

Wireless Support

This chapter provides the following information about using Cisco Prime Access Registrar (Prime Access Registrar) for wireless support:

- Mobile Node-Home Agent Shared Key
- 3GPP2 Home Agent Support
- Session Correlation Based on User-Defined Attributes
- Managing Multiple Accounting Start/Stop Messages
- NULL Password Support
- New 3GPP2 VSAs in the Cisco Prime Access Registrar Dictionary

Mobile Node-Home Agent Shared Key

In a mobile wireless environment, a Home Agent (HA) can request a Mobile Node-Home Agent (MN-HA) shared key from the home Prime Access Registrar RADIUS server during a mobile IP registration request (RRQ) from a Packet Data Serving Node (PDSN). Prime Access Registrar supports distribution of the shared key in this environment. Prime Access Registrar encrypts the shared key using MD5 encryption before sending the key back to the HA in an Access-Accept packet.

When an HA receives an RRQ from a PDSN, the HA authenticates the RRQ using a MN-HA shared key. If the HA does not have the MN-HA shared key, it retrieves the MN-HA shared key from the Prime Access Registrar server by sending an Access-Request packet containing the 3GPP2 VSA CDMA-MN-HA-SPI (SPI attribute). Prime Access Registrar then sends the CDMA-MN-HA-Shared-Key corresponding to the user if the user has been successfully authenticated.

This section contains the following topics:

- Use Case Example
- Configuring User Attributes

Use Case Example

When HA receives an RRQ from a PDSN, it authenticates the RRQ by using a MN-HA shared key. If the HA does not have the MN-HA shared key, it retrieves the MN-HA shared key from the Prime Access Registrar server by sending an Access-Request packet containing the 3GPP2 vendor-specific attribute (VSA) CDMA-MN-HA-SPI, the Security Parameter Index (SPI attribute).

The Prime Access Registrar server then sends the CDMA-MN-HA-Shared-Key corresponding to the user if the user has successfully authenticated subject to the following rules:

- 1. If there is an incoming SPI and no configured SPI, the Prime Access Registrar server authenticates the user as usual and does not include a configured shared-key (if there is one) in the reply.
- 2. If the incoming SPI does not match the configured SPI, the Prime Access Registrar server authenticates the user as usual, but does not include the configured shared-key (if there is one) in the reply.
- **3.** If the incoming SPI matches the configured SPI, but there is no shared-key configured, the Prime Access Registrar server proceeds with normal authentication. Since there is no shared-key, it will not be included in the reply.
- **4.** If the incoming SPI matches the configured SPI and a configured shared-key exists, the Prime Access Registrar server proceeds to encrypt the MCD5 shared-key and include it in the Access-Accept.

The key to including the shared key in an Access-Accept is in matching the values of the SPI attribute.

Configuring User Attributes

Prime Access Registrar server supports user-specific attributes which enables the Prime Access Registrar server to return attributes on a per-user or per-group basis without having to use profiles.

Configuring the User Attributes

To configure a user with the CDMA-MN-HA-SPI VSA to request a MN-HA shared key:

Step 1 Log into the Prime Access Registrar server and launch **aregcmd**.

Log in as a user with administrative rights such as user **admin**.

Step 2 Change directory to the attribute directory of the user.

cd /Radius/UserLists/Default/bob/Attributes

Step 3 Set the CDMA-MN-HA-SPI VSA to the appropriate shared-key value.

set CDMA-MN-HA-SPI 1124

set CDMA-MN-HA-SPI 1124

Step 4 Set the CDMA-MN-HA-SPI VSA to the appropriate shared-key value.

set CDMA-MN-HA-Shared-Key secret112

set CDMA-MN-HA-Shared-Key secret112

Step 5 Validate and save your changes.

validate

save

3GPP2 Home Agent Support

The Prime Access Registrar server supports 3GPP2 home agents. This support enables mobile IP clients that authenticate through a Prime Access Registrar RADIUS server to be told which home agent they should use.

Every Mobile IP client has a home domain that is served by a group of Home Agents (HA). The Mobile IP client sets up a tunnel to one (and only one) HA during a session while it roams. Typically, the domain can be determined by the Mobile IP client's network access identifier (NAI).

Note

The NAI is the userID submitted by the client during PPP authentication. In roaming, the purpose of the NAI is to identify the user as well as to assist in the routing of the authentication request.

During the authentication and authorization phase for each Mobile IP client, the RADIUS server must decide which HA from a group of HAs should be chosen to serve the client. This is called dynamic HA assignment.

This section contains the following topics:

- Home-Agent Resource Manager
- Querying and Releasing Sessions
- Access Request Requirements
- New 3GPP2 VSAs in the Cisco Prime Access Registrar Dictionary

Home-Agent Resource Manager

Prime Access Registrar supports dynamic HA assignment with a new resource manager type called home-agent. You configure the home-agent resource manager with a list of IP addresses. The Prime Access Registrar server assigns those addresses to clients whose request dictionary has the right attributes to indicate that an assignment should be done. This is similar to the *ip-dynamic* resource manager.

Unlike the ip-dynamic resource manager, HAs are not exclusively allocated to an individual session but are shared among a set of sessions.

Load Balancing

The goal of dynamic HA assignment is to have load balancing among HAs. The Prime Access Registrar server achieves this by evenly distributing mobile clients among HAs. At the same time, the Prime Access Registrar server ensures that the same HA is always assigned to the same Mobile IP client for the same session.

Г

Configuring the Home Agent Resource Manager

To create a new resource manager using the **aregcmd** command:

Step 1 Use the **cd** command to change to the **Radius /ResourceManagers** level.

--> cd /Radius/ResourceManagers

```
[ //localhost/Radius/ResourceManagers ]
Entries 0 to 0 from 0 total entries
Current filter: <all>
```

Step 2 Use the **add** command to specify the name of a resource manager to create.

--> add home-agent-pool

```
--> Added home-agent-pool
```

Step 3 Use the cd command to change to the Radius /ResourceManagers/home-agent-pool level.

--> cd home-agent-pool

```
[ //localhost/Radius/ResourceManagers/home-agent-pool ]
Name = home-agent-pool
Description =
Type =
```

Step 4 Use the **set** command to set the resource manager type to **home-agent**.

--> set type home-agent

Step 5 Use the **ls** command to view the subdirectories under home-agent-pool.

--> ls

```
[ //localhost/Radius/ResourceManagers/home-agent-pool ]
Name = home-agent-pool
Description =
Type = home-agent
Home-Agent-IPAddresses/
```

Step 6 Use the **cd** command to change to the

Radius/ResourceManagers/home-agent-pool/Home-Agent-IPAddresses level.

--> cd Home-Agent-IPAddresses

- [//localhost/Radius/ResourceManagers/home-agent-pool/Home-Agent-IPAddresses]
- Use the **add** command to add a single IP address or a range of IP addresses.

--> add 209.165.200.200-209.165.200.254

```
--> Added 209.165.200.200-209.165.200.254
```

Querying and Releasing Sessions

Step 7

The **aregcmd** program has been modified to support a new filter for **query-session** and **release-session**. You can use this filter to restrict a request (either query or release) to just the sessions with a given home-agent IP address. For example, consider the following command line.

--> query-session /radius with-home-agent 10.10.10.1

This command line will return all sessions that have a home-agent resource equal to the IP address 10.10.10.1.

Querying sessions using **aregcmd** displays the home-agent resource in each session as:

HA ddd.ddd.ddd

where each *ddd* is a decimal number from 0-255.

Access Request Requirements

When the home-agent resource manager receives an Access-Request that contains a CDMA-HA-IP-Addr attribute, the home-agent resource manager checks the response dictionary to see if it already has a CDMA-HA-IP-Addr attribute. If it does, then the Mobile IP client has been assigned a HA address already and the resource manager does not need to do anything.

If the value of the CDMA-HA-IP-Addr attribute in the request dictionary is 0.0.0.0, the home-agent resource manager assigns a HA and puts a new CDMA-HA-IP-Addr attribute whose value is the IP address of the HA in the response dictionary.

If the value of the CDMA-HA-IP-Addr attribute is not 0.0.0.0, the Mobile IP client has been assigned a HA address already. The home-agent resource manager copies the attribute (with its value) from the request dictionary into the response dictionary.

The Prime Access Registrar server might select the session manager based on the domain (using the rule engine, dynamic properties, or scripting), and it allows each session manager to have its own home-agent resource manager.

New 3GPP2 VSAs in the Cisco Prime Access Registrar Dictionary

Prime Access Registrar supports 3GPP2 vendor-specific attributes (VSAs) in the vendor-specific dictionary in /Radius/Advanced/Attribute Dictionary.

There is no planned support for the Accounting-Container (3GPP2/6) attribute because it has different syntax than other vendor-specific attributes (VSAs) and requires special processing.

Session Correlation Based on User-Defined Attributes

All the session objects are maintained in one dictionary keyed by a string.

You can define the keying material to the session dictionary through a newly introduced environment variable, Session-Key. If the Session-Key is presented at the time of session manager process, it will be used as the key to the session object for this session. The Session-Key is of type string. By default, the Session-Key is not set. It's value should come from attributes in the incoming packet and is typically set by scripts. For example, CLID can be used to set the value of Session-Key.

Use the script UseCLIDAsSessionKey as defined in the script **rexscript.c** to specify that the Calling-Station-Id attribute that should be used as the session key to correlate requests for the same session. This is a typical case for 3G mobile user session correlation. You can provide your own script to define other attributes as the session key.

In the absence of the Session-Key variable, the key to the session will be created based on the string concatenated by the value of the NAS and the NAS-Port.

There is a new option *with-key* available in **aregcmd** for query-sessions and release-sessions to access sessions by Session-Key.

Managing Multiple Accounting Start/Stop Messages

Since the PDSN is aware when it sends a RADIUS stop followed by a start record, it inserts the new Session Continue attribute (3GPP2/48) into the stop record. The existence of the Session Continue attribute denotes that a start record will immediately be sent and the packet data session continues on the PDSN.

When Prime Access Registrar receives an accounting stop packet, the following two conditions trigger a release of a session and its resources:

- There is no 3GPP2/48 Session Continue attribute in the stop packet and the number of accounting stops received is greater or equal to the starts received for this session
- The 3GPP2/48 Session Continue attribute is present in the stop packet, but its value is zero (0)

One of the conditions above must be true to release the session and its resources.

NULL Password Support

Prime Access Registrar introduced a new Prime Access Registrar environment variable, *Allow-NULL-Password*. At authentication time, if the following three conditions are met, user authentication is bypassed:

- 1. Allow-NULL-Password environment variable is set to TRUE.
- 2. The User-Password or CHAP-Password must be NULL in the incoming request. (If it is not NULL, normal password checking will occur.)
- 3. A user record exists for this user.

By default, the Allow-NULL-Password environment variable is not set.

Note

You should be aware of the security impact when using the NULL Password feature.

You can set this environment variable three different ways:

- 1. For the user in local database, one new field *AllowNullPassword* is added in the user record. When Prime Access Registrar fetches a user record for authentication, if this field is set to TRUE and Allow-NULL-Password environment variable does not exist, it sets *Allow-NULL-Password* environment variable to TRUE.
- **2.** If the user record is in LDAP database, then the *LDAPToEnvironmentMappings* must be defined to map an attribute in LDAP user record to *Allow-NULL-Password* environment variable.
- **3.** Through scripting which allows the decision to be made based on runtime conditions, such as attributes in the access-request or policies.

