

OL-29189-01
C H A P T E R 18

Directing RADIUS Requests

You can use the policy engine to determine the AAA services for processing a request packet based on
the User-Name suffix, User-Name prefix, Calling-Station-ID, Called-Station-ID and Nas-IP-Address.
You configure the policy Engine through policies and rules.

This chapter contains the following sections:

• Configuring Policies and Rules

• Routing Requests

• Standard Scripts Used with Rules

Configuring Policies and Rules
A policy is a group of rules. Each rule consists of a set of conditions and corresponding services. A rule
succeeds if all the conditions specified in the rule are satisfied. If a rule succeeds, the services indicated
by its service attributes are used to process the packet. However, Prime Access Registrar defers packet
processing until the policy succeeds.

This section contains the following topics:

• Configuring Policies

• Configuring Rules

• Wildcard Support

• Script and Attribute Requirements

• Validation

• Known Anomalies

Configuring Policies
You configure policies under /Radius/Policies. To enable the Prime Access Registrar server to use
policies, you must first configure policy named SelectPolicy.

[//localhost/Radius/Policies/SelectPolicy]
Name = SelectPolicy
Description =
Grouping = rule1|rule2
18-1
Cisco Prime Access Registrar 6.0.1 User Guide

Chapter 18 Directing RADIUS Requests
 Configuring Policies and Rules
The Grouping property of a policy determines which rules are to be evaluated and in which order. Rules
are evaluated from left to right. Use the pipe (|) or ampersand (&) character to group rules.

Note Before you can provide rules in the Grouping property, the rules must first be added to the configuration
under /Radius/Rules.

The following are the Grouping property rules:

• If rules are grouped with the pipe character (rule1|rule2), all rules in the group are evaluated in
sequential order until one of the rules succeeds. If any one of the rules in the policy succeeds, the
policy succeeds.

• If rules are grouped with the ampersand character (rule1&rule2&tule3), all the rules listed are
evaluated until one of the rules fails. For the policy to succeed, all the rules in the policy must
succeed.

Configuring Rules
You configure rules under /Radius/Rules. When you add a rule, provide the script that should be
executed for the rule and the attributes to use if the rule succeeds. The script you specify must be defined
under /Radius/Scripts, as shown in the following:

[//localhost/Radius/Rules/rule1]
Name = rule1

Description =
Script~ =
Attributes/

Authentication-service = local-users
Authorization-service = local-users
Realm = @cisco.com

[//localhost/Radius/Scripts/ExecRealmRule]
Name = ExecRealmRule
Description =
Language = Rex
Filename = librexscript.so
EntryPoint = ExecRealmRule
InitEntryPoint =
InitEntryPointArgs =

Wildcard Support
Prime Access Registrar supports limited wildcard functionality in rules for Realm, DNIS, and CLID
attributes, specifically the asterisk (*) and question mark (?) characters. The asterisk matches any
number of characters, including the null character. The question mark matches any single character, not
including the null character. Prime Access Registrar also supports both wildcard characters in one
pattern, as in CLID = 180098?87*.

Note The realms should start with either the @ or # character. For example, Realm=@cisco.com.

• For an exact matching of the realm, you should configure the rule with the exact realm. For example,
for an exact match to abc@cisco.com, you should use Realm=@cisco.com.
18-2
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Configuring Policies and Rules
• If you use Realm=cisco.com (without any valid character), values such as xyz@us.cisco.com,
xyz@uk.cisco.com, abc#cisco.com, and so on can also match and return a success.

The following is an example using the asterisk wildcard character used in a Rule named rule1:

[//localhost/Radius/Rules/rule1]
Name=rule1
Description =
ScriptName = ExecRealmRule
Attributes/

Authentication-Service = Local-Users
Authorization-Service = Local-Users
Realm = ~/@*cisco.com/

Rule rule1 succeeds when the domain of the username in an access request matches the @*cisco.com
pattern. Each of the following is a good match: @us.cisco.com, @eng.cisco.com, and @cisco.com. With
a match, the ExecRealmRule script sets Authentication-Service and Authorization-Service to
Local-Users in the environment dictionary.

The following is an example using the "?" wildcard character in a Rule named rule2:

[//localhost/Radius/Rules/rule2]
Name = rule2
Description =
ScriptName = ExecDNISRule
Attributes/

Authentication-Service = Translation-Service
Authorization-Service = Translation-Service
DNIS = 1800345987?

Rule rule2 succeeds if the Called-Station-Id attribute (DNIS) in the packet matches 1800345987?. Each
of the following is a good match: 18003459876 and 18003459870, while 1800345987 is not. With a
match, the ExecDNISRule script sets Authentication-Service and Authorization-Service to
Translation-Service in the environment dictionary.

Script and Attribute Requirements
The following script and attribute requirements exist:

• /Radius/Policies/SelectPolicy is the first policy Prime Access Registrar applies.

• The characters "|" and "&" are reserved as logical operands in a Grouping definition; they cannot be
included in a /Radius/Rules name.

• A space is not permitted between the logical operands and the rules in a Grouping definition.

• The scripts included in the rules must be defined under the /Radius/Scripts directory.

• The attributes included in the rules must be defined under the /Radius/Advanced/Attribute
Dictionary directory.

• The rules included in the policies must be defined under the /Radius/Rules directory.
18-3
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
Validation
When policies are configured, Prime Access Registrar performs the following validations:

• Ensures the scripts included in the rules are defined under the /Radius/Scripts directory.

• Ensures the attributes included in the rules are defined under the /Radius/Advanced/Attribute
Dictionary directory.

• Ensures the rules included in the policies are defined under the /Radius/Rule directory.

Known Anomalies
The following anomalies currently exist:

• Grouping expressions are not checked for validity.

• The use of parentheses to denote precedence is not supported in a Grouping definition.

• A check is not performed to determine whether a policy that is included within another policy is
defined under the /Radius/Policies directory.

Routing Requests
Using the policy engine, Prime Access Registrar enables you to route requests based on attributes in
access request packets. The following sections describe how to route requests based on different
attributes:

• Routing Requests Based on Realm

• Routing Requests Based on DNIS

• Routing Requests Based on CLID

• Routing Requests Based on NASIP

• Routing Requests Based on User-Name Prefix

• Attribute Translation

• Time of Day Access Restrictions

Routing Requests Based on Realm
The Prime Access Registrar policy engine can process request packets based on the realm in the
User-Name attribute.

In the following example, request packets with the User-Name attribute containing @abc.com as the
suffix should be processed locally and the request packets with User-Name attribute containing
@xyz.com should be proxied to a remote AAA Server.

[//localhost/Radius/Policies]
SelectPolicy/

Name = SelectPolicy
Description =
Grouping = abcrule|xyzrule
18-4
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
The following SelectPolicy refers to two rules abcrule and xyzrule:

1. When a request packet arrives, Prime Access Registrar executes SelectPolicy beginning with
abcrule to determine if the User-Name attribute contains @abc.com as the realm. If so, the abcrule
is successful as is SelectPolicy, therefore the packet is processed locally.

2. If the User-Name attribute does not contain @abc.com as the realm,Prime Access Registrar
executes xyzrule to determine if the User-Name attribute contains @xyz.com. If so, xyzrule is
successful as is SelectPolicy. Hence the request is proxied to the remote server specified in
xyz-service.

In this example, the rules are grouped using the | (or) operator. So all the rules specified in the grouping
parameter will be executed until one of them succeeds.

[//localhost/Radius/Rules]
abcrule/

Name = abcrule
Description =
Script~ = ExecRealmRule
Attributes/

Authentication-Service = local-users
Authorization-Service = local-users
Realm = @abc.com

xyzrule/
Name = xyzrule
Description =
Script~ = ExecRealmRule
Attributes/

Authentication-Service = xyz-service
Authorization-Service = xyz-service
Realm = @xyz.com

The ExecRealmRule script matches the realm with the suffix in the User-Name attribute and sets the
appropriate service for processing the packet. This is a standard script available with
Prime Access Registrar. Prime Access Registrar can also be configured to set a particular kind of service
for multiple realms. For example, the following configuration can be used if packets with @pqr.com or
@klm.com should be processed using the same service klm-service.

[//localhost/Radius/Rules]
rulex/

Name = rulex
Description =
Script~ = ExecRealmRule
Attributes/

 Authentication-Service = klm-service
 Authorization-Service = klm-service
 Realm = “@pqr.com” “@klm.com”

Routing Requests Based on DNIS
The Prime Access Registrar policy engine can process request packets differently based on the DNIS
(Called-Station-Id) attribute in the request packet.

In the following example, request packets with the Calling-Station-Id attribute that contain 1111111
should be processed by abc-service, while request packets with the Called-Station-Id attribute that
contain 2222222 or 3333333 should be processed using xyz-service.

[//localhost/Radius/Policies]
SelectPolicy/
18-5
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
Name = SelectPolicy
Description =
Grouping = abcrule|xyzrule

The following SelectPolicy refers to two rules, abcrule and xyzrule:

1. When a request packet arrives, Prime Access Registrar executes SelectPolicy beginning with
abcrule to determine if the DNIS attribute contains 1111111. If so, the abcrule is successful as is
SelectPolicy, and the packet is processed using abc-service.

2. If the Called-Station-Id attribute does not contain 1111111, Prime Access Registrar executes the
xyzrule to determine if the Called-Station-Id attribute contains 2222222 or 3333333. If so, xyzrule
is successful as is SelectPolicy, and the packet is processed using xyz-service.

[//localhost/Radius/Rules]
abcrule/

Name = abcrule
Description =
Script~ = ExecDNISRule
Attributes/

Authentication-Service = abc-service
Authorization-Service = abc-service
DNIS = 1111111

xyzrule/
Name = xyzrule
Description =
Script~ = ExecDNISRule
Attributes/

Authentication-Service = xyz-service
Authorization-Service = xyz-service
DNIS = “2222222” “3333333”

The ExecDNISRule script matches the DNIS value configured in Prime Access Registrar with the value
in the Called-Station-Id attribute of the request packet and sets the appropriate service for processing the
packet. ExecDNISRule is a standard script available with Prime Access Registrar.

Routing Requests Based on CLID
The Prime Access Registrar policy engine can process request packets differently based on the CLID
value in arriving request packets.

In the following example, the request packets with a Calling-Station-Id (CLID) attribute value of
1111111 should be processed by abc-service and the request packets with the CLID attribute value of
2222222 or 3333333 should be processed using xyz-service.

[//localhost/Radius/Policies]
SelectPolicy/

Name = SelectPolicy
Description =
Grouping = abcrule|xyzrule

The following SelectPolicy refers to two rules, abcrule and xyzrule:

1. When a request packet arrives, Prime Access Registrar executes SelectPolicy beginning with
abcrule to determine if the CLID attribute contains 1111111. If so, the abcrule is successful as is
SelectPolicy, and the packet is processed using abc-service.

2. If the CLID attribute does not contain 1111111, Prime Access Registrar executes xyzrule to
determine if the CLID attribute contains 2222222 or 3333333. If so, xyzrule is successful and hence
SelectPolicy becomes successful and the packet is processed using xyz-service.
18-6
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
[//localhost/Radius/Rules]
abcrule/

Name = abcrule
Description =
Script~ = ExecCLIDRule
Attributes/

Authentication-Service = abc-service
Authorization-Service = abc-service
CLID = 1111111

xyzrule/
Name = xyzrule
Description =
Script~ = ExecCLIDRule
Attributes/

Authentication-Service = xyz-service
Authorization-Service = xyz-service
CLID = “2222222” “3333333”

The ExecCLIDRule script matches the CLID value configured in Prime Access Registrar with the value
in the CLID attribute of the request packet and sets the appropriate service for processing the packet.
ExecCLIDRule is a standard script available with Prime Access Registrar.

Routing Requests Based on NASIP
The Prime Access Registrar policy engine can process request packets differently based on the client IP
address value in arriving request packets.

In the following example, arriving request packets with the NAS-IP-Address attribute value 1.1.1.1
should be processed by abc-service and arriving request packets with the NAS-IP-Address attribute
value 2.2.2.2 should be processed using xyz-service.

[//localhost/Radius/Policies]
SelectPolicy/

Name = SelectPolicy
Description =
Grouping = abcrule|xyzrule

The following SelectPolicy refers to two rules, abcrule and xyzrule:

1. When a request packet arrives, Prime Access Registrar executes SelectPolicy beginning with
abcrule to determine if the NAS-IP-Address attribute contains an IP address from the subnet
1.1.1.0/24. If so, the abcrule is successful as is SelectPolicy, and the packet is processed using
abc-service.

2. If the NAS-IP-Address attribute does not contain an IP address from the subnet 1.1.1.0/24,
Prime Access Registrar executes xyzrule to determine if the NAS-IP-Address attribute contains
2.2.2.2. If so, xyzrule is successful as is SelectPolicy, and the packet is processed using xyz-service.

[//localhost/Radius/Rules]s
abcrule/

Name = abcrule
Description =
Script~ = ExecNASIPRule
Attributes/

Authentication-Service = abc-service
Authorization-Service = abc-service
Client-IP-Address = 1.1.1.0
Subnet-mask = 255.255.255.0

xyzrule/
18-7
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
Name = xyzrule
Description =
Script~ = ExecNASIPRule
Attributes/

Authentication-Service = xyz-service
Authorization-Service = xyz-service
Client-IP-Address = 2.2.2.2

The ExecNASIPRule script matches the Client IP address configured in Prime Access Registrar with
the value in the NAS-IP-Address attribute of the request packet and sets the appropriate service for
processing the packet. ExecNASIPRule is a standard script available with Prime Access Registrar.

Routing Requests Based on User-Name Prefix
You can use the Prime Access Registrar policy engine to select a service based on the prefix in the
User-Name attribute.

In the following example, request packets with a User-Name attribute that contains @abc.com as the
suffix and cisco as the prefix should be processed using the service abc-service. A request packet with
User-Name attribute containing cisco/bob@abc.com will be processed using abc-service.

[//localhost/Radius/Policies]
SelectPolicy/

Name = SelectPolicy
Description =
Grouping = suffixrule & prefixrule

The following SelectPolicy refers to two rules, suffixrule and prefixrule:

1. When a request packet arrives, Prime Access Registrar executes SelectPolicy beginning with
suffixrule to determine if the realm in the User-Name attribute contains @abc.com. If so, the
suffixrule is successful. Since there is an “&” operator between the rules, the prefixrule must also
succeed for the SelectPolicy to be successful.

2. The prefixrule is now processed to determine if the prefix in the User-Name attribute contains cisco.
If so, the prefixrule is successful which makes SelectPolicy successful, and the AA service is set to
the service specified in the prefixrule.

[//localhost/Radius/Rules]
abcrule/

Name = suffixrule
Description =
Script~ = ExecRealmRule
Attributes/

Realm = @abc.com

prefixrule/
Name = prefixrule
Description =
Script~ = ExecPrefixRule
Attributes/

Authentication-Service = abc-service
Authorization-Service = abc-service
Delimiters = @#%&/
Prefix = cisco
StripPrefix = No
18-8
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
ExecPrefixRule script matches the prefix configured in Prime Access Registrar with the prefix in the
User-Name attribute of the request packet and sets the appropriate service for processing the packet.
ExecPrefixRule is a standard script available with Prime Access Registrar. See ExecPrefixRule for
more information.

Attribute Translation
The attribute translation feature supports the RADIUS proxy enabling you to customize attribute filters
so that RADIUS attribute value (AV) pairs can be inserted, deleted, or substituted.

For example, when a request is proxied from AAA Server on ISP A to AAA Server on ISP B, some AV
pairs might be substituted (such as IP address) because they might not be valid on the ISP B network.
Additionally, ISP B might return some vendor-specific attributes (VSAs) that are not applicable to ISP
A's network. Therefore, ISP A will substitute ISP B's VSA value pairs for ISP A's VSAs.

Two configuration points under the /Radius directory support this feature,

• Translations

• TranslationGroups

• Parsing Translation Groups

Translations

Under the /Radius/Translations directory, any translation to insert, substitute, or translate attributes can
be added. The following is a sample configuration under the /Radius/Translations directory:

[//localhost/Radius/Translations/T1]
Name = T1
Description =
DeleteAttrs = Session-Timeout,Called-station-id
Attributes/

Calling-Station-id = 1232909

DeleteAttrs is the set of attributes to be deleted from the packet. Each attribute is comma separated and
no spaces are allowed between attributes.

Under the /Radius/Translations/T1/Attributes directory, the attributes that should be inserted and the
attributes that should be substituted are specified. These AV pairs are either added to the packet if not
present already or replaced with the configured value.

TranslationGroups

Under the /Radius/TranslationGroups directory, translations can be grouped and applied to certain sets
of packets, which are referred to in a rule.

The following is a sample configuration under the /Radius/TranslationGroups directory:

[//localhost/Radius/TranslationGroups/CiscoIncoming]
 Name = CiscoIncoming
 Description =
 Translations/

1. T1

The translation group is referenced through the Prime Access Registrar policy engine in the
/Radius/Rules/<RuleName>/Attributes directory.

• Incoming-Translation-Groups are set to a translation group (for example CiscoIncoming).
18-9
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
• Outgoing-Translation-Groups are to set to another translation group (for example CiscoOutgoing).

The following is an example of setting up a rule for a translation group.

[//localhost/Radius/Rules/ciscotranslationrule]
Name = ciscotranslationrule
Description =
Script~ = ParseTranslationGroupsByRealm
Attributes/

Incoming-Translation-Groups = CiscoIncoming
Outgoing-Translation-Groups = CiscoOutgoing
Realm = @cisco.com

The ciscoTranslationRule rule must be referred to in the /Radius/Policies directory, so the
Prime Access Registrar policy engine can invoke this rule. If the pattern of Realm, DNIS, or CLID
matches the one defined in the rule, Prime Access Registrar sets the environment variable
Incoming-Translation-Groups to CiscoIncoming. By looking up the definition of CiscoIncoming,
Prime Access Registrar applies all of the translations to the incoming packet (before it is proxied to the
other server).

When the proxied packet comes back to the RADIUS server, Prime Access Registrar sets the
environment variable, Outgoing-Translation-Groups to CiscoOutgoing.

DNIS, CLID, and Realm are supported for filtering packets. Prime Access Registrar provides the
following scripts to facilitate filtering based on DNIS, CLID and Realm.

Parsing Translation Groups

Prime Access Registrar provides three scripts that enable you to parse translation groups based on the
DNIS, CLID or Realm attribute in an incoming packet. These scripts are:

• ParseTranslationGroupsByDNIS

• ParseTranslationGroupsByCLID

• ParseTranslationGroupsByRealm

In the following example, request packets containing @abc.com as the realm should be proxied to the
remote server defined under abc-service. Before redirecting the request packet to the remote server, the
Calling-Station-Id of the packet should be changed to 111.

[//localhost/Radius/Policies]
SelectPolicy/

Name = SelectPolicy
Description =
Grouping = realmrule & translaterule

The following SelectPolicy refers to two rules, realmrule and translaterule:

1. When a request packet arrives, Prime Access Registrar executes SelectPolicy beginning with
“realmrule” to determine if the realm in the User-Name attribute contains 1.1.1.1. If so, the
realmrule is successful and and the AA service is set to abc-service.

2. Next Prime Access Registrar executes the translaterule to change the CLID of the packet to 111.

[//localhost/Radius/Rules/ciscotranslationrule]
Name = ciscotranslationrule
Description =
Script~ = ParseTranslationGroupsByRealm
Attributes/

Incoming-Translation-Groups = CiscoIncoming
Realm = @cisco.com
18-10
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
[//localhost/Radius/Translations]
Entries 1 to 1 from 1 total entries
Current filter: <all>
T1/

Name = T1
Description =
Attributes/

calling-station-id = 111

[//localhost/Radius/TranslationGroups]
Entries 1 to 1 from 1 total entries
Current filter: <all>
CiscoIncoming/

Name = CiscoIncoming
Description =
Translations/

1. T1

Time of Day Access Restrictions
You can use the Prime Access Registrar policy engine to implement access restriction on users based on
the time of day. The following are ExecTimeRule script that implements this functionality:

• ExecTimeRule can be used to check the time at which the request packet arrives and determine if
access should be granted based on the authorization parameters for the user.

• If the rule succeeds, ExecTimeRule sets the Acceptedprofiles Environment dictionary variable to a
profile or a set of profiles, as in the following:

Acceptedprofiles=Regularaccess::Highprivilegeaccess

Note If more than one profile is to be added to the Acceptedprofiles variable, use two colons to separate them
(::).

If the user is authenticated, the Baseprofile of the user is compared with the Acceptedprofiles. All the
profiles that are in the Baseprofile and in Acceptedprofiles will be used as profiles while sending the
response for the user.

For example, consider the following user configuration of user1:

[//localhost/Radius/UserLists/new/user1]
Name = user1
Description =
Password = <encrypted>
AllowNullPassword = FALSE
Enabled = TRUE
Group~ = regularusers
BaseProfile~ =highprivilegeaccess::readonlyaccess::regularaccess
AuthenticationScript~ =
AuthorizationScript~ =
UserDefined1 =
Attributes/
CheckItems/

The Baseprofile of the user1 has highprivilegeaccess, readonlyaccess and regularaccess. If the
Acceptedprofiles of the user has regularaccess and highprivilegeaccess, the profiles regularaccess and
highprivilegeaccess will be used while sending the response packet.

This section contains the following topics:
18-11
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
• Setting Time Ranges in ExecTimeRule

• ExecTimeRule Example Configuration

• Reducing Overhead Using Policies to Group Rules

• ParseTranslationGroupsByDNIS

Setting Time Ranges in ExecTimeRule

ExecTimeRule accepts time range in the following format.

Set timerange “* * * * *”

The first star indicates minutes and can be a value from 0-59. The second star indicates hours and can
be a value from 0-23. The third star indicates day of the month and can be a value from 1-31. The fourth
star indicates month and can be a value from 1-12. The fifth star indicates day of the week and can be a
value from 0-6 where 0 indicates Sunday, 1 indicates Monday, and so on.

For example, to schedule a particular action to occur every Sunday during the month of December, use
a command line like this:

Set timerange “* * * 12 0”

ExecTimeRule Example Configuration

This section provides a configuration example where a user, user1, is only authorized for PPP service
between 10 AM and 6 PM. If a login occurs at any other time, user1 will be authorized only for telnet
service.

Policies

[//localhost/Radius/Policies]
Entries 1 to 1 from 1 total entries
Current filter: <all>
SelectPolicy/

Name = SelectPolicy
Description =
Grouping = ppprule|telnetrule

Rules

[//localhost/Radius/Rules]
Entries 1 to 2 from 2 total entries
Current filter: <all>
ppprule/

Name = ppprule
Description =
Script~ = ExecTimeRule
Attributes/

 acceptedprofiles = default-ppp-users
 timerange = "* 10-18 * * * "

telnetrule/
Name = telnetrule
Description =
Script~ = ExecTimeRule
Attributes/

 acceptedprofiles = default-telnet-users
18-12
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
 timerange = "* 0-10,18-23 * * * "

Profiles

[//localhost/Radius/Profiles]
Entries 1 to 5 from 5 total entries
Current filter: <all>
default-PPP-users/

Name = default-PPP-users
Description =
Attributes/

Ascend-Idle-Limit = 1800
Framed-Compression = "VJ TCP/IP header compression"
Framed-MTU = 1500
Framed-Protocol = PPP
Framed-Routing = None
Service-Type = Framed

default-Telnet-users/
Name = default-Telnet-users
Description =
Attributes/

Login-IP-Host = 204.253.96.3
 Login-Service = Telnet
 Login-TCP-Port = 541

User

[//localhost/Radius/UserLists/new/user1]
Name = user1
Description =
Password = <encrypted>
AllowNullPassword = FALSE
Enabled = TRUE
Group~ = regularusers
BaseProfile~ = default-telnet-users::default-ppp-users
AuthenticationScript~ =
AuthorizationScript~ =
UserDefined1 =
Attributes/
CheckItems/

Reducing Overhead Using Policies to Group Rules

When you configure a large number of rules, the processing of request packets can be slow. For example,
if you have 50 rules and only the last rule succeeds, the Prime Access Registrar server will have to check
the preceding 49 rules before executing the rule that succeeds. You can reduce this overhead by using
policies to group rules.

The following sample configuration, Prime Access Registrar must choose the AA service to be used for
two domains, abc.com and xyz.com, based on the DNIS. You can do this by configuring different
policies for different domains.
18-13
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Routing Requests
Policies

In the following configuration, SelectPolicy selects the policy to process packets with realm abc.com or
xyz.com. Based on the realm that arrives in the request packet, abcrealmrule and xyzrealmrule decide
whether to use abc-policy or xyz-policy to process the packets. abc-policy and xyz-policy are configured
with rules to check for DNIS numbers in the respective domains and set the AA services appropriately.

[//localhost/Radius/Policies]
Entries 1 to 3 from 3 total entries
Current filter: <all>
SelectPolicy/

Name = selectpolicy
Description =
Grouping = abcrealmrule|xyzrealmrule

abc-policy/
Name = abc-policy
Description =
Grouping = abcDNISrule1|abcDNISrule2

xyz-policy/
Name = xyz-policy
Description =
Grouping = xyzDNISrule1|xyzDNISrule2

Rules

[//localhost/Radius/Rules]
Entries 1 to 6 from 6 total entries
Current filter: <all>

abcrealmrule/
Name = abcrealmrule
Description =
Script~ = ExecRealmRule
Attributes/

policy = abc-policy
realm = @abc.com

xyzrealmrule/
Name = xyzrealmrule
Description =
Script~ = ExecRealmRule
Attributes/

policy = xyz-policy
realm = @xyz.com

abcDNISrule1/
Name = abcDNISrule1
Description =
Script~ = ExecDNISRule
Attributes/

Authentication-Service = abc1-service
Authorization-Service = abc1-service
DNIS = 1111111

abcDNISrule2/
Name = abcDNISrule2
Description =
Script~ = ExecRealmRule
Attributes/

Authentication-Service = abc2-service
Authorization-Service = abc2-service
DNIS = 2222222

xyzDNISrule1/
Name = xyzDNISrule1
Description =
18-14
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
Script~ = ExecRealmRule
Attributes/

Authentication-Service = xyz1-service
Authorization-Service = xyz2-service
DNIS = 6666666

xyzDNISrule2/
Name = xyzDNISrule2
Description =
Script~ = ExecRealmRule
Attributes/

Authentication-Service = xyz2-service
Authorization-Service = xyz2-service

DNIS = 7777777

Standard Scripts Used with Rules
Prime Access Registrar software includes the following scripts that you can use with the rules:

• ExecRealmRule

• ExecDNISRule

• ExecCLIDRule

• ExecNASIPRule

• ExecPrefixRule

• ExecSuffixRule

• ExecTimeRule

• ParseTranslationGroupsByRealm

• ParseTranslationGroupsByDNIS

• ParseTranslationGroupsByCLID

ExecRealmRule
Use the ExecRealmRule script to determine the Authentication service and Authorization service to be
used to process the request packet based on the suffix (Realm) in the User-Name attribute. You configure
the Realm for which the packet should be checked and the service to use in the Attributes subdirectory
of a rule. The ExecRealmRule script supports multivalued attributes with which you can configure to
check for multiple Realms.

For example, the following statement checks the request packet for three realms. If one of these three
realms is found in the request packet, the ExecRealmRule script sets the attributes to the values listed
in the Attributes subdirectory of the rule that references the ExecRealmRule script.

set Realm "@cisco.com" "@foo.com" "#bar.com"

Note Only the characters @ and # can be used as delimiters in ExecRealmRule.
18-15
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
Prior to Cisco Prime Access Registrar (Prime Access Registrar), ExecRealmRule was interpreted as a
regular expression pattern and was evaluated accordingly. ExecRealmRule now does a simple case
insensitive comparison by default of the value specified for the realm attribute for the realm of a
username and optionally performs regular expression matching.

You can now specify a pattern using the following notation:

~/pattern/

Where pattern is a string of alpha-numeric characters that might include wild card characters, as in
“@*cisco.com” to match patterns (realms) that end in cisco.com.

Note The question mark (?) should not be used without a character pattern preceding it. Specifying ? as the
first character might have undesirable results. (For regexp terminology, the question mark should be
preceded by an atom.)

The ExecRealmRule script checks the request packet for the Realm and applies the values set for the
following attributes:

• Authentication-Service

• Authorization-Service

• Policy

ExecDNISRule
Use the ExecDNISRule script to determine the Authentication service and Authorization service to be
used to process the request packet based on the Called-Station-Id (DNIS) attribute. The DNIS for which
the packet should be checked and the services can be configured through the Policy Engine. The
ExecDNISRule script supports multivalued attributes, by which you can configure multiple DNIS for
checking.

For example, the following statement checks for a Calling-Station-Id of 1111111, 2222222, or 3333333.
If one of the DNIS values is true, the script applies the values set for the Authentication-Service,
Authorization-Service, and Policy attributes.

set DNIS “1111111” “2222222” “3333333”

ExecCLIDRule
Use the ExecCLIDRule script with the Policy Engine to determine the Authentication service and
Authorization service to be used to process the request packet based on the Calling-Station-Id (CLID)
attribute. The CLID for which the packet should be checked and the services can be configured through
the Policy Engine. ExecCLIDRule supports multivalued attributes by which you can configure multiple
CLID for checking.

For example, the following statement checks for Calling-Station-ID and applies Authentication-Service,
Authorization-Service, and Policy.

set CLID “1111111” “2222222” “3333333”

The ExecCLIDRule script checks the request packet for the Calling-Station-Id and applies the values
set for the following attributes:
18-16
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
• Authentication-Service

• Authorization-Service

• Policy

ExecNASIPRule
The Policy Engine references the ExecNASIPRule script to determine the AAA Services, Policy and
Session Manager based on the Client-IP-Address and Subnet-Mask set in the Policy Engine. The
ExecNASIPRule script supports multi-value attributes by which multiple you can configure the
Client-IP-Address and Subnet-Mask in aregcmd for checking.

For example, the following statements check for Client-IP-Address and Subnet-Mask and applies
Authentication-Service, Authorization-Service, Accounting-Service, Policy, and Session-Manager.

set Client-IP-Address "1.1.1.1" "2.2.2.2" "3.3.3.3"

set Subnet-Mask "255.255.255.0" "255.255.0.0" "255.0.0.0"

The ExecNASIPRule script checks the request packet for the Client-IP-Address and Subnet-Mask and
applies the values set for the following attributes:

• Authentication-Service

• Authorization-Service

• Accounting-Service

• Policy

• Session Manager

ExecPrefixRule
The Policy Engine references the ExecPrefixRule to determine the authentication and authorization
services based on the prefix in the User-Name attribute of the request packet and assigns the appropriate
service for processing the packet.

Table 18-1 lists the ExecPrefixRule script attributes.

Table 18-1 ExecPrefixRule Attributes

Attribute Description

Delimiters A list of valid delimiters; you can use any
character as a delimiter, such as @#-/.

Prefix List of valid prefixes.

StripPrefix Option to strip or not to strip the prefix from the
User-Name. If you configure this attribute to
YES, the ExecPrefixRule strips the prefix from
the User-Name. If you configure this attribute to
NO, the ExecPrefixRule does not strip the prefix
from the User-Name. By default, this attribute is
set to YES.
18-17
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
For example, if cisco/bob@abc.com is the User-Name attribute, the ExecPrefixRule script sets the
Authentication-Service to abc-service and User-Name to:

• bob@abc.com when the StripPrefix attribute is set to YES.

• cisco/bob@abc.com when the StripPrefix attribute is set to NO.

You can configure the Prefix attribute in Prime Access Registrar using the aregcmd as follows:

set Prefix “cisco”

The Prime Access Registrar server does a case-insensitive comparison of the value specified for the
prefix attribute of a username.

You can configure the Prefix by specifying a pattern using the following notation:

~/pattern/

[//localhost/Radius/Rules/prefix/Attributes]

Delimiters = #@-/

Prefix = ~/cis*/

Where a pattern is a string of alpha-numeric characters that can include wild card characters, as in
“cis*” to match patterns (realms) that start with “cis”.

Note If you specify / as the delimiter while configuring ExecPrefix Rule, you must configure the prefix as
Prefix =~/pattern//.

Note The question mark (?) should not be used without a character pattern preceding it. Specifying ? as the
first character might have undesirable results. (For regexp terminology, the question mark should be
preceded by an atom.)

ExecSuffixRule
The Policy Engine references ExecSuffixRule to determine the AAA services, policy and session
managers based on the suffix (or realm) set in the Policy Engine. You can use aregcmd to configure
ExecSuffixRule to support multivalued attributes, as in the following:

set Suffix “cisco.com” “abc.com” “domain.com”

In the User-Name bob@abc.com, ExecSuffixRule first checks for any of the configured delimiters in
the User-Name. If there is a match, ExecSuffixRule checks for the configured suffix in the User-Name.
If the suffix matches, ExecSuffixRule checks for the value of the StripSuffix variable. If StripSuffix is
set to Yes, the suffix (including the delimiter) is stripped from the User-Name attribute of the Access
Request.

Table 18-2 lists the ExecSuffixRule script attributes.

Table 18-2 ExecSuffixRule Attributes

Attribute Description

Delimiters A list of valid delimiters; you can use any character as a
delimiter such as these: @#/
18-18
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
The Prime Access Registrar server does a case-insensitive comparison of the value specified for the
suffix attribute for the suffix of a username.

You can also specify a pattern using the following notation:

~/pattern/

Where pattern is a string of alpha-numeric characters that might include wild card characters, as in
“@*cisco.com” to match patterns (realms) that end in cisco.com.

Note The question mark (?) should not be used without a character pattern preceding it. Specifying ? as the
first character might have undesirable results. (For regexp terminology, the question mark should be
preceded by an atom.)

Configurating Suffix and Prefix Policies

Step 1 Activate the Policy Engine by configuring SelectPolicy.

For example, the following script explains you how to set a suffix and prefix policy in the Grouping list.

--> cd selectPolicy/

[//localhost/Radius/Policies/SelectPolicy]
Name = SelectPolicy
Description =
Grouping = suffixrule&prefixrule

Step 2 Run the configuration rules for Prefix and Suffix.

For example, the suffix and prefix rule configuration do the following:

• points to the ExecSuffixRule script

• specifies the delimiters for which to scan

• specifies the suffixes for which to scan

• indicates whether to strip the suffix from the User-Name

[//localhost/Radius/Rules]
 Entries 1 to 2 from 2 total entries
 Current filter: <all>

 prefixrule/
 Name = prefixrule
 Description =
 Type = radius
 Script~ = ExecPrefixRule
 Attributes/
 Authentication-Service = local-users

Suffix List of valid suffixes to scan

StripSuffix The default value (No) does not strip the suffix from the
User-Name. When set to Yes, ExecSuffixRule does strip the
suffix.

Table 18-2 ExecSuffixRule Attributes (continued)

Attribute Description
18-19
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
 Authorization-Service = local-users
 Delimiters = @#%$/
 Prefix = cisco
 StripPrefix = no
 suffixrule/
 Name = suffixrule
 Description =
 Type = radius
 Script~ = ExecRealmRule
 Attributes/
 Realm = @cisco.com

In this example, if bob@abc.com is the User-Name attribute, ExecSuffixRule strips the User-Name
bob@abc.com and sets the User-Name environment variable to bob because StripSuffix is configured as
yes.

ExecTimeRule
Use the ExecTimeRule script to implement access restriction on users based on time. The
ExecTimeRule script checks the time at which the request packet arrives and based on that the
authorization parameters for the user can be decided. Based on the time of the request packet if the rule
succeeds then ExecTimeRule sets the environment variable, Acceptedprofiles to a profile or a set of
profiles.

For example, the following statement checks for Timerange and applies AcceptedProfiles.

Acceptedprofiles=Regularaccess::Highprivilegeaccess

ParseTranslationGroupsByRealm
The Policy Engine references the ParseTranslationGroupsByReal script to determine the incoming and
outgoing translation groups based on realm set in the Policy Engine. Use the
ParseTranslationGroupsByReal script to add or filter attributes in request and response packets. The
ParseTranslationGroupsByReal script supports multi-value attributes enabling you to configure to check
for multiple Realms.

For instance, the following statement checks for three Realms. If True, the Policy Engine applies the
values set for the Incoming-Translation-Group and Outgoing-Translation-Groups attributes.

set Realm "@cisco.com" "@foo.com" "@bar.com"

ParseTranslationGroupsByDNIS
This script is referenced from the Policy Engine to determine the incoming and outgoing translation
groups based on DNIS set in the Policy Engine. This script can be used to add/filter attributes in
request/response packets. This script supports multi-value attributes, by which multiple DNIS can be
configured for checking.

For example, the following statement checks for Calling-Station-ID and applies
Incoming-Translation-Groups and Outgoing-Translation-Groups.

set DNIS "1111111" "2222222" "3333333"
18-20
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
ParseTranslationGroupsByCLID
The Policy Engine references the ParseTranslationGroupsByCLID script to determine the incoming and
outgoing translation groups based on CLID set in the Policy Engine. You can use the
ParseTranslationGroupsByCLID script to add and filter attributes in request and response packets. The
ParseTranslationGroupsByCLID script supports multi-value attributes, by which you can configure
multiple CLIDs for checking.

For example, the following statement checks for the Calling-Station-ID and applies
Incoming-Translation-Groups and Outgoing-Translation-Groups.

set CLID "1111111" "2222222" "3333333"

ParseTranslationGroupsByDNIS

The ParseTranslationGroupsByDNIS script is referenced from the policy engine to determine the
incoming and outgoing translation groups based on DNIS set in the policy engine. The
ParseTranslationGroupsByDNIS script can be used to add and/or filter attributes in request and
response packets. The ParseTranslationGroupsByDNIS script supports multi-value attributes, by
which multiple DNIS can be configured for checking.

For example, the following statement checks for the Calling-Station-ID and applies
Incoming-Translation-Groups and Outgoing-Translation-Groups.

set DNIS "1111111" "2222222" "3333333"
18-21
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

Chapter 18 Directing RADIUS Requests
 Standard Scripts Used with Rules
18-22
Cisco Prime Access Registrar 6.0.1 User Guide

OL-29189-01

	Directing RADIUS Requests
	Configuring Policies and Rules
	Configuring Policies
	Configuring Rules
	Wildcard Support
	Script and Attribute Requirements
	Validation
	Known Anomalies

	Routing Requests
	Routing Requests Based on Realm
	Routing Requests Based on DNIS
	Routing Requests Based on CLID
	Routing Requests Based on NASIP
	Routing Requests Based on User-Name Prefix
	Attribute Translation
	Translations
	TranslationGroups
	Parsing Translation Groups

	Time of Day Access Restrictions
	Setting Time Ranges in ExecTimeRule
	ExecTimeRule Example Configuration
	Reducing Overhead Using Policies to Group Rules

	Standard Scripts Used with Rules
	ExecRealmRule
	ExecDNISRule
	ExecCLIDRule
	ExecNASIPRule
	ExecPrefixRule
	ExecSuffixRule
	Configurating Suffix and Prefix Policies

	ExecTimeRule
	ParseTranslationGroupsByRealm
	ParseTranslationGroupsByDNIS
	ParseTranslationGroupsByCLID
	ParseTranslationGroupsByDNIS

