Prime Cable Provisioning gives it a provisioned IP address.
The technician turns on the computer and Prime Cable Provisioning gives it a private IP address.

The technician starts a browser application on the computer and points the browser to the service
provider's user interface.

The technician accesses the service provider's user interface to complete the steps required for
registering the computer behind the provisioned cable modem.

// First we query the computer's information to find the

// modem's MAC Address. We use the computer IP address (the web browser
// received this when the subscriber opened the service provider’s

// web interface

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeme");

// NO_ACTIVATION is the activation mode because this is a query
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the device
// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.
Batch batch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// register getAllForIPAddress to the batch
batch.getAllForIPAddress("10.0.14.38");

BatchStatus batchStatus = null;

// post the batch to RDU server

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

try
{

batchStatus = batch.post();
}
catch (ProvisioningException e)
{

e.printStackTrace() ;
}

// Get the LeaseResults object after posting a batch.

CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;
LeaseResults computerLease = (LeaseResults)commandStatus.getDatal() ;
// derive computer MAC address from computer's network information.

String computerMACAddress =
(String) computerLease.getSingleLease () .get (DeviceDetailsKeys.MAC_ADDRESS) ;

List<DeviceID> compDeviceIDList = new ArrayList<DeviceID>() ;
MACAddress computerMACAddressObject = new MACAddress (computerMACAddress) ;
compDeviceIDList.add (computerMACAddressObject) ;

// NO_ACTIVATION will generate new configuration for the computer,
// however it will not attempt to reset it.

// NO_CONFIRMATION is the confirmation mode because we are not

// attempting to reset the computer because this cannot be done.

batch = connection.newBatch (
// No reset

ActivationMode.NO_ACTIVATION,

// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database
PublishingMode.NO_PUBLISHING) ;

// register add API to the batch

batch.add(

DeviceType.COMPUTER, // deviceType: Computer

compDeviceIDList, // compDeviceIDList: the list of DeviceIDs derived from
// computerLease

null, // hostName: not used in this example

null, // domainName: not used in this example

"0123-45-6789", // ownerName

null, // class of service: get the default COS

"provisionedCPE", // dhpcCriteria: Network Registrar uses this to
// select a modem lease granting provisioned IP address

null // properties: not used

)
// post the batch to RDU server
try

{
batchStatus = batch.post() ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Note

Step 8

Provisioning API Use Cases W

}
catch(ProvisioningException e)

{

e.printStackTrace() ;

The IPDeviceKeys. MUST_BE_BEHIND_DEVICE property is not set on the computer and this allows
roaming from behind one cable modem to another.

The technician restarts the computer and the computer receives a new provisioned IP address.

The cable modem and the computer are now both provisioned devices. The computer has access to the
Internet through the service provider’s network.

Modifying an Existing Modem

~

Note

Step 1

Step 2

A service provider’s subscriber currently has a level of service known as Silver and has decided to
upgrade to Gold service. The subscriber has a computer installed at home.

The intent of this use case is to show how to modify a device. You can apply this example to devices
provisioned in modes other than roaming standard.

Desired Outcome

Use this workflow to modify an existing modem’s Class of Service and pass that change of service to
the service provider’s external systems.

The subscriber phones the service provider and requests to have service upgraded. The service provider
uses its user interface to change the Class of Service from Silver to Gold.

The service provider’s application makes these API calls in Prime Cable Provisioning:
// NO_ACTIVATION is the activation mode because this is a query
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the device
// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.
Batch batch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

// replace changeClassOfService to this. Make sure the comment
// on top of this line is still there.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

batch.changeClassOfService (new MACAddress("1,6,00:11:22:33:44:55")
// the MACAddress object

, "Gold");

// post the batch to the RDU

BatchStatus batchStatus = null;
try
{

batchStatus = batch.post();
}
catch (ProvisioningException e)
{

e.printStackTrace() ;

The subscriber can now access the service provider’s network with the Gold service.

Unregistering and Deleting a Subscriber’s Devices
A service provider needs to delete a subscriber who has discontinued service.

Desired Outcome

Use this workflow to permanently remove all the subscriber’s devices from the service provider’s
network.

Step1 The service provider’s user interface discontinues service to the subscriber.

Step2 This step describes how to unregister a subscriber’s device and delete a subscriber’s device. Deleting a
device is optional because some service providers prefer to keep the cable modem in the database unless
it is broken. Note however that if you unregister a device using Step 2-a, you cannot delete the device
using Step 2-b.

a. To unregister a device, the service provider’s application uses a provisioning client program to
request a list of all the subscriber’s devices from Prime Cable Provisioning, and unregisters and
resets each device so that it is brought down to the default (unprovisioned) service level.

A
Note If the device specified as the parameter to the “unregister” API is already in unregistered
state then the status code from the API call will be set to

CommandStatusCodes .CMD_ERROR_DEVICE_UNRE- GISTER_UNREGISTERED_ERROR. This is
normal/expected behavior.

// MSO admin UI calls the provisioning API to get a list of
// all the subscriber's devices.

// Create a new connection

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning APl Use Cases

// NO_ACTIVATION is the activation mode because this is a query
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the device
// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.
Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;

batch.getAllForOwnerID("0123-45-6789"

// query all the devices for this account number

)

BatchStatus batchStatus = null;

try
{
batchStatus = batch.post() ;
}
catch (Exception e)
{
e.printStackTrace() ;
}

CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;

//batch success without error, retrieve the result

RecordSearchResults rcSearchResult = (RecordSearchResults)commandStatus.getDatal() ;
List<RecordData> resultList = rcSearchResult.getRecordDatal() ;

// We need to unregister all the devices behind each modem(s) or else the
// unregister call for that modem will fail.

if (resultList != null)
{
//Unregister the COMPUTER

for (int i=0; i<resultList.size(); i++)

RecordData rd = resultList.get(i);
Map<String, Object> detailMap = rd.getDetails();

//get the deviceType from the detail map

String deviceType = (String)detailMap.get (DeviceDetailsKeys.DEVICE_TYPE) ;

//only interest in DOCSIS

if (DeviceType.getDeviceType (deviceType) .equals (DeviceType.COMPUTER))
{
Key primaryKey = rd.getPrimaryKey () ;

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

batch = conn.newBatch() ;
batch.unregister ((DevicelD)primaryKey) ;

batchStatus = null;
try
{

batchStatus = batch.post();
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

}
}
}
}
// for each modem in the retrieved list:
for (int 1=0; i<resultList.size(); i++)
{
RecordData rd = resultList.get(i);
Map<String, Object> detailMap = rd.getDetails();
//get the deviceType from the detail map
String deviceType = (String)detailMap.get (DeviceDetailsKeys.DEVICE_TYPE) ;
//only interest in DOCSIS
if (DeviceType.getDeviceType (deviceType) .equals (DeviceType.DOCSIS))
{
Key primaryKey = rd.getPrimaryKey () ;
batch = conn.newBatch() ;
batch.unregister ((DevicelD)primaryKey) ;
batchStatus = null;
try
{
batchStatus = batch.post();
}
catch(ProvisioningException e)
{
e.printStackTrace() ;
}
}
}

b. To delete a device, the service provider’s application uses a provisioning client program to delete
each of the subscriber’s remaining devices individually from the database.

// Create a new connection
PACEConnection conn =

PACEConnectionFactory.getInstance ("localhost", 49187, "admin", "adminl23");

// NO_ACTIVATION is the activation mode because this is a query

// NO_CONFIRMATION is the confirmation mode because we are not

// attempting to reset the device

// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.

Batch batch = conn.newBatch (

// No reset

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases
Provisioning API Use Cases W
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publisining to external database
PublishingMode.NO_PUBLISHING) ;
batch.getAllForOwnerID("0123-45-6789" // query all the devices for this account
// number
)
BatchStatus batchStatus = null;
try
{
batchStatus = batch.post () ;
}
catch (Exception e)
{
e.printStackTrace() ;
}
CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;
//batch success without error, retrieve the result
RecordSearchResults rcSearchResult = (RecordSearchResults)commandStatus.getDatal() ;
List<RecordData> resultList = rcSearchResult.getRecordDatal() ;
if (resultList != null)
{
// for each modem in the retrieved list, delete it
for (int 1=0; i<resultList.size(); i++)
{
RecordData rd = resultList.get(i);
Map<String, Object> detailMap = rd.getDetails();
//get the deviceType from the detail map
String deviceType = (String)detailMap.get (DeviceDetailsKeys.DEVICE_TYPE) ;
//only interest in DOCSIS
if (DeviceType.getDeviceType (deviceType) .equals (DeviceType.DOCSIS))
{
Key primaryKey = rd.getPrimaryKey () ;
//change COS
batch = conn.newBatch() ;
batch.delete((DevicelID)primaryKey, true);
batchStatus = null;
try
{
batchStatus = batch.post();
}
Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
| oL-26279-01

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

catch(ProvisioningException e)
{
e.printStackTrace() ;

Self-Provisioning First-Time Activation in Promiscuous Mode

The subscriber has a computer (with a browser application) installed in a single-dwelling unit and has
purchased a DOCSIS cable modem.

Desired Outcome

Use this workflow to bring a new unprovisioned DOCSIS cable modem and computer online with the
appropriate level of service.

Step1 The subscriber purchases a DOCSIS cable modem and installs it at home.
Step2 The subscriber powers on the modem, and Prime Cable Provisioning gives it restricted access.

Step3 The subscriber starts a browser application on the computer and a spoofing DNS server points the
browser to the service provider’s registration server (for example, an OSS user interface or a mediator).

Stepd The subscriber uses the service provider’s user interface to complete the steps required for registration,
including selecting a Class of Service.

The service provider’s user interface passes the subscriber’s information to Prime Cable Provisioning,
including the selected Class of Service and computer IP address. The subscriber’s cable modem and
computer are then registered with Prime Cable Provisioning.

Step5 The user interface prompts the subscriber to reboot the computer.
// Create a new connection
PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");
Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// NO_ACTIVATION is the activation mode because this is a
// query. NO_CONFIRMATION is the confirmation mode because
// we are not attempting to reset the device.
// First we query the computer's information to find the

// modem’s MAC address.
// We use the computer’s IP address (the web browser

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases
Provisioning API Use Cases W

// received this when the subscriber opened the service
// provider’s web interface).
// We also assume that "bostonProvGroup"
// 1s the provisioning group used in that locality.
List<String> provGrouplList = new ArrayList<String>();
provGroupList.add("bostonProvGroup") ;
batch.getAllForIPAddress("10.0.14.38",

// ipAddress: restricted access computer lease

provGroupList

// provGroups: List containing provgroup

)
BatchStatus batchStatus = null;
// post the batch to RDU server
try
{

batchStatus = batch.post();
}
catch(ProvisioningException e)
{

e.printStackTrace() ;
}
// Get the LeaseResults object after posting a batch.
CommandStatus commandStatus = batchStatus.getCommandStatus(0) ;
LeaseResults computerLease = (LeaseResults)commandStatus.getDataf() ;
// Derive the modem MAC address from the computer's network
// information. The 1,6, is a standard prefix for an Ethernet
// device. The fully qualified MAC address is required by BACC
StringBuffer modemMACAddress = new StringBuffer();
modemMACAddress.append ("1,6, ") ;
modemMACAddress.append (computerLease.getSingleLease () .get ("relay-agent-remote-id")) ;
//create MacAddress object from the string
MACAddress modemMACAddressObject = new MACAddress (modemMACAddress.toString()) ;
List<DeviceID> modemDeviceIDList = new ArrayList<DeviceID>() ;
modemDeviceIDList.add (modemMACAddressObject) ;
// NO_ACTIVATION is the activation mode because this is a query
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the device
// NO_PUBLISHING is the publishing mode because we are not attempting
// to publish to external database.
batch = conn.newBatch (

// No reset

ActivationMode.NO_ACTIVATION,

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
| oL-26279-01

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;

Map<String, Object> properties = new HashMap<String, Object>();

// Set the property PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED
// to enable promiscuous mode on modem

properties.put (PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED, Boolean.TRUE) ;

properties.put (PolicyKeys.COMPUTER_DHCP_CRITERIA, "provisionedCPE");

// enable promiscuous mode by changing the technology default

batch.changeDefaults (DeviceType.DOCSIS,
properties, null);

// post the batch to RDU server

try
{
batchStatus = batch.post () ;

}

catch(ProvisioningException e)

{
e.printStackTrace() ;

}

batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

batch.add(
DeviceType.DOCSIS, // deviceType: DOCSIS
modemDeviceIDList, // macAddress: derived from computer lease
null, // hostName: not used in this example
null, // domainName: not used in this example
"0123-45-6789", // ownerID: here, account number from billing system
"Silver", // ClassOfService
"provisionedCM", // DHCP Criteria: Network Registrar uses this to
// select a modem lease granting provisioned IP address
null // properties:

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

Step6 The provisioning client calls performOperation(...) to reboot the modem and gives the modem
provisioned access.

// Reset the computer
// create a new batch
batch = conn.newBatch (

// No reset
ActivationMode.AUTOMATIC,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION) ;
// register performOperation command to the batch

batch.performOperation (DeviceOperation.RESET,
modemMACAddressObject, null);

// post the batch to RDU server

try
{

batchStatus = batch.post () ;
}
catch (ProvisioningException e)
{

e.printStackTrace() ;
}

Step 7 When the computer is rebooted, it receives a new IP address.

The cable modem is now a provisioned device. The computer is not registered with
Prime Cable Provisioning, but it gains access to the Internet through the service provider’s network.
Computers that are online behind promiscuous modems are still available using the provisioning API.

Bulk Provisioning 100 Modems in Promiscuous Mode

A service provider wants to preprovision 100 cable modems for distribution by a customer service
representative at a service kiosk.

Desired Outcome

Use this workflow to distribute modem data for all modems to new subscribers. The customer service
representative has a list of modems available for assignment.

Step 1 The cable modem’s MAC address data for new or recycled cable modems is collected into a list at the
service provider’s loading dock.

Step2 Modems that are assigned to a particular kiosk are bulk-loaded into Prime Cable Provisioning and are
flagged with the identifier for that kiosk.

Step3 When the modems are distributed to new subscribers at the kiosk, the customer service representative
enters new service parameters, and changes the Owner ID field on the modem to reflect the new
subscriber’s account number.

// Create a new connection

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

// The activation mode for this batch should be NO_ACTIVATION.
// NO_ACTIVATION should be used in this situation because no

// network information exists for the devices because they

// have not booted yet. A configuration can’t be generated if no
// network information is present. And because the devices

// have not booted, they are not online and therefore cannot

// be reset. NO_CONFIRMATION is the confirmation mode because

// we are not attempting to reset the devices.

// Create a Map for the properties of the modem

Map properties;

// Set the property PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED to
// enable promiscuous mode on modem.

// This could be done at a system level if promiscuous mode

// is your default provisioning mode.

properties.put (PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED, Boolean.TRUE) ;
// The PolicyKeys.CPE_DHCP_CRITERIA is used to specify the DHCP

// Criteria to be used while selecting IP address scopes for

// CPE behind this modem in the promiscuous mode.

properties.put (PolicyKeys.COMPUTER_DHCP_CRITERIA, "provisionedCPE") ;
// enable promiscuous mode by changing the technology default
batch.changeDefaults (DeviceType.DOCSIS, properties, null);

BatchStatus batchStatus = null;

// post the batch to RDU server

try
{

batchStatus = batch.post() ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;
}

// for each modem MAC-address in list:

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

ModemLoop:
{
batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

Provisioning API Use Cases W

batch.add(
DeviceType.DOCSIS, // deviceType: DOCSIS
modemMACAddressList, // modemMACAddressList: the list of deviceID
null, // hostName: not used in this example
null, // domainName: not used in this example
"0123-45-6789", // ownerID: here, account number from billing system
"Silver", // ClassOfService
"provisionedCM", // DHCP Criteria: Network Registrar uses this to

// select a modem lease granting provisioned IP address

properties // properties:

batchStatus = batch.post () ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;
}
// end ModemLoop.

Preprovisioning First-Time Activation in Promiscuous Mode

Step 1
Step 2
Step 3

Desired Outcome

The service provider selects the services that the subscriber can access.

The service provider registers the device using its own user interface.

A new subscriber contacts the service provider and requests service. The subscriber has a computer
installed in a single-dwelling unit.

Use this workflow to bring a new unprovisioned cable modem and computer online with the appropriate
level of service.

The service provider chooses a subscriber username and password for the billing system.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Stepd The service provider's user interface passes information, such as the modem’s MAC address and the
Class of Service, to Prime Cable Provisioning. Additionally, the modem gets a CPE DHCP Criteria
setting that lets Network Registrar select a provisioned address for any computers to be connected behind
the modem. The new modem is then registered with Prime Cable Provisioning.

Step5 The service provider’s field technician installs the physical cable to the new subscriber’s house and
installs the preprovisioned device, connecting it to the subscriber’s computer.

// MSO admin UI calls the provisioning API to pre-provision
// an HSD modem.

// Create a new connection
PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");
Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// The activation mode for this batch should be NO_ACTIVATION.
// NO_ACTIVATION should be used in this situation because no
// network information exists for the modem because it has not
// booted. A configuration cannot be generated if no network
// information is present. And because the modem has not booted,
// it is not online and therefore cannot be reset.
// NO_CONFIRMATION is the confirmation mode because we are not
// attempting to reset the modem.
// Create a map for the properties of the modem.

Map<String, Object> properties = new HashMap<String, Object>();

// Set the property PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED
// to enable promiscuous mode on modem

properties.put (PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED, Boolean.TRUE) ;

properties.put (PolicyKeys.COMPUTER_DHCP_CRITERIA, "provisionedCPE") ;

// enable promiscuous mode by changing the technology default
batch.changeDefaults (DeviceType.DOCSIS, properties, null);
BatchStatus batchStatus = null;

// post the batch to RDU server

try

{
batchStatus = batch.post() ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

}
catch(ProvisioningException e)
{
e.printStackTrace() ;
}
batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
MACAddress macAddressObject = new MACAddress("1,6,00:11:22:33:44:55");

List<DeviceID> modemDeviceIDList = new ArrayList<DeviceID>() ;
modemDeviceIDList.add (macAddressObject) ;

batch.add(
DeviceType.DOCSIS, // deviceType: DOCSIS
modemDeviceIDList, // macAddress: derived from computer lease
null, // hostName: not used in this example
null, // domainName: not used in this example
"0123-45-6789", // ownerID: here, account number from billing system
"Silver", // ClassOfService
"provisionedCM", // DHCP Criteria: Network Registrar uses this to
// select a modem lease granting provisioned IP address
null // properties:

// post the batch to RDU server

try
{

batchStatus = batch.post() ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

Step6 The technician powers on the cable modem and Prime Cable Provisioning gives it provisioned access.
Step7 The technician powers on the computer and Prime Cable Provisioning gives it provisioned access.

The cable modem and the computer are now both provisioned devices. The computer has access to the
Internet through the service provider’s network.

Replacing an Existing Modem

A service provider wants to replace a broken modem.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

~

Note If the computer has the option to restrict roaming from one modem to another, and the modem is
replaced, the computer’s MAC address for the modem must also be changed.

Desired Outcome

Use this workflow to physically replace an existing cable modem with a new modem without changing
the level of service provided to the subscriber.

Step 1 The service provider changes the MAC address of the existing modem to that of the new modem.

// Create a new connection
PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

batch = conn.newBatch (

// No reset

ActivationMode.NO_ACTIVATION,

// No need to confirm activation

ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;
MACAddress macAddressObject = new MACAddress("1,6,00:11:22:33:44:55");
List<DeviceID> modemDeviceIDList = new ArrayList<DeviceID>();
modemDeviceIDList.add (macAddressObject) ;

// o0ld macAddress: unique identifier for the old modem
MACAddress oldMacAddress = new MACAddress("1,6,00:11:22:33:44:55");

// new macAddress: unique identifier for the new modem

MACAddress newMacAddress = new MACAddress("1,6,00:11:22:33:44:66") ;
List<DeviceID> newDeviceIDs = new ArrayList<DeviceID> () ;
newDeviceIDs.add (newMacAddress) ;

batch.changeDeviceID (oldMacAddress, newDevicelDs) ;
// post the batch to RDU server

try
{

batchStatus = batch.post() ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

Step2 The service provider replaces the cable modem and turns it on.

Step3 The computer must also be turned on.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

The cable modem is now a fully provisioned device with the appropriate level of service, as is the
computer behind the cable modem.

Adding a Second Computer in Promiscuous Mode

Step 1
Step 2

A subscriber wants to connect a second computer behind an installed cable modem. This case does not
require calls to the provisioning API.

Desired Outcome

Use this workflow to ensure that the subscriber’s selected service permits the connection of multiple sets
of CPE, and that the subscriber has network access from both connected computers.

The subscriber connects a second computer behind the cable modem.
The subscriber turns on the computer.

If the subscriber’s selected service permits connecting multiple sets of CPE, Prime Cable Provisioning
gives the second computer access to the Internet.

Self-Provisioning First-Time Activation with NAT

Step 1

Step 2
Step 3

Step 4

Step 5

Note

A university has purchased a DOCSIS cable modem with network address translation (NAT) and DHCP
capability. The five occupants of the unit each have a computer installed with a browser application.

Desired Outcome

Use this workflow to bring a new unprovisioned cable modem (with NAT) and the computers behind it
online with the appropriate level of service.

The subscriber purchases a cable modem with NAT and DHCP capability and installs it in a
multiple-dwelling unit.

The subscriber turns on the modem and Prime Cable Provisioning gives it restricted access.

The subscriber connects a laptop computer to the cable modem, and the DHCP server in the modem
provides an IP address to the laptop.

The subscriber starts a browser application on the computer and a spoofing DNS server points the
browser to the service provider’s registration server (for example, an OSS user interface or a mediator).

The subscriber uses the service provider’s user interface to complete the steps required for cable modem
registration of the modem. The registration user interface detects that the modem is using NAT and
registers the modem, making sure that the modem gets a Class of Service that is compatible with NAT.
For details, see Self-Provisioned Modem and Computer in Fixed Standard Mode, page 7-7.

Certain cable modems with NAT may require you to reboot the computer to get the new Class of Service
settings. If the cable modem and NAT device are separate devices, the NAT device must also be
registered similarly to registering a computer.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter 7 Java API Client Use Cases

M Provisioning API Use Cases

Adding a New Computer Behind a Modem with NAT

Note

Step 1
Step 2

The landlord of an apartment building has four tenants sharing a modem and accessing the service
provider’s network. The landlord wants to provide Internet access to a new tenant, sharing the building’s
modem. The modem has NAT and DHCP capability. The new tenant has a computer connected to the
modem.

This case does not require calls to the provisioning API.

Desired Outcome

Use this workflow to bring a new unprovisioned computer online with a previously provisioned cable
modem so that the new computer has the appropriate level of service.

The subscriber turns on the computer.
The computer is now a provisioned device with access to the appropriate level of service.

The provisioned NAT modem hides the computers behind it from the network.

Move Device to Another DHCP Scope

Step 1

A service provider is renumbering its network causing a registered cable modem to require an IP address
from a different Network Registrar scope.

Desired Outcome

A provisioning client changes the DHCP Ceriteria, and the cable modem receives an IP address from the
corresponding DHCP scope.

Change the DOCSIS modem’s DHCP Criteria to “newmodemCeriteria”.
// Create a new connection
PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");
Batch batch = conn.newBatch (
// No reset
ActivationMode.AUTOMATIC,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// AUTOMATIC is the Activation mode because we are attempting
// to reset the modem so that a phone line is disabled
// NO_CONFIRMATION is the Confirmation mode because we don't
// want the batch to fail if we can't reset the modem.

// This use case assumes that the DOCSIS modem has been
// previously added to the database

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Step 2

Provisioning API Use Cases W

batch.changeDHCPCriteria (
new MACAddress("1l,6,ff:00:ee:11:dd:22"), // Modem's MAC address or FQDN
"newmodemCriteria"
)

// post the batch to RDU server

BatchStatus batchStatus = null;
try
{

batchStatus = batch.post() ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

The modem gets an IP address from the scope targeted by “newmodemCriteria.”

Log Device Deletions Using Events

Step 1

Step 2

A service provider has multiple provisioning clients and wants to log device deletions.

Desired Outcome

When any provisioning client deletes a device, the provisioning client logs an event in one place.

Create a listener for the device deletion event. This class must extend the DeviceAdapter abstract class
or, alternatively, implement the DeviceListener interface. This class must also override the
deletedDevice(DeviceEvent ev) method in order to log the event.

public DeviceDeletionLogger
extends DeviceAdapter

//Extend the DeviceAdapter class.
public void deletedDevice (DeviceEvent ev)
//Override deletedDevice.

{

logDeviceDeletion (ev.getDeviceID()) ;

//Log the deletion.

Register the listener and the qualifier for the events using the PACEConnection interface.

DeviceDeletionLogger deviceDeletionLogger =
new DeviceDeletionLogger () ;

// Modem's MAC address or FQDN "newmodemCriteria"
DeviceEventQualifier qualifier = new DeviceEventQualifier();

// We are interested only in device deletion.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

qualifier.setDeletedDevice () ;
// Add device listener using PACEConnection

connection.addDeviceListener (deviceDeletionLogger, qualifier

)

Step3 When a device is deleted from the system, the event is generated, and the listener is notified.

Monitoring an RDU Connection Using Events

A service provider is running a single provisioning client and wants notification if the connection
between the provisioning client and the RDU breaks.

Desired Outcome

Use this workflow to have the event interface notify the service provider if the connection breaks.

Step 1 Create a listener for the messaging event. This class must extend the MessagingAdapter abstract class
or, alternatively, implement the MessagingListener interface. This class must override the
connectionStopped(MessagingEvent ev) method.

// Extend the service provider’s Java program using the
// provisioning client to receive Messaging events.
public MessagingNotifier

extends MessagingAdapter

//Extend the MessagingAdapter class.
public void connectionStopped (MessagingEvent ev)

//Override connectionStopped.
{
doNotification(ev.getAddress(), ev.getPort());

//Do the notification.

Step2 Register the listener and the qualifier for the events using the PACEConnection interface.

MessagingQualifier qualifier =new MessagingQualifier();
qualifier.setConnectionDown () ;
MessagingNotifier messagingNotifier = new MessagingNotifier();
connnection.addMessagingListener (messagingNotifier, qualifier
)

Step 3 If a connection breaks, the event is generated, and the listener is notified. Whenever connectivity is
interrupted, the PACE Connection automatically reconnects to the RDU.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

Logging Batch Completions Using Events

Step 1

Step 2

Step 3

A service provider has multiple provisioning clients and wants to log batch completions.

Desired Outcome

When any provisioning client completes a batch, an event is logged in one place.

Create a listener for the event. This class must extend the BatchAdapter abstract class or implement the
BatchListener interface. This class must override the completion(BatchEvent ev) method in order to log
the event.

public BatchCompletionLogger
extends BatchAdapter

//Extend the BatchAdapterclass.

public void completion (BatchEvent ev)

//Override completion.

{
logBatchCompletion (ev.BatchStatus () .getBatchID()) ;
//Log the completion.

Register the listener and the qualifier for the events using the PACEConnection interface.

BatchCompletionLogger batchCompletionLogger = new BatchCompletionLogger () ;
BatchEventQualifier qualifier = new BatchEventQualifier();
connection.addBatchListener (batchCompletionLogger , qualifier

)

When a batch completes, the event is generated, and the listener is notified.

Getting Detailed Device Information

Step 1

Step 2

A service provider wants to allow an administrator to view detailed information for a particular device.

Desired Outcome

The service provider’s administrative application displays all known details about a given device,
including MAC address, lease information, provisioned status of the device, and the device type (if
known).

The administrator enters the MAC address for the device being queried into the service provider’s
administrator user interface.

Prime Cable Provisioning queries the embedded database for the device details.

// The host name or IP address of the RDU. It is

// recommended that you normally use a fully-qualified domain name
// since it lends itself to the greatest flexibility going forward.
// For example, you could change the host running RDU without

// having to reassign IPs. For that reason, having an alias for

// the machine is better than a specific name.

final String rduHost = "localhost";

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

// The port number of RDU on the server.
final int rduPort = 49187;

// The user name for connecting to RDU.
final String userName = "admin";

// The password to use with the username.

final String password = "changeme";

[e
// DEVICE PARAMETERS, see IPDevice.getDetails()

[e e e

// The MAC address of the modem to be queried. MAC addresses in BAC
// must follow the simple "1,6,XX:XX:XX:XX:XX:XX" format.

final DeviceID modemMACAddress = DeviceID.getInstance("1,6,00:11:22:33:44:55",
KeyType .MAC_ADDRESS) ;

// The PACE connection to use throughout the example. When

// executing multiple batches in a single process, it is advisable
// to use a single PACE connection that is retrieved at the start
// of the application. When done with the connection, YOU MUST

// explicitly close the connection with the releaseConnection()

// method call.

PACEConnection connection = null;

// 1) Connect to the Regional Distribution Unit (RDU).

//

// The parameters defined at the beginning of this class are
// used here to establish the connection. Connections are

// maintained until releaseConnection() is called. If

// multiple calls to getInstance() are called with the same
// arguments, you must still call releaseConnection() on each
// connection you received.

//

// The call can fail for one of the following reasons:

// - The hostname / port is incorrect.

// - The authentication credentials are invalid.

// - The maximum number of allowed sessions for the user
// has already been reached.

try

{

connection = PACEConnectionFactory.getInstance (
// RDU host rduHost,

// RDU port rduPort,

// User name userName,

// Password password

)

}

catch (PACEConnectionException e)

{

// failed to get a connection

System.out.println("Failed to establish a PACEConnection to [" +
userName + "@" + rduHost + ":" + rduPort + "]; " +
e.getMessage ()) ;

System.exit (1) ;
}

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

// 2) Create a new batch instance.

//

// To perform any operations in the Provisioning API, you must
// first start a batch. As you make commands against the batch,
// nothing will actually start until you post the batch.

// Multiple batches can be started concurrently against a

// single connection to the RDU.

Batch myBatch = connection.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// 3) Register the getDetails(...) with the batch.
// Use the Provisioning API to get all of the information for
// the specified MAC address. Since methods aren't actually
// executed until the batch is posted, the results are not
// returned until after post() completes. The getCommandStatus ()
// followed by getData() calls must be used to access the results

// once the batch is posted.

final DeviceID modemMACAddress = DeviceID.getInstance("1,6,00:11:22:33:44:55",
KeyType .MAC_ADDRESS) ;

List options = new ArrayList();
options.add (DeviceDetailsOption.INCLUDE_LEASE_INFO) ;

myBatch.getDetails (modemMACAddress, options);

// 4) Post the batch to the server.

/7

// Executes the batch against the RDU. All of the

// methods are executed in the order entered and the data

// changes are applied against the embedded database in RDU.

BatchStatus bStatus = null;

try
{
bStatus = myBatch.post();
}
catch (ProvisioningException pe)
{
System.out.println("Failed to query for modem with MAC address [" +

modemMACAddress + "]; " + pe.getMessage());

System.exit (2) ;

}

// 5) Check to see if the batch was successfully posted.

//

// Verify if any errors occurred during the execution of the
// batch. Exceptions occur during post() for truly exception
// situations such as failure of connectivity to RDU.

// Batch errors occur for inconsistencies such as no lease
// information for a device requiring activation. Command

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

// errors occur when a particular method has problems, such as
// trying to add a device that already exists.

if (bStatus.isError())

{
// Batch error occurred.

System.out.println("Failed to query for modem with MAC address [" +
modemMACAddress + "]; " + bStatus.getErrorMessage());

System.exit (3);
}

Step3 The service provider’s application presents a page of device data details, which can display everything
that is known about the requested device. If the device was connected to the service provider’s network,
this data includes lease information (for example, IP address and relay agent identifier). The data
indicates whether the device was provisioned, and if it was, the data also includes the device type.

// Successfully queried for device.
System.out.println("Queried for DOCSIS modem with MAC address ["+
modemMACAddress + "1");

// Display the results of the command (TreeMap is sorted). The
// data returned from the batch call is stored on a per-command
// basis. In this example, there is only one command, but if

// you had multiple commands all possibly returning results, you
// could access each result by the index of when it was added.
// The first method added is always index 0. From the status of
// each command, you can then access the accompanying data by

// using the getData() call. Since methods can return data of

// different types, you will have to cast the response to the

// type indicated in the Provisioning API documentation.

Map<String, Object> deviceDetails = new HashMap<String,
Object> ((Map)bStatus.getCommandStatus (0) .getData()) ;

String deviceType = (String)deviceDetails.get (DeviceDetailsKeys.DEVICE_TYPE) ;
String macAddress = (String)deviceDetails.get (DeviceDetailsKeys.MAC_ADDRESS) ;
String fgdn = (String)deviceDetails.get (DeviceDetailsKeys.FQDN) ;

String duid = (String)deviceDetails.get (DeviceDetailsKeys.DUID) ;

String host = (String)deviceDetails.get (DeviceDetailsKeys.HOST) ;

String domain = (String)deviceDetails.get (DeviceDetailsKeys.DOMAIN) ;
// if the device is DocsisModem, get the COS

String cos = (String)deviceDetails.get (DeviceDetailsKeys.CLASS_OF_SERVICE) ;

String dhcpCriteria = (String)deviceDetails.get (DeviceDetailsKeys.DHCP_CRITERIA) ;
String provGroup = (String)deviceDetails.get (DeviceDetailsKeys.PROV_GROUP) ;

Boolean isProvisioned = (Boolean)deviceDetails.get (DeviceDetailsKeys.IS_PROVISIONED) ;
String ownerID = (String)deviceDetails.get (DeviceDetailsKeys.OWNER_ID) ;

Boolean isRegistered = (Boolean)deviceDetails.get (DeviceDetailsKeys.IS_REGISTERED) ;
String oidNumber = (String)deviceDetails.get (GenericObjectKeys.OID_REVISION_NUMBER) ;

// 1if the device is a modem, get the device behind
String relayAgentMacAddress =
(String)deviceDetails.get (DeviceDetailsKeys.RELAY_AGENT_MAC) ;
String relayAgentDUID = (String)deviceDetails.get (DeviceDetailsKeys.RELAY_AGENT_DUID) ;

// get the map of Device property

Map deviceProperties = (Map)deviceDetails.get (DeviceDetailsKeys.PROPERTIES) ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

// get the map of discovery data v4

Map dhcpdiscovermapvéd =
(Map)deviceDetails.get (DeviceDetailsKeys.DISCOVERED_DATA_DHCPV4) ;

// if discovery data is not null, get the inform, response, request and environment
// map from discovery data map

Map dhcpInformMap = (Map)dhcpdiscovermapvé.get ("INFORM") ;
Map dhcpRespMap = (Map)dhcpdiscovermapv4d.get ("RESPONSE") ;
Map dhcpRegMap = (Map)dhcpdiscovermapvé.get ("REQUEST") ;

Map dhcpEnvMap = (Map)dhcpdiscovermapvéd.get ("ENVIRONMENT") ;

// get the map of lease query vi4

Map leasemapv4 = (Map)deviceDetails.get (DeviceDetailsKeys.LEASE_QUERY_DATA_DHCPV4) ;
String leaseTime = (String) leasemapv4.get (CNRNames.DHCP_LEASE_TIME.toString()) ;
String rebindingTime =

(String) leasemapv4.get (CNRNames .DHCP_REBINDING_TIME. toString()) ;

String clientLastTransTime =
(String) leasemapv4.get (CNRNames.CLIENT LAST TRANSACTION_TIME.toString());
String clientIPAddress= (String)leasemapv4.get (CNRNames.CLIENT IPADDRESS.toString()) ;
String relayAgentRemoteID=
(String) leasemapv4.get (CNRNames .RELAY_AGENT_REMOTE_ID.toString());
String relayAgentCircuitID=
(String) leasemapv4.get (CNRNames .RELAY_AGENT_CIRCUIT_ID.toString());

// get the map of discovery DHCP v6

Map dhcpdiscovermapvé =
(Map)deviceDetails.get (DeviceDetailsKeys.DISCOVERED_DATA_DHCPV6) ;

// 1if discovery data is not null , get the inform, response, request and environment
// map from discovery data map

Map dhcpvé6InformMap = (Map)dhcpdiscovermapvé.get ("INFORM") ;

Map dhcpv6RespMap = (Map)dhcpdiscovermapvé.get ("RESPONSE") ;

Map dhcpv6RegMap = (Map)dhcpdiscovermapvé.get ("REQUEST") ;

Map dhcpv6RelRegMap = (Map)dhcpdiscovermapvé.get ("RELAY_REQUEST") ;

Map dhcpv6EnvMap = (Map)dhcpdiscovermapvé.get ("ENVIRONMENT") ;

// get the map of lease query V6

Map leasemapvé6 = (Map)deviceDetails.get (DeviceDetailsKeys.LEASE_QUERY_DATA_DHCPV6) ;

String iaprefixkey = (String)leasemapvé6.get (CNRNames.IAPREFIX.toString());
String iaaddrkey = (String)leasemapvé6.get (CNRNames.IAADDR.toString()) ;
String leasetimev6 = (String)leasemapvé6.get (CNRNames.VALID_LIFETIME.toString());
String renewaltimev6 = (String)leasemapvé6.get (CNRNames.PREFERRED _LIFETIME. toString()) ;
String dhcplasttranstimevé =

(String) leasemapvé6 .get (CNRNames .CLIENT LAST_TRANSACTION_TIME) ;
String clientIpAddressv6 = (String)leasemapvé6.get (CNRNames.CLIENT IPADDRESS) ;
String relayagentremoteidvé = (String)leasemapvé.get (CNRNames.RELAY_ AGENT_REMOTE_ID) ;
String relayagentcircuitidvé =

(String) leasemapvé6 .get (CNRNames .RELAY_AGENT_CIRCUIT_ID) ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Searching Using the Device Type
A service provider wants to allow an administrator to view data for all DOCSIS modems.

Desired Outcome

The service provider’s administrative application returns a list of DOCSIS devices.

Step 1 The administrator selects the search option in the service provider’s administrator user interface.

Step2 Prime Cable Provisioning queries the embedded database for a list of all MAC addresses for the
DOCSIS modems.

public static void getAllDevicesByDeviceType () throws Exception {
DeviceSearchType dst = DeviceSearchType.getByDeviceType (
DeviceType.getDeviceType (DeviceTypeValues.DOCSIS_MODEM) ,
ReturnParameters.ALL) ;

RecordSearchResults rs = null;
SearchBookmark sb = null;

rs = searchDevice(dst, sb);
sb = rs.getSearchBookmark() ;

while (sb != null)
{
// print out the data in the record search result.
sb = printRecordSearchResults(rs) ;
// call the search routine again
rs = searchDevice(dst, sb);

}
private static RecordSearchResults searchDevice (DeviceSearchType dst,
SearchBookmark sb) throws Exception ({
RecordSearchResults rs = null;
final Batch batch = s_conn.newBatch() ;
final int numberOfRecordReturn = 10;

//calling the search API
batch.searchDevice (dst, sb, numberOfRecordReturn) ;

// Call the RDU.
BatchStatus batchStatus = batch.post();

// Check for success.
CommandStatus commandStatus = null;

if (0 < batchStatus.getCommandCount ())
{
commandStatus = batchStatus.getCommandStatus (0) ;
}
//check to see if there is an error
if (batchStatus.isError ()
|| batchStatus.isWarning()
|| commandStatus == null
|| commandStatus.isError())
{
System.out.println("report batch error.");
return null;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

//batch success without error, retrieve the result
//this is a list of devices

rs = (RecordSearchResults)commandStatus.getDatal) ;
return rs;

SearchBookmark sb = rs.getSearchBookmark() ;

List<RecordData> rdlist = rs.getRecordDatal() ;
Iterator<RecordData> iter = rdlist.iterator();

while (iter.hasNext())
{
RecordData rdObj = iter.next();
Key keyObj = rdObj.getPrimaryKey () ;

Provisioning APl Use Cases

private static SearchBookmark printRecordSearchResults (RecordSearchResults rs) throws
Exception {

System.out.println("DeviceOID: " + ((DevicelID)keyObj) .getDevicelId());

//this is for secondary keys.
List<Key> deviceList = rdObj.getSecondaryKeys () ;

if (deviceList != null && !deviceList.isEmpty())
{
for (int 1=0; i<deviceList.size(); i++)
{
Key key = deviceList.get(i);

System.out.println("DeviceID : " + key.toString());

}

return sb;

Searching for Devices Using Vendor Prefix or Class of Service

Step 1

Step 2

Desired Outcome

DeviceIDPattern pattern = new MACAddressPattern("1l,6,22:49:*");

The administrator enters the substring matching the desired vendor prefix into the service provider’s
administrator user interface.

| oL-26279-01

A service provider wants to allow an administrator to search for all devices matching a particular vendor
prefix or a particular Class of Service.

The service provider’s administrative application returns a list of devices matching the requested vendor
prefix or the Class of Service.

Prime Cable Provisioning queries the embedded database for a list of all MAC addresses for the devices
that match the requested vendor prefix or Class of Service. This example illustrates how you can build
the search query to retrieve devices using the MAC address. Also see Searching Using the Device Type,
page 7-40.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

DeviceSearchType dst = DeviceSearchType.getDevices (pattern, ReturnParameters.ALL) ;
// To set up search for class of service:

DeviceSearchType searchType = DeviceSearchType.getByClassOfService (

new ClassOfServiceName (name), AssociationType

.valueOf (association), ReturnParameters.ALL) ;

Step3 The service provider’s application requests details on these devices from Prime Cable Provisioning, and
presents a page of device data. For each device, the code displays the device type, MAC address, client
class, and provisioned status of the device. One device is identified per line.

// calling the search procedure

rs = searchDevice(connection, dst, sb);
sb

processRecordSearchResults (rs) ;

if (rs != null)

while (sb != null)
{
// The search returns a search bookmark, which can be used to make
// the next search call that would return next set of results

rs searchDevice (connection, dst, sb);

sb = processRecordSearchResults(rs) ;

Preprovisioning PacketCable eMTA

A new customer contacts a service provider to order PacketCable voice service. The customer expects
to receive a provisioned embedded MTA.

Desired Outcome

Use this workflow to preprovision an embedded MTA so that the modem MTA component has the
appropriate level of service when brought online.

Note This use case skips the call agent provisioning that is required for making telephone calls from eMTAs.

Step1 The service provider chooses a subscriber username and password for the billing system.

Step2 The service provider chooses the appropriate Class of Service and DHCP Criteria for the modem
component and adds it to Prime Cable Provisioning.

// Create a new connection

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

// No reset
ActivationMode.NO_ACTIVATION,

// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION) ;

// Let’s provision the modem and the MTA component in the same
// batch. This can be done because the activation mode of this
// batch is NO_ACTIVATION. More than one device can be operated
// on in a batch if the activation mode does not lead to more
// than one device being reset.

// To add a DOCSIS modem:

List<DeviceID> modemDeviceIDList = new ArrayList<DeviceID>();
modemDeviceIDList.add (new MACAddress("1,6,01:02:03:04:05:06"));

batch.add(
DeviceType.DOCSIS, // deviceType: DOCSIS
modemDeviceIDList, // macAddress: scanned from the label
null, // hostName: not used in this example
null, // domainName: not used in this example
"0123-45-6789", // ownerID: here, account number from billing system
"Silver", // classOfService
"provisionedCM", // DHCP Criteria: Network Registrar uses this to
// select a modem lease granting provisioned IP address
null // properties: not used

)
Step3 The service provider chooses the appropriate Class of Service and DHCP Criteria for the MTA
component and adds it to Prime Cable Provisioning.

List<DeviceID> packetcableMTADeviceIDList = new ArrayList<DeviceID>();
packetcableMTADeviceIDList.add (new MACAddress("1,6,01:02:03:04:05:07")) ;

// Continuation of the batch in Step2
// To add the MTA component:

batch.add(
DeviceType.PACKET_CABLE_MTA, // deviceType: PACKET_CABLE_MTA
packetcableMTADeviceIDList, // macAddress: scanned from the label
null, // hostName: not used in this example, will be auto
// generated
null, // domainName: not used in this example, will be
// auto generated. The FgdnKeys.AUTO_FQDN_DOMAIN
// property must be set somewhere in the property
// hierarchy.
"0123-45-6789", // ownerID: here, account number from billing system
"Silver", // ClassOfService
"provisionedMTA", // DHCP Criteria: Network Registrar uses this to
// select an MTA lease granting provisioned IP
// address
null // properties: not used

)

BatchStatus batchStatus = null;
// post the batch to RDU server
try

{
batchStatus = batch.post () ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter 7 Java API Client Use Cases

M Provisioning API Use Cases

catch(ProvisioningException e)
{
e.printStackTrace() ;

Stepd The embedded MTA gets shipped to the customer.
Step5 The customer brings the embedded MTA online and makes telephone calls using it.

SNMP Cloning on PacketCable eMTA

An administrator wants to grant SNMP Element Manager access to a PacketCable eMTA.

Desired Outcome
An external Element Manager is granted secure SNMPv3 access to the PacketCable eMTA.

Note Changes made to RW MIB variables are not permanent and are not updated in the
Prime Cable Provisioning configuration for the eMTA. The information written into the eMTA MIB is
lost the next time the MTA powers down or resets.

Step 1 Call the provisioning API method, performOperation(...), passing in the MAC address of the MTA and
the username of the new user to create on the MTA. This will be the username used in subsequent SNMP
calls by the Element Manager.

// Create a new connection

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION) ;

// NO_ACTIVATION is the activation mode because we don’t want to
// reset the device.

// NO_CONFIRMATION is the confirmation mode because we are

// not attempting to reset the device.

// The goal here is to create a new user on the MTA indicated

// by the MAC address. The other parameter needed here is the new
// user name, which is passed in the Map.

// Create a map that contains one element - the name of

// the new user to be created on the MTA

HashMap<String, Object> map = new HashMap<String, Object>();
map.put (SNMPPropertyKeys.CLONING_USERNAME, "newUser");

// The first param is the actual device operation to perform.

batch.performOperation (
DeviceOperation.ENABLE_SNMPV3_ACCESS, // deviceOperation : ENABLE_SNMPV3_ACCESS

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Step 2

Step 3

Provisioning API Use Cases W

new MACAddress("1,6,00:00:00:00:00:99"), // macORFgdn : MAC Address of the modem
map // parameters: operation specific
// parameters
)

BatchStatus batchStatus = null;
// post the batch to RDU server

try
{

batchStatus = batch.post () ;
}

catch(ProvisioningException e)

{

e.printStackTrace() ;
}
}

The provisioning API attempts to perform an SNMPv3 cloning operation to create an entry on the MTA
for the new user passed in Step 1. The keys used in the new user entry row are a function of two
passwords defined within Prime Cable Provisioning. These passwords will be made available to the
customer and the RDU command passes these passwords (the auth and priv password) through a key
localization algorithm to create an auth and priv key. These are stored, along with the new user, in the
eMTA’s user table.

~

Note The auth and priv passwords mentioned in this step may be changed by setting
SNMPPropertyKeys .CLONING_AUTH_PASSWORD (/snmp/cloning/auth/password) and
SNMPPropertyKeys .CLONING_PRIV_PASSWORD (/snmp/cloning/priv/password) properties,
respectively, in the rdu.properties configuration file.

The customer issues SNMPv3 requests using the specified username, passwords, and key localization
algorithm to allow for secure communication with the MTA.

Incremental Provisioning of PacketCable eMTA

Note

Step 1

A customer has a PacketCable eMTA in service with its first line (endpoint) enabled. The customer wants
to enable the second telephone line (endpoint) on the eMTA and connect a telephone to it.

Desired Outcome

The customer should be able to connect a telephone to the second line (endpoint) on the eMTA and
successfully make phone calls from it without any service interruption.

In order to use the second line on the eMTA, the Call Agent needs to be configured accordingly. This
use case does not address provisioning of call agents.

The service provider’s application invokes the Prime Cable Provisioning API to change the Class of
Service of the eMTA. The new Class of Service supports two endpoints on the eMTA. This change in
Class of Service does not take effect until the eMTA is reset. Disrupting the eMTA is not desirable;
therefore, incremental provisioning is undertaken in the next step.

PACEConnection conn = PACEConnectionFactory.getInstance (

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

"localhost", 49187, "admin", "adminl23");
Batch batch = conn.newBatch (

// No reset

ActivationMode.NO_ACTIVATION,

// No need to confirm activation

ConfirmationMode.NO_CONFIRMATION) ;

// NO_ACTIVATION is the activation mode because we don’t want to
// reset the device.

// NO_CONFIRMATION is the Confirmation mode because we are not
// disrupting the device.

batch.changeClassOfService (
new MACAddress("1,6,ff:00:ee:11:d4d:22"), / eMTA’'s MAC address or FQDN
"twoLineEnabledCOS" // This COS supports two lines.
)
BatchStatus batchStatus = null;

// post the batch to RDU server

try
{
batchStatus = batch.post();

}
catch(ProvisioningException e)
{
e.printStackTrace() ;
}
Step2 The service provider’s application uses the Prime Cable Provisioning incremental update feature to set

SNMP objects on the eMTA and thereby enabling the service without disrupting the eMTA.
// The goal here is to enable a second phone line, assuming one
// phone line is currently enabled. We will be adding a new
// row to the pktcNcsEndPntConfigTable.
batch = conn.newBatch (

// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION) ;
// NO_ACTIVATION is the activation mode because we don’t want to
// reset the device.
// NO_CONFIRMATION is the confirmation mode because we are
// not attempting to reset the device.
// Create a map containing one element - the list of SNMP
// variables to set on the MTA
HashMap<String, Object> map = new HashMap<String, Object>();
// Create an SnmpVarList to hold SNMP varbinds

SnmpVarList list = new SnmpVarList();

// An SnmpVariable represents an oid/value/type triple.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

// pktcNcsEndPntConfigTable is indexed by the IfNumber, which in this case we will

// assume is interface number 12 (this is the last number in each of the oids below) .
// The first variable represents the creation of a new row in

// pktcNcsEndPntConfigTable we are setting the RowStatus

// column (column number 26). The value of 4 indicates that

// a new row is to be created in the active state.

SnmpVariable variable = new SnmpVariable(".1.3.6.1.4.1.4491.2.2.2.1.2.1.1.26.12",
"4", SnmpType.INTEGER) ;
list.add(variable);

// The next variable represents the call agent id for this new
// interface, which we'll assume is 'test.com'

variable = new SnmpVariable(".1.3.6.1.4.1.4491.2.2.2.1.2.1.1.1.12", "test.com",
SnmpType.STRING) ;

list.add(variable);

// The final variable represents the call agent port

variable = new SnmpVariable(".1.3.6.1.4.1.4491.2.2.2.1.2.1.1.2.12", "2728",
SnmpType.INTEGER) ;

list.add(variable);

// Add the SNMP variable list to the Map to use in the API call

map.put (SNMPPropertyKeys.SNMPVAR_LIST, list);

// Invoke the BACC API to do incremental update on the eMTA.

batch.performOperation (

DeviceOperation.INCREMENTAL_UPDATE, // device operation
new MACAddress("1,6,00:00:00:00:00:99"), // MAC Address
map // Parameters for the operation

)
// post the batch to RDU server

try
{

batchStatus = batch.post () ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

The eMTA is enabled to use the second telephone line. The eMTA continues to receive the same service,
after being reset, because the Class of Service was changed in Step 1.

Preprovisioning DOCSIS Modems with Dynamic Configuration Files

A new customer contacts a service provider to order a DOCSIS modem with high-speed Gold data
service for two sets of CPE behind it.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Desired Outcome

Use this workflow to preprovision a DOCSIS modem with a Class of Service that uses DOCSIS
templates. The dynamic configuration file generated from the templates is used while the modem comes
online.

Step1 The service provider chooses a subscriber username and password for the billing system.

Step2 The service provider chooses Gold Class of Service, and the appropriate DHCP Criteria, and then adds
the cable modem to Prime Cable Provisioning.

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation

ConfirmationMode.NO_CONFIRMATION) ;

Map<String, Object> properties = new HashMap<String, Object>();

// Set the property PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED to enable
// promiscuous mode on modem

properties.put (PolicyKeys.COMPUTER_PROMISCUOUS_MODE_ENABLED, Boolean.TRUE) ;
// enable promiscuous mode by changing the technology default
batch.changeDefaults (DeviceType.DOCSIS, properties, null) ;

BatchStatus batchStatus = null;

// post the batch to RDU server

try
{

batchStatus = batch.post () ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;
}
// No CPE DHCP Criteria is specified.
// The CPE behind the modem will use the default provisioned
// promiscuous CPE DHCP criteria specified in the system defaults.
// This custom property corresponds to a macro variable in the
// DOCSIS template for “gold” class of service indicating the
// maximum number of CPE allowed behind this modem. We set it
// to two sets of CPE from this customer.

properties = new HashMap<String, Object>();
properties.put ("docsis-max-cpes", "2");

batch = conn.newBatch (

// No reset

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Optimistic Locking

Step 3
Step 4

Note

Provisioning API Use Cases W

ActivationMode.NO_ACTIVATION,

// No need to confirm activation

ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

// To add a DOCSIS modem:

List<DeviceID> deviceIDList =

new ArrayList<DeviceID> () ;

deviceIDList.add (new MACAddress("1,6,01:02:03:04:05:06"));

batch.add(
DeviceType.DOCSIS, //
deviceIDList, //
null, //
null, //
"0123-45-6789", //
"gold", //
"provisionedCM", //

//

properties //

)

try

deviceType: DOCSIS

macAddress: scanned from the label

hostName: not used in this example

domainName: not used in this example

ownerID: here, account number from billing system
classOfService:

DHCP Criteria: Network Registrar uses this to

select a modem lease granting provisioned IP address
properties:

batchStatus = batch.post() ;

}

catch(ProvisioningException e)

{
e.printStackTrace() ;

Desired Outcome

The cable modem is shipped to the customer.

The customer brings the cable modem online and connects the computers behind it.

An instance of the service provider application needs to ensure that it is not overwriting the changes
made by another instance of the same application.

Use this workflow to demonstrate the optimistic locking capabilities provided by the
Prime Cable Provisioning API.

Locking of objects is done in multiuser systems to preserve integrity of changes, so that one person’s
changes do not accidentally get overwritten by another. With optimistic locking, you write your program
assuming that any commit has a chance to fail if at least one of the objects being committed was changed
by someone else since you began the transaction.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter 7 Java API Client Use Cases

M Provisioning API Use Cases

Step1 The service representative selects the search option in the service provider’s user interface and enters the
cable modem’s MAC address.

Step2 Prime Cable Provisioning queries the embedded database, gets the details of the device, and the MSO
user interface displays the information.

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
final DeviceID modemMACAddress = DeviceID.getInstance("1,6,00:11:22:33:44:55",
KeyType .MAC_ADDRESS) ;
List<DeviceDetailsOption> options = new ArrayList<DeviceDetailsOption>();
options.add (DeviceDetailsOption.INCLUDE_LEASE_INFO) ;
// MSO admin UI calls the provisioning API to query the details
// for the requested device. Query may be performed based on MAC
// address or IP address, depending on what is known about the
// device.
batch.getDetails (modemMACAddress, options) ;
// post the batch to RDU server
BatchStatus batchStatus = null;
try
{
batchStatus = batch.post() ;

}

catch(ProvisioningException e)
{
e.printStackTrace() ;

Step3 The service representative attempts to change the Class of Service and the DHCP Criteria of the modem
using the user interface. This in turn invokes the Prime Cable Provisioning API.

Map<String, Object> deviceDetails = new TreeMap ((Map<String,
Object>)batchStatus.getCommandStatus (0) .getData()) ;

// extract device detail data from the map

String deviceType = (String)deviceDetails.get (DeviceDetailsKeys.DEVICE_TYPE) ;

String macAddress = (String)deviceDetails.get (DeviceDetailsKeys.MAC_ADDRESS) ;

String relayAgentID = (String)deviceDetails.get (DeviceDetailsKeys.RELAY_AGENT_MAC) ;
Boolean isProvisioned = (Boolean)deviceDetails.get (DeviceDetailsKeys.IS_PROVISIONED) ;

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Step 4

Provisioning API Use Cases W

// Let’s save the OID_REVISION_NUMBER property so that we can set it in
// step 3.

String oidRevisionNumber =
(String)deviceDetails.get (GenericObjectKeys.O0ID_REVISION_NUMBER) ;

// We need a reference to Batch instance so that ensureConsistency()
// method can be invoked on it.

batch = conn.newBatch() ;
List<String> oidList = new ArrayList<String>();

// Add the oid-rev number saved from step 2 to the list
oidList.add(oidRevisionNumber) ;

// Sends a list of OID revision numbers to validate before processing the
// batch. This ensures that the objects specified have not been modified

// since they were last retrieved.

batch.ensureConsistency (oidList) ;
batch.changeClassOfService (

new MACAddress("1,6,00:11:22:33:44:55"), // macORFgdn: unique identifier for the
// device.
"gold" // newCOSName : Class of service name.

)

batch.changeDHCPCriteria (

new MACAddress("1,6,00:11:22:33:44:55"), // macORFgdn: unique identifier for the
// device.
"specialDHCPCriteria" // newDHCPCriteria : New DHCP Criteria.

// This batch fails with BatchStatusCodes.BATCH_NOT_ CONSISTENT,

// in case 1f the device is updated by another client in the meantime.
// If a conflict occurs, then the service provider client

// 1s responsible for resolving the conflict by querying the database
// again and then applying changes appropriately.

The user is ready to receive Gold Class of Service with appropriate DHCP Ceriteria.

Temporarily Throttling a Subscriber's Bandwidth

Note

An MSO has a service that allows a subscriber to download only 10 MB of data a month. Once the
subscriber reaches that limit, their downstream bandwidth is turned down from 10 MB to 56 K. When
the month is over they are moved back up to 10 MB.

You may want to consider changing upstream bandwidth as well, because peer-to-peer users and users
who run websites tend to have heavy upload bandwidth.

Desired Outcome

Use this workflow to move subscribers up and down in bandwidth according to their terms of agreement.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Step1 The MSO has a rate tracking system, such as NetFlow, which keeps track of each customer’s usage by
MAC address. Initially a customer is provisioned at the Gold Class of Service level with 1 MB
downstream.

Step2 When the rate tracking software determines that a subscriber has reached the 10-MB limit it notifies the
OSS. The OSS then makes a call into the Prime Cable Provisioning API to change the subscriber’s Class
of Service from Gold to Gold-throttled.

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// AUTOMATIC is the activation mode because we are
// attempting to reset the modem so that it
// receives low bandwidth service.
// NO_CONFIRMATION is the confirmation mode
// because we do not want the batch to fail if we cannot
// reset the modem. If the modem is off, then it will
// be disabled when it is turned back on.
// Let’s change the COS of the device so that it restricts

// bandwidth usage of the modem.

batch.changeClassOfService (

new MACAddress("1,6,00:11:22:33:44:55"), // macAddress: unique identifier for
// this modem
"Gold-throttled" // newClassOfService: restricts

// bandwidth usage to 56k
)

BatchStatus batchStatus = null;
// post the batch to RDU server

try
{

batchStatus = batch.post () ;
}

catch(ProvisioningException e)

{

e.printStackTrace() ;

Step3 At the end of the billing period, the OSS calls the Prime Cable Provisioning API to change the
subscriber’s Class of Service back to Gold.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Preprovisioning CableHome WAN-MAN

Provisioning API Use Cases W

A new customer contacts a service provider to order home networking service. The customer expects a

provisioned CableHome device.

Desired Outcome

Use this workflow to preprovision a CableHome device so that the cable modem and WAN-MAN
components on it will have the appropriate level of service when brought online.

Step 1 The service provider chooses a subscriber username and password for the billing system.

Step2 The service provider chooses the appropriate Class of Service and the DHCP Ceriteria for the modem
component, then adds it to Prime Cable Provisioning.

PACEConnection conn = PACEConnectionFactory.getInstance (

"localhost", 49187,

Batch batch = conn.newBatch (

// No reset

"admin", "adminl23");

ActivationMode.NO_ACTIVATION,

// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,

// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

// Let’s provision the modem and the WAN-Man component in the same

// batch.

// To add a DOCSIS modem:

List<DeviceID> docisDeviceIDList = new ArrayList<DeviceID>();
docisDeviceIDList.add(new MACAddress("1,6,01:02:03:04:05:06"));

batch.add(
DeviceType.DOCSIS,
docisDeviceIDList,
null,
null,
"0123-45-6789",
"Silver",
"provisionedCM",

null
)

//
//
//
//
//
//
//
//
//

deviceType: DOCSIS

macAddress: scanned from the label

hostName: not used in this example

domainName: not used in this example

ownerID: here, account number from billing system
classOfService

DHCP Criteria: Network Registrar uses this to

select a modem lease granting provisioned IP address
properties: not used

Step3 The service provider chooses the appropriate Class of Service and DHCP Criteria for the WAN-MAN
component, then adds it to Prime Cable Provisioning.

List<DeviceID> wanManDeviceIDList = new ArrayList<DeviceID> () ;
wanManDeviceIDList.add (new MACAddress("1,6,01:02:03:04:05:07"));

batch.add(
DeviceType.CABLEHOME_WAN_MAN, // deviceType: CABLEHOME_WAN_MAN
wanManDeviceIDList, // macAddress: scanned from the label
null, // hostName: not used in this example
null, // domainName: not used in this example

"0123-45-6789",

// ownerID: here, account number from billing
// system

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

"silverWanMan", // classOfService

"provisionedWanMan", // DHCP Criteria: Network Registrar uses this to
// select a modem lease granting provisioned IP
// address

null // properties: not used

)

Step4 The CableHome device is shipped to the customer.

Step5 The customer brings the CableHome device online.

CableHome with Firewall Configuration

A customer contacts a service provider to order a home networking service with the firewall feature
enabled. The customer expects to receive a provisioned CableHome device.

Desired Outcome

Use this workflow to preprovision a CableHome device so that the cable modem and the WAN-MAN
components on it have the appropriate level of service when brought online.

Step1 The service provider chooses a subscriber username and password for the billing system.

Step2 The service provider chooses the appropriate Class of Service and DHCP Criteria for the cable modem
component, then adds it to Prime Cable Provisioning.

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database
PublishingMode.NO_PUBLISHING) ;
// Let’s provision the modem and the WAN-Man component in the same
// batch.

// To add a DOCSIS modem:

List<DeviceID> docisDeviceIDList = new ArrayList<DeviceID>();
docisDeviceIDList.add(new MACAddress("1,6,01:02:03:04:05:06"));

batch.add(
DeviceType.DOCSIS, // deviceType: DOCSIS
docisDeviceIDList, // macAddress: scanned from the label
null, // hostName: not used in this example
null, // domainName: not used in this example
"0123-45-6789", // ownerID: here, account number from billing system
"Silver", // classOfService
"provisionedCM", // DHCP Criteria: Network Registrar uses this to
// select a modem lease granting provisioned IP address
null // properties: not used

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

)

Step3 The service provider chooses the appropriate Class of Service and DHCP Criteria for the WAN-MAN
component and adds it to Prime Cable Provisioning.

// Continuation of the batch in Step 2
// To add the WAN-Man component:
// Create a Map to contain WanMan'’s properties

Map<String, Object> properties = new HashMap<String, Object>();

// The fire wall configuration for the Wan Man component is specified
// using the CableHomeKeys.CABLEHOME WAN_ MAN_FIREWALL_FILE property.
// This use case assumes that the firewall configuration file named

// “firewall_file.cfg” is already present in the RDU database and the
// firewall configuration is enabled in the Wan Man configuration file
// specified with the corresponding class of service.

properties.put (CableHomeKeys.CABLEHOME_WAN_MAN_ FIREWALL_FILE, "firewall_ file.cfg");

List<DeviceID> wanManDeviceIDList = new ArrayList<DeviceID>() ;
wanManDeviceIDList.add (new MACAddress("1,6,01:02:03:04:05:07"));

batch.add(

DeviceType.CABLEHOME_WAN_MAN, // deviceType: CABLEHOME_WAN_MAN

wanManDeviceIDList, // macAddress: scanned from the label

null, // hostName: not used in this example

null, // domainName: not used in this example

"0123-45-6789", // ownerID: here, account number from billing system

"silverWanMan", // classOfService

"provisionedWanMan", // DHCP Criteria: Network Registrar uses this to
// select a modem lease granting provisioned IP
// address

null // properties: not used

)
BatchStatus batchStatus = null;
// post the batch to RDU server

try
{
batchStatus = batch.post() ;
}
catch (ProvisioningException e)

{

e.printStackTrace() ;

Step4 The CableHome device is shipped to the customer.

Step5 The customer brings the CableHome device online and the cable modem and the WAN-MAN component
get provisioned IP addresses and proper configuration files.

Retrieving Device Capabilities for CableHome WAN-MAN

A service provider wants to allow an administrator to view capabilities information for a CableHome
WAN-MAN device.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter 7 Java API Client Use Cases

M Provisioning API Use Cases

Step 1

Step 2

Step 3

Desired Outcome

The service provider’s administrative application displays all known details about a given CableHome
WAN-MAN component, including MAC address, lease information, provisioned status, and the device
capabilities information.

The administrator enters the MAC address of the WAN-MAN being queried into the service provider’s
user interface.

Prime Cable Provisioning queries the embedded database for details of the device identified using the
MAC address entered.

PACEConnection conn = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "adminl23");

Batch batch = conn.newBatch (
// No reset
ActivationMode.NO_ACTIVATION,
// No need to confirm activation
ConfirmationMode.NO_CONFIRMATION,
// No publishing to external database

PublishingMode.NO_PUBLISHING) ;

final DeviceID modemMACAddress = DeviceID.getInstance("1,6,00:11:22:33:44:55",
KeyType.MAC_ADDRESS) ;

List<DeviceDetailsOption> options = new ArrayList<DeviceDetailsOption>();
options.add (DeviceDetailsOption.INCLUDE_LEASE_INFO) ;

// MSO admin UI calls the provisioning API to query the details
// for the requested device. Query may be performed based on MAC
// address or IP address, depending on what is known about the
// device.

batch.getDetails (modemMACAddress, options);
// post the batch to RDU server

BatchStatus batchStatus = null;
try
{

batchStatus = batch.post () ;
}
catch(ProvisioningException e)
{

e.printStackTrace() ;

The service provider’s application then presents a page of device data details, which can display
everything that is known about the requested device. If the device was connected to the service provider’s
network, this data includes lease information, such as the IP address or the relay agent identifier. This
data indicates whether the device is provisioned. If it is provisioned, the data also includes the device
type and device capabilities information.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

Map<String, Object> deviceDetails = new TreeMap ((Map<String,
Object>)batchStatus.getCommandStatus (0) .getData()) ;

// extract device detail data from the map

String deviceType = (String)deviceDetails.get (DeviceDetailsKeys.DEVICE_TYPE) ;

String macAddress = (String)deviceDetails.get (DeviceDetailsKeys.MAC_ADDRESS) ;

String relayAgentID = (String)deviceDetails.get (DeviceDetailsKeys.RELAY_ AGENT_MAC) ;
Boolean isProvisioned = (Boolean)deviceDetails.get (DeviceDetailsKeys.IS_PROVISIONED) ;

String deviceID = (String) deviceDetails.get (CNRNames.DEVICE_ID.toString()) ;

String serNum = (String) deviceDetails.get (CNRNames.DEVICE_SERIAL_NUMBER.toString());

String hwVer = (String)
deviceDetails.get (CNRNames .HARDWARE_VERSION_NUMBER. toString()) ;

String swVer = (String)
deviceDetails.get (CNRNames .SOFTWARE_VERSION_NUMBER. toString()) ;

String brVer = (String) deviceDetails.get (CNRNames.BOOT_ROM_VERSION.toString()) ;

String vendorOui = (String) deviceDetails.get (CNRNames.VENDOR_OUI.toString())

String modelNum = (String) deviceDetails.get (CNRNames.MODEL_NUMBER. toString ()

()

) ;
String vendorNum = (String) deviceDetails.get (CNRNames.VENDOR_NAME.toString()) ;

// The admin UI now formats and prints the detail data to a view page

}

Self-Provisioning CableHome WAN-MAN

Step 1
Step 2

Step 3

A subscriber has a computer with a browser application installed in a single-dwelling unit and has
purchased an embedded CableHome device.

Desired Outcome

Use this workflow to bring a new unprovisioned embedded CableHome device online with the
appropriate level of service, and give the subscriber internet access from computers connected to the
embedded CableHome device.

The subscriber purchases an embedded CableHome device and installs it at home.

The subscriber powers on the embedded CableHome device. Prime Cable Provisioning gives the
embedded cable modem restricted access, allowing two sets of CPE: one for the CableHome WAN-MAN
and the other for the computer.

~

Note This use case assumes an unprovisioned DOCSIS modem allows two sets of CPE behind it. Until
configured to do otherwise, Prime Cable Provisioning supports only a single device behind an
unprovisioned DOCSIS modem. You can change this behavior by defining an appropriate Class
of Service that supports two sets of CPE and then using it as the default Class of Service for
DOCSIS devices.

Prime Cable Provisioning configures the CableHome WAN-MAN, including IP connectivity and
downloading the default CableHome boot file. The default CableHome boot file configures the
CableHome device in passthrough mode. The CableHome device is still unprovisioned.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Step 4

Step 5

Step 6

Step 7
Step 8

Step 9

Note

The subscriber connects the computer to the CableHome device. The computer gets an unprovisioned
(restricted) IP address. The subscriber starts a browser application on the computer. A spoofing DNS
server points the browser to the service provider’s registration server (for example, an OSS user interface
or a mediator).

The subscriber uses the service provider’s user interface to complete the steps required for cable modem
registration, including selecting a Class of Service. The subscriber also selects a CableHome Class of
Service.

The service provider’s user interface passes the subscriber’s information to Prime Cable Provisioning,
including the selected Class of Service for cable modem and CableHome, and computer IP address. The
subscriber is then registered with Prime Cable Provisioning.

The user interface prompts the subscriber to reboot the computer.

The provisioning client calls performOperation(...) to reboot the modem and gives the modem
provisioned access.

// create a new batch

batch = conn.newBatch (
// No reset
ActivationMode.AUTOMATIC,
// No need to confirm activation

ConfirmationMode.NO_CONFIRMATION) ;

// register performOperation command to the batch
batch.performOperation (DeviceOperation.RESET, modemMACAddressObject, null);
// post the batch to RDU server

try
{
batchStatus = batch.post() ;
}
catch(ProvisioningException e)

{

e.printStackTrace() ;
}
}

When the computer is rebooted, it receives a new IP address from the CableHome device’s DHCP server.
The cable modem and the CableHome device are now both provisioned. Now the subscriber can connect
a number of computers to the Ethernet ports of the CableHome device and they have access to the
Internet.

If the configuration file supplied to the WAN-MAN component enables the WAN-Data component on
the box, it will be provisioned in the promiscuous mode. This assumes that the promiscuous mode is
enabled at the technology defaults level for the DeviceType. CABLEHOME_WAN_DATA device type.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

RBAC Administration and Operational Access Control

Provisioning API Use Cases W

Roles and privileges provide fine grain authorization to manage Prime Cable Provisioning. A privilege
represents an authority granted for an operation that can be performed and roles are composed of these

privileges.
This section includes these use cases:
e Role Based Access Control Administration, page 7-59

e Operational Access Control, page 7-63

Role Based Access Control Administration

Step 1

An administrator wants to use role based access control (RBAC) in the RDU server. The administrator

has to first create various configurations.

Figure 7-2 represents the domain hierarchy for RBAC.

Figure 7-2 RBAC Domain Hierarchy

RootDomain

Domain
dUSEast

[omain
dUSNorth

D omain
dUSSouth

Domain
dUSWest

320398

Desired Outcome

Use this work flow to create various configurations required for Role Based Access Control (Domain,

Role, User Group, User).

Create a domain dUS under the out of the box domain RootDomain. RootDomain is the top most domain

defined in the RDU server.

//Create a new connection

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeit");

Batch batch = connection.newBatch() ;

//Create a new domain dUS under RootDomain

bsatch.addDomain ("dUS", "US", DomainTypeValues.ROOT_DOMAIN, null) ;

BatchStatus bStatus = null;

//Post the batch to RDU Server

try

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter 7

Java API Client Use Cases |

M Provisioning API Use Cases

Step 2

Step 3

bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{

System.exit (1) ;

Create two other domains dUSEast and dUSWest with dUS as their parent.

//Create a new batch

batch = connection.newBatch() ;

//Create two child domains dUSEast and dUSWest under the parent domain dUS

batch.addDomain ("dUSEast", "US East",
batch.addDomain ("dUSWest", "US West",

bStatus = null;
try
{
bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Create a role rAllDevice with all device related privileges associated with it. Also, associate different

"dqus",
"dus",

null) ;
null) ;

properties which can be modified by a user with this role.

//Create a new batch

batch = connection.newBatch() ;

//Add privileges to the role

List <String> allDevicePrivileges=new ArrayList<String>();

allDevicePrivileges.add (PrivilegeTypeValues.
allDevicePrivileges.add(PrivilegeTypeValues.
allDevicePrivileges.add (PrivilegeTypeValues.
allDevicePrivileges.add (PrivilegeTypeValues.
allDevicePrivileges.add(PrivilegeTypeValues.
allDevicePrivileges.add(PrivilegeTypeValues.

//Add properties to the role

PRIV_DEVICE_CREATE) ;
PRIV_DEVICE_DELETE) ;
PRIV_DEVICE_OPERATION) ;
PRIV_DEVICE_READ) ;
PRIV_DEVICE_REGEN) ;
PRIV_DEVICE_UPDATE) ;

Map<String, Object> properties = new HashMap<String, Object>();

//Add device related properties which can be administered by the role.

List<String> devicesProperties = new ArrayList<String>();

devicesProperties.add (FgdnKeys.AUTO_FQDN_ENABLE) ;

devicesProperties.add (FgdnKeys.AUTO_FQDN_DOMAIN) ;

properties.put (RoleDetailsKeys.MODIFIABLE_DEVICE_PROPERTIES,

devicesProperties) ;

//Create the role

batch.addRole("rAllDevice", "Role with all device privileges",

[l Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

0L-26279-01

| Chapter?

Java API Client Use Cases

Step 4

Step 5

Provisioning API Use Cases W

allDevicePrivileges, properties);

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Create a new user group gDeviceAdmin and associate it with the newly created role rAllDevice and other
out of the box roles (for example, File Admin Role) defined in the RDU server.

//Create a new batch
batch = connection.newBatch() ;
List<String> roleList = new ArrayList<String>();
//Associate the role "rAllDevice" to the user group
roleList.add("rAllDevice") ;
//Associate the out of the box roles already defined in the system to the user group
roleList.add(RoleTypeValues.FILE_ADMIN_ROLE) ;
//add the user group
batch.addUserGroup ("gDeviceAdmin", "Device admin user group", roleList);
bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)

{
System.exit (1) ;

Create another user group gCosDhcpAdmin which is associated with the out of the box roles defined in
the RDU server.

//Create a new batch

batch = connection.newBatch() ;

roleList = new ArrayList<String>();

//Associate the out of the box roles already defined in the RDU Server

roleList.add(RoleTypeValues.COS_ADMIN_ROLE) ;
roleList.add(RoleTypeValues.DHCP_ADMIN_ROLE) ;

//Add a user group
batch.addUserGroup ("gCosDhcpAdmin", "COS and DHCP Criteria admin user group", roleList);
bStatus = null;

try
{

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Step 6

Step 7

bStatus = batch.post();
}
catch (ProvisioningException pe)
{

System.exit (1) ;

Create a new user uOperator and assign roles, user groups and domains to the user.

//Create a new batch

batch = connection.newBatch() ;

Map<String, Object> userProperties = new HashMap<String, Object>();

//Associate the role rAllDevice as well as other out of the box roles with the user
List<String> userRolelList = new ArrayList<String>();
userRoleList.add("rAllDevice") ;

userRoleList.add (RoleTypeValues.FILE_ADMIN_ROLE) ;

//Associate the user group gCosDhcpAdmin with the user

List<String> userGroupList = new ArrayList<String>();
userGroupList.add ("gCosDhcpAdmin") ;

//Associate the user with the domains dUSEast and dUSWest.

List<String> userDomainList = new ArrayList<String>();
userDomainList.add("dUSEast") ;
userDomainList.add("dUSWest") ;

userProperties.put (UserDetailsKeys.ROLES_ASSIGNED, userRoleList);
userProperties.put (UserDetailsKeys.GROUPS_ASSIGNED, userGroupList) ;
userProperties.put (UserDetailsKeys.DOMAINS_ASSIGNED, userDomainList) ;

//Add the user
batch.addUser ("uOperator", "changeit", userProperties);

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Create a mapping between a user group defined in an external AAA server and a user group defined in
the RDU server.

//Create a new batch
batch = connection.newBatch() ;

Map<String, Object> rduDefaultsProperties =
new HashMap<String, Object>();

Map<String, String> externalToInternalUserGroupMapping = new HashMap<String, String>();

//Map the user group gDeviceAdmin defined in RDU to the user group externalDeviceAdmin

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

//defined in external AAA server
externalToInternalUserGroupMapping.put ("externalDeviceAdmin", "gDeviceAdmin") ;

//Map the user group gCosDhcpAdmin defined in RDU to the user group externalCosDhcpAdmin
//defined in external AAA server

externalToInternalUserGroupMapping.put ("externalCosDhcpAdmin", "gCosDhcpAdmin") ;

rduDefaultsProperties.put (UserAuthenticationKeys.USER_GROUP_MAPPING,
externalToInternalUserGroupMapping) ;

//Save the mapping information at the RDU Defaults property level
batch.changeRDUDefaults (rduDefaultsProperties, null);

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Operational Access Control

Step 1

A service provider has created configurations for administering Role Based Access Control. The service
provider wants to use the operational level access control.

Desired Outcome

The operator should not be able to perform an operation unless the appropriate privileges necessary for
the operation are assigned to the operator.

Create a user uCoSAdmin with class of service admin role.

//Create a new connection

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeit");

//Create a new batch

Batch batch = connection.newBatch() ;

//Create a user with class of service admin role

Map<String, Object> userProperties = new HashMap<String, Object>();
//Add Class of Service Admin Role to the user's property

List<String> userRoleList = new ArrayList<String>();
userRoleList.add(RoleTypeValues.COS_ADMIN_ROLE) ;

userProperties.put (UserDetailsKeys.ROLES_ASSIGNED, userRoleList);
//Add the user

batch.addUser ("uCoSAdmin", "changeit", userProperties) ;

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

BatchStatus bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Step2 Since the user uCoSAdmin has class of service admin privilege, the user is able to create a class of
service successfully.

//Create a new PACE Connection with the user uCoSAdmin

PACEConnection connectionUCoSAdmin = PACEConnectionFactory.getInstance (
"localhost", 49187, "uCoSAdmin", "changeit"):;

//Create a new batch
batch = connectionUCoSAdmin.newBatch() ;
//Create a class of service

Map<String, Object> cosProperties = new HashMap<String, Object>();

cosProperties.put (ClassOfServiceKeys.COS_DOCSIS_FILE, "gold.cm");

cosProperties.put (ClassOfServiceKeys.COS_ASSIGNED_DOMAIN,
DomainTypeValues.ROOT_DOMAIN) ;

batch.addClassOfService (DeviceType.DOCSIS, "sampleCoS", cosProperties);
//The operation should be successful

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Step3 The user uCoSAdmin tries to set the newly created class of service sampleCoS as the default class of
service for DOCSIS technology. But, since the user does not have necessary privilege(s), the operation
fails with command status CMD_ERROR_USER_DOES_NOT_HAVE_PRIVILEGE.

//User uCoSAdmin creates a new batch

batch = connectionUCoSAdmin.newBatch() ;

//Try to set sampleCoS as the default class of service for DOCSIS
Map<String, Object> docsisDefaultsProperties = new HashMap<String, Object>();
docsisDefaultsProperties.put (TechnologyDefaultsKeys.DEFAULT CLASS_OF_SERVICE,
"sampleCoS") ;

batch.changeDefaults (DeviceType.DOCSIS, docsisDefaultsProperties, null);
bStatus = null;

try
{

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

bStatus = batch.post();
}
catch (ProvisioningException pe)
{

System.exit (1) ;

CommandStatusCode commandStatus = (CommandStatusCode)
bStatus.getCommandStatus (0) .getStatusCode() ;

//Since the user does not have privilege for changing the technology defaults, the
operation fails

if (bStatus.isError() &&
CommandStatusCode.CMD_ERROR_USER_DOES_NOT_HAVE_PRIVILEGE.equals (commandStatus)) {
// Batch error occurred.

System.out.println("Failed to change the Docsis technology defaults with the user
sampleCoS"
+ "since the user does not have sufficient privilges");
System.exit (1) ;

Update Protection for Properties at Device Level

A service provider wants to control its operator from updating properties of devices.

Desired Outcome

A role can be associated with a set of device related properties (including custom properties). An
operator assigned with that role, is able to administer only those properties to a device.

Step 1 Create a custom property at the RDU Server. This property can be assigned to a device.

//Create a PACE Connection

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeit");

//Create a new batch

Batch batch = connection.newBatch();

//Add a custom property to the RDU Server
batch.addCustomPropertyDefinition("/role/owner", DataType.STRING) ;

BatchStatus bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
//System.exit (1) ;

Step2 Create a role rDevAdmin with different device related properties and custom properties. An operator
with the role is able to administer only those properties to a device.

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter 7

Java API Client Use Cases |

M Provisioning API Use Cases

Step 3

//Create a new batch
batch = connection.newBatch() ;
//Assign all the device related privileges to the role
List <String> allPrivileges = new ArrayList<String>();
allPrivileges.add (PrivilegeTypeValues.PRIV_DEVICE_CREATE) ;
allPrivileges.add (PrivilegeTypeValues.PRIV_DEVICE_DELETE) ;
allPrivileges.add(PrivilegeTypeValues.PRIV_DEVICE_OPERATION) ;
allPrivileges.add (PrivilegeTypeValues.PRIV_DEVICE_READ) ;
allPrivileges.add(PrivilegeTypeValues.PRIV_DEVICE_REGEN) ;
allPrivileges.add(PrivilegeTypeValues.PRIV_DEVICE_UPDATE) ;
Map<String, Object> properties = new HashMap<String, Object>();
List<String> devicesProperties = new ArrayList<String>();
//Add device related properties to the role
//Add Class Of Service as a modifiable property
devicesProperties.add (DeviceDetailsKeys.CLASS_OF_SERVICE) ;
//Add the following properties as modifiable properties
devicesProperties.add (FgdnKeys.AUTO_FQDN_PREFIX) ;
devicesProperties.add (FgdnKeys.AUTO_FQDN_SUFFIX) ;
devicesProperties.add (FgdnKeys.AUTO_FQDN_ENABLE) ;

(

devicesProperties.add (FgdnKeys.AUTO_FQDN_DOMAIN) ;

//Add the custom property "/role/owner" as a modifiable property
devicesProperties.add("/role/owner") ;

//Add modifiable device related properties to the role

properties.put (RoleDetailsKeys.MODIFIABLE_DEVICE_PROPERTIES,
devicesProperties) ;

//Add the role

batch.addRole ("rDevAdmin", "Role with all device privileges",
allPrivileges, properties);

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
//System.exit (1) ;

Create an operator with rDevAdmin role.

//Create a new batch
batch = connection.newBatch() ;

Map<String, Object> userProperties = new HashMap<String, Object>();

[l Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

0L-26279-01

| Chapter?

Java API Client Use Cases

Step 4

Step 5

Provisioning APl Use Cases

//Associate the operator with the role rDevAdmin

List<String> userRolelList = new ArrayList<String>();
userRoleList.add ("rDevAdmin") ;

userProperties.put (UserDetailsKeys.ROLES_ASSIGNED, userRoleList) ;
//Create the user
batch.addUser ("uDeviceAdminOperator", "changeit", userProperties);

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
//System.exit (1) ;

Operator uDeviceAdminOperator tries to add a device with few properties all of which are associated

with its role as modifiable device related properties.

The device is added successfully.

PACEConnection connectionUser = PACEConnectionFactory.getInstance (
"localhost", 49187, "uDeviceAdminOperator", "changeit");

batch = connectionUser.newBatch() ;

DeviceID modemMacAddress = DeviceID.getInstance("1,6,00:11:00:00:00:92",
KeyType .MAC_ADDRESS) ;

List<DeviceID> devicelIDs = new ArrayList<DeviceID> () ;

devicelIDs.add (modemMacAddress) ;

Map<String, Object> prop = new HashMap<String, Object>();
prop.put (FgdnKeys .AUTO_FQDN_DOMAIN, "false");
prop.put ("/role/owner", "abcd");

batch.add (DeviceType.DOCSIS, deviceIDs, null, null, null, "sample-bronze-docsis", null,
prop) ;

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Operator uDeviceAdminOperator tries to modify the DHCP Criteria of the device.

The operation fails as this role does not have DHCP Criteria as modifiable property of a device.

//Create a new batch
batch = connectionUser.newBatch() ;
//Change the DHCP Criteria of the device

batch.changeDHCPCriteria (modemMacAddress, "sample-provisioned");

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

bStatus = null;
try
{
bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{
System.exit (1) ;

CommandStatus commandStatus = bStatus.getCommandStatus (0) ;
StatusCode statusCode = commandStatus.getStatusCode() ;

System.out.println (bStatus) ;
// Batch error occurred.

if (bStatus.isError()) {
System.out.println("Failed to modify the DHCP Criteria of the device with MAC Address
" + modemMacAddress) ;

//The operation should fail with CMD_ERROR_USER_CAN_NOT_UPDATE_PROPERTY command
//status code.

if (CommandStatusCode. CMD_ERROR_USER_CAN_NOT_ UPDATE_PROPERTY.equals (statusCode)) {
System.out.println("The user uDeviceAdminOperator can't update the DHCP Criteria
of a device");
}
System.exit (1) ;

Domain Administration and Instance Level Access Control

While operational level access control defines what actions a user can perform, instance level access
control determines whether or not those actions can be performance on a specific instances. Domain and
instance level authorization are independent of roles and privileges.

This section includes these use cases:
e Assigning Existing Configuration Objects to a Domain, page 7-68

e Instance Level Authorization, page 7-71

Assigning Existing Configuration Objects to a Domain

An administrator wants to assign the existing resources such as devices, Classes of Service, DHCP
Criterion, files, DPEs, CPNRs, and Provisioning Groups to a domain.

Desired Outcome

The resources are being assigned to the specified domain. The service provider's administrative
application displays the changed domain information for each of the resources.

1. Use Case 1: Assign the existing classes of service sample-bronze-docsis, sample-gold-docsis, and
unprovisioned-stb to the domain dUS.

//Create a new connection

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases

Provisioning API Use Cases W

PACEConnection connection = PACEConnectionFactory.getInstance("localhost", 49187, "admin",
"changeit") ;

//Create a new batch
Batch batch = connection.newBatch() ;
//List of classes of service to be assigned to the domain dUS

List<String> cosList = new ArrayList<String>();
cosList.add("sample-bronze-docsis") ;
cosList.add("sample-gold-docsis") ;

cosList.add ("unprovisioned-stb") ;

//Assign the classes of service to the domain
batch.changeDomainProperties ("dUS", null, cosList, ResourceType.CLASS_OF_SERVICE) ;
BatchStatus bStatus = null;

//Post the batch to RDU Server
try
{

bStatus = batch.post();
}
catch (ProvisioningException pe)
{

System.exit (1) ;

2. Use Case 2: Assign the existing DHCP criterion sample-provisioned and
unprovisioned-cablehome-wan-data to the domain dUSEast.

//Create a new batch
batch = connection.newBatch() ;
//List of DHCP Criterion to be assigned to the domain dUSEast
List<String> dhcpList = new ArrayList<String>();
dhcpList.add("sample-provisioned") ;
dhcpList.add ("unprovisioned-cablehome-wan-data") ;
// Assign the DHCP Criterion to the domain
batch.changeDomainProperties ("dUSEast", null, dhcpList, ResourceType.DHCP_CRITERIA) ;
bStatus = null;
//Post the batch to RDU Server
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)

{
System.exit (1) ;

3. Use Case 3: Assign the existing files bronze.cm, gold.cm, unprov.cm to the domain dUSWest.

//Create a new batch

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
[oL-26279-m .m

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

batch = connection.newBatch() ;

//List of files to be assigned to the domain dUSWest

List<String> fileList = new ArrayList<String>();

fileList.add("bronze.cm") ;

fileList.add("gold.cm") ;

fileList.add("unprov.cm") ;

// Assign the files to the domain

batch.changeDomainProperties ("dUSWest", null, fileList, ResourceType.FILE);

bStatus = null;

//Post the batch to RDU Server

try
{
bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{
System.exit (1) ;
}

4. Use Case 4: Assign the devices already existing in the RDU server to the domain dUSWest.
//Create a new batch

batch = connection.newBatch() ;

// List of devices to be assigned to the domain dUSWest

List<DeviceID> deviceList = new ArrayList<DevicelID> () ;
deviceList.add(DeviceID.getInstance("1,6,00:11:00:00:00:01", KeyType.MAC_ADDRESS)) ;
deviceList.add (DeviceID.getInstance("1,6,00:11:00:00:00:02", KeyType.MAC_ADDRESS)) ;
deviceList.add(DevicelID.getInstance("03:00:00:01:00:00", KeyType.DUID)) ;

// Assign the devices to the domain

batch.changeDeviceDomainProperties ("dUSWest", null, deviceList) ;

bStatus = null;

//Post the batch to RDU Server

try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;
}

5. Use Case 5: Assign a DPE already in ready state to the domain dUS.

//Create a new batch
batch = connection.newBatch() ;

// List of DPEs to be assigned to the domain dUS

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter?

Java API Client Use Cases

Provisioning API Use Cases W

List<String> dpeList = new ArrayList<String>();
dpeList.add("cpc-rhel-test.cisco.com") ;

//Assign the DPEs to the domains

batch.changeDomainProperties ("dUS", null, dpelist, ResourceType.DPE) ;
bStatus = null;

//Post the batch to RDU Server

try
{
bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{
System.exit (1) ;

Instance Level Authorization

Step 1

Step 2

Step 3

A service provider has created configurations for administering Role Based Access Control. The service
provider wants to use the instance level authorization for various resources such as Device, Class of
service, DHCP Ceriteria, File, DPE, CPNR, and Provisioning Group.

Desired Outcome

Only those operators who have access to a specific resource must be allowed to operate on it.

Enable instance level authorization feature at the RDU Server.

//Create a new connection by admin user.

PACEConnection connection = PACEConnectionFactory.getInstance (
"localhost", 49187, "admin", "changeit");

//Create a new batch
Batch batch = connection.newBatch() ;
//Enable instance level authorization at the RDU Server.

Map<String, Object> properties = new HashMap<String, Object>();
properties.put (ServerDefaultsKeys.INSTANCE_LEVEL_AUTH_ENABLE, true);
batch.changeRDUDefaults (properties, null) ;

BatchStatus bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;
}
Create a user uDUS with administrator role and associate the user to the domain dUS and not to the

domain RootDomain.

Create a class of service cosDUSEast associated with the domain dUSEast and another class of service
cosRootDomain associated with the domain RootDomain.

| oL-26279-01

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide g

Chapter 7 Java API Client Use Cases

M Provisioning API Use Cases

Step 4

Since instance level authorization is enabled, the user uDUS is be able to access only the resources
associated to the domain dUS and its children (dUSEast, dUSWest). But, the user is not authorized to
access resources associated to RootDomain.

//Create a batch

batch = connection.newBatch() ;

Map<String, Object> userProperties = new HashMap<String, Object>();
//Assign the administrator role to the user

List<String> userRoleList = new ArrayList<String>();
userRoleList.add (RoleTypeValues.SUPER_ADMIN_ROLE) ;

//Associate the user to the domain dUS

List<String> userDomainList = new ArrayList<String>();
userDomainList.add("dus") ;

userProperties.put (UserDetailsKeys.ROLES_ASSIGNED, userRoleList);
userProperties.put (UserDetailsKeys.DOMAINS_ASSIGNED, userDomainList);

//add the user
batch.addUser ("uDUS", "changeit", userProperties) ;
//Create a class of service and associate it to the domain dUSEast

Map<String, Object> cosProperties = new HashMap<String, Object>();
cosProperties.put (ClassOfServiceKeys.COS_ASSIGNED_DOMAIN, "dUSEast");
cosProperties.put (ClassOfServiceKeys.COS_DOCSIS_FILE, "gold.cm");

batch.addClassOfService (DeviceType.DOCSIS, "cosDUSEast", cosProperties);
//Create another class of service and associate it to the domain RootDomain.

cosProperties = new HashMap<String, Object>();

cosProperties.put (ClassOfServiceKeys.COS_ASSIGNED_DOMAIN,
DomainTypeValues.ROOT_DOMAIN) ;

cosProperties.put (ClassOfServiceKeys.COS_DOCSIS_FILE, "gold.cm");

batch.addClassOfService (DeviceType.DOCSIS, "cosRootDomain", cosProperties);

bStatus = null;
try
{
bStatus = batch.post();
}
catch (ProvisioningException pe)
{
System.exit (1) ;

The user uDUS tries to get the details of the class of service cosDUSEast belonging to the domain
dUSEdast. Since the user has access to the domain dUS and its children (dUSEast, dUSWest), user can
successfully get the class of service details.

//Create a PACEConnection by the user uDUS

PACEConnection connectionByDUS = PACEConnectionFactory.getInstance (

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

| Chapter7 Java API Client Use Cases
Provisioning API Use Cases W
"localhost", 49187, "uDUS", "changeit");
//Create a new batch
batch = connectionByDUS.newBatch() ;
//User uDUS tries to get the details of class of service cosDUSEast
batch.getClassOfServiceProperties ("cosDUSEast") ;
bStatus = null;
//The batch should successfully return the class of service details.
try
{
bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{
System.exit (1) ;
}

Step5 The user uDUS tries to get the details of the class of service cosRootDomain which is associated with
the domain RootDomain. Since the user does not have access to RootDomain, the user is not authorized
to get details of the class of service.

//Create a new batch from the PACEConnection connectionByDUS
batch = connectionByDUS.newBatch() ;
//User uDUS tries to get the details of class of service cosRootDomain
batch.getClassOfServiceProperties ("cosRootDomain") ;
bStatus = null;
//Post the batch
try
{
bStatus = batch.post() ;
}
catch (ProvisioningException pe)
{
System.exit (1) ;
}
CommandStatus commandStatus = bStatus.getCommandStatus (0) ;
StatusCode statusCode = commandStatus.getStatusCode() ;
//The batch should fail with Command Status code CMD_ERROR_USER_NOT_AUTHORIZED
//as the user uDUS does not have access to the class of service cosRootDomain
if (bStatus.isError() &&
CommandStatusCode.CMD_ERROR_USER_NOT_AUTHORIZED.equals (statusCode)) {
// Batch error occurred.
System.out.println("User uDUS failed to get the details of the class of service
cosRootDomain") ;
System.exit (1) ;
}
Cisco Prime Cable Provisioning 5.0 Integration Developers Guide
| oL-26279-01

Chapter7 Java API Client Use Cases |

M Provisioning API Use Cases

Cisco Prime Cable Provisioning 5.0 Integration Developers Guide

	Java API Client Use Cases
	Provisioning Operations
	Provisioning API Use Cases
	How to Create an API Client
	Use Cases
	Self-Provisioned Modem and Computer in Fixed Standard Mode
	Adding a New Computer in Fixed Standard Mode
	Disabling a Subscriber
	Preprovisioning Modems/Self-Provisioned Computers
	Modifying an Existing Modem
	Unregistering and Deleting a Subscriber’s Devices
	Self-Provisioning First-Time Activation in Promiscuous Mode
	Bulk Provisioning 100 Modems in Promiscuous Mode
	Preprovisioning First-Time Activation in Promiscuous Mode
	Replacing an Existing Modem
	Adding a Second Computer in Promiscuous Mode
	Self-Provisioning First-Time Activation with NAT
	Adding a New Computer Behind a Modem with NAT
	Move Device to Another DHCP Scope
	Log Device Deletions Using Events
	Monitoring an RDU Connection Using Events
	Logging Batch Completions Using Events
	Getting Detailed Device Information
	Searching Using the Device Type
	Searching for Devices Using Vendor Prefix or Class of Service
	Preprovisioning PacketCable eMTA
	SNMP Cloning on PacketCable eMTA
	Incremental Provisioning of PacketCable eMTA
	Preprovisioning DOCSIS Modems with Dynamic Configuration Files
	Optimistic Locking
	Temporarily Throttling a Subscriber’s Bandwidth
	Preprovisioning CableHome WAN-MAN
	CableHome with Firewall Configuration
	Retrieving Device Capabilities for CableHome WAN-MAN
	Self-Provisioning CableHome WAN-MAN
	RBAC Administration and Operational Access Control
	Update Protection for Properties at Device Level
	Domain Administration and Instance Level Access Control

