
C H A P T E R

2-1
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

2
Setting Up Prime Analytics Projects

After you install Prime Analytics, you must complete the following procedures to set up Prime Analytics
projects. These include setup of handlers and connectors that link the data source to the CQ engine, and
CQ engine output to the BI platform. Additionally, you must define queries to display the data in which
you are interested.

Topics include:

• Creating the Project, page 2-1

• Defining the Application and Database Streams, page 2-2

• Verify the DDL, page 2-2

• Managing Connectors and Handlers, page 2-3

• Creating Continuous Queries, page 2-24

• Creating Static Queries, page 2-24

• Compiling the Prime Analytics Project, page 2-25

• Starting and Monitoring the Project, page 2-25

Creating the Project
Creating a project creates a dedicated project directory where all application elements are stored.

To create the Prime Analytics project:

Step 1 Verify the path to the Java Runtime Environment (JRE) is set correctly:

source /etc/sysconfig/primeanalytics/primea
export JAVA_HOME

Step 2 Verify the TRUVISO_HOME variable path.

TRUVISO_HOME is an environment variable defined in a script called
/etc/sysconfig/primeanalytics/primea. The script contains other variables such as JAVA_HOME and
PA_HOME. To build or run applications, you must define all environment variables correctly. The
easiest way to define them is to run the script, $PA_HOME/bin/pa_env.sh, where PA_HOME is set by
/etc/sysconfig/primeanalytics/primea. You must source $PA_HOME/bin/pa_env.sh to set environment
variables.

Step 3 Verify that your home directory has a location for your projects:

ls -l ~/projects

2-2
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Defining the Application and Database Streams

If the projects directory is not present, create one:

mkdir ~/projects

Step 4 Create the application:

cd ~/projects
$TRUVISO_HOME/Scripts/make-application.sh projectname
cd ~/projects/projectname
ls -l

Note If you see an invalid project name warning, retype the original project name.

Your project directory should now contain a customization directory. It contains files that you can edit,
including:

• build-local.sh—Calls build.xml to compile the Java and custom modifications.

• build.xml—Contains project parameters.

• start.sh—Starts the application.

• stop.sh—Stops the application.

Defining the Application and Database Streams
After you create your project, the next step is to define the continuous stream application and its database
streams. To accomplish this, you edit the customizations/db/ddl.sql file.

To define the continuous stream application and its database streams:

• From root project directory, apply the application DDL.

ant run-ddl

or

psql -U primea -a -f customizations/db/ddl.sql

Verify the DDL
Now you will verify the DDL.

To verify the DDL:

Step 1 Run the following command. You can run it from any directory as long as TRUVISO_HOME/TruCQ/bin
is added to the PATH.

psql -C

Step 2 Set the search path to show the created schemas, streams, and tables for the application and
Prime Analytics object model schema (truviso_metadata):

set search_path=my_schema,public;

2-3
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

Step 3 Exit the PostgreSQL terminal:

\q

Managing Connectors and Handlers
Prime Analytics connectors and handlers connect to data sources and populate data streams. Connectors
extract and transform the data and integrate it with the CQ engine. They also integrate CQ engine output
with enterprise applications. Connectors provide the basic infrastructure to manage the CQ life cycle. To
fine tune the data processing, handlers are provided to manage the small streaming data details including
input, record parsing, and data flow management coming in and out of the CQ engine.

Connectors are deployed in the following directories:

• Connectors—Project/customizations/src/com/truviso/cq/connector

• Handlers—Project/customizations/src/com/truviso/system/handlers

To configure connectors and handlers:

Step 1 Review the data.xml file located in the MyProject/customzations/templates/.

The data.xml file is the root configuration file for a Prime Analytics project. All customizations can be
performed by editing this file. However, the best practice is to create a pointer to a separate file for
maintenance and support cases.

Step 2 Verify the following exists in the connector data.xml file in the <!DOCTYPE> section:

<!ENTITY connectors SYSTEM "include-connectors.xml">

Step 3 Verify the following appears within another tag anywhere in the <config> section:

&connectors;

This entry allows you to configure all connectors and/or handlers in the include-connectors.xml file
instead of the data.xml file. The include-connectors.xml file should be present in the same directory as
the data.xml file.

Step 4 Edit the include-connectors.xml file to include the parameters and definitions required by the connectors
and/or handlers.

Step 5 Proceed to one of the following procedures, depending upon the data type that will generate the
continuous queries for your project:

• Managing Handler Chains, page 2-4

• Building a NetFlow Application, page 2-8

• Building a Syslog Application, page 2-12

• Building an XMPP Connector, page 2-19

2-4
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

Managing Handler Chains
Handlers manage the chain of events required to push data into the Prime Analytics CQ engine. The
<producers> element contains a list of <chain> elements. Each element defines a single handler chain.
Prime Analytics built-in data handlers are listed in Table 2-1.

Table 2-3 shows the handlers organized by function.

Table 2-1 Prime Analytics Handlers

Handler Description

file Opens a file and return an InputStream.

inputstream Reads a line off text an InputStream.

objectstream Converts InputStream into ObjectInputStream.

logging Logs the input using log4j.

socket Listens on a socket and produce InputStream.

loggingevent Handles an log4j LoggingEvent.

text Handles and parse a text string.

throttle Varies the data rate of a text-based record containing timestamp, one of
which is the CQTIME column of the destination stream.

pump Pumps input to a CQ Engine.

jms A JMS queue consumer. Uses standard JMS parameters.

message Handles a JMS Message.

custom Defines a custom handler.

commit Commits data at regular intervals.

retry Attempts to push uncommited data again into engine in case of failure.

twophasepump Pushes data into engine with multiple threads with 2-phase commit
semantics.

Table 2-2 Handlers by Function

Function Handlers

Transport file, socket, udp

Transform inputstream, objectstream, logging, loggingevent, text, xml

Testing throttle

Save data to the database pump, commit, retry, twophasepump

Handle syslog messages udpsyslog, syslog

Handles NetFlow messages udpnetflow, netflow

Handles XMPP messages xmpp, xml

Customization custom

2-5
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

You can create parallel handler chains to optimize performance. Parallel chains can include built-in
handlers and any custom handlers you create. To enable multi-threaded data processing, set the handler
queue attribute to indicate the handler runs in parallel mode. Additional threads and queue size attributes
allow you to fine tune the process. All down stream processing is performed in the threads initiated for
this handler.

If you use multiplexing and full transactional semantics for publishing data to the continuous query
engine, use the twophasepump handler instead of the regular pump handler to push the data. This ensures
that all data is aborted or committed. The twophasepump handler uses the PostgreSQL prepared
transactions feature. If you use the 'twophasepump, raise the max_prepared_transactions setting in
postgresql.conf. The default is 5. This is sufficient for a typical installations, but is not sufficient if you
use the twophasepump handler extensively. The recommended practice is to set this to the same value as
max_connections.

If you use prepared transactions, monitor the pg_catalog.pg_prepared_xacts table periodically for
stranded prepared transactions. For a full description of the prepared transaction feature, consult the
PostgreSQL documentation.

Available parameters include:

queue—Enables the queue-based, multi-threaded capabilities for the current handler. The default is
false

• threads—Specifies the number of threads to use to process data passed to the handler. The default
is 10.

• queuesize—Specifies size of the queue to use to transfer data to threads processing data. The default
is 1000.

Table 2-3 Prime Analytics Handlers

Handler Description

file Opens a file and return an InputStream.

inputstream Reads a line off text an InputStream.

objectstream Converts InputStream into ObjectInputStream.

logging Logs the input using log4j.

socket Listens on a socket and produce InputStream.

loggingevent Handles an log4j LoggingEvent.

text Handles and parse a text string.

throttle Varies the data rate of a text-based record containing timestamp, one of
which is the CQTIME column of the destination stream.

pump Pumps input to a CQ Engine.

jms A JMS queue consumer. Uses standard JMS parameters.

message Handles a JMS Message.

custom Defines a custom handler.

commit Commits data at regular intervals.

retry Attempts to push uncommited data again into engine in case of failure.

twophasepump Pushes data into engine with multiple threads with 2-phase commit
semantics.

2-6
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

Defining the Handler
To enable the Prime Analytics BI platform to recognize handler, you must define it in either the
include-connectors.xml or data.xml configuration file. Required configuration parameters to include in
the <handler> xml definition include:

• FILE —Opens a file and returns an InputStream.

<file> <location>/path_to_file/file</location> </file>

The location parameter is required by the handler in order to proceed. In this case, it requires the
location of the file that needs to be processed.

• SOCKET—Creates a socket on a specific port and listens for incoming connections.

<socket> <port>1234</port> </socket>

THROTTLE—Modifies the incoming data rate. This handler is often used to simulate high peak
traffic periods for performance testing. The parameters are:

– cqtimecolumnindex—The column index of the USER CQTIME column.

– pumpratio—Ratio to speed up the data replay.

– cqtimedatepattern—The timestamp format of values in the CQTIME column.

– keepOriginalCqTime—If true, retains the incoming CQTIME value. If false, the incoming
CQTIME value is replaced with the current system time.

<throttle> <cqtimedatepattern>yyy-MM-dd HH:mm:ss</cqtimedatepattern>
<cqtimecolumnindex>1</cqtimecolumnindex> <pumpratio>10</pumpratio>
</thottle>

• JMS—Consumes messages off a specific Java Message Service (JMS) queue.

<jms> <jmsBrokerId>broker1</jmsBrokerId>
<jmsUri>jms:queue:ExampleQueueNamefitimeToLive=1000</jmsUri>
<jmsContextFactory>org.apache.activemq.jndi.ActiveMQInitialContextFactory</jmsContextF
actory> <jmsConnectionFactory>QueueConnectionFactory</jmsConnectionFactory>
<jmsQueue>queue1</jmsQueue> <jmsUsername>jms_user</jmsQueue>
<jmsPassword>jms_pwd</jmsPassword>
</jms>

• COMMIT—Issues a commit every given number of rows.

<commit> <rows>1000</rows> </commit>

Although transaction size depends on your application requirements, as a general guideline, set
commits to one per second for high data rates. For example, for a NetFlow with 50,000 flows (rows)
per second, you would set commit to 50000 rows. You can set faster and slower commit rates.
However, never set commit rates less than 100 per second to avoid problems caused by the volume
of overhead operations for each commit.

Handler Chain Example
The following sample handler chain pulls data from a comma delimited sample_file.txt file. The file is
a small representation of the actual source data. To simulate a production environment, the file is
replayed and throttled to simulate large data volumes and fast data rates. The file and throttle handlers
are used in this example. The file handler is extended to include replay capability as follows:

import com.truviso.system.handlers.* ;
public class FileReplayHandler extends AbstractHandler<Connector, InputStream> { File

2-7
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

file;
private static final Logger LOGGER = Logger.getLogger(FileReplayHandler.class);
private static final int DEFAULT_MAX_CACHE_SIZE = 5000;
private ArrayList<Object> inputCacheList; private int iterations; private int

maxcachesize;
private String location;
public FileReplayHandler(SubnodeConfiguration c) throws HandlerException { super(c); }
public void init() throws HandlerException { super.init();

iterations = config.getInt("iterations"); maxcachesize = config.getInt("maxcachesize");
location = config.getString("location"); if (location == null)

throw new HandlerException("Please specify location element for file handler");
file = new File(location); if (!file.exists())

throw new HandlerException(String.format("File %s does not exist", location));
maxcachesize = maxcachesize<=0fiDEFAULT_MAX_CACHE_SIZE:maxcachesize; inputCacheList =

new ArrayList<Object>();
}
public void handle(Connector producer) throws HandlerException {

for (int i = 0; i < iterations && isRunning(); i++)
{
LOGGER.debug("==
=================" LOGGER.debug("iteration: " + i);
LOGGER.debug("==
=================" try {
InputStream in = new FileInputStream(file); resultListener.handle(in); } catch
(FileNotFoundException e) { throw new HandlerException(String.format("Unable to read file
%s", file.getAbsolutePath }
} }
}

The following parameters are added:

• iterations—The number of times the file will be replayed.

• maxcachesize—The maximum amount of memory utilized for the records in the file allocated to
cache. The handler chain configuration is defined below:

<handlers> <chain id="FILE_REPLAY_THROTTLE">
<custom class="com.truviso.system.handlers.FileReplayHandler">
<iterations>1000</iterations> <location>/tmp/source_file.txt</location>
<maxcachesize>5000</maxcachesize>
</custom>
<inputstream/>
<text> <delimiter>,</delimiter>
</text>
<custom class="com.truviso.system.handlers.ThrottleHandler"> <cqtimedatepattern>yyyy-MM-dd
HH:mm:ss</cqtimedatepattern> <cqtimecolumnindex>1</cqtimecolumnindex>
<pumpratio>100</pumpratio> <keeporiginalcqtime>false</keeporiginalcqtime>
</custom>
<pump> <type>COPY</type> <mode>CSV</mode> <schema>my_schema</schema>
<stream>my_stream</stream>
</pump> </chain> </handlers>

The handler chain is configured as follows:

• The FileReplayHandler takes the file source_file.txt located in the /tmp directory and allocates 5000
MB cache to store the original data. The cache is then set to be replayed 1000 times.

• The <inputstream/> tag calls the InputStreamHandler to read the source_file.txt text.

• The <text> tag calls the TextHandler to parse the string based on a delimiter parameter. Because this
is a comma delimited file, a comma is used as a delimiter.

2-8
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

• The ThrottleHandler then speeds the data rate by 100 times the normal speed. Because the data is
replayed, the original timestamp <keeporiginalcqtime> parameter is set to false. However, you can
set it to true.

• The Pump handler then takes that input stream and pushes it to the continuous query engine using
the COPY command and designating the schema and stream definition defined in the continuous
query engine. The pump command is similar to the postgres copy command [-psql -c copy]
my_schema.my_stream from '/tmp/source_file.txt' with CSV. The simple copy command pushes
data into the system as quickly as possible with the options to replay and/or throttle the source data.

Building a NetFlow Application
NetFlow is a Cisco IOS embedded instrumentation that characterizes network operations. Each packet
forwarded within a router or switch is examined for a set of IP packet attributes. These attributes are the
IP packet identity or fingerprint. They determine if the packet is unique or similar to other packets. An
IP NetFlow is usually based on a set of five and up to seven IP packet attributes:

• IP source address

• IP destination address

• Source port

• Destination port

• Layer 3 protocol type

• Class of Service

• Router or switch interface

All packets with the same source and destination IP address and ports, protocol interface, and class of
service are grouped into a flow. The packets and bytes are then tallied. The router or switch sends these
tallied flows to a collector to process the data.

The Prime Analytics NetFlow handler receives this information, parses it and feeds it to the CQ engine
(TruCQ) for analysis. A handler chain, defined in the file customizations/templates/include-
handlers.xml, specifies the input processing path. Here is a sample NetFlow processing chain:

<handlers>
 <chain id="netflow">
 <udpnetflow>
 <port>2055</port>
 <rcvbufsize>16000000</rcvbufsize>
 </udpnetflow>
 <netflow queue="true" threads="8">

<fields>UTCtime,routerIP,sequence,input-key,srcaddr-key,srcport-key,output-key,dstaddr-key
,dstport-key,in-packets-key,in-bytes-key</fields>
 </netflow>
 <commitbytes>
 <rows>50000</rows>
 </commitbytes>
 <pumpbytes>
 <type>COPY</type>
 <mode>BYTES</mode>
 <autoflush>false</autoflush>
 <schema>netflow</schema>
 <stream>netflow</stream>
 </pumpbytes>
 </chain>
</handlers>

2-9
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

The first handler entry, udpnetflow, indicates the incoming port number and a receive buffer size.
NetFlow typically arrives at a high data rate. A large receive buffer prevents packet loss (the UDP
protocol does not retransmit dropped packets). The Linux kernel imposes a limit on receive buffer size.
The system administrator (root) must increase the limit using a command. For example,

sysctl net.core.rmem_max=16000000

The next entry, netflow, indicates the fields to be extracted from the received data and sent as columns
to the streaming engine. The commitbytes and pumpbytes entries correspond to the <commit> and
<pump> entries used with other handlers, but they process binary data instead of strings. The <netflow>
handler emits its results in an internal binary form to reduce overhead.

The file customizations/db/ddl.sql specifies an input schema for stream processing. Here is an example
that matches the above handler chain:

CREATE STREAM netflow (
 tod timestamp with time zone cqtime user drift '1 second',
 routerip text,
 sequence bigint,
 inputif bigint,
 srcaddr text,
 srcport bigint,
 outputif bigint,
 destaddr text,
 destport bigint,
 packets bigint,
 bytes bigint
) checkpoint ;

Note the use of bigint for numeric columns. This is required. NetFlow packets include a time of day
specified in UTC. The timestamp with time zone adjusts correctly for UTC times.

Note If you change the NetFlow fields that are exported to TruCQ, you must also modify the DDL

Table 2-4 shows the NetFlow field IDs

Table 2-4 NetFlow Field IDs

Field ID (key) Type (#) NetFlow V9 Name Description

UTCtime n/a n/a Seconds since 0000 Coordinated Universal Time (UTC) 1970.

routerIP n/a n/a IP address of origin router.

sequence n/a n/a Packet sequence number (v9) or cumulative flow count (v5).

in-bytes-key 1 IN_BYTES Incoming counter with length N x 8 bits for number of bytes
associated with an IP flow.

in-packets-key 2 IN_PKTS Incoming counter with length N x 8 bits for the number of
packets associated with an IP flow.

flows-key 3 FLOWS Number of flows that were aggregated.

prot-key 4 PROTOCOL IP protocol byte.

ip-precedence-key 5 SRC_TOS Type of Service byte setting when entering incoming interface.

tcp-flags-key 6 TCP_FLAGS Cumulative of all the TCP flags seen for this flow/

srcport-key 7 L4_SRC_PORT TCP/UDP source port number, that is, FTP, Telnet, or
equivalent.

2-10
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

srcaddr-key 8 IPV4_SRC_ADDR IPv4 source address.

src-mask-key 9 SRC_MASK The number of contiguous bits in the source address subnet
mask, that is, the submask in slash notation.

input-key 10 INPUT_SNMP Input interface index.

dstport-key 11 L4_DST_PORT TCP/UDP destination port number, that is, FTP, Telnet, or
equivalent

dstaddr-key 12 IPV4_DST_ADDR IPv4 destination address

dst-mask-key 13 DST_MASK The number of contiguous bits in the destination address subnet
mask, that is, the submask in slash notation

output-key 14 OUTPUT_SNMP Output interface index

nexthop-key 15 IPV4_NEXT_HOP IPv4 address of next-hop router

src-as-key 16 SRC_AS Source BGP autonomous system number

dst-as-key 17 DST_AS Destination BGP autonomous system number

endtime-key 21 LAST_SWITCHED System uptime at which the last packet of this flow was switched

starttime-key 22 FIRST_SWITCHED System uptime at which the first packet of this flow was
switched

ipv6-src-addr-key 27 IPV6_SRC_ADDR IPv6 Source Address

ipv6-dst-addr-key 28 IPV6_DST_ADDR IPv6 Destination Address

ipv6-flow-label-key 31 IPV6_FLOW_LABEL IPv6 flow label as per RFC 2460 definition

src-subnet-in-flow-ad
dr-key

44 IPV4_SRC_PREFIX IPv4 source address prefix (specific for Catalyst architecture)

dst-subnet-in-flow-ad
dr-key

45 IPV4_DST_PREFIX IPv4 destination address prefix (specific for Catalyst
architecture)

sampler-id-key 48 FLOW_SAMPLER_ID Identifier shown in "show flow-sampler"

sampler-interval-key 50 FLOW_SAMPLER_RA
NDOM_INTERVAL

Packet interval at which to sample. Use in connection with
FLOW_SAMPLER_MODE

classid-key 51 CLASS_ID

minimum-ttl-key 52 MIN_TTL Minimum TTL on incoming packets of the flow

maximum-ttl-key 53 MAX_TTL Maximum TTL on incoming packets of the flow

src-mac-key 56 IN_SRC_MAC Incoming source MAC address

dst-mac-key 57 OUT_DST_MAC Outgoing destination MAC address

vlan-id-key 58 SRC_VLAN Virtual LAN identifier associated with ingress interface

direction-key 61 DIRECTION Flow direction: 0 - ingress flow, 1 - egress flow

mpls-top-label 70 MPLS_LABEL_1 MPLS label at position 1 in the stack

if-name-in-opt-data-k
ey

82 IF_NAME Shortened interface name i.e.: "FE1/0"

if-desc-in-opt-data-ke
y

83 IF_DESC Full interface name, that is, "FastEthernet 1/0"

Table 2-4 NetFlow Field IDs (continued)

Field ID (key) Type (#) NetFlow V9 Name Description

2-11
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

flags-and-sid-key 87 FLAGS_AND_SAMPLE
R_ID

application-id-key 95 APPLICATION TAG 8 bits of engine ID, followed by n bits of classification

application-name-key 96 APPLICATION NAME Name associated with a classification

ASA-flowId 148 flowId

flow-start-seconds-id-
key

150 flowStartSeconds

flow-end-seconds-id-
key

151 flowEndSeconds

ASA-icmpType 176 transport icmp ipv4 type

ASA-icmpCode 177 transport icmp ipv4 code

ASA-icmpTypeIPv6 178 icmpTypeIPv6

ASA-icmpCodeIPv6 179 icmpCodeIPv6

dot1qPriority-key 244 dot1qPriority

ethertype-key 256 ethertype

ASA-timestampMillis 323 observationTimeMillisec
onds

ASA-ingressACLID 33000 ASA_ingressACLID

ASA-egressACLID 33001 ASA_egressACLID

ASA-fwEventDetaile
d

33002 ASA_fwEventDetailed

ASA-userID 40000 ASA_userID

ASA-translatedSrcAd
dr

40001 ASA_translatedSrcAddr

ASA-translatedDstAd
dr

40002 ASA_translatedDstAddr

ASA-translatedSrcPor
t

40003 ASA_translatedSrcPort

ASA-translatedDstPor
t

40004 ASA_translatedDstPort

ASA-fwEvent 40005 ASA_fwEvent

net-encap-key 42010 netEncap

Table 2-4 NetFlow Field IDs (continued)

Field ID (key) Type (#) NetFlow V9 Name Description

2-12
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

Building a Syslog Application
Syslog is the standard for logging system events. It separates the applications that generate messages
from the system that stores them and the applications that report and analyze them. Syslog protocol is
defined by the Internet Engineering Task Force (IETF). The protocol is extendable and the log messages
format is customized.

The Prime Analytics syslog handler (SyslogHandler) parses the log messages. The logs have fixed
formats including fixed delimiter and timestamp fields. The SyslogHandler receives log messages,
parses them, them feeds the messages to the Prime Analytics CQ engine (TruCQ) for analysis.

When creating an application with syslog handler chain, keep the following points in mind:

• SyslogHandler parses common log messages containing lines of strings with fixed delimiters and at
least one time stamp field.

• SyslogHandler can import multiple parser rule files and parse the log messages according to the
identifier.

• A format definition XML file is needed. The DTD file, syslogparser.dtd, located in
customizations/template/handler/syslog/, verifies the parser file format. A SyslogValidator script is
located in primeanalytics/Scripts/utils/.

• A parser rule file contains three basic components:

– <attribute>—includes <delimiter> and <identifier>. <delimiter> is used to split the syslog
message into tokens. <identifier> is a user-defined keyword. It can filter the incoming messages,
and map the matched ones to the specific parser.

– <token>—Indicates a raw message substring.

– <column>—Indicates a stream tuple.

• One token can be extracted by <index>, <regex>, and <kvdelimiter>.

• One column can be empty, one token or combined multiple tokens. It will map the syslog substring
into stream tuple. It supports integer/varchar/timestamp/hstore types in PostgreSQL.

Some syslog message examples:

<166>Jul 5 2013 02:47:22 172.20.35.150/Admin %ACE-6-302022: Built TCP connection 0x289111 for
vlan28:172.20.35.177/33671 (172.20.35.177/33671) to vlan28:172.20.35.135/443 (172.20.35.135/443)

To build an application based on the SyslogHandler;

Step 1 Define the database schema. This includes writing the DDL and creating the stream. For example:

CREATE STREAM syslog(
source inet, -- Source IP
qtime timestamp cqtime user, -- Syslog timestamp
priority varhcar, -- priority defined in Syslog
msgs varchar -- Syslog messages content
) checkpoint;

Step 2 Define the include-handler.xml.

The Prime Analytics TruLink component handles input processing. A handler chain, defined in the file
customizations/templates/include-handlers.xml, specifies the input processing path. Here is a process
syslog example receiving UDP packets:

<handlers>
 <chain id="syslog_udp">
 <udpsyslog>
 <port>514</port>

2-13
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

 </udpsyslog>
 <sylsog>
 <location>definition.xml</location>
 </syslog>
 <commit>
 <rows>50000</rows>
 </commit>
 <pump>
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>syslog</schema>
 <stream>syslog_base</stream>
 </pump>
 </chain>
</handlers>

The first handler entry, udpsyslog, indicates the incoming port number and a receive buffer
size(optional). Most syslog protocol uses UDP as transport protocol. However, UDP protocol provides
no guarantees for message delivery. If the message rate is high, some packets might be lost. A large
receive buffer prevents packet loss. The Linux kernel imposes a limit on receive buffer size. The system
administrator (root) must increase the limit through a command, for example:

sysctl net.core.rmem_max=16000000

The next entry, syslog, identifies the definition files that tell how the received data is extracted and sent
as columns to the streaming engine. Multiple definition files are supported. These are divided by
commas, for example, <location>def1.xml, def2.xml</location>.

SyslogHandler can also read log files from local files, for example:

<handlers>
 <chain id="syslog_file">
 <file>
 <location>${syslog.log}</location>
 </file>
 <inputstream/>
 <packetwrapper/>
 <sylsog>
 <location>definition.xml</location>
 </syslog>
 <commit>
 <rows>50000</rows>
 </commit>
 <pump>
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>syslog</schema>
 <stream>syslog_base</stream>
 </pump>
 </chain>
</handlers>

The first handler entry, file, reads data streams from the syslog.log, which is defined in
local-runtime.properties. The inputstream handler converts input streams into lines. The packetwrapper
is a wrapper handler which adapts the syslog line and syslog handler.

Step 3 Define and validate parser rule file.

The parser definition file is required in the Prime Analytics project. It specifies how to parse the
message, and how to generate columns. Here is an example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE parser SYSTEM "customizations/templates/handlers/syslogparser.dtd">
<parser>

2-14
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

 <attribute>
 <delimiter>" "</delimiter>
 <identifier><![CDATA[*]]></identifier>
 </attribute>
 <token id="token1">
 <index>0</index>
 </token>
 <token id="token2">
 <index>1</index>
 </token>
 <token id="token3">
 <index>2</index>
 <regex>regex</regex>
 </token>
 <token id="token4">
 <index>4</index>
 <kvdelimiter>=</kvdelimiter>
 </token>

 <column>
 <name>column1</name>
 <index>1</index>
 <value>token.token1.1</value>
 </column>
 <column>
 <name>column2</name>
 <index>2</index>
 <value>token.token2.1+" "+token.token3.1</value>
 </column>
 <column>
 <name>column3</name>
 <index>3</index>
 <value>token.token3.1</value>
 <dateformat>MM dd HH:mm:SS.SSS Z</dateformat>
 </column>
 <column>
 <name>column4</name>
 <index>4</index>
 <value>token.token4.n</value>
 <map>key1=value1,key2=value2</map>
 </column>
 <column>
 <name>column5</name>
 <index>5</index>
 <value>token.token4.n</value>
 <hstore>true</hstore>
 </column>
 <column>
 <name>column6</name>
 <index>6</index>
 <value></value>
 </column>
 <column>
 <name>column7</name>
 <index>7</index>
 <value>packet.source.ip</value>
 </column>
 <column>
 <name>column8</name>
 <index>8</index>
 <value>packet.source.port</value>
 </column>
</parser>

2-15
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

SyslogHandler Definition File Syntax

• The definition XML format can be validated against the DTD defined in
customizations/templates/handlers/syslogparser.dtd:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE parser SYSTEM "customized/templates/handlers/syslogparser.dtd">
<parser>
 <attribute>
 <delimiter>" "</delimiter>
 <identifier><![CDATA[*]]></identifier>
 </attribute>
 <token>
 </token>
 <column>
 </column>
</parser>

All definition file contains three basic elements: attribute, token and column. The attribute contains
two sub elements: delimiter and identifier. The delimiter divides the raw syslog messages into
tokens. It could be one character, one word or a symbol. The double quotas around the delimiter is
optional. The identifier filters the incoming syslog and maps the matched message to the
corresponding parser, which is defined in different definition files. Two definition files must be
defined for each syslog with unique identifiers. The wildcard means ignore the filters. If multiple
definition files are defined, syslog messages are filtered sequentially. The first matched definition
file is applied. For example:

<identifier><![CDATA[warning]]></identifier>.

In this example, any message containing the word, warning, is filtered and parsed by the current
definition file.

• Token is the raw message fragment. It can be referred in column definition. The token node value is
an array that includes all matched strings. The mandatory attribute, id, identifies each token:

– index—The syslog message is divided into an array by the delimiter. The array index starts from
1. The index, 1, is the first substring, and the index, 2, is the second substring. The index "0" is
the whole message without division.

– regex—A regular expression used to extract a string against the token retrieved by the index. It
is an optional element. More regular expressions can be found at
http://docs.oracle.com/javase/tutorial/essential/regex/.

– kvdelimiter—Indicates how to divide the string into key/value pair. It is optional.

In the following example, the delimiter is a whitespace and syslog message is:

<166>Jul 5 2013 02:47:22 172.20.35.150/Admin %ACE-6-302022: Built TCP connection
0x289111 for vlan28:172.20.35.177/33671 (172.20.35.177/33671) to
vlan28:172.20.35.135/443 (172.20.35.135/443)

<token id="PRIORITY">
 <index>1</index> <!-- it refers to "<166>Jul" -->
 <regex><(\d)></regex> <!-- the regex expression extracts from above token
value, the result is 166 -->
</token>

<token id="LEVEL">
 <index>6</index> <!-- it refers to "%ACE-6-302022:" -->
 <regex>%ACE-(\d+)-\d+</regex> <!-- the result is "6" -->
</token>

2-16
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

2013/02/22 09:00:00.019
SdvSmTxSelConf,STB=10.250.82.233,TID=0xef3,SesId=001bd74bbd44/0,RC=OK,MPN=1092,Freq=68
1000000,Mod=16,Tsid=48691,SGID=1309

<token id="detail">
 <index>3</index> <!-- it refers to
"SdvSmTxSelConf,STB=10.250.82.233,TID=0xef3,SesId=001bd74bbd44/0,RC=OK,MPN=1092,Freq=6
81000000,Mod=16,Tsid=48691,SGID=1309" -->
 <kvdelimiter>=</kvdelimiter> <!-- the result is
"STB=>10.250.82.233,TID=>0xef3,SesId=>001bd74bbd44/0,RC=>OK,MPN=>1092,Freq=>681000000,
Mod=>16,Tsid=>48691,SGID=>1309" -->
</token>

• Column is the corresponding stream column definition. The column is mapped into the stream tuple.
It supports varchar, integer, datetime, and hstore. The default is varchar. The column node has the
following elements.

– name—Refers to the column name. It is optional.

– index —Refers to the column position in the stream. It starts with 1 and is mandatory. If
valueIndex is n, it refers to all the values in the token's value array. The column type is array.

– value—Refers to the column value. It is mandatory. Empty values mean no values are entered
for the column. The column value contains token elements, token expressions or packet
elements. If it refers to a token element, use token.[tokenid].[valueIndex]. tokenid is defined in
the token attribute id. valueIndex refers to the index in the token's value array. If it refers to
token expressions, use + to combine multiple token elements. It also could use packet. packet
contains two properties: ip and port. These indicate the message source IP and port.

– dateformat—Refers to the date format used when converting the value into a date. This is
mandatory when the column type is date/datetime/timestamp.

– map—Refers to the key/value pairs that need to be replaced.

– hstore—Indicates whether the column type is hstore.

Examples:

<166>Jul 5 2013 02:47:22 172.20.35.150/Admin %ACE-6-302022: Built TCP connection
0x289111 for vlan28:172.20.35.177/33671 (172.20.35.177/33671) to
vlan28:172.20.35.135/443 (172.20.35.135/443)

<column>
 <name>datetime</name>
 <index>2</index>
 <value>token.DATETIME_MONTH.1+" "+token.DATETIME_DAY.1+" "+token.DATETIME_YEAR.1+"
"+token.DATETIME_TIME.1</value> <!-- DATETIME_MONTH is the token id defined in token
element. DATETIME_MONTH.1 means the first value in token DATETIME_MONTH. If
DATETIME_MONTH.n means all the values in that token, and will be converted into
PostgreSQL arraytype -->
 <dateformat>MMM dd yyyy hh:mm:ss</dateformat> <!-- It refers the format used in
the above value element. If the column is timestamp, user need to specify the date
time format used in syslog message. -->
</column>

<column>
 <name>level</name>
 <index>4</index>
 <value>token.LEVEL.1</index> <!-- It refers to "6" -->
</column>

2013/02/22 09:00:00.019
SdvSmTxSelConf,STB=10.250.82.233,TID=0xef3,SesId=001bd74bbd44/0,RC=OK,MPN=1092,Freq=68
1000000,Mod=16,Tsid=48691,SGID=1309

2-17
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

<column>
<name>eventreplace</name>
<index>4</index>
<value>token.detail.n</name> <!-- It refers all the values(key/value pairs) in token
deail -->
<map>SesID=SessionID,RC=ResponseCode</map>
</column> <!-- the reuslt if
{STB=10.250.82.233,TID=0xef3,SessionID=001bd74bbd44/0,ResponseCode=OK,MPN=1092,Freq=68
1000000,Tsid=48691,SGID=1309} -->

Step 4 Before you deploy the application, validate the rule files against the sample data. The sample data is a
log file.

Run the syslog_validator.sh which you can find in primeanalytics/Scripts/util/. For example:

$TRUVISO_HOME/Scripts/util/syslog_validator.sh sample.log definition.xml syslogparser.dtd

• Argument 1—Is the input sample syslog messages.

• Argument 2—Is the parser file path.

• Argument 3—Is optional, the default DTD file can be read specified in the definition.xml.

Building Multistream Handlers
A typical Prime Analytics application expects data arriving at the TruCQ stream-processing engine from
a specific input source to have a consistent structure. A one-to-one correspondence usually exists
between a data source and the application raw stream schema. However, some data sources produce
records with varying structures. In such cases, you might want to route the input records from a single
data source to multiple raw streams. The multistream handler gives you the ability to divide a single data
source into multiple streams.

The division is based on a specific partitioning key in the input stream. This partitioning key is specified
in a handler chain that includes the multistream handler as a list of pairs (key_value, raw_stream_name).
The list provides the record-to-stream mapping; it identifies the specific stream any given record must
be directed to based on the value of the partitioning key attribute.

The multistream handler has the following requirements:

• The multistream handler must be the last handler in a chain—It must always be placed at the end of
a handler chain. No further record preprocessing can occur after determining a record’s destination
raw stream and pumping the record to the stream.

• Mapping is based on key values—The multistream handler routes records to streams based on record
key-attribute values. User-defined data routing functions and use of regular expressions as pump
keys are not supported.

Multistream Handler Example

The multistream handler in the example below routes input records having my_key values H, M, and B
to the raw streams. raw_m, raw_h, and raw_b. The handler sends the records having any other my_key
values to the raw stream raw_default.

The multistream handler example configuration file is shown below:

Include-handlers.xml
<chain id="EXAMPLE" autostart="true">

<file>

2-18
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

<location>${master.file}</location>
</file>
 <inputstream />
 <text>
 <delimiter>\t</delimiter>
 </text>
 <multistream>

<pumpkeyindex>1</Pumpkeyindex> <!-- Specifies the location of the key in an input
record. In this example, we choose as key the field my_key which is at location 1 in a
record that is input to the multistream handler-->

 <pumps> <!-- A list of key-pump pairs such that
each pump pushes data to its specified
raw stream -->

 <pump key="M">
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>multistream_example</schema>
 <stream>raw_m</stream>

</pump>
<pump key="H">

 <type>COPY</type>
 <mode>CSV</mode>
 <schema>multistream_example</schema>
 <stream>raw_h</stream>

 </pump>
 <pump key="B">

 <type>COPY</type>
 <mode>CSV</mode>
 <schema>multistream_example</schema>
 <stream>raw_b</stream>

 </pump>
<pump key="*"> <!-- Optional. A pump key entry “*” means that a record with

the key-attribute value outside of any of specified values (M, H, and B, in this example)
should go to the stream specified in this entry (raw_default, in this example).-->

 <type>COPY</type>
 <mode>CSV</mode>
 <schema>multistream_example</schema>
 <stream>raw_default</stream>

 </pump>
 </pumps>
 </multistream>

</chain>

The multistream handler schema is shown below:

my_ddl.sql
create schema multistream_example;
set search_path to multistream_example;
- - multiple raw streams

create stream raw_m
(

 my_key Text,
 a int

);
create stream raw_h
(

my_key Text,
a int,
ts timestamp cqtime user

);
create stream raw_b
(

my_key Text,
msg Text

2-19
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

);
create stream raw_default
(

my_key Text,
msg Text

);
- - a few derived streams

create stream h_derived (total, ts cqtime)
checkpoint without partials as
select sum(a), cq_close(*) from raw_h
<slices '1 minute'>;

create stream b_derived (message_count)
checkpoint without partials as
select count(key) from raw_b
<slices '1 minute'>;

Building an XMPP Connector

XMPP is the eXtensible Messaging and Presence Protocol, a set of open technologies for instant
messaging, presence, multi-party chat, voice and video calls, collaboration, lightweight middleware,
content syndication, and generalized routing of XML data.

XMPP was originally developed in the Jabber open-source community to provide an open, secure,
spam-free, decentralized alternative to the closed instant messaging services at that time.

XMPP PubSub is a protocol extension for generic publish-subscribe functionality, specified in
XEP-0060. The protocol enables XMPP entities to create nodes (topics) at a pubsub service and publish
information at those nodes; an event notification (with or without payload) is then broadcast to all
entities that have subscribed to the node. Pubsub therefore adheres to the classic observer design pattern
and can serve as the foundation for a wide variety of applications, including news feeds, content
syndication, rich presence, geo-location, workflow systems, network management systems, and any
other application that requires event notifications.

Figure 2-1 shows the XMPP publish-subscribe service flow.

2-20
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

Figure 2-1 XMPP Publish-Subscribe Service Flow

Prime Analytics only supports the XMPP pubsub mechanism and is tested with two products: Cisco
Conductor for Videoscape and Openfire, an instant messaging and groupchat server that uses XMPP
licensed under the Apache License 2.0.

The Prime Analytics XMPP handler functions as the subscriber. It receives the XMPP messages and
parses the payload using the XML handler.

To connect to the pubsub server, you must configure the communications parameters listed in Table 2-5.

XSLT-Based XML Handler

By default, you can use the XSLT to parse the payload, so you need to specify the XSLT path for XML
parsing. For example:

<handlers>
 <chain id="xmpp">
 <xmpp>
 <xmpphostname>10.74.125.169</xmpphostname>
 <port>5222</port>

34
78

42

Publish-Subscribe
Service

(such as XMPP PubSub)
Publishers

1

Topic A

i

ii

iii

Topic B

Topic C

Topic D

Subscribers

Events Subscriptions

2

3

4

5

Table 2-5 XMPP Communications Parameters

Parameter Description

xmpphostname The Cisco Conductor server/pubsub server address.

port The standard port for clients to connect to the server.

subscribeuser User with subscribe access.

password Password.

isDebug Enables the Smack debug window.

pubsubId Pubsub service name.

pubsubNode A virtual location to which information can be published and from which
event notifications and/or payloads can be received. (In other pubsub
systems, this may be labeled a “topic”.)

2-21
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

 <subscribeuser>pub@crdc-c210-169/conductor</subscribeuser>
 <password>pub</password>
 <isDebug>true</isDebug>
 <pubsubId>pubsub.crdc-c210-169</pubsubId>
 <pubsubNode>cisco.pubsub</pubsubNode>
 </xmpp>
 <xml>
 <xslt>/var/opt/primea/projects/acal/ACAL_Setup.xslt</xslt>
 </xml>
 <text>
 <delimiter>,</delimiter>
 </text>
 <commit>
 <rows>200</rows>
 </commit>
 <pump>
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>acal</schema>
 <stream>setup</stream>
 </pump>
 </chain>
</handlers>

Multiple Pubsub Nodes Support

The XMPP handler uses multiple chains to support multiple nodes and topics. Each message type is
defined in one chain, and the XSLT contains the node and topic name. The following examples shows
two nodes, truviso and primea:

<handlers>
 <chain id="xmpp">
 <custom>
 <xmpphostname>10.75.162.230</xmpphostname>
 <port>5222</port>
 <subscribeuser>utruviso@client.com</subscribeuser>
 <password>cisco123</password>
 <isDebug>true</isDebug>
 <pubsubId>ps.com</pubsubId>
 <pubsubNode>truviso</pubsubNode>
 </custom>
 <custom>
 <xslt>/var/opt/primea/projects/xmpp/transform_truviso.xslt</xslt>
 </custom>
 <text>
 <delimiter>,</delimiter>
 </text>
 <pump>
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>xmpp</schema>
 <stream>tvshow</stream>
 </pump>
 </chain>
 <chain id="xmpp_primea">
 <custom>
 <xmpphostname>10.75.162.230</xmpphostname>
 <port>5222</port>
 <subscribeuser>uprimea@client.com</subscribeuser>
 <password>cisco123</password>
 <isDebug>true</isDebug>
 <pubsubId>ps.com</pubsubId>

2-22
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

 <pubsubNode>primea</pubsubNode>
 </custom>
 <custom>
 <xslt>/var/opt/primea/projects/xmpp/transform_primea.xslt</xslt>
 </custom>
 <text>
 <delimiter>,</delimiter>
 </text>
 <pump>
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>xmpp</schema>
 <stream>tvshow</stream>
 </pump>
 </chain>
</handlers>

One Pubsub Node With Multiple Topics

One pubsub node could send out multiple formats of messages or payload, such as the setup and tear
down messages are sent to the same pubsub node. Take the ACAL setup and tear down messages as the
example. Two part should be updated, one is XSLT and another is the db pump part.

• Update the XSLT to diff the message parsing. Different messages have different fields to parse:

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="ACAL/report">
 <xsl:choose>
 <xsl:when test="@type='setup'">
 <xsl:value-of select="@type" />,<xsl:value-of select="@id"
/>,<xsl:value-of select="@seq" />,<xsl:value-of select="@time" />,"<xsl:value-of
select="label" />","<xsl:
value-of select="assetName" />",<xsl:value-of select="assetSrc" />,<xsl:value-of
select="endpointID" />,<xsl:value-of select="platformClass" />,<xsl:value-of
select="platformMak
e" />,<xsl:value-of select="platformModel" />,<xsl:value-of
select="platformApplication" />,<xsl:value-of select="platformAppVer" />,</xsl:when>
 <xsl:when test="@type='teardown'">
 <xsl:value-of select="@type" />,<xsl:value-of select="@id"
/>,<xsl:value-of select="@seq" />,<xsl:value-of select="@time" />,<xsl:value-of
select="reason" />,</xsl:w
hen>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

• Update configuration to include the Multiple Steam handler, the two kinds of fields are pumped into
different streams. For more information, see Building Multistream Handlers, page 2-17.

<handlers>
 <chain id="xmpp">
 <xmpp>
 <xmpphostname>172.20.127.147</xmpphostname>
 <port>5222</port>
 <subscribeuser>utruviso@client.com</subscribeuser>
 <password>cisco123</password>
 <isDebug>true</isDebug>
 <pubsubId>ps.com</pubsubId>
 <pubsubNode>truviso</pubsubNode>
 </xmpp>
 <xml>
 <xslt>ACAL_Setup_C.xslt</xslt>
 </xml>

2-23
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Managing Connectors and Handlers

 <text>
 <delimiter>,</delimiter>
 </text>
 <commit>
 <rows>2</rows>
 </commit>
 <multistream>
 <pumpkeyindex>1</pumpkeyindex>
 <pumps>
 <pump key="setup">
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>acal</schema>
 <stream>setup</stream>
 </pump>
 <pump key="teardown">
 <type>COPY</type>
 <mode>CSV</mode>
 <schema>acal</schema>
 <stream>teardown</stream>
 </pump>
 </pumps>
 </multistream>
 </chain>
</handlers>

Troubleshooting Handlers and Connectors
If no data is received by the connector or handler, check network connectivity:

1. Check the physical connection (most network interfaces have a green light indicating the link is
active).

2. Check the network configuration including IP address, subnet mask, and default route.

3. Check the firewall (iptables).

4. Test connectivity using ping.

5. Use tcpdump to check for packets received.

6. Verify the port number in the application settings.

7. For HA, check that multicast is allowed. (For information, see
http://www-01.ibm.com/support/docview.wss?uid=isg3T1012468.)

If you receive an “ERROR: extra data after last expected column” while using the XSLT-based XML
handler, check whether a comma or special character is the same delimiter defined in text part. It parses
original messages into several fields. This causes the database exceptions because there are more fields
than the db schema defined, so the delimiter within the message is ignored.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:df="http://jabber.org/protocol/pubsub">
 <xsl:template match="/">
 <xsl:for-each select="df:ACAL/df:report">
 <xsl:value-of select="@type" />,<xsl:value-of select="@id" />,<xsl:value-of
select="@seq" />,<xsl:value-of select="@time" />,"<xsl:value-of select="df:label" />","<x
sl:value-of select="df:assetName" />",<xsl:value-of select="df:assetSrc" />,<xsl:value-of
select="df:endpointID" />,<xsl:value-of select="df:platformClass" />,<xsl:value-of sele

2-24
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Creating Continuous Queries

ct="df:platformMake" />,<xsl:value-of select="df:platformModel" />,<xsl:value-of
select="df:platformApplication" />,<xsl:value-of select="df:platformAppVer"
/>,</xsl:for-each>
 </xsl:template>

Creating Continuous Queries
Continuous queries are persistent inquiries that operate over streams and tables. Continuous queries are
created through XML definition files.

To validate the continuous query XML configuration file:

Step 1 In the data.xml file verify the following is present in the <!DOCTYPE.> section:

<!ENTITY connectors SYSTEM "include-queries.xml">

Step 2 In the <config> section, but within another tag, verify the following is present:

&queries;

This allows you to configure all continuous queries in the include-queries.xml file rather than within the
data.xml file itself.

Step 3 Verify that the include-queries.xml file is in the same directory as the data.xml file.

Step 4 Edit the include-queries.xml file to include the parameters and definitions required by the continuous
queries.

Creating Static Queries
Static queries operate over data dimension tables and archived continuous query data tables. Static
queries are the same as traditional relational queries. Like continuous queries, static queries are created
through XML definition files.

To validate the XML configuration file for static queries:

Step 1 In the data.xml file verify the following is present in the <!DOCTYPE.> section:

<!ENTITY connectors SYSTEM "include-staticqueries.xml">

Step 2 In the <config> section, but within another tag, verify the following is present:

&staticqueries;

This allows you to configure all continuous queries in the include-staticqueries.xml file rather than
within the data.xml file itself.

Step 3 Verify that the include-staticqueries.xml file is in the same directory as the data.xml file.

Step 4 Edit the include-staticqueries.xml file to include the parameters and definitions required by the static
queries.

2-25
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Compiling the Prime Analytics Project

Compiling the Prime Analytics Project
After you have configured the Prime Analytics connectors, handlers, and the continous or static queries,
you must compile and then run your project.

To compile your project, enter:

$./build-local.sh

If the build compiles with no errors, the following directories are created in the project's root directory:

• build

• dist

• war

These directories contain the runtime distribution of the your Prime Analytics project.

Starting and Monitoring the Project
After your project is compiled, verify the TruCQ engine is started and any associated DDL has been
executed. Then enter the following commands to start and stop your project:

To start the project

./start.sh

To stop the project:

./stop.sh

To monitor your application activity, review the log files in apache-tomcat/logs/. The truviso.log is the
primary log file. However, some startup errors might only appear in the catalina.out file. Some problems
that can prevent application startup might be better analyzed by looking at errors in the database log files:

tail $CQLOG

Where $CQLOG is the directory containing the CQ engine database log.

To view your data using the Prime Analytics BI platform, open your browser and navigate to
http://servername:8080/MyProject Log in with the default credentials: admin/admin. You can leave the
locale at its default.

For information about creating dashboards and reports from the BI platform, see the following topics:

• Navigating the Prime Analytics User Console

• Creating Dashboards

• Creating Reports

• Creating an Analysis

2-26
Cisco Prime Analytics 1.0 User Guide

OL-28757-01

Chapter 2 Setting Up Prime Analytics Projects
Starting and Monitoring the Project

	Setting Up Prime Analytics Projects
	Creating the Project
	Defining the Application and Database Streams
	Verify the DDL
	Managing Connectors and Handlers
	Managing Handler Chains
	Defining the Handler
	Handler Chain Example
	Building a NetFlow Application
	Building a Syslog Application
	Building Multistream Handlers
	Building an XMPP Connector

	Troubleshooting Handlers and Connectors

	Creating Continuous Queries
	Creating Static Queries
	Compiling the Prime Analytics Project
	Starting and Monitoring the Project

