

Cisco Active Network Abstraction Technology Support and Information Model Reference Manual, Version 3.6

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883

Text Part Number: OL-12516-01

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCVP, the Cisco logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networking Academy, Network Registrar, *Packet*, PIX, ProConnect, ScriptShare, SMARTnet, StackWise, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0705R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco Active Network Abstraction Technology Support and Information Model Reference Manual, Version 3.6 © 1999-2007 Cisco Systems, Inc. All rights reserved.

CONTENTS

Preface xi Obtaining Documentation, Obtaining Support, and Security Guidelines xii Introduction 1-1 CHAPTER 1 Supported Technologies 1-1 Networking Related IMOs 1-3 Termination Points 1-3 Forwarding Components 1-4 Conventions Used in this Guide 1-5 Internet Protocol "IP" 2-1 CHAPTER 2 Technology Description 2-1 P 2-1 ARP 2-1 HSRP 2-2 GRE 2-2 Inventory and Information Model Objects (IMOs) 2-2 IP Interface 2-3 IP Multiplexer Entry 2-3 IP Interface Address 2-4 IP Subnetwork 2-4 Routing Entity 2-4 Equivalent Routing Entry 2-5 Routing Entry 2-5 ARP Entity 2-5 ARP Entry 2-5 IP Address Pool 2-6 IP Range Based Address Pool Entry 2-6 IP Subnet Based Address Pool Entry 2-6 Hot Standby Router Protocol (HSRP) Group Entry 2-7 Generic Routing Encapsulation (GRE) Tunnel Interface 2-7

Network Topology 2-8 Service Alarms 2-8

CHAPTER 3	Routing Protocols "BGP/OSPF" 3-1
	Technology Description 3-1
	BGP 3-1
	MP-BGP 3-2
	OSPF 3-2
	Inventory and Information Model Objects (IMOs) 3-2
	BGP Neighbor Entry 3-2
	OSPF Entry 3-3
	Network Topology 3-3
	Service Alarms 3-3
CHAPTER 4	Ethernet (IEEE 802™.3) 4-1
	Technology Description 4-1
	Ethernet 4-1
	LAG 4-1
	Carrier Ethernet 4-2
	Spanning Tree Protocol "STP" 4-2
	QinQ (IEEE802.1ad) 4-2
	Inventory and Information Model Objects (IMOs) 4-3
	Link Aggregation Group 4-3
	Link Aggregation Group Port Entry 4-4
	Ethernet Interface 4-4
	Ethernet Physical 4-5
	Virtual LAN Interface 4-5
	Virtual LAN Entry 4-6
	Virtual LAN Multiplexer 4-6
	Virtual LAN Encapsulation 4-6
	Data Link Aggregation Container 4-7
	Spanning Tree Protocol Service 4-7
	Multiple Spanning Tree Protocol Service 4-8
	Multiple Spanning Tree Protocol Properties 4-8
	Spanning Tree Protocol Instance Information 4-8
	Multi Spanning Tree Protocol Instance Information 4-9
	Per Virtual LAN Spanning Tree Protocol Instance Information 4-9
	Rapid Spanning Tree Protocol Instance Information 4-9
	Spanning Tree Protocol Port Information 4-10
	Multi Spanning Tree Protocol Port Information 4-10
	Vendor Specific Inventory and Information Model Objects 4-10
	Cisco's Ethernet Channel 4-10

I

	QinQ (IEEE802.1ad) 4-11	
	Opening Cisco ANA PathTracer Over Networks 4-11	
	PathTracer Starting Points 4-11	
	PathTracer Endpoints 4-12	
	Using Cisco ANA PathTracer to View Path Information 4-12	
	Layer 2 4-12	
	Layer 3 4-12	
	Network Topology 4-13	
	Service Alarms 4-13	
CHAPTER 5	 Token Ring "TR" (IEEE 802™.5) 5-1	
	Technology Description 5-1	
	Token Ring 5-1	
	Inventory and Information Model Objects (IMOs) 5-1	
	Token Ring Interface 5-2	
	Token Ring Physical 5-2	
	Network Topology 5-2	
	Service Alarms 5-2	
CHAPTER 6	Asynchronous Transfer Mode "ATM" 6-1	
	Technology Description 6-1	
	ATM 6-1	
	IMA 6-1	
	Inventory and Information Model Objects (IMOs) 6-2	
	ATM Interface 6-2	
	ATM Virtual Connection 6-3	
	Inverse Multiplexing for ATM (IMA) Group 6-3	
	ATM Traffic Descriptor 6-4	
	ATM Traffic Shape Descriptor 6-5	
	Vendor Specific Inventory and Information Model Objects 6-5	
	Lucent's ATM Trunk Interface 6-5	
	Cisco or Lucent's ATM Logical Interface 6-6	
	Cisco or Lucent's ATM Trunk Virtual Connection 6-6	
	Cisco or Lucent's ATM Soft Permanent Virtual Connection 6-7	
	Alcatel's ASAM ATM Interface 6-7	
	FCI's HiFocus ATM Interface 6.7	
	Alcatel's ASAM ATM Traffic Descriptor 6-8	
	FCI's HiForus ATM Traffic Descriptor 60	
	Lot a through A the traine descriptor 0 - 0	

L

	Lucent's WAN Switch ATM Traffic Descriptor 6-8 Alcatel's ATM Access Traffic Descriptor 6-8 Alcatel's ASAM Access Traffic Descriptor 6-9
	Network Topology 6-9
	Service Alarms 6-9
CHAPTER 7	Frame Relay "FR" 7-1
	Technology Description 7-1 Frame Relay 7-1
	Inventory and Information Model Objects (IMOs) 7-1 Frame Relay Interface 7-2 Frame Relay Virtual Connection 7-2
	Frame Relay Traffic Descriptor 7-3
	Frame Relay Logical Interface 7-3
	Frame Relay Trunk Virtual Connection 7-4
	Network Topology 7-4
	Service Alarms 7-4
CHAPTER 8	Point-to-Point Protocol "PPP" and High Level Data Link Control "HDLC" 8-1
	Technology Description 8-1 PPP 8-1
	HDLC 8-1
	Inventory and Information Model Objects (IMOs) 8-2 Point To Point Protocol Encapsulation 8-2 High Level Data Link Control Encapsulation 8-2
	Network Topology 8-3
	Service Alarms 8-3
CHAPTER 9	Layer 2 Tunnel Protocol "L2TP" 9-1
	Technology Description 9-1 L2TP 9-1
	Inventory and Information Model Objects (IMOs) 9-1 Layer 2 Tunnel Protocol Interface 9-2 Layer 2 Tunnel Protocol Session Entry 9-2 Vendor Specific Inventory and Information Model Objects 9-2
	Redback's Layer 2 Tunnel Protocol Group 9-3 Redback's Layer 2 Tunnel Protocol Domain Entry 9-4

I

	Network Topology 9-4
	Service Alarms 9-4
	L2TP Peer Is Not Established/Established 9-5
	L2TP Peer Was Removed 9-5
	L2TP Sessions Count Exceeded/Return to Normal 9-5
	Alarm Configuration Parameters 9-5
	Using Cisco ANA PathTracer to View L2TP Path Information 9-5
	Layer 3 9-6
	Layer 2 9-6
CHAPTER 10	Digital Subscriber Line "DSL" and Integrated Services Digital Network "ISDN" 10-1
	Technology Description 10-1
	xDSL 10-1
	ISDN 10-1
	Inventory and Information Model Objects (IMOs) 10-2
	Digital Subscriber Line Interface 10-2
	Asynchronous Digital Subscriber Line Interface 10-3
	Asynchronous Digital Subscriber Line 2 Interface 10-3
	DSL Traffic Descriptor 10-3
	Asynchronous DSL Traffic Descriptor 10-3
	Asynchronous DSL 2 Spectrum Traffic Descriptor 10-4
	Synchronous DSL Traffic Descriptor 10-4
	Synchronous High Bit Rate DSL Traffic Descriptor 10-4
	Integrated Services Digital Network (ISDN) Interface 10-5
	Integrated Services Digital Network (ISDN) Channel 10-5
	Integrated Services Digital Network (ISDN) Physical 10-6
	Vendor Specific Inventory and Information Model Objects 10-6
	ECI's HiFocus ADSL Traffic Descriptor 10-6
	Alcatel's ASAM SHDSL Traffic Descriptor 10-7
	Network Topology 10-7
	Service Alarms 10-7
CHAPTER 11	Physical Technologies 11-1
	Technology Description 11-1
	SONET/SDH 11-1
	POS 11-2
	DSx 11-2
	Inventory and Information Model Objects (IMOs) 11-2

L

	SONET/SDH Physical 11-2 Digital Signalling 0 Bundle Interface 11-3 Digital Signalling 1 Physical 11-3 Digital Signalling 3 Physical 11-4 Network Topology 11-4 Service Alarms 11-4
CHAPTER 12	Multiprotocol Label Switching "MPLS" 12-1
	Technology Description 12-1 MPLS 12-1
	Inventory and Information Model Objects (IMOs) 12-2 MPLS Interface 12-2 Label Switching Entity 12-2 Equivalent Label Switching Entry 12-3 MPLS Entry 12-3 MPLS Aggregate Entry 12-3 Network Topology 12-4 Service Alarms 12-4
CHAPTER 13	Multi Protocol Label Switching Traffic Engineering (MPLS-TE) 13-1 Inventory and Information Model Objects (IMOs) 13-1 MPLS TE Tunnel Interface 13-1 MPLS TE Properties 13-2 MPLS TE Allocation Entry 13-3 MPLS TE Tunnel Segment 13-3 Network Topology 13-3 Service Alarms 13-3
CHAPTER 14	Virtual Private Networks "VPNs" 141
	Technology Description 141 VPN 141 Inventory and Information Model Objects (IMOs) 141 Virtual Routing Forwarding (VRF) Entity 142 Equivalent Routing Entry 142 Virtual Routing Entry 142 Multi Protocol BGP Entity 143 Equivalent Cross Virtual Routing Entry 143 Cross Virtual Routing Entry 144

I

	Network Topology 144
	Service Alarms 144
CHAPTER 15	Pseudo Wire Emulation Edge to Edge (PWE3) 15-1
	Technology Description 15-1 PWE3 15-1
	Inventory and Information Model Objects (IMOs) 15-1 PTP Layer 2 MPLS Tunnel Interface 15-2
	Network Topology 15-2
	Service Alarms 15-2
CHAPTER 16	Quality of Service "QoS" 16-1
	Technology Description 16-1
	Quality of Service (QoS) 16-1
	Inventory and Information Model Objects (IMOs) 16-2
	Access List Traffic Descriptor 16-2
	Access List Entry 16-2
	Network Topology 16-3
	Service Alarms 16-3
CHAPTER 17	Physical Equipment 17-1
	Inventory and Information Model Objects (IMOs) 17-1
	Chassis 17-1
	Shelf 17-2
	Module 17-2
	Power Supply 17-3
	Port Connector 17-3
	Service Alarms 17-4
CHAPTER 18	Base Logical Components 18-1
	Inventory and Information Model Objects (IMOs) 18-1
	Managed Element 18-1
	Logical Root 18-2
	Physical Root 18-3
	Managed IP 18-3
	Context 18-3
	System Service 18-4
	Service Alarms 18-4

L

Cisco Active Network Abstraction Technology Support and Information Model Reference Manual, Version 3.6

CHAPTER 19

Common (Shared by Several) 19-1

Inventory and Information Model Objects (IMOs) 19-1

Physical Layer 19-1 Bridging Entity 19-2 Bridging Entry 19-3 VC Multiplexer 19-3 VC Encapsulation 19-4 Virtual Connection Switching Entity 19-4 Virtual Cross Connection 19-4 Forwarding Component Container 19-5 Traffic Descriptor Container 19-5 Tunnel Container 19-5 Network Topology 19-6 Service Alarms 19-6 1

Preface

This document outlines the level of functionality that Cisco ANA provides for each supported technology.

For a detailed description of the supported technologies see the following chapters:

- Chapter 1, "Introduction"
- Chapter 2, "Internet Protocol "IP""
- Chapter 3, "Routing Protocols "BGP/OSPF""
- Chapter 4, "Ethernet (IEEE 802TM.3)"
- Chapter 5, "Token Ring "TR" (IEEE 802[™].5)"
- Chapter 6, "Asynchronous Transfer Mode "ATM""
- Chapter 7, "Frame Relay "FR""
- Chapter 8, "Point-to-Point Protocol "PPP" and High Level Data Link Control "HDLC""
- Chapter 9, "Layer 2 Tunnel Protocol "L2TP""
- Chapter 10, "Digital Subscriber Line "DSL" and Integrated Services Digital Network "ISDN""
- Chapter 11, "Physical Technologies"
- Chapter 12, "Multiprotocol Label Switching "MPLS""
- Chapter 13, "Multi Protocol Label Switching Traffic Engineering (MPLS-TE)"
- Chapter 14, "Virtual Private Networks "VPNs""
- Chapter 15, "Pseudo Wire Emulation Edge to Edge (PWE3)"
- Chapter 16, "Quality of Service "QoS""
- Chapter 17, "Physical Equipment"
- Chapter 18, "Base Logical Components"
- Chapter 19, "Common (Shared by Several)"

Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly *What's New* in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

CHAPTER

Introduction

This document outlines the level of functionality that the system provides for each supported technology.

Note

This guide describes the system capabilities. The level of support provided for the VNEs for each technology may vary and the user should refer to the individual VNE guide for details.

Supported Technologies

The table below lists the technologies supported in this version of the document:

Note

Cisco ANA provides different level of support for each technology, the fact that a specific technology is listed in the table below does not imply that all the specification of the relevant standard/s are represented and supported. For example, the system supports PWE3 (Pseudo Wire Edge to Edge) by modeling of the Cisco AToM implementation, but this support does not include TDM encapsulation in Pseudo Wire over MPLS.

For the details of the level of support provided for each technology please refer to the description in the specific technology chapter.

Table 1-1 Supported Technologies

Family	Technology	Chapter Reference
Virtual PrivateBGP-MPLS VPN Routing and Forwarding (VRF)Networks (VPN)		Chapter 14, "Virtual Private Networks "VPNs""
	Pseudo Wire Emulation Edge to Edge (PWE3)	Chapter 15, "Pseudo Wire Emulation Edge to Edge (PWE3)"

Family	Technology	Chapter Reference
Network Layer	Internet Protocol (IP)	Chapter 2, "Internet Protocol "IP""
	Internet Protocol (IP) and ARP	Chapter 2, "Internet Protocol "IP""
	Generic Routing Encapsulation (GRE)	Chapter 2, "Generic Routing Encapsulation (GRE) Tunnel Interface"
	Border Gateway Protocol and its Extensions for Multi-Protocol (BGP/MP-BGP)	Chapter 3, "Routing Protocols "BGP/OSPF""
		Chapter 14, "Virtual Private Networks "VPNs""
	Open Shortest Path First (OSPF)	Chapter 3, "Routing Protocols "BGP/OSPF""
	Hot Standby Router Protocol (HSRP)	Chapter 2, "Hot Standby Router Protocol (HSRP) Group Entry"
Hybrid Network/Link Layer	Multi-Protocol Label Switching (MPLS)	Chapter 12, "Multiprotocol Label Switching "MPLS""
	Traffic Engineering (MPLS-TE)	Chapter 13, "Multi Protocol Label Switching Traffic Engineering (MPLS-TE)"
Link/MAC Layer	Ethernet, Virtual Local Area Network (VLAN) and Ethernet Channel/Link Aggregation (LAG)	Chapter 4, "Ethernet (IEEE 802 [™] .3)"
	Token Ring (TR)	Chapter 5, "Token Ring "TR" (IEEE 802 [™] .5)"
	Asynchronous Transfer Mode (ATM)	Chapter 6, "Asynchronous Transfer Mode "ATM""
	Inverse Multiplexing for ATM (IMA)	Chapter 6, "Asynchronous Transfer Mode "ATM""
	Frame Relay (FR)	Chapter 7, "Frame Relay "FR""
	Point To Point Protocol (PPP)	Chapter 8, "Point-to-Point Protocol "PPP" and High Level Data Link Control "HDLC""
	High Level Data Link Control (HDLC)	Chapter 8, "Point-to-Point Protocol "PPP" and High Level Data Link Control "HDLC""
	Layer 2 Tunnel Protocol (L2TP)	Chapter 9, "Layer 2 Tunnel Protocol "L2TP""
	Packet Over SONET/SDH (POS)	Chapter 11, "Physical Technologies"
	Note This is not treated as a single technology; it is supported by a combination of IP, PPP/HDLC and Sonet.	

Table 1-1Supported Technologies (continued)

Family	Technology	Chapter Reference
Physical Layer	Digital Subscriber Line (xDSL)	Chapter 10, "Digital Subscriber Line "DSL" and Integrated Services Digital Network "ISDN""
	Integrated Services Digital Network (ISDN)	Chapter 10, "Digital Subscriber Line "DSL" and Integrated Services Digital Network "ISDN""

Table 1-1 Supported Technologies (continued)

Networking Related IMOs

Networking related IMOs represent the networking aspects of a Network Element (NE). The two major categories of IMOs are Termination Points and Forwarding Components.

Termination Points

Termination Points represent an end point of a connection. Termination Points may represent a physical end point, for example, a port connector or a connection end point also referred to as a network interface, for example, an ATM layer of a port.

The relationships between Termination Points is of containment nature, and these relationships are expressed by the following attributes:

- Contained Connection Termination Point—Points to all upper layer Termination Point bound to that Termination Point.
- Containing Termination Points—Points to all lower layer Termination Point on which this Termination Point is bound to.

The relation between Termination Points may represent one of the following:

• Type of Hardware - for example:

A SONET/SDH port with a Fiber Optic connector will be represented by two IMOs:

- Port Connector IMO—Representing the Fiber Optic connector.
- SonetSdh IMO—Representing the SONET/SDH port.

The Port Connector IMO is containing the SonetSdh IMO. This containment relationship will be represented as follows:

- The Port Connector IMO will point to the SonetSdh IMO with the Contained Connection Termination Point attribute.
- The SonetSdh IMO will point to the Port Connector IMO with the Containing Termination Point attribute.

• Configuration - for example:

Ethernet port configured with an IP Address (and optionally other network layer attributes) will be represented by two IMOs:

- Ethernet Interface IMO—Representing the Ethernet layer of the port.
- IP Interface IMO—Representing the network layer aspect including the IP address configured on the port.

The Ethernet Interface IMO is containing the IP Interface IMO. This containment relationship will be represented as follows:

- The Ethernet Interface IMO will point to the IP Interface IMO with the Contained Connection Termination Point attribute.
- The IP Interface IMO will point to the Ethernet Interface IMO with the Containing Termination Point attribute.
- State for example:

An active PPP connection running on top of ATM VC will be represented by two IMOs:

- Atm Vc IMO—Representing the ATM VC.
- Vc Based Encapsulation IMO—Representing the PPPoA encapsulation.

The Atm Vc IMO is containing the Vc Based Encapsulation IMO. This containment relationship will be represented as follows:

- The Atm Vc IMO will point to the IP Vc Based Encapsulation IMO with the Contained Connection Termination Point attribute.
- The Vc Based Encapsulation IMO will point to the Atm Vc IMO with the Containing Termination Point attribute.

Note

The relationship between Termination Points may be restricted to specific Termination Point types, based on how the technology is implemented. For example, a physical layer IMO may not contain an IP interface IMO, which represents the network layer interface.

Forwarding Components

Forwarding Components represent components that perform some kind of forwarding process between the Termination Points, for example, Forwarding Components are used to represent routing, bridging and switching components in the NE.

The relationship between the Forwarding Components and the Termination Points with which it does the forwarding, is of a logical association nature. This relationship is expressed by the logical sons attribute of the Forwarding Component IMO.

An example of such a relationship is between the IVcSwitchingEntity IMO representing the ATM/FR switching fabric and the IAtm/IFrameRelay IMOs representing the ATM/FR ports.

The support level of each network technology can be varied and is totally reflected by its related IMOs with their attributes, network topology as well as faults and alarms correlation, as described in each Technology section and Common section.

Conventions Used in this Guide

This document uses the following conventions:

Table 1-2Document Conventions

Convention	Description
Italic text	Indicates references to enumeration values
Blue text	Indicates references to defined objects/tables

Each object that the interface uses in the IMO is written in parenthesis.

снарте 2

Internet Protocol "IP"

This chapter describes the level of support that Cisco ANA provides for IP, as follows:

- Technology Description, page 2-1
- Inventory and Information Model Objects (IMOs), page 2-2
- Network Topology, page 2-8
- Service Alarms, page 2-8

Technology Description

IP

The Internet Protocol (IP) is a network layer (Layer 3) protocol that contains addressing information and some control information that enables packets to be routed. IP is documented in RFC 791 and is the primary network layer protocol in the Internet protocol suite. Along with the Transmission Control Protocol (TCP), IP represents the heart of the Internet protocols. IP has two primary responsibilities: providing connectionless, best-effort delivery of datagrams through an inter-network; and providing fragmentation and reassembly of data-grams to support data links with different Maximum Transmission Unit (MTU) sizes.

ARP

Address Resolution Protocol (ARP) is a protocol for mapping an Internet Protocol address (IP address) to a physical machine address, known as a Media Access Control or MAC address that is recognized in the local network. For example, in IP Version 4, the most common level of IP in use today, an address is 32 bits long. In an Ethernet local area network, however, addresses for attached devices are 48 bits long. A table, usually called the ARP cache, is used to maintain a correlation between each MAC address and its corresponding IP address. ARP provides the protocol rules for making this correlation and providing address conversion in both directions.

HSRP

Hot Standby Router Protocol (HSRP) is a routing protocol that provides automatic router backup by allowing host computers on the Internet to use multiple routers that act as a single virtual router, maintaining connectivity even if the first hop router fails, because other routers are on hot standby and ready to go. The protocol is fully compatible with Novell's Internetwork Packet Exchange (IPX), AppleTalk, and Banyan VINES, and (in some configurations) with Xerox Network Systems (XNS) and DECnet.

Developed by Cisco and specified in RFC 2281, HSRP ensures that only a single router (called the active router) is forwarding packets on behalf of the virtual router at any given time. A standby router is chosen to be ready to become the active router, in the event that the current active router fails. HSRP defines a mechanism used to determine active and standby routers by referring to their IP addresses. Once these are determined, the failure of an active router will not cause any significant interruption of connectivity.

On any given LAN, there may be multiple, possibly overlapping, hot standby groups, each with a single Media Access Control (MAC) address and IP address; the IP address should belong to the primary subnet, but must be different from any actual or virtual addresses allocated to any routers or hosts on the network.

GRE

Generic Routing Encapsulation (GRE) is a tunneling protocol, originated by Cisco Systems and standardized in RFC 2784. It was designed to encapsulate a wide variety of network layer packets inside IP tunneling packets. The original packet is the payload for the final packet. The protocol is used on the Internet to secure virtual private networks.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- IP Interface (IIPInterface)
- IP Multiplexer Entry (IIPMuxEntry)
- IP Interface Address (IIPInterfaceAddress)
- IP Subnetwork (IPSubnet)
- Routing Entity (IRoutingEntity)
- Equivalent Routing Entry (IRoutingEntries)
- Routing Entry (IRoutingEntry)
- ARP Entity (IARPEntity)
- ARP Entry (IARPEntry)
- IP Address Pool (IIPPool)
- IP Range Based Address Pool Entry (IIPRangeBasedIPPoolEntry)
- IP Subnet Based Address Pool Entry (IIPSubnetBasedIPPoolEntry)
- Hot Standby Router Protocol (HSRP) Group Entry (IHSRPGroupEntry)
- Generic Routing Encapsulation (GRE) Tunnel Interface (ITunnelGRE)

IP Interface

The following network layer IP Interface object, which represents the IP level functionality of an interface configuration in a network element, is primarily bound by its Containing Termination Points attribute to a Data Link Layer Interface object, and is primarily accessed by a Routing Entity.

Attribute Name	Attribute Description
IP Address	Primary IP address
Subnetwork Mask	Primary IP subnetwork mask
IP Interface Addresses	Array of all IP Interface Addresses
Interface Name	Interface name
Interface Description	Interface description
IP Interface State	IP interface state (Unknown, Up, Down)
OSPF Interface Cost	2x10^9/ <interface bps="" in="" speed=""></interface>
MTU	Maximum transmit units
Lookup Method	Lookup method (Route Table First, Host Table First)
Address Resolution Type	Address resolution type/s
ARP Timeout	ARP table entry aging timeout
Secured ARP	Secured ARP settings (Enable, Disable)
ICMP Mask Reply	Control message mask reply
IGMP Proxy	Group management proxy
HSRP Groups	Arrays of Hot Standby Router Protocol (HSRP) Group Entry (valid only for Cisco routers that implement HSRP)
IP Multiplexing Table	Array of IP Multiplexing Entries
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

 Table 2-1
 IP Interface (IIPInterface)

IP Multiplexer Entry

The following IP Multiplexer Entry object, of the IP Multiplexing Table of an IP Interface object, is used when an IP Interface is bound to multiple Virtual Connection based Data Link layer interfaces such as ATM Interface and Frame Relay Interface in order to map a Destination IP Subnet with a specific Virtual Connection.

 Table 2-2
 IP Multiplexer Entry (IIPMuxEntry)

Attribute Name	Attribute Description
Termination Point	Virtual data link layer encapsulation
Destination IP Subnet	Destination IP subnet

IP Interface Address

The following IP Interface Address object describes one of possible multiple IP Addresses along with their Subnetwork Masks assigned to an IP Interface, using an IP Subnetwork object, and whether it is the Primary or a Secondary one.

 Table 2-3
 IP Interface Address (IIPInterfaceAddress)

Attribute Name	Attribute Description
Туре	IP address type (Primary, Secondary)
IP Subnet	IP subnetwork

IP Subnetwork

The following IP Subnetwork type (not an IMO object) describes an IP Subnetwork Address (with the host part being zeroed) or alternatively a Host IP Address along with the IP Subnetwork Mask.

Table 2-4 IP Subnetwork (IPSubnet)

Attribute Name	Attribute Description
IP Address	IP address
Subnetwork Mask	IP subnetwork mask

Routing Entity

The following Routing Entity object describes the routing and address resolution protocols independent forwarding component of an IP router, which is bound by its Logical Sons attribute to all Network layer IP Interface objects, which IP Packets are being routed between, by this Routing Entity.

Attribute Name	Attribute Description
Routing Table	Array of Equivalent (Shared Destination) Routing Entries
ARP Entity	Address resolution entity (ARP Entity)
Routing Table Changes	Routing table changes count
Name	Routing entity name
Logical Sons	Array of all IP Interfaces which IP packets are being routed between, by this Routing Entity

 Table 2-5
 Routing Entity (IRoutingEntity)

Equivalent Routing Entry

The following Equivalent Routing Entry and Routing Entry objects describe a routing table's entries, each as an array of routing entries sharing a single IP Subnetwork destination. Based on their protocol type some of the device's routing table's entries, which are not relevant to the IMO model, may not be presented in this table structure.

 Table 2-6
 Equivalent Routing Entry (IRoutingEntries)

Attribute Name	Attribute Description
Routing Entries	Array of Routing Entries (sharing a single destination)

Routing Entry

Attribute Name	Attribute Description
Destination IP Subnet	Final destination IP subnet
Next Hop IP Address	Next hop IP address
Туре	Route entry type (Null, Other, Invalid, Direct, Indirect, Static)
Routing Protocol Type	Routing protocol type (Null, Other, "Local, Network Managed, ICMP, EGP, GGP, Hello, RIP, IS-IS, ES-IS, Cisco IGRP, BBN SPF IGP, OSPF, BGP, EIGRP)
Outgoing Interface Name	Outgoing IP interface name

Table 2-7 Routing Entry (IRoutingEntry)

ARP Entity

The following ARP Entity object describes a routing domain wide Internet Protocol (IP) address to Media Access Control (MAC) Address Resolution Protocol Entity.

 Table 2-8
 ARP Entity (IARPEntity)

Attribute Name	Attribute Description
ARP Table	Array of ARP Entries

ARP Entry

The following ARP Entry object describes a routing domain wide Internet Protocol (IP) address to Media Access Control (MAC) Address Resolution Protocol Table's Entry.

 Table 2-9
 ARP Entry (IARPEntry)

Attribute Name	Attribute Description
IP Address	Internet Protocol (IP) address
MAC Address	Media Access Control (MAC) address

Attribute Name	Attribute Description
Port	Data link layer (MAC) interface
Entry Type	ARP entry type (Null, Other, Invalid, Dynamic, Static)

Table 2-9	ARP Entry (IARPEntry	(continued)
-----------	----------------------	----------------------

IP Address Pool

The following IP Address Pool with its IP Range Based Address Pool Entry and IP Subnet Based Address Pool Entry objects describe an IP Address Pool of a Gateway/Router device for distribution to local and remote parties by protocols such as DHCP and IPCP.

 Table 2-10
 IP Address Pool (IIPPool)

Attribute Name	Attribute Description
IP Address Pool Entries	Array of IP Range Based Address Pool Entries or IP Subnet Based Address Pool Entries
Name	IP addresses pool name
Index	IP addresses pool index

IP Range Based Address Pool Entry

	Table 2-11	IP Range Based Address Pool Entry (IIPRangeBasedIPPoolEntry)
--	------------	--

Attribute Name	Attribute Description
Start IP Address	Start IP address of the IP address pool
End IP Address	End IP address of the IP address pool
Unused Addresses	Unused addresses count
Used Addresses	Used addresses count
Reserved Addresses	Reserved addresses count

IP Subnet Based Address Pool Entry

Table 2-12 IP Subnet Based Address Pool Entry (IIPSubnetBasedIPPoolEntry)

Attribute Name	Attribute Description
IP Subnet	IP Subnetwork of the IP address pool
Unused Addresses	Unused addresses count
Used Addresses	Used addresses count
Reserved Addresses	Reserved addresses count

Hot Standby Router Protocol (HSRP) Group Entry

The following Cisco Specific Hot Standby Router Protocol (HSRP) Group Entry object, describes both the configuration and the outcome information of running this protocol within a group (two) of routers, connected to the same segment of Ethernet networks for providing backup to a router in the event of failure, by presenting an appearance of a single **virtual router** with a single set of IP and MAC addresses on that **Local Area Network (LAN)**.

Attribute Name	Attribute Description
Group Number	Group number
Port Description	Port description
Priority	Priority from 0 (Lowest) to 255 (Highest) used for active router selection
Coupled Router	Coupled active or standby router IP address (as the group is implemented by only two routers)
State	Protocol state (Disabled, Initial, Learn, Listen, Speak, Standby, Active)
Virtual IP Address	Virtual IP address used by this group
Virtual MAC Address	Virtual MAC address used by this group

Table 2-13 Hot Standby Router Protocol (HSRP) Group Entry (IHSRPGroupEntry)

Generic Routing Encapsulation (GRE) Tunnel Interface

The following network layer Generic Routing Encapsulation (GRE) Tunnel Interface object, which represents a GRE Tunnel interface configuration in a network element, is primarily accessed by an IP Interface bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
Name	Tunnel name
Tunnel Destination and Source	Tunnel destination and source IP addresses
IP Address	Primary IP address
IP Interface State	IP interface state (Unknown, Up, Down)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Table 2-14 Generic Routing Encapsulation (GRE) Tunnel Interface (ITunnelGRE)

Network Topology

The discovery of the Internet Protocol (IP) network layer is unsupported.

However, IP addresses and subnets are used for signature/test for the underlying **MPLS** and **PPP** layers topology discovery by searching for the existence of the local IP Address in any one hop away remote side's routing table. For more information see Chapter 12, "Multiprotocol Label Switching "MPLS"" and Chapter 8, "Point-to-Point Protocol "PPP" and High Level Data Link Control "HDLC"".

In particular, a comparison is made between the local and remote IP Addresses of IP Interfaces found under the same subnet.

Service Alarms

The following alarms are supported for this technology:

- All IP Interfaces Down/IP Interface Up
- GRE Tunnel Down/GRE Tunnel Up
- IP Interface Down/IP Interface Up
- HSRP Group Member Not Active/HSRP Group Member Active

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Routing Protocols "BGP/OSPF"

This chapter describes the level of support that Cisco ANA provides for BGP/OSPF, as follows:

- Technology Description, page 3-1
- Inventory and Information Model Objects (IMOs), page 3-2
- Network Topology, page 3-3
- Service Alarms, page 3-3

Technology Description

BGP

The Border Gateway Protocol (BGP) is an inter-autonomous system routing protocol. An autonomous system is a network or group of networks under a common administration and with common routing policies. BGP is used to exchange routing information for the Internet and is the protocol used between Internet Service Providers (ISP). Customer networks, such as universities and corporations, usually employ an Interior Gateway Protocol (IGP) such as RIP or OSPF for the exchange of routing information within their networks. Customers connect to ISPs, and ISPs use BGP to exchange customer and ISP routes. When BGP is used between Autonomous Systems (AS), the protocol is referred to as External BGP (EBGP). If a service provider is using BGP to exchange routes within an AS, then the protocol is referred to as Interior BGP (IBGP).

BGP is a very robust and scalable routing protocol, as evidenced by the fact that BGP is the routing protocol employed on the Internet. To achieve scalability at this level, BGP uses many route parameters, called attributes, to define routing policies and maintain a stable routing environment. BGP neighbors exchange full routing information when the TCP connection between neighbors is first established. When changes to the routing table are detected, the BGP routers send to their neighbors only those routes that have changed. BGP routers do not send periodic routing updates, and BGP routing updates advertise only the optimal path to a destination network.

MP-BGP

The Multi-Protocol BGP feature adds capabilities to BGP to enable multicast routing policy throughout the Internet and to connect multicast topologies within and between BGP autonomous systems. That is, multi-protocol BGP is an enhanced BGP that carries IP multicast routes. BGP carries two sets of routes, one set for unicast routing and one set for multicast routing. The routes associated with multicast routing are used by the Protocol Independent Multi-cast (PIM) to build data distribution trees.

OSPF

Open Shortest Path First (OSPF) is a routing protocol developed for Internet Protocol (IP) networks by the Interior Gateway Protocol (IGP) working group of the Internet Engineering Task Force (IETF). It was derived from several research efforts, which among other includes the early version of OSI's Intermediate System to Intermediate System (IS-IS) routing protocol.

OSPF has two primary characteristics. The first is that the protocol is open, which means that its specification is in the public domain (RFC 1247). The second principal characteristic is that OSPF is based on the Shortest Path First (SPF) algorithm, which sometimes is referred to as the Dijkstra algorithm, named for the person credited with its creation.

OSPF is a link-state routing protocol that calls for the sending of Link-State Advertisements (LSAs) to all other routers within the same hierarchical area. Information on attached interfaces, metrics used, and other variables are included in OSPF LSAs. As OSPF routers accumulate link-state information, they use the SPF algorithm to calculate the shortest path to each node.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- BGP Neighbor Entry (IBgpNeighbourEntry)
- OSPF Entry (IOspfEntry)

BGP Neighbor Entry

The following BGP Neighbor Entry object describes both the configuration and the outcome information of running the Border Gateway Protocol (BGP) within a group of participating routers within a BGP Neighborhood. It contains information about the connection with a remote BGP peer. It is the entry of the BGP Neighbors Table attribute of the Multi Protocol BGP Entity object (see Virtual Private Networks "VPNs"), representing the BGP routing service concept in the IMO.

Attribute Name	Attribute Description
Remote Identifier	Identifier of the remote peer (IP Address)
Neighbor Type	Neighbor type (Null, Client, Non Client)
Distributing Interface	Distributing IP interface
Remote Address	Remote peer IP address
Remote Autonomous System	Remote peer autonomous system

 Table 3-1
 BGP Neighbor Entry (IBgpNeighbourEntry)

Attribute Name	Attribute Description
Status	Status (Null, Idle, Connect, Active, Open Sent, Open Confirm, Established)
Hold Time	Established hold time in seconds
Keep Alive Time	Established keep alive time in seconds

Table 3-1 DGP Neighbor Entry (IbgpiveighbourEntry) (continue	Table 3-1	BGP Neighbor Entry (IBgpNeighbourEn	try) (continued
--	-----------	-------------------------------------	-----------------

OSPF Entry

The following OSPF Entry object describes both the configuration and the outcome information of running a single Open Shortest Path First (OSPF) protocol interface within a group of participating OSPF routers and it is aggregated by a Traffic Descriptor Container object (see Common (Shared by Several)).

Table 3-2 OSPF Entry (IOspfEntry)

Attribute Name	Attribute Description
Area Identifier	Area identification (IP Address)
IP Address	IP address
Туре	OSPF type (Null, Broadcast, NBMA, Point-to-Point, Point-to-Multipoint)
Administrative Status	Administrative status (Null, Enabled, Disabled)
Operational Status	Operational status (Null, Down, Loop Back, Waiting, Point-to-Point, Designated Router, Backup Designated Router, Other Designated Router)

Network Topology

The discovery of Border Gateway Protocol (BGP) Neighborhood topology is done by comparing BGP router parameters on either side of potential BGP neighbors. In particular a comparison is made between the local and remote BGP router identification and autonomous system as well as the connection states on both sides.

Service Alarms

The following alarms are supported for this technology:

- BGP Neighbor Loss/BGP Neighbor Found
- BGP Process Down/BGP Process Up

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

снартев 4

Ethernet (IEEE 802™.3)

This chapter describes the level of support that Cisco ANA provides for Ethernet, as follows:

- Technology Description, page 4-1
- Inventory and Information Model Objects (IMOs), page 4-3
- Vendor Specific Inventory and Information Model Objects, page 4-10
- QinQ (IEEE802.1ad), page 4-11
- Network Topology, page 4-13
- Service Alarms, page 4-13

Technology Description

Ethernet

Ethernet refers to the family of Local Area Network (LAN) products covered by the IEEE 802.3 standard that defines what is commonly known as the CSMA/CD protocol. Three data rates are currently defined for operation over optical fiber and twisted-pair cables: 10Base-T Ethernet (10Mbps), Fast Ethernet (100Mbps), Gigabit Ethernet (100Mbps) and 10-Gigabit Ethernet (10Gbps).

The IEEE 802.3 standard provides both Media Access Control (MAC) (Layer 2), with Addressing, Duplexing, Differential Services and Flow Control attributes, and various Physicals (Layer 1) definitions, with Media, Clocking and Speed attributes. In addition, it provides a Link Aggregation (LAG) (aka Ethernet Channel) for providing both higher link capacity and availability.

LAG

A Link Aggregation (LAG) is a group of two or more network links bundled together to appear as a single link based on IEEE 802.3ad standard. For instance, bundling two 100Mbps network interfaces into a single link creates one 200Mbps link. A LAG may include two or more network cards and two or more cables, but the software sees the link as one logical link.

A LAG provides capacity increase, load balancing and higher link availability, which prevents the failure of any single component link leading to a disruption of the communications between the interconnected devices.

Carrier Ethernet

A Carrier Ethernet is a computer network based on the Ethernet standards covering a metropolitan area. It is commonly used as a metropolitan access network to connect subscribers and businesses to a Wide Area Network, such as the Internet. Large businesses can also use Carrier Ethernet to connect branch offices to their Intranets.

A typical service provider Carrier Ethernet network is a collection of Layer 2 or 3 switches or routers connected through optical fiber. The topology could be a ring, hub-and-spoke (star), full mesh or partial mesh. The network will also have a hierarchy; core, distribution and access. The core in most cases is an existing IP/MPLS backbone.

Ethernet on the MAN can be used as pure Ethernet, Ethernet over SDH, Ethernet over MPLS or Ethernet over DWDM. Pure Ethernet-based deployments are cheap but less reliable and scalable, and thus are usually limited to small scale or experimental deployments. SDH-based deployments are useful when there is an existing SDH infrastructure already in place, its main shortcoming being the loss of flexibility in bandwidth management due to the rigid hierarchy imposed by the SDH network. MPLS based deployments are costly but highly reliable and scalable, and are typically used by large service providers.

See also:

- Spanning Tree Protocol "STP"
- QinQ (IEEE802.1ad)

Spanning Tree Protocol "STP"

STP is a Layer 2 link management protocol that provides path redundancy while preventing undesirable loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two devices.

STP defines a tree with a root bridge and a loop-free path from the root to all network devices in the Layer 2 network. STP forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the STP algorithm recalculates the spanning tree topology and activates the standby path.

STP modeling in Cisco ANA 3.6 supports devices that use the following STP variants:

- STP as defined in the 802.1D standard
- RSTP as defined in the 802.1w standard
- PvSTP and PvSTP+ which are Cisco proprietary protocols, or any per VLAN spanning tree protocol
- MST as defined in the 802.1s standard

QinQ (IEEE802.1ad)

QinQ (IEEE802.1) tagging (namely, dot1q tunneling) is a technology that allows the nesting of an additional VLAN tag on a packet, in addition to an existing one. Either VLAN tag is an 802.1Q header by standard.

QinQ allows service providers to use a single VLAN to support customers who have multiple VLANs. The core service-provider network carries traffic with double-tagged, stacked VLAN (802.1Q-in-Q) headers of multiple customers while maintaining the VLAN and Layer 2 protocol configurations of each customer and without impacting the traffic of other customers.

For more information about QinQ in Cisco ANA 3.6 see QinQ (IEEE802.1ad).

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Link Aggregation Group (ILinkAggregationGroup802dot3ad)
- Link Aggregation Group Port Entry (ILagPortEntry)
- Ethernet Interface (IEthernet)
- Ethernet Physical (IPhysicalLayer)
- Virtual LAN Interface (IVlanInterface)
- Virtual LAN Entry (IVlanEntry)
- Virtual LAN Multiplexer (IVlanEncapMux)
- Virtual LAN Encapsulation (IIEEE802)
- Data Link Aggregation Container (IDataLinkAggregationContainer)
- Spanning Tree Protocol Service (IStpService)
- Multiple Spanning Tree Protocol Service (IMstService)
- Multiple Spanning Tree Protocol Properties (IMstProperties)
- Spanning Tree Protocol Instance Information (IStpInstanceInfo)
- Multi Spanning Tree Protocol Instance Information (IMstInstanceInfo)
- Per Virtual LAN Spanning Tree Protocol Instance Information (IPvstpInstanceInfo)
- Rapid Spanning Tree Protocol Instance Information (IRstpInstanceInfo)
- Spanning Tree Protocol Port Information (IStpPortInfo)
- Multi Spanning Tree Protocol Port Information (IMstPortInfo)Cisco's Ethernet Channel (IEthernetChannel)

Link Aggregation Group

The following Data Link layer Link Aggregation Group object aggregates multiple Ethernet Interfaces, which it is bound to by its Containing Termination Points attribute, and is primarily accessed by the Virtual LAN Multiplexer bound by its Contained Connection Termination Points attribute. It is also being accessed by Bridging Entity.

Attribute Name	Attribute Description
Group Number	Group identification of the aggregated ethernet interfaces
Bandwidth	Accumulated bandwidth of all aggregated ethernet interfaces in Mbps
Aggregation Protocol	Aggregation protocol (None, LACP, PAGP)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (Ethernet Interface)
Contained Connection Termination Points	Bound Connection Termination Points

Table 4-1 Link Aggregation Group (ILinkAggregationGroup802dot3ad)

Link Aggregation Group Port Entry

The following Link Aggregation Group Port Entry object describes the Link Aggregation Control configuration parameters for each Aggregation Port of a Link Aggregation Group.

 Table 4-2
 Link Aggregation Group Port Entry (ILagPortEntry)

Attribute Name	Attribute Description
Actor and Partner Administrative Keys	Actor and partner administrative keys
Actor and Partner Operational Keys	Actor and partner operational keys
Selected and Attached Aggregation Identification	Selected and attached aggregation identification
Actor Port	Actor port
Actor Port Priority	Actor port priority
Partner Administrative and Operational Port	Partner administrative and operational port
Partner Administrative and Operational Port Priority	Partner administrative and operational port priority
Actor and Partner Administrative States	Actor and partner administrative states ()
Actor and Partner Operational States	Actor and partner operational states ()

Ethernet Interface

The following Data Link layer Ethernet Interface object, is bound by its Containing Termination Points attribute to a Physical Layer Interface (Ethernet Physical) object, and is primarily being accessed by Virtual LAN Multiplexer/Interface, Link Aggregation Group, Cisco's Ethernet Channel and/or IP Interface, bound by its Contained Connection Termination Points attribute. It is also being accessed by Bridging Entity.

 Table 4-3
 Ethernet Interface (IEthernet)

Attribute Name	Attribute Description
MAC Address	Media Access Control (MAC) address
Duplex Mode	Duplex mode (Unknown, Full, Half)
Output Flow Control	Output flow control (Enable, Disable)
Input Flow Control	Input flow control (Enable, Disable)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Point

Ethernet Physical

The following Physical layer Ethernet Physical object, is bound by its Containing Termination Points attribute to a Port Connector object, and is being accessed by Data Link layer Ethernet Interface bound by its Con-tained Connection Termination Points attribute.

 Table 4-4
 Ethernet Physical (IPhysicalLayer)

Attribute Name	Attribute Description
Same as Physical Layer (IPhysicalLayer)	

Virtual LAN Interface

The following Data Link layer Virtual LAN Interface object, which used in a Switched LAN environ-ment, is bound by its Containing Termination Points at-tribute to an Ethernet Interface object, and is primarily being accessed by Network layer such IP Interface, bound by its Contained Connection Termination Points attribute. It is also being accessed by Bridging Entity.

Attribute Name	Attribute Description
Mode	Virtual LAN mode (Access, Trunk, 802.1Q Tunnel)
Native VLAN Identification	Virtual LAN identification, used for untagged received and transmitted frames
Virtual LAN Table	Array of Virtual LAN Entries
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Virtual LAN Entry

The following Virtual LAN Entry object describes association of a Virtual LAN Interface, which operate in Trunk mode, to one of the bridged Virtual LANs configured in the device.

 Table 4-6
 Virtual LAN Entry (IVIanEntry)

Attribute Name	Attribute Description
Identification	Virtual LAN identification of received and transmitted frames
Encapsulation Type	Virtual LAN encapsulation (<i>Unknown, ISL, IEEE 802.10, IEEE 802.1Q</i>)
Upper Layer	Upper layer Object Identification (OID)

Virtual LAN Multiplexer

The following Virtual LAN Multiplexer object, which used in a routed LAN environment, is bounded by its Containing Termination Points attribute to an Ethernet Interface object, and is primarily being accessed by Data Link layer Virtual LAN Encapsulations, bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (Ethernet Interface)
Contained Connection Termination Points	Bound Connection Termination Points (Virtual LAN Encapsulations)

 Table 4-7
 Virtual LAN Multiplexer (IVIanEncapMux)

Virtual LAN Encapsulation

The following Data Link layer Virtual LAN Encapsulation object, which used in a routed LAN environment, is bound by its Containing Termination Points at-tribute to a Virtual LAN Multiplexer object, and is primarily being accessed by Network layer such IP Interface, bound by its Contained Connection Termination Points attribute. It is also being accessed by Bridging Entity.

IaDIC 4-0 VII LUAI LAIN EIICAPSUIALIUII (IIEEEOVZ)	Table 4-8	Virtual LAN Encapsulation	(IIEEE802)
--	-----------	---------------------------	------------

Attribute Name	Attribute Description
VLAN Identification	Virtual LAN identification
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Point
Data Link Aggregation Container

The following Data Link Aggregation Container object aggregates or contains a single type of Data Link Aggregations such as Link Aggregation Group and Cisco's Ethernet Channel.

 Table 4-9
 Data Link Aggregation Container (IDataLinkAggregationContainer)

Attribute Name	Attribute Description
Data Link Aggregations	Array of a single type data link aggregations (Link Aggregation Group/Cisco's Ethernet Channel)
Туре	Aggregation type (Null, Ethernet Link Aggregator)

Spanning Tree Protocol Service

The following Spanning Tree Protocol Service object, which is used in a switched LAN environment, describes the Spanning Tree Protocol service and is accessed only by the Logical Root's Services List attribute.

Attribute Name	Attribute Description
Protocol Type	Spanning tree protocol type (Unknown, STP, RSTP, PVSTP, MST)
Current and Bridge Maximum Age	The current used value and the value that all bridges should used when this bridge is acting as the root for maximum age of learned spanning tree protocol port information (in hundredths of seconds)
Current and Bridge Hello Time	The current used value and the value that all bridges should used when this bridge is acting as the root for hello time messages' keep alive interval of a spanning tree protocol root (in hundredths of seconds)
Current and Bridge Forward Delay	The current used value and the value that all bridges should used when this bridge is acting as the root for port delay in each of the listening and learning states, preceding the forwarding one (in hundredths of seconds)
Instance Information Table	Array of Spanning Tree Protocol Instance Information
Same as System Service (ISystemSer	vice)

 Table 4-10
 Spanning Tree Protocol Service (IStpService)

Multiple Spanning Tree Protocol Service

The following Multi Spanning Tree Protocol Instance Information object, which is used in a switched Virtual LAN environment, describes the Spanning Tree Protocol service and is accessed only by the Logical Root's Services List attribute.

Table 4-11 Multiple Spanning Tree Protocol Service (IMstService)

Attribute Name	Attribute Description
Protocol Properties	Multiple spanning tree protocol properties
Same as Spanning Tree Protocol Service (IStpService)	

Multiple Spanning Tree Protocol Properties

The following Multiple Spanning Tree Protocol Properties object, which is used in a switched Virtual LAN environment, describes the Multiple Spanning Tree Protocol properties and is accessed only by the Multiple Spanning Tree Protocol Service's Protocol Properties attribute.

Configuration format, region name and revision level used by

this device and is negotiated with other device

Maximum multi spanning tree protocol instances

External root cost of this multi spanning tree protocol

······································	
Attribute Name	Attribute Description
Force Version	Force version (Unknown, STP, RSTP, PVSTP, MST)

 Table 4-12
 Multiple Spanning Tree Protocol Properties (IMstProperties)

Spanning Tree Protocol Instance Information

and Revision Level

External Root Cost

Maximum Instances

Configuration Format, Region Name

The following Rapid Spanning Tree Protocol Instance Information objects describes the Instance Information associated and accessed by the Multiple Spanning Tree Protocol Service's Instance Information Table attribute.

Table 4-13Spanning Tree Protocol Instance Information	(IStpInstanceInfo)
---	--------------------

Attribute Name	Attribute Description
Object Identification	Instance Object Identification (Object ID)
Identification	Bridge identification (MAC address)
Priority	Bridge priority in the spanning tree protocol
Designated Root and Bridge	MAC Addresses of the designated root and bridge in the spanning tree
Root Cost	Root cost value for this bridge
Is Root	Is this bridge currently the root of the spanning tree protocol (<i>True, False</i>)

Root Port Identification	Object Identification (OID) of the bridge's port used to reach the designated root
Port Information Table	Array of Spanning Tree Protocol Port Information

Table 4-13 Spanning Tree Protocol Instance Information (IStpInstanceInfo) (continued)

Multi Spanning Tree Protocol Instance Information

 Table 4-14
 Multi Spanning Tree Protocol Instance Information (IMstInstanceInfo)

Attribute Name	Attribute Description
Instance Identification	Multi spanning tree protocol instance identification
Same as Spanning Tree Protocol Instance Information (IStpInstanceInfo)	

Per Virtual LAN Spanning Tree Protocol Instance Information

Attribute Name	Attribute Description
Protocol Type	Spanning tree protocol type (Unknown, STP, RSTP, PVSTP, MST)
Current and Bridge Maximum Age	The current used value and the value that all bridges should used when this bridge is acting as the root for maximum age of learned spanning tree protocol port information (in hundredths of seconds)
Current and Bridge Hello Time	The current used value and the value that all bridges should used when this bridge is acting as the root for hello time messages' keep alive interval of a spanning tree protocol root (in hundredths of seconds)
Current and Bridge Forward Delay	The current used value and the value that all bridges should used when this bridge is acting as the root for port delay in each of the listening and learning states, preceding the forwarding one (in hundredths of seconds)

Table 4-15 Per Virtual LAN Spanning Tree Protocol Instance Information (IPvstpInstanceInfo)

Rapid Spanning Tree Protocol Instance Information

Table 4-16

6 Rapid Spanning Tree Protocol Instance Information (IRstpInstanceInfo)

Attribute Name	Attribute Description
Force Version	Force version (Unknown, STP, RSTP, PVSTP, MST)
Same as Spanning Tree Protocol Instance Information (IStpInstanceInfo)	

Spanning Tree Protocol Port Information

The following Spanning Tree Protocol Port Information objects describes the Port Information associated and accessed by the Spanning Tree Protocol Instance Information's Port Information Table attribute.

Attribute Name	Attribute Description
Object Identification	Port object identification (Object ID)
Priority	Port priority in the spanning tree protocol
State	Port state (Unknown, Disable, Blocking, Listening, Learning, Forwarding, Broken, Down, LoopBack)
Path Cost	Port path cost, which represents the media speed for this port
Is Edge	Is this an edge (connected to a nonbridging device) Port (<i>True</i> , <i>False</i>)
Is Point To Point	Is this port connected to n point to point link (True, False)
Role	Port role (Unknown, Disable, Backup, Alternative, Designated, Root, Boundary)

 Table 4-17
 Spanning Tree Protocol Port Information (IStpPortInfo)

Multi Spanning Tree Protocol Port Information

Table 4-18	Multi Spanning Tree Protocol Port Information (IMstPortInfo)
------------	--

Attribute Name	Attribute Description
Hello Time	Hello time messages' keep alive interval of a spanning tree protocol root (in hundredths of seconds)
Same as Spanning Tree Protocol Port Information (IStpPortInfo)	

Vendor Specific Inventory and Information Model Objects

Vendor specific Information Model Objects are implemented only for specific devices of the vendor.

The following section describes the object of a specific vendor:

• Cisco's Ethernet Channel

Cisco's Ethernet Channel

Cisco's Ethernet Channel Data Link layer object aggregates multiple Ethernet Interfaces, which it is bound to by its Containing Termination Points attribute, and is primarily accessed by Virtual LAN Multiplexer/Interface and/or IP Interface, bound by its Contained Connection Termination Points attribute. It is also accessed by Bridging Entity.

Attribute Name	Attribute Description
Group Number	Group identification of the aggregated ethernet interfaces
Bandwidth	Accumulated bandwidth of all aggregated ethernet interfaces in Mbps
Aggregation Protocol	Aggregation protocol (None, LACP, PAGP)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (Ethernet Interface)
Contained Connection Termination Points	Bound Connection Termination Points

Table 4-19	Cisco's Ethernet	Channel	(IEthernetChannel)
------------	------------------	---------	--------------------

QinQ (IEEE802.1ad)

For IMO information see Inventory and Information Model Objects (IMOs).

Opening Cisco ANA PathTracer Over Networks

You can open and view PathTracer information between service endpoints (for example, the IP interface) over a network. In order to view a specific path you must specify an initial point like an IP interface and a destination IP address. When the user selects an endpoint the system extracts the relevant IP address from this point and uses it as the destination. For QinQ the path is run from any:

- Router or switch which is part of the carrier ethernet domain with Dot1q and QinQ configuration
- IP destination which can be reached from that point of the network

PathTracer Starting Points

The user can also enter the required destination IP address after opening the Cisco ANA PathTracer from the right-click shortcut menu. The table below describes the starting points available in the shortcut menu in order to open the PathTracer:

Table 4-20 PathTracer Starting Points

Element	Location	Start PathTracer Options
IP Interface	Inventory window	• to IP Destination
		• Start Here

For information on opening the Cisco ANA PathTracer from the Inventory window as a starting point, see the Cisco Active Network Abstraction NetworkVision User Guide.

PathTracer Endpoints

If you selected the "**Start Here**" option the following endpoints can be selected as a path destination to open the PathTracer:

Table 4-21 PathTracer Endpoints

Element	Location	Start PathTracer Options
IP Interface	Inventory window	End Here

The Cisco ANA PathTracer Multi-Path window is displayed. From this window you can open the Cisco ANA PathTracer Single-Path window with the appropriate QinQ information displayed in the **Layer 2** tab.

Using Cisco ANA PathTracer to View Path Information

This section describes the Cisco ANA PathTracer for Dot1q and QinQ. For detailed information about the Cisco ANA PathTracer, see the Cisco Active Network Abstraction NetworkVision User Guide.

Cisco ANA uses the VLAN tags of the Ethernet header and the port configuration to trace the path from one interface to another over the network. The Cisco ANA's PathTracer tool enables you to:

- View a Layer 2 path across a LAN domain with all the VLAN tags' information
- For each network element view the relevant parameters for each interface on all layers along the path.

Layer 2 Dot1q and QinQ information is displayed in the Cisco ANA PathTracer windows when a path is traced over Ethernet ports with Dot1q and a QinQ configuration.

Layer 2

The following Layer 2 properties that may be displayed in the **Layer 2** tab relate specifically to QinQ and VLAN port configuration:

• VLAN Mode—The work mode for the interface, namely, Unknown, Access, Trunk, Dot1QTunnel.

Trunk mode refers to multiple tagging too.

- Native VLAN ID—The VLAN ID that is used to tag untagged traffic received on a trunked interface. The default native VLAN ID is '1' if VLAN tagging is enabled. The native VLAN ID is '0' or 'no VLAN ID' if VLAN tagging is disabled.
- CE VLAN ID—The customer edge device's VLAN ID.
- SP VLAN ID—The service provider's VLAN ID.

Layer 3

There are no Layer 3 properties that relate specifically to QinQ.

Network Topology

The discovery of Ethernet Data Link layer topology is done by searching for the existence of the local MAC Address in any remote side's bridge or Address Resolution Protocol (ARP) tables related to the same type of the local Ethernet port. The basic assumption, which is not always valid, is that every Ethernet port has a unique MAC Address. This topology is also applied to the underlying physical links.

Further verification is done by matching the traffic signature of these ports using Cisco's confidential scheme, which requires a substantial traffic amount in order to function correctly.

There is no topology based on STP or QinQ technology in Cisco ANA 3.6.

See CSCsi65238 which describes the potential problems in topology discovery in QinQ scenarios.

Service Alarms

The following alarms are supported for this technology:

- Cloud Problem
- Discard Input Packets/Normal Discard Input Packets
- Dropped Output Packets/Normal Dropped Output Packets
- Link Down/Link Up
- Port Down/Port Up
- Receive Utilization/Receive Utilization Normal
- Transmit Utilization/Transmit Utilization Normal

Note that these alarms, apart from the Cloud Problem, are related to the underlying Physical Interface (Common section).

There are no alarms based on STP or QinQ technology in Cisco ANA 3.6, however correlation takes into account these technologies when performing flow analysis.

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Token Ring "TR" (IEEE 802™.5)

This chapter describes the level of support that Cisco ANA provides for Token Ring, as follows:

- Technology Description, page 5-1
- Inventory and Information Model Objects (IMOs), page 5-1
- Network Topology, page 5-2
- Service Alarms, page 5-2

Technology Description

Token Ring

Token Ring refers to a Local Area Network (LAN) products covered by the IEEE 802.5 standard that unlike Ethernet, uses a ring topology whereby the data is sent from one station to the next and so on around the ring until it ends up back where it started, with a control token circulating around the ring controlling access.

The IEEE 802.5 standard provide both Media Access Control (MAC) (Layer 2), with Addressing, Access and Flow Control attributes, and various Physicals (Layer 1) definitions, with Media, Clocking and Speed attributes.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Token Ring Interface (ITokenRingLayer2)
- Token Ring Physical (ITokenRingLayer1)

Token Ring Interface

The following Data Link layer Token Ring Interface object, is bound by its Containing Termination Points attribute to a Physical Layer Token Ring Physical object, and is primarily being accessed by Network layer such IP Interface, bound by its Contained Connection Termina-tion Points attribute. It is also being accessed by Bridging Entity.

 Table 5-1
 Token Ring Interface (ITokenRingLayer2)

Attribute Name	Attribute Description
MAC Address	Media Access Control (MAC) address
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Token Ring Physical

The following Physical layer Token Ring Physical object, is bound by its Containing Termination Points attribute to a Port Connector object, and is accessed solely by the Data Link layer Token Ring Interface bound by its Contained Connection Termination Points attribute.

Table 5-2 Token Ring Physical (ITokenRingLayer1)

Attribute Name	Attribute Description
Same as Physical Layer (<i>IPhysicalLayer</i>)	

Network Topology

The discovery of Token Ring (TR) Data Link layer topology is unsupported and is manually (statically) configured by the system administrator.

Service Alarms

The following alarms are supported for this technology:

- Cloud Problem
- Discard Input Packets/Normal Discard Input Packets
- Dropped Output Packets/Normal Dropped Output Packets
- Link Down/Link Up
- Port Down/Port Up
- Receive Utilization/Receive Utilization Normal
- Transmit Utilization/Transmit Utilization Normal

Note that these alarms, apart from the Cloud Problem, are related to the underlying Physical Interface (Common section).

Note

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Asynchronous Transfer Mode "ATM"

This chapter describes the level of support that Cisco ANA provides for ATM and IMA, as follows:

- Technology Description, page 6-1
- Inventory and Information Model Objects (IMOs), page 6-2
- Vendor Specific Inventory and Information Model Objects, page 6-5
- Network Topology, page 6-9
- Service Alarms, page 6-9

Technology Description

ATM

ATM is a cell-switching and multiplexing technology that combines the benefits of circuit switching (guaranteed capacity and constant transmission delay) with those of packet switching (flexibility and efficiency for intermittent traffic). It provides Data Link (Layer 2) services with scalable bandwidth from a few megabits per second (Mbps) to many gigabits per second (Gbps), which usually run over Synchronous Optical NETwork/Digital Hierarchy (SONET/ SDH) Physical (Layer 1) links.

ATM networks consist of ATM switches interconnected by point-to-point ATM links or Interfaces and are fundamentally connection-oriented, which means that a virtual channel (VC) must be set up across the ATM network prior to any data transfer.

IMA

Inverse Multiplexing over ATM (IMA) involves inverse multiplexing and demultiplexing of ATM cells in a cyclical fashion among physical links grouped to form a higher bandwidth and logical link. The rate of the logical link is approximately the sum of the rate of the physical links in the IMA group. Streams of cells are distributed in a round-robin manner across the multiple T1/E1 links and reassembled at the destination to form the original cell stream. Sequencing is provided using IMA Control Protocol (ICP) cells.

The ATM cell stream received from the ATM layer is distributed on a cell by cell basis across the multiple links within the IMA group. At the far end, the receiving IMA unit reassembles the cells from each link on a cell-by-cell basis and recreates the original ATM cell stream and passed to the ATM layer.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- ATM Interface (IAtm)
- ATM Virtual Connection (IAtmVc)
- Inverse Multiplexing for ATM (IMA) Group (IIMAGroup)
- ATM Traffic Descriptor (IAtmTrafficDescriptor)
- ATM Traffic Shape Descriptor (IAtmTrafficShapingDescriptor)

ATM Interface

The following Data Link layer ATM Interface object aggregates multiple ATM Virtual Connections by its VC Table attributes. It is bound by its Containing Termination Points attribute to a Physical Layer Interface, and is primarily being accessed by the Virtual Connection Switching Entity and VC Encapsulation Multiplexer bound by its Contained Connection Termination Points attribute. It is also being accessed by Virtual Connection Switching Entity.

Attribute Name	Attribute Description
ATM Address	ATM 20 byte address (Address Prefix MAC Address Address Selector)
Interface Type	ATM interface type (N/A, Private UNI, Public UNI, Private NNI, Public NNI, NNI, UNI, STI, Unconfigured, VNNI, VUNI, EVNNI, EVUNI, VP TRUNK UNI)
VP and VC Ranges	Numeric ranges of the allowed VPI/VCI values
VC Table	Array of ATM Virtual Connections
Cross Connect Table	Array of Virtual Cross Connections
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Table 6-1ATM Interface (IAtm)

ATM Virtual Connection

The following Data Link layer ATM Virtual Connection object, is bound by its Containing Termination Points attribute to a Data Link layer ATM Interface object, and is primarily accessed by the Virtual Cross Connection and Data Link layer VC Encapsulation, however it is not bound to any of them by any of its attributes.

Attribute Name	Attribute Description
Virtual Channel Identifier	Virtual Channel Identifier (VCI)
Virtual Path Identifier	Virtual Path Identifier (VPI)
Shaping Profile	Shaping profile (ATM Traffic Shape Descriptor)
Discarded and Received	Discarded and received input octets and reassembled packets
Input Data Counters	counters
Dropped and Forward	Dropped and forward output octets and reassembled packets
Output Data Counters	counters
Ingress Traffic Descriptor	Ingress traffic descriptor (ATM Traffic Descriptor)
Egress Traffic Descriptor	Egress traffic descriptor (ATM Traffic Descriptor)
Administrative Status	Administrative status (Unknown, Up, Down)
Operational Status	Operational status (Unknown, Up, Down)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

 Table 6-2
 ATM Virtual Connection (IAtmVc)

Inverse Multiplexing for ATM (IMA) Group

The following Inverse Multiplexing for ATM (IMA) Group object, multiplex multiple Digital Signalling 1 Physicals, which it is bound to by its Containing Termination Points attribute, into a single Data Link layer ATM Interface, by which it is accessed.

Table 6-3 Inverse Multiplexing for ATM (IMA) Group (IIM.	MAGroup)
--	----------

Attribute Name	Attribute Description
Description	IMA port description
Speed	Group aggregated speed
Administrative Status	Administrative status (Unknown, Up, Down, Testing)
Operational Status	Operational status (Unknown, Up, Down, Testing, Dormant, Not Presented)
Operational Status Last Change	Date of last operational status change

Attribute Name	Attribute Description
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (Digital Signalling 1 Physicals)

Table 6-3	Inverse Multiplexing for ATM (IMA) Group (IIMAGroup) (continued)
10010 0 0	interes inaliground for a line (interest of the line o

ATM Traffic Descriptor

The following ATM Traffic Descriptor object describes traffic of a single ATM Virtual Connection, which it is being aggregated by a Traffic Descriptor Container object (see Common (Shared by Several)).

Attribute Name	Attribute Description
Traffic Descriptor Type	ATM traffic descriptor type (Null, Best Effort, No CLP and no SCR, CLP with no tagging and no SCR, CLP with tagging and no SCR, No CLP with SCR, CLP with no tagging and with SCR, CLP with tagging and with SCR, CLP with no tagging and with MCR, CLP-transparent with no SCR, CLP-transparent with SCR, No CLP with tagging and no SCR, No CLP and no SCR with CDVT, No CLP with SCR and CDVT, No CLP and no SCR with CDVT, No CLP with SCR and CDVT)
Service Category	ATM service category (Unknown, UBR, UBR1, UBR2, CBR, CBR1, CBR2, CBR3, ABR, RT VBR, NRT VBR, VBR, VBR1RT, VBR2RT, VBR3RT, VBR1NRT, VBR2NRT, VBR3NRT, GFR)
Cell Loss Priority	Cell loss priority (Unknown, True, False)
Cell Delay Variation	Cell delay variation
Cell Delay Variation Tolerance	Cell delay variation tolerance
Maximum High Priority and Aggregate Burst Sizes	Maximum high priority and aggregate (CLP=0 and CLP=0+1) burst sizes
Minimum High Priority and Aggregate Cell Rates	Minimum high priority and aggregate (CLP=0 and CLP=0+1) cell rates
Sustainable High Priority and Aggregate Cell Rates	Sustainable high priority and aggregate (CLP=0 and CLP=0+1) cell rates
Peak High Priority and Aggregate Cell Rates	Peak high priority and aggregate (CLP=0 and CLP=0+1) cell rates
Name	Traffic descriptor name
Index	Traffic descriptor index

 Table 6-4
 ATM Traffic Descriptor (IAtmTrafficDescriptor)

ATM Traffic Shape Descriptor

The following ATM Traffic Shape Descriptor object describes the traffic shape of a single ATM Virtual Connection and is being aggregated by a Traffic Descriptor Container object (see Common (Shared by Several)).

Attribute Name	Attribute Description
Maximum Burst Size	Maximum burst sizes
Sustainable and Peak Cell Rates	Sustainable and peak cell rates
Cell Delay Variation	Cell delay variation
State	Descriptor state (Null, Enabled, Disabled)
Buffer Size	Buffer size
Cell Loss Priority Discarded Size	Cell loss priority discarded size
Name	Traffic descriptor name
Index	Traffic descriptor index

 Table 6-5
 ATM Traffic Shape Descriptor (IAtmTrafficShapingDescriptor)

Vendor Specific Inventory and Information Model Objects

Vendor specific Information Model Objects are implemented only for specific devices of the vendor. The following sections describe the objects of specific vendors:

- Lucent's ATM Trunk Interface
- Cisco or Lucent's ATM Logical Interface
- Cisco or Lucent's ATM Trunk Virtual Connection
- Cisco or Lucent's ATM Soft Permanent Virtual Connection
- Alcatel's ASAM ATM Interface
- ECI's HiFocus ATM Interface
- Alcatel's ASAM ATM Traffic Descriptor
- ECI's HiFocus ATM Traffic Descriptor
- Lucent's WAN Switch ATM Traffic Descriptor
- Alcatel's ATM Access Traffic Descriptor
- Alcatel's ASAM Access Traffic Descriptor

Lucent's ATM Trunk Interface

Lucent's ATM Trunk Interface Data Link layer object aggregates multiple ATM Virtual Connections, which it is bound to by its VC Table attributes. It is bound by its Containing Termination Points attribute to a Physical Layer Interface, and is primarily accessed by a Virtual Connection Switching Entity bound by its Contained Connection Termination Points attribute.

Table 6-6	Lucent's ATM	Trunk Interface	(IAtmTrunk)
-----------	--------------	-----------------	-------------

Attribute Name	Attribute Description
Same as ATM Interface (IAtm) - see Table 6-1 on page 6-2.	

Cisco or Lucent's ATM Logical Interface

Cisco or Lucent's ATM Logical Interface Data Link layer object aggregates multiple ATM Virtual Connections, which it is bound to by its VC Table attributes. It is bound by its Containing Termination Points attribute to a Physical Layer Interface, and is primarily accessed by a Virtual Connection Switching Entity and Data Link layer VC Encapsulation bound by its Contained Connection Termination Points attribute.

Table 6-7	Cisco or Lucent's ATM Logical Interface (IAtmLogicalPort/Trunk)
-----------	---

Attribute Name	Attribute Description
Resource Management Cell Termination	Resource management cell termination (Unknown, CCRM Only, CCRM & BCM)
Resource Management Cell Generation	Resource management cell generation (<i>Unknown</i> , <i>None</i> , <i>CCRM</i> , <i>BCM</i>)
Effective Check	Effective check (Unknown, No, Yes)
Input and Output Capacities	Input and output capacities
Administrative Status	Administrative status (Null, Up, Down, Testing)
Operational Status	Operational status (Null, Up, Down, Testing, Unknown, Dormant, Not Present)
Same as ATM or ATM Trunk Interface - see Table 6-1 on page 6-2.	

Cisco or Lucent's ATM Trunk Virtual Connection

Cisco or Lucent's ATM Trunk Virtual Connection and Cisco or Lucent's ATM Soft Permanent Virtual Connection Data Link layer objects, are bound by their Containing Termination Points attributes to an ATM Interface object, and are primarily accessed by a Virtual Cross Connection object, although they are not bound to it by any of their attributes.

Table 6-8	Cisco or Lucent's ATM Trunk Virtual Connection (IAtmTrunkVc)

Attribute Name	Attribute Description
Destination Description	Destination party description
Same as ATM Virtual Connection (<i>IAtmVc</i>) - see Table 6-2 on page 6-3.	

Cisco or Lucent's ATM Soft Permanent Virtual Connection

	· · ·
Attribute Name	Attribute Description
Remote Virtual Channel Identifier	Remote virtual channel identifier (VCI)
Remote Virtual Path Identifier	Remote virtual path iIdentifier (VPI)
Remote Network Service Access Point	Remote network service access point (<i>NSAP</i>), which is the destination ATM address
Same as ATM Virtual Connection (<i>IAtmVc</i>) - see Table 6-2 on page 6-3.	

Table 6-9

Cisco or Lucent's ATM Soft Permanent Virtual Connection (IAtmSpVc)

Alcatel's ASAM ATM Interface

Alcatel's ASAM ATM Interface and ECI's HiFocus ATM Interface Data Link layer objects aggregate multiple ATM Virtual Connections, which they are bound to by their VC Table attributes. They are bound by their Containing Termination Points attributes to a Physical Layer Interface, and are primarily accessed by Virtual Connection Switching Entity and Data Link layer VC Encapsulation objects bound by their Contained Connection Termination Points attributes.

Attribute Name	Attribute Description
CAC Traffic Descriptor	Connection Admission Control (CAC) traffic descriptor (Alcatel's ASAM ATM Traffic Descriptor)
Access Traffic Descriptor	Access traffic descriptor (Alcatel's ASAM Access Traffic Descriptor)
Same as ATM Interface (<i>IAtm</i>) - see Table 6-1 on page 6-2.	

Table 6-10 Alcatel's ASAM ATM Interface (IAsamAtm)

ECI's HiFocus ATM Interface

Table 6-11 ECI's HiFocus ATM Interface (IHiFocusAtm)

Attribute Name	Attribute Description
CAC Traffic Descriptor	Connection Admission Control (CAC) traffic descriptor (ECI's HiFocus ATM Traffic Descriptor)
Access Traffic Descriptor	Access traffic descriptor (Alcatel's ATM Access Traffic Descriptor)
Same as ATM Interface (IAtm) - see Table 6-1 on page 6-2.	

Alcatel's ASAM ATM Traffic Descriptor

The following objects—Alcatel's ASAM ATM Traffic Descriptor, ECI's HiFocus ATM Traffic Descriptor, Lucent's WAN Switch ATM Traffic Descriptor and Lucent's WAN Switch ATM Traffic Descriptor describe traffic of a single ATM Virtual Connection, and are aggregated by a Traffic Descriptor Container object.

 Table 6-12
 Alcatel's ASAM ATM Traffic Descriptor (IAsamAtmTrafficDescriptor)

Attribute Name	Attribute Description	
User VP and VC Ranges	Numeric ranges of the allowed user VPI/VCI values	
Same as ATM Traffic Descriptor (IAtmTrafficDescriptor) - see Table 6-4 on page 6-4.		

ECI's HiFocus ATM Traffic Descriptor

Table 6-13	ECI's HiFocus ATM Interface	(IHiFocusAtm)
------------	-----------------------------	---------------

Attribute Name	Attribute Description	
Service Category	ATM service category (Unspecified)	
Same as ATM Traffic Descriptor (IAtmTraffic Descriptor) - see Table 6-4 on page 6-4.		

Lucent's WAN Switch ATM Traffic Descriptor

 Table 6-14
 Lucent's WAN Switch ATM Traffic Descriptor

 (ILucentWANSwitchAtmTrafficDescriptor)

Attribute Name	Attribute Description
Priority	Connection pPriority
Type Connection type	
Same as ATM Traffic Descriptor (IAtmTrafficDescriptor) - see Table 6-4 on page 6-4.	

Alcatel's ATM Access Traffic Descriptor

Alcatel's ATM Access Traffic Descriptor object describes access traffic of a single ATM Virtual Connection, and is aggregated by a Traffic Descriptor Container.

Table 6-15	Alcatel's ATM Access Traffic Descriptor (IAtmAccessTrafficDescriptor)
------------	---

Attribute Name	Attribute Description
Scope	Access scope (Null, Local, Network)
Maximum Active VPCs and VCCs	Maximum active virtual path and virtual channel connections
Maximum Supported VPI and VCI Bits	Maximum supported virtual path and virtual channel bits
Generic Flow Control Mode	Generic flow control mode (Null, UNI, NNI)

Police Mode	Police mode (Null, None, VC Only, All)
Name	Traffic descriptor name
Index	Traffic descriptor index

Table 6-15 Alcatel's ATM Access Traffic Descriptor (IAtmAccessTrafficDescriptor)

Alcatel's ASAM Access Traffic Descriptor

Alcatel's ASAM Access Traffic Descriptor object describes access traffic of a single ATM Virtual Connection, and is aggregated by a Traffic Descriptor Container.

Table 6-16 Alcatel's ASAM Access Traffic Descriptor (IAsamAccessTrafficDescriptor)

Attribute Name	Attribute Description	
Maximum Supported VPCs and VCCs	Maximum supported virtual path and virtual channel connections	
Maximum Active VPI and VCI Bits	Maximum active virtual path and virtual channel bits	
Same as ATM Access Traffic Descriptor (<i>IAtmAccessTrafficDescriptor</i>) - see Table 6-15 on page 6-8.		

Network Topology

The discovery of Asynchronous Transfer Mode (ATM) Data Link layer topology is done by searching for the same set of active ATM Virtual Connections in any remote side's ATM port VCs table related to the same type of the local ATM port. This topology is also applied to the underlying physical links.

In particular it looks for harmony between the VCs tables of participating ports based on the lowest active VCs (registry default to 3).

Further verification is done by matching the VC traffic signature of these ports using Cisco's confidential scheme, which requires a substantial traffic amount in order to function correctly.

This mechanism support configuration that have on both sides either the same VCs or the same VPs. However it does not support a mixture of VCs on one side and VPs on the other one.

Service Alarms

The following alarms are supported for this technology:

- Cloud Problem
- Discard Input Packets/Normal Discard Input Packets
- Dropped Output Packets/Normal Dropped Output Packets
- Link Down/Link Up
- Port Down/Port Up
- Receive Utilization/Receive Utilization Normal
- Transmit Utilization/Transmit Utilization Normal

<u>)</u> Note

Note that these alarms, apart from the Cloud Problem, are related to the underlying Physical Interface (see Chapter 19, "Common (Shared by Several)").

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

CHAPTER 7

Frame Relay "FR"

This chapter describes the level of support that Cisco ANA provides for FR, as follows:

- Technology Description, page 7-1
- Inventory and Information Model Objects (IMOs), page 7-1
- Network Topology, page 7-4
- Service Alarms, page 7-4

Technology Description

Frame Relay

Frame Relay (FR) is a high performance variable length packets switching with statistical multiplexing Data Link (Layer 2) WAN protocol, which Although originally designed for use across Integrated Services Digital Network (ISDN) interface, today it is used over a variety of other network interfaces as well.

FR networks consist of FR switches interconnected by point-to-point FR links or Interfaces and are fundamentally connection-oriented, which means that a virtual channel (VC) must be set up across the FR network prior to any data transfer.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Frame Relay Interface (IFrameRelay/IFrTrunk)
- Frame Relay Virtual Connection (IFrVc)
- Frame Relay Traffic Descriptor (IFRTrafficDescriptor)
- Frame Relay Logical Interface (IFrameRelayLogicalPort/Trunk)
- Frame Relay Trunk Virtual Connection (IFrTrunkVc)

Frame Relay Interface

The following Data Link layer Frame Relay Interface object aggregates multiple Frame Relay Virtual Connections, which it is bound to by its VC Table attributes. It is bound by its Containing Termination Points attribute to a Physical Layer Interface, and is primarily being accessed by Data Link layer VC Multiplexer, bound by its Contained Connection Termination Points attribute. It is also being accessed by Virtual Connection Switching Entity.

Attribute Name	Attribute Description
Address Format	Frame relay address format (Unknown, q921, q922March90, q922November90, q922)
Maximum Supported VCs	Maximum supported virtual connections
Protocol Type	Frame relay protocol type (Unknown, Frame Relay, FR FUNI, Frame Forward)
VC Table	Array of Frame Relay Virtual Connections
Cross Connect Table	Array of Virtual Cross Connections
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

 Table 7-1
 Frame Relay Interface (IFrameRelay/IFrTrunk)

Frame Relay Virtual Connection

The following Data Link layer Frame Relay Virtual Connection object, is bound by its Containing Termination Points attribute to a Data Link layer Frame Relay Interface object, and is primarily accessed by the Virtual Cross Connection and Data Link layer VC Encapsulation, however it is not bound to any of them by any of its attributes.

Table 7-2	Frame Relay	Virtual Connection	(IFrVc)
-----------	-------------	--------------------	---------

Attribute Name	Attribute Description
Data Link Connection Identifier	Data Link Connection Identifier (DLCI)
Traffic Descriptor	Traffic descriptor (Frame Relay Traffic Descriptor)
Discarded and Received	Discarded and received input octets and packets counters
Input Data Counters	
Dropped and Forward	Dropped and forward output octets and packets counters
Output Data Counters	
Ingress Traffic Descriptor	Ingress traffic descriptor (Frame Relay Traffic Descriptor)
Egress Traffic Descriptor	Egress traffic descriptor (Frame Relay Traffic Descriptor)
Administrative Status	Administrative status (Unknown, Up, Down)
Operational Status	Operational status (Unknown, Up, Down)
IANA Type	IANA type of the sub/layer

Attribute Name	Attribute Description
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Frame Relay Traffic Descriptor

The following Frame Relay Traffic Descriptor object describes the traffic of a single Frame Relay Virtual Connection is being aggregated by a Traffic Descriptor Container object (see Common (Shared by Several)).

 Table 7-3
 Frame Relay Traffic Descriptor (IFRTrafficDescriptor)

Attribute Name	Attribute Description
Committed Rate	Committed burst rate
Excess Burst Rate	Excess burst rate
Name	Traffic descriptor name
Index	Traffic descriptor index

Frame Relay Logical Interface

The following Data Link layer Frame Relay Logical Interface object aggregates multiple Frame Relay Virtual Connections, which it is bound to by its VC Table attributes. It is bound by its Containing Termination Points attribute to a Physical Layer Interface, and is primarily accessed by the Virtual Connection Switching Entity and Data Link layer VC Encapsulation bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
Administrative Status	Administrative status (Null, Up, Down, Testing)
Operational Status	Operational status (Null, Up, Down, Testing, Unknown, Dormant, Not Present)
Same as Frame Relay Interface (<i>IFrameRelay/IFrTrunk</i>)	

 Table 7-4
 Frame Relay Logical Interface (IFrameRelayLogicalPort/Trunk)

Frame Relay Trunk Virtual Connection

The following Data Link layer Frame Relay Trunk Virtual Connection object, is bound by its Containing Termination Points attribute to a Frame Relay Interface object, and is primarily accessed by the Virtual Cross Connection and Data Link layer VC Encapsulation, however it is not bound to any of them by any of its attributes.

 Table 7-5
 Frame Relay Trunk Virtual Connection (IFrTrunkVc)

Attribute Name	Attribute Description
Destination Description	Destination party description
Same as Frame Relay Virtual Connection (IFrVc)	

Network Topology

The discovery of Frame Relay (FR) Data Link layer topology is unsupported and is manually (statically) configured by the system administrator.

Service Alarms

The following alarms are supported for this technology:

- Cloud Problem
- Discard Input Packets/Normal Discard Input Packets
- Dropped Output Packets/Normal Dropped Output Packets
- Link Down/Link Up
- Port Down/Port Up
- Receive Utilization/Receive Utilization Normal
- Transmit Utilization/Transmit Utilization Normal

Note that these alarms, apart from the Cloud Problem, are related to the underlying Physical Interface (Common section).

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Point-to-Point Protocol "PPP" and High Level Data Link Control "HDLC"

This chapter describes the level of support that Cisco ANA provides for PPP and HDLC, as follows:

- Technology Description, page 8-1
- Inventory and Information Model Objects (IMOs), page 8-2
- Network Topology, page 8-3
- Service Alarms, page 8-3

Technology Description

PPP

The Point-to-Point Protocol (PPP) (RFC 1661) originally emerged as an encapsulation protocol for transporting IP traffic over point-to-point links. PPP also established a standard for the assignment and management of IP addresses, Octet Synchronous (Asynchronous) encapsulation, using HDLC like framing (RFC 1662) protocol, Bit Synchronous encapsulation, using HDLC protocol, network Protocol Multiplexing, Link Configuration, Link Quality Testing, Error Detection, and option negotiation for such capabilities as Network Layer Address and Data Compression negotiation.

PPP supports these functions by providing an extensible Link Control Protocol (LCP) and a family of Network Control Protocols (NCPs) to negotiate optional configuration parameters and facilities.

HDLC

High-level Data Link Control (HDLC) is a Data Link Layer (Layer 2) group of protocols for transmitting synchronous data packets between point-to-point nodes. In HDLC, data is organized into an addressable frame, which its format has been used for other multipoint to multipoint protocol as well inspired the HDLC like framing protocol described in RFC 1662.

HDLC uses zero insertion/deletion process (bit stuffing) to ensure that the bit pattern of the delimiter flag does not occur in the fields between flags. The HDLC frame is synchronous and therefore relies on the Physical Layer (Layer 1) to provide method of clocking and synchronizing the transmission and reception of frames.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Point To Point Protocol Encapsulation (IVcBasedEncapsulation)
- High Level Data Link Control Encapsulation (IEncapsulation)

Point To Point Protocol Encapsulation

_ . . .

The following Data Link layer Point To Point Protocol Encapsulation object, is bound by its Containing Termination Points attribute to an ATM/Frame Relay VC Multiplexer object, and is primarily accessed by a Network layer such as the IP Interface bound by its Contained Connection Termination Points attribute.

Table 8-1 Point To Point Protocol Encapsulation (IVcBasedEncapsulation)

Attribute Name	Attribute Description
Virtual Connection	Virtual connection if applicable (ATM Virtual Connection, Frame Relay Virtual Connection or Virtual LAN Interface)
Binding Information	Binding information (User Name,)
Binding Status	Binding status (Not Bound, Bound)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

High Level Data Link Control Encapsulation

The following Data Link layer High Level Data Link Control Encapsulation (HDLC) object, is bound by its Containing Termination Points attribute to an ATM/ Frame Relay VC Multiplexer object, and is primarily accessed by a Network layer such as the IP Interface bound by its Contained Connection Termination Points attribute.

Table 8-2	High Level Data Link Control E	ncapsulation (IEncapsulation)
-----------	--------------------------------	-------------------------------

Attribute Name	Attribute Description
Virtual Connection	Virtual connection if applicable (ATM Virtual Connection or Frame Relay Virtual Connection)
Binding Information	Binding information (User Name,)
Binding Status	Binding status (Not Bound, Bound)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Network Topology

The discovery of Point-to-Point Protocol (PPP) Data Link layer topology is done by searching for the existence of the local IP Subnet in any one hop away remote side's PPP interface. In particular, a comparison is made between the local and remote IP subnets gathered from the upper IP Network layers.

Service Alarms

There are no faults and alarms related to this technology.

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Layer 2 Tunnel Protocol "L2TP"

This chapter describes the level of support that Cisco ANA provides for L2TP, as follows:

- Technology Description, page 9-1
- Inventory and Information Model Objects (IMOs), page 9-1
- Vendor Specific Inventory and Information Model Objects, page 9-2
- Network Topology, page 9-4
- Service Alarms, page 9-4
- Alarm Configuration Parameters, page 9-5
- Using Cisco ANA PathTracer to View L2TP Path Information, page 9-5

L2TP technology for Cisco devices is currently not supported.

Technology Description

L2TP

L2TP acts like a Data Link layer (Layer 2) protocol for tunneling network traffic between two peers over an existing network (usually the Internet). The two endpoints of an L2TP tunnel are the initiator of the tunnel L2TP Access Concentrator (LAC) and the L2TP Network Server (LNS), which waits for new tunnels. Once a tunnel is established, the network traffic between the peers is bidirectional.

L2TP is in fact a Session Layer (Layer 5) protocol, as the entire L2TP packet is sent within a UDP datagram, while it is common to carry Point-to-Point Protocol (PPP) sessions within an L2TP tunnel. L2TP does not provide confidentiality or strong authentication by itself. IPsec is often used to secure L2TP packets by providing confidentiality, authentication and integrity.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Layer 2 Tunnel Protocol Interface (IL2TPTunnel)
- Layer 2 Tunnel Protocol Session Entry (IL2TPSessionEntry)

Layer 2 Tunnel Protocol Interface

The following Layer 2 Tunnel Protocol Interface object represents one edge of an L2TP Tunnel. It aggregates multiple Layer 2 Tunnel Protocol Session Entries, which it is bound to by its Session Table attributes, while being aggregated by a Layer 2 Tunnel Protocol Peer, from which it is created or cloned.

Attribute Name	Attribute Description
Local and Remote Tunnel Identifications	Local and remote tunnel identifications
Local and Remote Tunnel Names	Local and remote tunnel names
Remote Address	Remote IP address
Control Errors	Control errors count
Last Error Code	Last error code value which cause tunnel disconnection
Tunnel State	Tunnel state (Unknown, Idle, Connecting, Established, Disconnecting)
Sessions Count	Current sessions count
Sessions Table	Array of Layer 2 Tunnel Protocol Session Entries

Layer 2 Tunnel Protocol Session Entry

The following Layer 2 Tunnel Protocol Session Entry object represents a session within an L2TP Tunnel. It is primarily accessed by the Layer 2 Tunnel Protocol Interface in which it is contained.

 Table 9-2
 Layer 2 Tunnel Protocol Session Entry (IL2TPSessionEntry)

Attribute Name	Attribute Description
Local and Remote Session Identifications	Local and remote session identifications
Subscriber Name	Subscriber name
Session Type	Session type (Unknown, LAC, LNS)
Session State	Session state (Unknown, Idle, Connecting, Established, Disconnecting)
Input and Output Data Counters	Input and output data octets and packets counters

Vendor Specific Inventory and Information Model Objects

Vendor specific Information Model Objects are implemented only for specific devices of the vendor.

The following sections describe the objects of specific vendors:

- Redback's Layer 2 Tunnel Protocol Peer
- Redback's Layer 2 Tunnel Protocol Group
- Redback's Layer 2 Tunnel Protocol Domain Entry

Redback's Layer 2 Tunnel Protocol Peer

Redback's Layer 2 Tunnel Protocol Peer object describes a logical component, aggregating multiple Layer 2 Tunnel Protocol Interfaces with their configuration, which it is being bound to by its Logical Sons attribute. It is primarily used for managing the creation of L2TP Tunnels.

Attribute Name	Attribute Description
Local and Peer Addresses	Local and peer IP addresses
Local and Peer Names	Local and peer names
Tunnel Type	Tunnel type (Unknown, LAC, LNS)
Tunnel Mode	Tunnel mode (Null, Static, Dynamic)
Maximum and Current Tunnels Counts	Maximum and current tunnels counts
Maximum and Current Sessions Counts	Maximum and current sessions counts
Session Authentication Type	Session authentication type (Null, None, Simple, Challenge)
Tunnel Password	Tunnel password for the authentication phase of the tunnel establishment
RADIUS Identification	Remote Authentication Dial In User Service (RADIUS) identification
Hello Time Interval	Time interval in witch hello (keep alive) packets should be sent
Control Errors	Control errors count
Media Type	Underlying media type (Null, Other, None, UDPLP, Frame Relay, ATM)
Group Identification	Object Identification (OID) of layer 2 tunnel protocol group (<i>IL2TPGroup</i>)
Domains Table	Array of Layer 2 Tunnel Protocol Domain Entries
Logical Sons	Array of aggregated Layer 2 Tunnel Protocol Interface

 Table 9-3
 Redback's Layer 2 Tunnel Protocol Peer (IL2TPPeer)

Redback's Layer 2 Tunnel Protocol Group

Redback's Layer 2 Tunnel Protocol Group object describes a logical component, load balancing multiple Redback's Layer 2 Tunnel Protocol Peers, which are grouped by its Peer List attribute. It is aggregated by a Traffic Descriptor Container object.

Attribute Name	Attribute Description
Group Name	Layer 2 tunnel protocol group name
Tunnel Algorithm	Tunnel algorithm
Dead Time	Dead time

 Table 9-4
 Redback's Layer 2 Tunnel Protocol Group (IL2TPGroup)

Attribute Name	Attribute Description
RADIUS Identification	Remote Authentication Dial In User Service (RADIUS) identification
Peers List	Array of Redback's Layer 2 Tunnel Protocol Peers
Domains Table	Array of Layer 2 Tunnel Protocol Domain Entries

Table 9-1	Rodback's Las	or 2 Tunnal	Protocol Grou	n /II 2TPGroup	(continued)
Table 5-4	neuback s Lay	er z iunner	FIOLOCOI GIOU	p(iLziFGroup)	(continueu)

Redback's Layer 2 Tunnel Protocol Domain Entry

Redback's Layer 2 Tunnel Protocol Domain Entry object describes an Internet Domain, in which members are allowed to open L2TP Sessions within L2TP Tunnels, aggregated by either L2TP Peers or further by L2TP Groups containing this domain. It is aggregated by a Traffic Descriptor Container object.

 Table 9-5
 Redback's Layer 2 Tunnel Protocol Domain Entry (IL2TPDomainEntry)

Attribute Name	Attribute Description
Domain Name	Layer 2 tunnel protocol domain name
Attached To Object	Object Identifier (OID) of either a Redback's Layer 2 Tunnel Protocol Peer or a Redback's Layer 2 Tunnel Protocol Group this domain is attached to

Network Topology

The discovery of Layer 2 Tunnelling Protocol (L2TP) Data Link layer topology is unsupported. The topology is not manually configured.

Service Alarms

A summary of the L2TP technology alarms are displayed in the alarms summary table:

Alarm	Severity	Description	Up Alarm
L2TP Peer is Not Established	Major	The state of a statically configured L2TP tunnel is changed from "established" to anything else. Such a failure may be as the result of a configuration or network problem.	L2TP Peer is Established
L2TP Peer was Removed	Info	A dynamically configured L2TP Tunnel was removed from a device	None
L2TP Sessions Count Exceeded	Major	The current sessions count has exceeded its maximum threshold	L2TP Sessions Count Returned to Normal

Table 9-6Alarms Summary

L2TP Peer Is Not Established/Established

An L2TP peer is not established alarm is issued when the state of a statically configured L2TP tunnel is changed from "established" to anything else. Such a failure may be as the result of a configuration or network problem. The L2TP peer is established alarm is issued when this problem has been fixed.

L2TP Peer Was Removed

An L2TP peer was removed alarm is issued when a dynamically configured L2TP tunnel is removed from a device. This is not issued as a ticket; however it invokes a correlation flow and can be viewed in Cisco ANA EventVision. In addition, it also appears in the Cisco ANA NetworkVision application only if correlated to another alarm, like link or port down.

L2TP Sessions Count Exceeded/Return to Normal

An L2TP sessions count exceeded alarm is issued when the current percentage of the number of sessions in the L2TP peer has exceeded the maximum configurable threshold. A L2TP sessions count return to normal alarm is issued when the current percentage of the number of sessions has returned to below the configured threshold.

The maximum number of sessions allowed for a single peer is defined by the L2TP peer and L2TP tunnel configuration parameters.

Alarm Configuration Parameters

For more information about event and alarm configuration parameters, see the Cisco Active Network Abstraction Fault Management Guide.

Using Cisco ANA PathTracer to View L2TP Path Information

This section describes the Cisco ANA PathTracer for L2TP, including viewing tunnel information. For detailed information about the Cisco ANA PathTracer, see the Cisco Active Network Abstraction NetworkVision User Guide.

Cisco ANA uses VC ID encapsulation information to trace the path from one tunnel interface to another over the network. The Cisco ANA's PathTracer tool enables you to:

- View a path for the defined L2TP session across the network.
- For each network element view the relevant parameters for each interface on all layers along the path.

Layer 2 and Layer 3 L2TP information is displayed in the Cisco ANA PathTracer windows when a path is traced over L2TP tunnels for Redback devices.

Layer 3

The following Layer 3 property that may be displayed in the **Layer 3** tab relates specifically to L2TP tunnels:

• Name—The peer name is displayed.

Layer 2

The following Layer 2 properties that may be displayed in the Layer 2 tab relate specifically to L2TP tunnels:

- Encapsulation Type—The encapsulation type, for example, PPPoA.
- Binding Information—The name of the subscriber.
- Binding Status—The binding status, namely, bound or unbound.
- Tunnel Session Count—The number of current sessions.
- Tunnel Remote ID—The remote tunnel identifier.
- Tunnel ID—The local tunnel identifier.
- Tunnel Name—The name of the subscriber and the tunnel ID.
- Session ID—The session identifier.
- Traffic -> L2TPSessionCounters—The number of traffic packets passing through the L2TP tunnel.
- Traffic <- L2TPSessionCounters—The number of traffic packets passing through the L2TP tunnel.
- Tunnel Ctl Errors—The number of control errors.
- Tunnel State—The tunnel state, namely, unknown, idle, connecting, established, and disconnecting.
- Session Type—The session type, namely, unknown, LAC, and LNS.
- Peer Name—The peer name.
- Tunnel Remote IP—The remote IP address of the tunnel.
- Last Error Code—The last error code value which caused the tunnel disconnection.
- Session State—The session state, namely, unknown, idle, connecting, established, and disconnecting.
- Remote Session ID—The remote session identifier.

Digital Subscriber Line "DSL" and Integrated Services Digital Network "ISDN"

This chapter describes the level of support that Cisco ANA provides for DSL and ISDN, as follows:

- Technology Description, page 10-1
- Inventory and Information Model Objects (IMOs), page 10-2
- Vendor Specific Inventory and Information Model Objects, page 10-6
- Network Topology, page 10-7
- Service Alarms, page 10-7

Technology Description

xDSL

Digital Subscriber Line (DSL) technology is a modem technology that uses existing twisted pair telephone lines to transport high bandwidth data, such as multimedia and video, to service subscribers. The term xDSL covers a number of similar yet competing forms of DSL, including Asymmetric DSL (ADSL/ADSL2), Symmetric DSL (SDSL), High Speed DSL (HDSL), Rate Adaptive (RADSL), and Very High Bit Data Rate DSL (VDSL) for delivering up to 52 Mbps downstream.

At the customer end of the connection a DSL modem converts data from the digital signals used by computers into a voltage signal of a suitable frequency range which is then applied to the phone line. At the exchange end, a Digital Subscriber Line Access Multiplexer (DSLAM) terminates the DSL circuits and aggregates them, where they are handed off onto other networking transports. In the case of ADSL, the voice component is also separated at this step, either by a filter integrated in the DSLAM or by specialized filtering equipment installed before it.

ISDN

Integrated Services Digital Network (ISDN) is comprised of digital telephony and data transport services offered by regional telephone carriers. ISDN involves the digitization of the telephone network, which permits voice, data, text, graphics, music, video, and other source material to be transmitted over existing telephone wires.

There are two type of channel in ISDN: A 64 Kbps Bearer (B) channel, which used for data and up to 64 Kbps Delta (D) channel used for signalling and control over the Layers 1 through 3 of the OSI reference model.

With those there are two types of services associated: The 192Kbps Basic Rate Interface (BRI) service, which offers two B channels and one D channel (2B+D) and the 1.544/2.048 Mbps Primary Rate Interfaces (PRI) service, which offers 23/31 B channels and one D channel respectively for the xDSL interface backup.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Digital Subscriber Line Interface (IDsl/IIdsl/ISdsl/IShdsl)
- Asynchronous Digital Subscriber Line Interface (IADsl)
- Asynchronous Digital Subscriber Line 2 Interface (IADs12)
- ISDN DSL Traffic Descriptor (IIdslTrafficDescriptor)
- Asynchronous DSL Traffic Descriptor (IAdslTrafficDescriptor)
- Asynchronous DSL 2 Spectrum Traffic Descriptor (IAdsl2TrafficDescriptor)
- Synchronous DSL Traffic Descriptor (ISdslTrafficDescriptor)
- Synchronous High Bit Rate DSL Traffic Descriptor (IShdslTrafficDescriptor)
- Integrated Services Digital Network Interface (IIsdnLayer2)
- Integrated Services Digital Network Channel (IIsdnChannel)
- Integrated Services Digital Network Physical (IIsdnLayer1)

Digital Subscriber Line Interface

The following Physical layer Digital Subscriber Line Interface, which represents any DSL interface, as well as Asynchronous Digital Subscriber Line Interface and Asynchronous Digital Subscriber Line 2 Interface objects, are bound by their Containing Termination Points attribute to a Port Connector object, and is primarily accessed by only a Data Link Layer ATM Interface bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
Modulation Type	Modulation type (Null, DMT, CAP, QAM, GLite, GDMT, 2B1Q)
Customer Identification	Customer identification
Traffic Descriptor Traffic descriptor (DSL Traffic Descriptor)	
Same as Physical Layer (IPhysicalLayer)	

 Table 10-1
 Digital Subscriber Line Interface (IDsl/IIdsl/ISdsl/IShdsl)

Asynchronous Digital Subscriber Line Interface

Table 10-2Asynchronous Digital Subscriber Line Interface (IADsI)		
Attribute Name	Attribute Description	
Maximum Reception and Transmission Bandwidth	Maximum reception and transmission bandwidth	
Same as Digital Subscriber Line Interface (IDsl)		

Asynchronous Digital Subscriber Line 2 Interface

Table 10-3

Attribute Name	Attribute Description
Spectrum Traffic Descriptor	Spectrum traffic descriptor (Asynchronous DSL 2 Spectrum Traffic Descriptor)
Traffic Descriptor	Traffic descriptor (Asynchronous DSL Traffic Descriptor)
Same as Asynchronous Digital Subscriber Line Interface (IADsl)	

Asynchronous Digital Subscriber Line 2 Interface (IADsl2)

DSL Traffic Descriptor

The following various DSL Traffic Descriptor objects describe the traffic of various standard DSL Interfaces and are being aggregated by a Traffic Descriptor Container object (see Common (Shared by Several)).

Table 10-4 ISDN DSL Traffic Descriptor (IIds/TrafficDescriptor)

Attribute Name	Attribute Description
Target Bit Rate	Target Bit rate
Name	Traffic descriptor name
Index	Traffic descriptor index

Asynchronous DSL Traffic Descriptor

Table 10-5	Asynchronous DSL	Traffic Descriptor	(IAdsITrafficDescri	ptor)

Attribute Name	Attribute Description
Maximum, Minimum and Target Transmission and Reception Noise Margins	Maximum, minimum and target transmission and reception noise margins
Maximum, Minimum and Planned Transmission and Reception Bit Rates	Maximum, minimum and planned transmission and reception Bit rates

Maximum Transmission Power Spectral Density	Maximum transmission Power Spectral Density (PSD)
Transmission and Reception Rate Adaptation	Transmission and reception rate adaptation mode (<i>Null, Fixed, Adapt at Startup, Adapt at Runtime</i>)
Channel Type	ADSL channel type (Null, Fast, Interleaved, Fast or Interleaved, Fast and Interleaved)
Name	Traffic descriptor name
Index	Traffic descriptor index

Table 10-5	Asvnchronous DSL	Traffic Descriptor	(IAdsITrafficDescriptor)	(continued)
	Asynomous Dec	nume Besenpter	[Indistinumobelesenpter]	(oominaca)

Asynchronous DSL 2 Spectrum Traffic Descriptor

Table 10-6	Asynchronous DSL 2 S	Spectrum Traffic Descript	tor (IAdsl2TrafficDescriptor)
	Asymonio as boe e o	pooliani namo bosompi	

Attribute Name	Attribute Description
Maximum, Minimum and Target Transmission and Reception Noise Margins	Maximum, minimum and target transmission and reception noise margins
Name	Traffic descriptor name
Index	Traffic descriptor index

Synchronous DSL Traffic Descriptor

Table 10-7	Synchronous DSI	Traffic Descriptor	(ISdsITrafficDescriptor)
	Oynomous Dol	. παιπο σεσοπριοι	(iousi iranicoescriptor)

Attribute Name	Attribute Description
Target and Minimum Bit Rate	Target and minimum line Bit rate
Target Noise Margin	Target noise margin
Name	Traffic descriptor name
Index	Traffic descriptor index

Synchronous High Bit Rate DSL Traffic Descriptor

Table 10-8	Synchronous High Bit Rate DSL	Traffic Descriptor (IShdsITrafficDescriptor)
	, ,	

Attribute Name	Attribute Description
Target Bit Rate	Target line Bit rate
Wire Mode	Wire mode (Null, Two Wire, Four Wire)
Spectral Mode	Spectral mode (Null, Symmetric, Asymmetric)

Table 10-8	Synchronous High Bit Rate DSL Traffic Descriptor (IShdslTrafficDescriptor) (con	tinued)
------------	---	---------

Name	Traffic descriptor name
Index	Traffic descriptor index

Integrated Services Digital Network (ISDN) Interface

The following Data Link layer Integrated Services Digital Network (ISDN) Interface object, is bound by its Containing Termination Points attribute to a Physical Layer Integrated Services Digital Network (ISDN) Physical object, and is primarily accessed by Point To Point Protocol Encapsulation bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
Control Administrative Status	Administrative status (Unknown, Up, Down, Testing)
Operational Status	Operational status (Unknown, Up, Down, Testing, Dormant, Not Present)
Channels Table	Array of Integrated Services Digital Network (ISDN) Channels
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

 Table 10-9
 Integrated Services Digital Network Interface (IIsdnLayer2)

Integrated Services Digital Network (ISDN) Channel

The following Data Link layer Integrated Services Digital Network (ISDN) Channel object describes an Integrated Services Digital Network (ISDN) Interface channels table's entry.

Table 10-10 Integrated Services Digital Network Channel (IIsdnChannel)

Attribute Name	Attribute Description
Control Administrative Status	Administrative status (Unknown, Up, Down, Testing)
Operational Status	Operational status (Unknown, Up, Down, Testing, Dormant, Not Present)

Integrated Services Digital Network (ISDN) Physical

The following Physical layer Integrated Services Digital Network (ISDN) Physical object, is bound by its Containing Termination Points attribute to a Port Connector object, and is accessed by the Data Link layer Integrated Services Digital Network (ISDN) Interface bound by its Contained Connection Termination Points attribute.

 Table 10-11
 Integrated Services Digital Network Physical (IIsdnLayer1)

Attribute Name	Attribute Description
Same as Physical Layer (<i>IPhysicalLayer</i>)	

Vendor Specific Inventory and Information Model Objects

Vendor specific Information Model Objects are implemented only for specific devices of the vendor.

The following vendors' DSL Traffic Descriptor objects describe traffic of these vendors' standard DSL interfaces, and are aggregated by a Traffic Descriptor Container object.

- ECI's HiFocus ADSL Traffic Descriptor
- Alcatel's ASAM SHDSL Traffic Descriptor

ECI's HiFocus ADSL Traffic Descriptor

Attribute Name	Attribute Description
Discrete Multi-Tone Coding Model	Discrete multi-tone coding model (Null, discrtMultiTone)
ATUC Downstream and ATUR Upstream Usage	ATUC downstream and ATUR upstream usage (Null, Yes, No)
ATUC Downstream Fast and Interleave Check Bytes	ATUC downstream fast and interleave check bytes
ATUR Upstream Fast and Interleave Check Bytes	ATUR upstream fast and interleave check bytes
ATUC Downstream and ATUR Upstream Interleaved Depth	ATUC downstream and ATUR interleaved depth (<i>Power of 2</i> , 0, <i>Non</i>)
ATUC Downstream and ATUR Upstream Code Word Length	ATUC downstream and ATUR upstream code word length in symbols per code word
Trellis Coded Modulation Option Usage	Trellis coded modulation option usage (Null, Enabled, Disabled)
Echo Cancellation Option	Echo cancellation option (Null, Enabled, Disabled)
Coding Mode	Coding mode (Null, Automatic, Manual)
Same as Asynchronous DSL Traffic D	Descriptor (IAdslTrafficDescriptor) - see Table 10-5 on

Table 10-12	ECI's HiFocus ADSL Traffic Desci	iptor (IECIHiFocusAdslTrafficDescri	ptor)

Alcatel's ASAM SHDSL Traffic Descriptor

Table 10-13	Alcatel's ASAM SHDSL Traffic Descriptor (IAlcatelAsamShdslTrafficProfile)
-------------	---

Attribute Name	Attribute Description
Minimum and Maximum Required Bit Rate	Minimum and maximum required Bit rate
Same as Synchronous High Bit Rate D	OSL Traffic Descriptor (IShdslTrafficDescriptor) - see
Table 10-8 on page 10-4.	

Network Topology

The Digital Subscriber Line (DSL) Physical layer topology is unsupported and is manually (statically) configured by the system administrator.

Service Alarms

The following alarms are supported for this technology:

- Link Down/Link Up
- Port Down/Port Up

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Physical Technologies

This chapter describes the level of support that Cisco ANA provides for physical technologies, as follows:

- Technology Description, page 11-1
- Inventory and Information Model Objects (IMOs), page 11-2
- Network Topology, page 11-4
- Service Alarms, page 11-4

Technology Description

SONET/SDH

Synchronous Optical NETwork (SONET) together with Synchronous Digital Hierarchy (SDH) were originally standardized for connecting one fiber system to another at the optical level in order to forms a single international standard for fiber interconnects between telephone networks of different countries. Today it is a widely deployed, mature enabling technology used in providing high speed, large-scale IP networks, which combines high bandwidth capacity with efficient link utilization, making it a major building block for accommodating a fast growing IP infrastructure both in the core and on the edge.

SONET/SDH is capable of accommodating a variety of transmission rates and applications by defining a technology for carrying many signals of different capacities through a synchronous, flexible, optical hierarchy. This is accomplished by means of a byte-interleaved multiplexing scheme, which simplifies multiplexing, and offers end-to-end network management. It is a layered protocol with the following four separate layers: Photonic, Section, Line and Path, all within the Physical Layer (1) of the Open System Interconnection (OSI) reference model.

SONET/SDH networks consist of Path Terminating Elements (PTE), which represent the Physical Layer (1) Interfaces as well as Add/Drop Multiplexers (ADM) or Digital Cross Connect Systems (DCS) and Regenerators interconnected by point-to-point SONET/SDH links called Sections and are fundamentally connection-oriented, which means that a Virtual Channel (VC) must be set up across the SONET/SDH network prior to any data transfer.

POS

Packet over SONET/SDH (PoS) is a Data Link (Layer 2) technology that uses PPP (RFC 1661) in HDLC like framing (RFC 1662) encapsulation over SONET/SDH framing. POS interface supports SONET/SDH level alarm processing, performance monitoring, synchronization, and protection switching, which enables seamless interoperation with existing SONET infrastructures and provides the capability to migrate to IP+Optical networks without the need for legacy SONET infrastructures.

DSx

Digital Signals (DSx) Hierarchy refers to the rate and format of digital telecommunication circuits, as part of the North American Digital Hierarchy. DS is related to the T designations; however DS refers to multiplexing techniques while the T designations refer to the underlying equipment and signalling.

There are various DS levels: DS0/Fractional T1 (64Kbps), which represents a single voice telephone call, DS1/T1 (1.544Mbps), which defines how to multiplex 24 DS0, DS2/T2 (6.312Mbps) and DS3/T3 (44.736Mbps), which define how to multiplex 4 and 28 DS1 respectively, onto the same circuit.

These Physical Technologies are being supported only as the underlying Physical Layer in conjunction with other Data Link technology layers such as ATM and Packet Over SONET/SDH (POS).

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- SONET/SDH Physical (ISonetSdh)
- Digital Signalling 0 Bundle Interface
- Digital Signalling 1 Physical
- Digital Signalling 3 Physical

SONET/SDH Physical

The following Physical layer SONET/SDH object, is bound by its Containing Termination Points attribute to a Port Connector object, and is primarily accessed by the Data Link layer such as Asynchronous Transfer Mode "ATM" and Frame Relay "FR" interfaces as well as the Packet Over SONET/SDH (POS) interface (implemented using Point To Point Protocol Encapsulation) bound by its Contained Connection Termination Points attribute.

11-2

Attribute Name	Attribute Description
Specific Type	Specific type (Null, SONET/SDH Mux, OC3, OC12, OC24, OC48, OC192, STM1, STM4, STM16, STM64)
Loop Back Type	Loop back type (Null, Cell, Payload, Diag, Line, None, Other, Path, Metalic, Non Metalic, Serial, Parallel, Local, Internal, Network, Inward, Dual, Remote, Inbound Local, No Loop, Facility Loop, Terminal Loop, Other Loop)
Scrambling Mode	Scrambling mode (<i>Null, On, Off, Payload, Frame, Payload</i> and <i>Frame</i>)
Same as Physical Layer (IPhysical)	layer)

14DIE 11-1 30NE1/3DH FIIYSICAI (130HEL3UH)	Table 11-1	SONET/SDH Physical (ISonetSdh)
--	------------	--------------------------------

Digital Signalling 0 Bundle Interface

The following Data Link layer Digital Signalling 0 Bundle Interface object, is bound by its Containing Termination Points attribute to either Digital Signalling 1 Physical or Digital Signalling 3 Physical Layer objects, and is primarily accessed by the Data Link layer such as the ATM Interface and the Frame Relay Interface bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
Bundled Time Slots	Bundled time slots (DS1 channels)
Bundle Location	Bundle location/index
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination	Bound Connection Termination Points
Points	

 Table 11-2
 Digital Signalling 0 Bundle Interface (IDS0Bundle)

Digital Signalling 1 Physical

The following Physical layer Digital Signalling 1 Physical and Digital Signalling 3 Physical objects, are bound by their Containing Termination Points attribute to a Port Connector object, and are primarily accessed by the Data Link layer such as the ATM Interface and the Frame Relay Interface as well as Digital Signalling 0 Bundle Interface bound by its Contained Connection Termination Points attribute.

Attribute Name	Attribute Description
Framing Type	Framing type (Null, OTHER, ESF, ANSI ESFf, D4, E1, E1
	CRC, EI MF, EI CRC MF, UNFRAMED, EI UNFRAMED,
	DS2 M12, E2, E1 QS0, E1 QS0 CRC, ANSI SF, E1 CAS
	CRC4, EI Unstructured T1 Unstructured CLEAR CHAN-
	NEL)

Table 11-3 Digital Signalling 1 Physical (IDS1Pdh)

Cell Mapping Type	Cell mapping type (Null, PLCP, HEC, HCS, Direct, ADM)		
Loop Back Type	Loop back type (Null, Cell, Payload, Diag, Line, None, Other, Path, Metalic, Non Metalic, Serial, Parallel, Local, Internal, Network, Inward, Dual, Remote, Inbound Local, No Loop)		
Scrambling Mode	Scrambling mode (Null, On, Off)		
Same as Physical Layer (IPhysicalLag	yer)		

Table 11-3	Digital Signalling	1 Physical (IDS1Pdh)	(continued)
	Digital Oighannig		(continuou)

Digital Signalling 3 Physical

Attribute Name	Attribute Description
Framing Type	Framing type (Null, Other, M23, SYNTRAN, CBIT, Clear Channel, E3 Other, E3 Framed, Unframed, E3 Unframed, ITU-T G.804, ITU-T G.832, M13)
Cell Mapping Type	Cell mapping type (Null, PLCP, HEC, HCS, Direct, ADM)
Loop Back Type	Loop back type (Null, Cell, Payload, Diag, Line, None, Other, Path, Metalic, Non Metalic, Serial, Parallel, Local, Internal, Network, Inward, Dual, Remote, Inbound Local, No Loop)
Scrambling Mode	Scrambling mode (Null, On, Off)
Same as Physical Layer (IPh	ysicalLayer)

Table 11-4 Digital Signalling 3 Physical (IDS3Pdh)

Network Topology

The discovery of Synchronous Optical NETwork/Digital Hierarchy (SONET/SDH) as well as Digital Signals (DSx) hierarchy physical layer topology is unsupported and is manually (statically) configured by the system administrator.

However, it is used in conjunction with the Data Link layer above it, such as ATM, for discovering its physical topology, while further verifying it by matching the traffic signature of these ports using Cisco's confidential scheme, which requires a substantial traffic amount in order to function correctly.

Service Alarms

The following alarms are supported for this technology:

- Discard Input Packets/Normal Discard Input Packets
- Dropped Output Packets/Normal Dropped Output Packets
- Link Down/Link Up
- Port Down/Port Up

- Receive Utilization/Receive Utilization Normal
- Transmit Utilization/Transmit Utilization Normal

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Cisco Active Network Abstraction Technology Support and Information Model Reference Manual, Version 3.6

Multiprotocol Label Switching "MPLS"

This chapter describes the level of support that Cisco ANA provides for MPLS, as follows:

- Technology Description, page 12-1
- Inventory and Information Model Objects (IMOs), page 12-2
- Network Topology, page 12-4
- Service Alarms, page 12-4

Technology Description

MPLS

Multi-Protocol Label Switching (MPLS) was originally presented as a way of improving the forwarding speed of routers but is now emerging as a crucial standard technology that offers new capabilities for large scale IP networks. Traffic Engineering (TE), the ability of network operators to dictate the path that traffic takes through their network, and Virtual Private Network (VPN) support are examples of two key applications where MPLS is superior to any currently available IP technology. It integrates Layer 2 information about network links (bandwidth, latency, utilization) into Layer 3 (IP) within a particular autonomous system, or ISP, in order to simplify and improve IP packet exchange, while giving network operators a great deal of flexibility to divert and route traffic around link failures, congestion, and bottlenecks.

When packets enter a MPLS-based network, Label Edge Routers (LERs) give them a label (identifier). These labels not only contain information based on the routing table entry (i.e., destination, bandwidth, delay, and other metrics), but also refer to the IP header field (source IP address), Layer 4 socket number information, and differentiated service. Once this classification is complete and mapped, different packets are assigned to corresponding Labeled Switch Paths (LSPs), where Label Switch Routers (LSRs) place outgoing labels on the packets.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- MPLS Interface (IMpls)
- Label Switching Entity (ILse)
- Equivalent Label Switching Entry (ILSEEntries)
- MPLS Entry (IMplsEntry)
- MPLS Aggregate Entry (IMplsAggregateEntry)

MPLS Interface

The following Network/Data Link layer MPLS Interface object, represent an MPLS configuration in a router interface. It is bound by its Containing Termination Points attribute to a Data Link Layer Interface object, and is primarily being accessed by Network layer IP Interface, bound by its Contained Connection Termination Points attribute. It is also being accessed by Label Switching Entity.

Attribute Name	Attribute Description
Distribution Protocol	Distribution protocol (Null, LDP, TDP, RSVP, TDP and LDP)
Outer and Inner Labels	Outer and inner labels for PathTracer
Traffic Engineering Properties	Traffic engineering properties (MPLS TE Properties)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Table 12-1 MPLS Interface (IMpls)

Label Switching Entity

The following Label Switching Entity object describes the label distribution protocol independent Label Switching forwarding component of a Label Switching Router (LSR), which is bound by its Logical Sons attribute to all Network or Data Link layer MPLS Interface objects, which IP Packets are being switched between by this Label Switching Entity.

Table 12-2 Label Switching Entity (ILse)

Attribute Name	Attribute Description	
MPLS Table	Array of Equivalent Label Switching Entries between MPLS Interfaces	
MPLS Aggregate Table	Array of Equivalent Label Switching Entries from MPLS Interfaces into VRFs	

MPLS Tunnel Segments	Array of switched MPLS TE tunnel segments (GUI usage) (see Multi Protocol Label Switching Traffic Engineering (MPLS-TE))
Logical Sons	Array of all MPLS Interfaces, which IP packets are being switched between, by this Label Switching Entity

Tahla 12.2	Label Switching	Fntity	(II co)	(continued
	Label Switching	Entry	(ILSE)	(continueu)

Equivalent Label Switching Entry

The following Equivalent Label Switching Entry, MPLS Entry and MPLS Aggregate Entry objects describe an MPLS Label Switching Table's entries, each as an array of either MPLS Entries or MPLS Aggregate Entries sharing a single ingress label.

 Table 12-3
 Equivalent Label Switching Entry (ILSEEntries)

Attribute Name	Attribute Description
Label Switching Entries	Array of either MPLS Entries or MPLS Aggregate Entries (sharing a single ingress label)

MPLS Entry

Table 12-4	MPLS Entry	(IMplsEntry)
------------	------------	--------------

Attribute Name	Attribute Description
Incoming Label	Incoming label
Outgoing Interface and Label	Outgoing interface and label
Switching Action	Switching action (<i>Null, Pop, Swap, Aggregate, Untagged, Pop</i> and <i>Act</i>)
Next Hop IP Address	Next hop IP address

MPLS Aggregate Entry

Table 12-5 MPLS Aggregate Entry (IMplsAggregateEntry)

Attribute Name	Attribute Description
Virtual Routing Entity	Virtual Routing (VRF) entity
Incoming Label	Incoming label
Outgoing Interface and Label	Outgoing interface and label
Switching Action	Switching action (<i>Null, Pop, Swap, Aggregate, Untagged, Pop</i> and <i>Act</i>)
Next Hop IP Address	Next hop IP address

Cisco Active Network Abstraction Technology Support and Information Model Reference Manual, Version 3.6

Network Topology

The discovery of Multi Protocol Label Switching (MPLS) network layer topology is done by searching for the existence of the local IP subnet in any one hop away remote side's MPLS Interface. In particular a comparison is made between the local and remote IP subnets gathered from the upper IP network layers.

Service Alarms

The following alarms are supported for this technology:

- Broken LSP Discovered
- MPLS Black Hole Found/MPLS Black Hole Cleared
- MPLS Interface Removed/MPLS Interface Add

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction MPLS User Guide*, *3.6*.

Multi Protocol Label Switching Traffic Engineering (MPLS-TE)

This chapter describes the level of support that Cisco ANA provides for MPLS-TE, as follows:

- Inventory and Information Model Objects (IMOs), page 13-1
- Network Topology, page 13-3
- Service Alarms, page 13-3

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- MPLS TE Tunnel Interface (IMplsTETunnel)
- MPLS TE Properties (IMplsTEProperties)
- MPLS TE Allocation Entry (IMplsTEPropertiesAllocationEntry)
- MPLS TE Tunnel Segment (IMplsTESegment)

MPLS TE Tunnel Interface

The following Network/Data Link layer MPLS TE Tunnel Interface object, is bound by its Containing Termination Points attribute to a Data Link Layer Interface object, and is primarily being accessed by Network layer IP Interface bound by its Contained Connection Termination Points attribute. It is also being accessed by Label Switching Entity.

Attribute Name	Attribute Description
Destination Address	Destination IP address
Outgoing Interface and Label	Outgoing interface and label
Path Identification	Label Switching Path (LSP) identification
Requested Bandwidth	Requested bandwidth
Measured Average, Burst and Peak	Measured average, burst and peak bandwidth
Bandwidth	

 Table 13-1
 MPLS TE Tunnel Interface (IMplsTETunnel)

Attribute Name	Attribute Description	
Setup and Hold Priority	Setup and hold priority of the tunnel	
Affinity Bits and Mask	Required traffic engineering affinity bits and mask attributes of the tunnel's links	
Automatic Route Announcement Sta-	Automatic route announcement status (Enable, Disable)	
tus		
Optimization Lock Down Status	Label switching path optimization lock down status (Enable,	
	Disable)	
Path Option	Label switching path option (Explicit, Dynamic)	
Name	Interface name	
Description	Interface description	
Administrative Status	Administrative status (Unknown, Up, Down)	
Operational Status	Operational status (Unknown, Up, Down)	
IANA Type	IANA type of the sub/layer	
Containing Termination Points	Underlying termination points (MPLS Interface)	
Contained Connection Termination	Bound Connection Termination Points (IP Interface or MPLS	
Points	Interface)	

Table 13-1	MPLS TE Tunnel Interface (IMpIsTETunnel) (continued)
Table 13-1	WPLS IE lunnel interface (impiste lunnel) (continued)

MPLS TE Properties

The following MPLS TE Properties with its MPLS TE Allocation Entry objects describes the traffic engineering properties of a MPLS Interface, which is bound to by its traffic engineering properties attribute.

Attribute Name	Attribute Description	
Administrative Weight	Administrative weight	
Attributes Identifier	Attributes list identifier	
Signalling Protocol	Signalling protocol (None, RSVP, CR-LDP, Other)	
Available, Physical and Reserveable Bandwidth	Available, physical and reserveable bandwidth	
Reserved Bandwidth	Arrays of MPLS TE Allocation Entry	

 Table 13-2
 MPLS TE Properties (IMplsTEProperties)

MPLS TE Allocation Entry

Attribute Name	Attribute Description
Priority Level	Allocation priority level (0-7)
Allocated and Cumulative Bandwidth	Allocated and cumulative bandwidth at and up this priority
	level

 Table 13-3
 MPLS TE Allocation Entry (IMplsTEPropertiesAllocationEntry)

MPLS TE Tunnel Segment

The following MPLS TE Tunnel Segment object describes, as the name implies, the properties of a single segment of an MPLS TE Tunnel, which is being used by the Graphical User Interface [GUI] of the management application for visualizing the MPLS TE Tunnels network and has no effect on the Virtual Network Element [VNE] logic implementation. The segments are aggregated in MPLS TE Tunnel Segments table of the Label Switching Entity.

Table 13-4	MPLS TE Tunnel Segment (IMplsTESegment)
------------	---

Attribute Name	Attribute Description
Source and Destination Addresses	Source and destination IP addresses of the tunnel
Incoming Interface and Label	Incoming interface and label (if not head segment)
Outgoing Interface and Label	Outgoing interface and label (if not tail segment)
Segment Type	Segment type (Head, Intermediate, Tail)
Measured Average, Burst and Peak Bandwidth	Measured average, burst and peak bandwidth
Path Identification	Label Switching Path (LSP) identification
Name	Segment name

Network Topology

The discovery of Multi Protocol Label Switching Traffic Engineering [MPLS-TE] Network layer topology is unsupported.

Service Alarms

The following alarms are supported for this technology:

- MPLS TE Tunnel Down/MPLS TE Tunnel Up
- MPLS TE Tunnel Flapping/MPLS TE Tunnel Up or Down

These alarms are disabled by default.

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction MPLS User Guide*, *3.6.*

Virtual Private Networks "VPNs"

This chapter describes the level of support that Cisco ANA provides for VPNs, as follows:

- Technology Description, page 14-1
- Inventory and Information Model Objects (IMOs), page 14-1
- Network Topology, page 14-4
- Service Alarms, page 14-4

Technology Description

VPN

BGP/MPLS VPNs, as defined in RFC 2547 and related drafts and standards, provide a Layer 3 VPN. With Layer 3 VPNs, each Provider Edge (PE) device acts like a set of virtual routers, one per VPN. The network provider configures the VPN membership of each PE router interface. In most cases, one port is used for multiple interfaces where each is associated with different VPNs. The port's view of the network is restricted to the VPNs of which it is a member, and it cannot address devices outside that environment. Either static routes are provisioned on both the Customer Edge (CE) and PE, or, for more complex scenarios, a routing protocol (such as RIP, OSPF or BGP) is run between CE and PE. So the interface between the CE and PE devices is conventional IP routing.

The network provider also establishes a suitable mesh of MPLS Label Switched Paths (LSPs) between all the PE routers that need to communicate. The PE devices qualify each external IP address that they learn with a per VPN identifier, and broadcast them to all other PE routers using an extended form of BGP depending on BGP connectivity. They also include an MPLS label that is specific to the destination route (or, in some implementations, the destination port). Through this process, the PE devices build up a complete map of the VPNs and destination labels.

The PE routers then use this information to route the packets across the backbone network to the correct destination within the relevant VPN.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

• Virtual Routing Forwarding (VRF) Entity (IVrf)

- Equivalent Routing Entry (IRoutingEntries)
- Virtual Routing Entry (IVrfEntry)
- Multi Protocol BGP Entity (IMpBgp)
- Equivalent Cross Virtual Routing Entry (ICrossVrf)
- Cross Virtual Routing Entry (ICrossVrfRoutingEntry)

Virtual Routing Forwarding (VRF) Entity

The following Virtual Routing Forwarding (VRF) Entity object describes the routing and address resolution protocols independent forwarding component of a MPLS-BGP based VPN router, which is bound by its Logical Sons attribute to all Network layer IP Interface objects, which IP Packets are being routed between, by this Virtual Routing Forwarding Entity.

Attribute Name	Attribute Description		
Virtual Routing Table	Array of Equivalent Routing Entries		
Exported Route Targets	Array of route target identifiers		
Imported Route Targets	Array of route target identifiers		
Route Distinguisher	Route distinguisher		
ARP Entity	Address Resolution Entity (ARP Entity) (see Internet Protocol "IP")		
Name	VRF name		
Logical Sons	Array of all IP Interfaces, which IP packets are being routed between, by this Virtual Routing Forwarding (VRF) Entity		

Table 14-1 Virtual Routing Forwarding (VRF) Entity (IVrf)

Equivalent Routing Entry

The following Equivalent Routing Entry and Virtual Routing Entry objects describe a routing table's entries, each as an array of Virtual Routing Entries sharing a single IP Subnetwork destination.

Table 14-2 Equivalent Routing Entry (IRoutingEntries)

Attribute Name	Attribute Description
Routing Entries	Array of Virtual Routing Entries (sharing a single destination)

Virtual Routing Entry

Table 14-3	Virtual	Routing	Entry	(IVrfEntry	V)
------------	---------	---------	-------	------------	----

Attribute Name	Attribute Description
Next Hop BGP Address	Next hop BGP IP address
Incoming and Outgoing Inner Label	Incoming and outgoing inner MPLS label

Attribute Name	Attribute Description
Outer Label	Outer MPLS label
Destination IP Subnet	Final destination IP subnet
Next Hop IP Address	Next hop IP address
Туре	Route entry type (Null, Other, Invalid, Direct, Indirect, Static)
Routing Protocol Type	Routing protocol type (Null, Other, "Local, Network Managed, ICMP, EGP, GGP, Hello, RIP, IS-IS, ES-IS, Cisco IGRP, BBN SPF IGP, OSPF, BGP, EIGRP)
Outgoing Interface Name	Outgoing IP interface name

Table 14-3	Virtual Routing Entry (IVrfEntry) (co	ontinued)
------------	---------------------------------------	-----------

Multi Protocol BGP Entity

The following Multi Protocol BGP Entity object describes the BGP component of a MPLS-BGP based VPN router, which is bound by its Logical Sons attribute to all Virtual Routing Forwarding (VRF) Entity objects, which IP Packets are being routed between by this Multi Protocol BGP Entity.

Attribute Name	Attribute Description
BGP Identifier	Border Gateway Protocol (BGP) identifier
Local Autonomous System	Local peer autonomous system
Cross Virtual Routing Table	Array of Equivalent Cross Virtual Routing Entry
BGP Neighbors	Array of BGP neighbor entries (see Routing Protocols "BGP/OSPF")
Logical Sons	Array of all Virtual Routing Entries, which IP packets are being routed between, by this Multi Protocol BGP Entity

 Table 14-4
 Multi Protocol BGP Entity (IMpBgp)

Equivalent Cross Virtual Routing Entry

The following Equivalent Cross Virtual Routing Entry and Cross Virtual Routing Entry objects describe the first dimension of a cross virtual routing table, as an array of Cross Virtual Routing Entries sharing a single Virtual Routing Forwarding (VRF) Entity destination.

 Table 14-5
 Equivalent Cross Virtual Routing Entry (ICrossVrf)

Attribute Name	Attribute Description
Virtual Routing Entries	Array of Cross Virtual Routing Entries (sharing a single destination)
Virtual Routing Entity Name	Virtual Routing Entity (VRF) name

Cross Virtual Routing Entry

Attribute Name	Attribute Description
Outgoing Virtual Routing Entity Identifier	Outgoing virtual routing entity Object Identifier (OID)
Incoming and Outgoing Virtual Routing Tags	Incoming and outgoing virtual routing tags
Destination IP Subnet	Final destination IP subnet
Next Hop IP Address	Next hop IP address
Туре	Route entry type (Null, Other, Invalid, Direct, Indirect, Static)
Routing Protocol Type	Routing protocol type (Null, Other, "Local, Network Managed, ICMP, EGP, GGP, Hello, RIP, IS-IS, ES-IS, Cisco IGRP, BBN SPF IGP, OSPF, BGP, EIGRP)
Outgoing Interface Name	Outgoing IP interface name

 Table 14-6
 Cross Virtual Routing Entry (ICrossVrfRoutingEntry)

Network Topology

The discovery of MPLS-BGP based Virtual Private (VPN) network topology is done by searching for the existence of the local Virtual Routing Forwarding (VRF) Entity's imported route targets in any remote side's VRF entity exported route targets.

Service Alarms

The following alarm is supported for this technology:

• Duplicate IP on VPN Found/Duplicate IP on VPN Fixed

This alarm is disabled by default.

Note

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Pseudo Wire Emulation Edge to Edge (PWE3)

This chapter describes the level of support that Cisco ANA provides for PWE3, as follows:

- Technology Description, page 15-1
- Inventory and Information Model Objects (IMOs), page 15-1
- Network Topology, page 15-2
- Service Alarms, page 15-2

Technology Description

PWE3

Pseudo Wire Emulation Edge-to-Edge (PWE3) provides methods for carrying networking services such as ATM, Ethernet, TDM and SONET/SDH over a Packet Switched Network (PSN) as outlined in RFC 3985. It is a point-to-point connection between pairs of Provider Edge (PE) routers, which emulates services like Ethernet over an underlying core MPLS network through encapsulation into a common MPLS format, hence allowing carriers to converge their services with an MPLS network.

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

• PTP Layer 2 MPLS Tunnel Interface (IPTPLayer2MplsTunnel)

PTP Layer 2 MPLS Tunnel Interface

The following Network/Data Link layer PTP Layer 2 MPLS Tunnel Interface PTP Layer 2 MPLS Tunnel Interface object, is bound by its Containing Termination Points attribute to a Data Link Layer Interface object, and is primarily being accessed by Label Switching Entity.

Table 15-1 PTP Layer 2 MPLS Tunnel Interface (IPTPLayer2MpIsTunnel)

Attribute Name	Attribute Description
Local and Remote Router Addresses	Local and remote router IP addresses
Local and Remote Virtual Connec-	Local and remote virtual connection labels
tion Labels	
Tunnel Identification	Tunnel identification
Tunnel Status	Tunnel status (Unknown, Up, Down)
Local and Remote Tunnel Interface	Local and remote tunnel interface object identifier
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination	Bound Connection Termination Points (Tunnel Container)
Points	

Network Topology

The discovery of Pseudo Wire Emulation Edge to Edge [PWE3] Network layer topology is done by searching for a match of the Local and Remote Router IP Addresses in any one hop away remote side's PTP Layer 2 MPLS Tunnel Interface. In particular a comparison is made between the Local and Remote Router IP Addresses as well as Tunnel Identification.

Service Alarms

The following alarms are supported for this technology:

• Layer 2 Tunnel Down/Layer 2 Tunnel Up

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Quality of Service "QoS"

This chapter describes the level of support that Cisco ANA provides for QoS, as follows:

- Technology Description, page 16-1
- Inventory and Information Model Objects (IMOs), page 16-2
- Network Topology, page 16-3
- Service Alarms, page 16-3

Technology Description

Quality of Service (QoS)

Quality of Service (QoS) refers to the capability of a network to provide better service to selected network traffic over various technologies, including Frame Relay, Asynchronous Transfer Mode (ATM), Ethernet and 802.1 networks, SONET, and IP-routed networks that may use any or all of these underlying technologies. The primary goal of QoS is to provide priority including dedicated bandwidth, controlled jitter and latency (required by some real time and interactive traffic), and improved loss characteristics. Also important is making sure that providing priority for one or more flows does not make other flows fail. Integrated and Differentiated Service (IS/DS) are the two model currently being use for providing QoS.

Integrated Service (IS) is a multiple service model that can accommodate multiple QoS requirements. In this model the application requests a specific kind of service from the network before it sends data. The request is made by explicit signalling; the application informs the network of its traffic profile and requests a particular kind of service that can encompass its bandwidth and delay requirements. The application is expected to send data only after it gets a confirmation from the network. It is also expected to send data that lies within its described traffic profile.

The network performs admission control, based on information from the application and available network resources. It also commits to meeting the QoS requirements of the application as long as the traffic remains within the profile specifications. The network fulfills its commitment by maintaining per flow state and then performing packet classification, policing, and intelligent queuing based on that state.

Differentiated Service (DS) is a multiple service model that can satisfy differing QoS requirements. However, unlike in the integrated service model, an application using differentiated service does not explicitly signal the router before sending data. For differentiated service, the network tries to deliver a particular kind of service based on the QoS specified by each packet. This specification can occur in different ways, for example, using the IP Precedence bit settings in IP packets or source and destination addresses. The network uses the QoS specification to classify, mark, shape, and police traffic, and to perform intelligent queuing.

Inventory and Information Model Objects (IMOs)

This section currently describes Cisco's Quality of Service (QoS) objects, although they may appear to be generic QoS objects that may be used by other vendors.

This section includes the following tables:

- Access List Traffic Descriptor (IAccessList)
- Access List Entry (IAccessListEntry)

Access List Traffic Descriptor

The following Access List Traffic Descriptor with its Access List Entry objects describes the access list of a single type (*Unknown, Standard, Extended* and *Rate Limit*), and is being aggregated by a Traffic Descriptor Container object (see Common (Shared by Several)).

Table 16-1	Access List	Traffic Descriptor	(IAccessList)
------------	-------------	--------------------	---------------

Attribute Name	Attribute Description
Туре	Access list type (Unknown, Standard, Extended, Rate Limit)
Access List Entries Table	Array of Access List Entries
Name	Traffic descriptor name
Index	Traffic descriptor index

Access List Entry

Table 16-2	Access List Entry (IAccessListEntry)
------------	--------------------------------------

Attribute Name	Attribute Description
Entry Identification	Entry identification
Action Logic	Action logic (Unknown, Permit, Deny)
Source and Destination Address	Source and destination IP address
Source and Destination Wildcard	Source and destination IP wildcard
Protocol Type	IANA type of the protocol (<i>HOPORT, ICMP, IGMP, GGP, IP</i> in IP, ST, TCP, CBT, EGP, IGP,)
Source and Destination Ports Ranges	Source and destination TCP/UDP ports ranges

Attribute Name	Attribute Description
Source and Destination Port Action	Source and destination port action (Null, Equal, Not Equal, Greater Than, Less Than, Range)
Protocol Specific Info	Protocol specific information
Differential Services Code Points	Differential Services Code Points (DSCP)
Type of Service	Type of Service (ToS) (Normal (0), Min Cost (1), Max Reliability (2), 3, Max Throughput (4), 5, 6, 7, Min Delay (8), 9, 10, 11, 12, 13, 14, 15)
Precedence	Precedence (Routine (0), Priority (1), Immediate (2), Flash (3), Flash Override (4), Critical (5), Internet (6), Network (7))
Matches	Matches count

Table 16-2 Access List Entry (IAccessListEntry) (continued)

Network Topology

There is no network topology related to this technology.

Service Alarms

There are no faults and alarms related to this technology.

снарте 17

Physical Equipment

This chapter describes the level of support that Cisco ANA provides for physical equipment, as follows:

- Inventory and Information Model Objects (IMOs), page 17-1
- Service Alarms, page 17-4

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Chassis (IChassis)
- Shelf (IShelf)
- Module/Board (IModule)
- Power Supply (IPowerSuply)
- Port Connector (IPortConnector)

Chassis

The following Chassis object describes a chassis equipment holder, which is bound by its Contained Equipment Holders attribute to other equipment holders such as shelves and slots.

Table 17-1 Chassis (IChassis)

Attribute Name	Attribute Description
Description	Chassis description
Equipment Holder Type	Equipment holder type (Chassis)
Contained Equipment Holders	Contained equipment holders
Contained Equipments	Contained equipment

Shelf

The following Shelf object describes a shelf equipment holder, which is bound by its Contained Equipment Holders and Contained Equipments attributes to other equipment holders and equipments objects it contains respectively.

Table 17-2	Shelf (IShelf)
------------	----------------

Attribute Name	Attribute Description
Description	Chassis description
Status	Shelf status
Equipment Holder Type	Equipment holder type (Shelf)
Contained Equipment Holders	Contained equipment holders
Contained Equipments	Contained equipment

Module

The following Module object describes a module/board equipment, which is bound by its Contained Equipment Holders and supported Physical Termination Points attributes to other equipment holders (sub slots) and supported physical Termination Points (Port Connectors) objects it contains respectively.

Attribute Name	Attribute Description
Module Name	Module name
Module Description	Module description
Software Version	Software version
Operational Status	Operational status (Unknown, OK, Warning, Minor, Major, Critical, UnManaged, Enabled, Disabled, Information, Cleaning, Standby)
Hardware Type and Version	Hardware type and version
Management IP Address	Management IP address
Redundant Equipment	Redundant equipment number
Configured Redundancy	Configured redundancy (Null, Working, Protecting, None)
Redundancy Status	Redundancy status (Null, Active, Standby, None)
Operational Status Last Change	Date of last operational status change
Contained Equipment Holders	Contained equipment holders
Supported Physical Termination Points	Supported physical termination points

Table 17-3 Module/Board (IModule)

Power Supply

The following Power Supply object describes a power supply equipment, which is bound by its Contained Equipment Holders attributes to other equipment holders objects that it contains.

Attribute Name Attribute Description Operational Status Operational status (Unknown, OK, Warning, Minor, Major, Critical, UnManaged, Enabled, Disabled, Information, Cleaning, Standby) Hardware Type and Version Hardware type and version Management IP Address Management IP address Redundant Equipment Redundant equipment number Configured redundancy (Null, Working, Protecting, None) Configured Redundancy **Redundancy Status** Redundancy status (Null, Active, Standby, None) Operational Status Last Change Date of last operational status change Contained Equipment Holders Contained equipment holders

Table 17-4Power Supply (IPowerSuply)

Port Connector

The following Port Connector object describes a port connector physical termination point, which is being accessed by the Module containing it.

Table 17-5 Port Connector (IPortConnector)

Attribute Name	Attribute Description
Location	Port connector location
Alias	Port alias
Туре	Port connector type (Unknown, BNC, RJ11, RJ45, Fiber Optic, RJ48, Fiber Optic FC, Fiber Optic SC, Fiber Optic ST, Fiber Optic LC, Internal, Backplane, Fiber Optics MT RJ, DB 15 Pin, SMB, DB 60 Pin, DB 50 Pin, 34-pin Winchester, Generic, DB 9 Pin)
Sub Ports	Sub connection termination points (currently being used only for Lucent SONET/ SDH equipment)
Supporting Equipment	Supporting equipment in which this port connector resides in
Contained Connection Termination Points	Bound Connection Termination Points

Service Alarms

The following alarms are supported for this technology:

- Card Out/Card In
- Card Down/Card Up

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Base Logical Components

This chapter describes the level of support that Cisco ANA provides for the base logical components, as follows:

- Inventory and Information Model Objects (IMOs), page 18-1
- Service Alarms, page 18-4

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Managed Element (IManagedElement)
- Logical Root (ILogicalRoot)
- Physical Root (IPhysicalRoot)
- Managed IP (IManagedIP)
- Context (IContext)
- System Service (ISystemService)

Managed Element

The following Managed Element object describes the root object of a network element, from which all it physical (chassis, slots, modules, port connectors) and logical (routing and switching entities, communication and physical termination point) components' objects are being accessed.

Attribute Name	Attribute Description	
IP Address	Management IP address	
Communication State	Communication state with the managed device and the gateway (<i>Unknown, Device Unreachable, Agent Unreachable, Device Reachable, Agent Unloaded</i>)	
Investigation State	Investigation state of the Virtual Network Element (VNE) (Unknown, Initializing, Normal, Incomplete, Unsupported, Device Agent Shutting Down, Device Agent Maintenance, Device Agent Preparing for Maintenance)	

Table 18-1 Managed Element (IManagedElement)

Attribute Name	Attribute Description	
Element Category	Element category (Unknown, DSLAM, Switch, BRAS, Router, Ethernet Switch, Cloud, Metro Central, Server, EMS, Generic Device Agent, ICMP, PC, Printer, Netra, WiFi Element, Service Control Switch)	
Element Type and its Key	Element type and its key mapped by the registry based on the SNMP system OID	
Logical and Physical Roots	Logical and physical roots of the VNE model	
Device Name	Device name as configured by the user in the registry	
System Name, Description, Location, Contact and Up Time	System name, description, location, contact and up time taken from MIB II (RFC 1213)	
Software Version	Software version	
Vendor Identity	Vendor identity (Null, Copper Mountain, Alcatel, Cisco, Redback Networks, Marconi, Lucent, Nokia, ADC, TdSoft, RAD, Nortel Networks, ECI Telecom, Juniper Networks, Sheer Networks, SUN Microsystems, NEC, Huawei, Laurel, UTStarcom)	
Memory and CPU Usage	Memory and CPU usage	
Agent Memory and Free Memory Sizes	Agent memory and free memory sizes	
Number of Device Components	Number of Device Components (DCs)	
Number of Logical Entries	Number of property holders, which are not DCs	

Iable 10-1 Intallageu Elenient (IntallageuElenient) (continueu	Table 18-1	Managed Element (IManagedElement) (continued	I)
--	------------	--	----

Logical Root

The following Logical Root and Physical Root objects, aggregates or contains all the logical and physical components of a Managed Element, and are accessed by the later logical and physical root attributes.

Table 18-2	Logical Root (ILogicalRoot)
IADIE 10-2	

Attribute Name	Attribute Description	
Managed IPs List	Array of Managed IPs	
Contexts List	Array of Contexts	
Forwarding Components List	Array of Forwarding Component Containers	
Traffic Descriptors List	Array of Traffic Descriptor Containers	
Tunnel Containers List	Array of Tunnel Containers	
Services List	Array of System Services	
Data Link Aggregation Containers List	Array of data link aggregations (Link Aggregation Groups, Cisco's Ethernet Channels)	

ø

Physical Root

|--|

Attribute Name	Attribute Description
Equipment Holders	Array of equipment holders such as Chassis and Shelf

Managed IP

The following Managed IP object, aggregates or contains all logical components of a Managed Element, which are being managed by one of the multiple managed IP addresses of this element. It is accessed by a Logical Root.

Table 18-4 Managed IP (IManagedIP)

Attribute Name	Attribute Description
System Name, Description, Location, Contact and Up Time	System name, description, location, contact and up time taken from MIB II (RFC 1213)
Software Version	Software version
Contexts List	Array of Contexts
Forwarding Components List	Array of Forwarding Component Containers
Traffic Descriptors List	Array of Traffic Descriptor Containers
Tunnel Containers List	Array of Tunnel Containers
Services List	Array of System Services

Context

The following Context object, aggregates or contains all the logical components of a Managed Element with a single context, such as a virtual router, and is accessed by a Logical Root.

 Table 18-5
 Context (IContext)

Attribute Name	Attribute Description	
Name	Context name	
IP Address Pools	Array of IP Address Pools	
Forwarding Components List	Array of Forwarding Component Containers	
Traffic Descriptors List	Array of Traffic Descriptor Containers	
Tunnel Containers List	Array of Tunnel Containers	
Data Link Aggregation Containers ListArray of data link aggregations (Link Aggregatio Cisco's Ethernet Channels)		

System Service

The following System Service objects, describe a single system service along with its status and up time, and is accessed by a Logical Root.

 Table 18-6
 System Service (ISystemService)

Attribute Name	Attribute Description
Туре	Service type (Unknown, Radius, Network Time Protocol, Spanning Tree Protocol)
Status	Service status (Null, Running, Down, Reset, Initializing, Other)
Up Time	Service up time

Service Alarms

The following alarms are supported for this technology:

- Component Unreachable/Component Reachable
- CPU Over Utilized/CPU Normal Use
- Device Unsupported
- Memory Over Utilized/Memory Normal Use

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*

Common (Shared by Several)

This chapter describes the level of support that Cisco ANA provides for the common components, as follows:

- Inventory and Information Model Objects (IMOs), page 19-1
- Network Topology, page 19-6
- Service Alarms, page 19-6

Inventory and Information Model Objects (IMOs)

This section includes the following tables:

- Physical Layer (IPhysicalLayer)
- Bridging Entity (IBridge)
- Bridging Entry (IBridgeEntry)
- VC Multiplexer (EncapMux)
- VC Encapsulation (IVcBasedEncapsulation)
- VC Switching Entity (IVcSwitchingEntity)
- Virtual Cross Connection (IVcCrossConnect)
- Forwarding Component Container (IFWComponentContainer)
- Traffic Descriptor Container (ITrafficDescriptorContainer)
- Tunnel Container (ITunnelContainer)

Physical Layer

The following Physical Layer object, is bound by its Containing Termination Points attribute to a Port Connector object, and is accessed by the Data Link layer bound by its Contained Connection Termination Points attribute.

The following attributes are configured in the registry and not retrieved from the device.

Attribute Name	Attribute Description	
Media Type	Physical media type (Null, Thin Coax, Thick Coax, Fiber Optic, Multi Mode Fiber Optic, Single Mode Fiber Optic, Short Single Mode Fiber Optic, Long Single Mode Fiber Optic, UTP, STP, FTP, EIA/TIA-232, EIA/TIA-449, V.35, X.21, EIA/TIA-530, EIA/TIA-530A, Generic Serial, EIA/TIA-612/613, Other)	
Clocking Source	Clocking source (Unknown, Other, Network, Internal, Loop Timed, External, None, Line, Back Plane, Adaptive Timing)	
Maximum Speed	Maximum supported speed with units specification	
Is Internal Port	Indicate an internal port, such as between module and backplane (<i>True, False</i>)	
Discarded Bandwidth	Current discarded input bandwidth	
Dropped Bandwidth	Current dropped output bandwidth	
Input Bandwidth	Current utilized input bandwidth	
Output Bandwidth	Current utilized output bandwidth	
Discarded and Received Input Data Counters	Discarded and received input octets and packets counters	
Dropped and Forward Output Data Counters	Dropped and forward output octets and packets counters	
Administrative Status	Administrative status (Unknown, Up, Down, Testing)	
Operational Status	Operational status (Unknown, Up, Down, Testing, Dormant, Not Present)	
Operational Status Last Change	Date of last operational status change	
IANA Type	IANA type of the sub/layer	
Containing Termination Points	Underlying termination points (connection or physical)	
Contained Connection Termination Points	Bound Connection Termination Points	

Table 19-1	Physical Layer (I	PhysicalLayer)
	i nyonoan m ayon (n	

Bridging Entity

The following Bridging Entity object describes the IEEE 802TM based protocols independent forwarding component of an IEEE 802TM Bridge/Switch, which is bound by its Logical Sons attribute to all the Data Link layers such as Ethernet, Token Ring and future Wireless LAN and MAN interface objects, which IEEE 802TM based Data Link frames are being bridged or switched between, by this Bridging Entity.

 Table 19-2
 Bridging Entity (IBridge)

Attribute Name	Attribute Description
Bridge Table	Array of Bridging Entries
Туре	Bridge type (Null, Automatic, Regular, Bridge Route)

MAC Address	Bridge internal MAC address used either for running Spanning Tree Protocol (STP) or for bridge's network management
IP Interface	OID of the IP Interface used mainly for routing traffic from that bridge
Name	Bridging entity name
Logical Sons	Array of all IEEE 802 TM based data link interfaces (Ethernet Interface, Token Ring Interface), which IEEE 802 TM based data link frames are being bridged/switched between, by this Bridging Entity

Table 19-2 Bridging Entity (IBridge) (continued)

Bridging Entry

The following Bridging Entry object describes a bridging domain wide bridge table's entry of a Bridging Entity.

 Table 19-3
 Bridging Entry (IBridgeEntry)

Attribute Name	Attribute Description
Destination MAC Address	Destination station MAC address
Outgoing Interface	Outgoing underlying interface (Cisco's Ethernet Channels, Ethernet Interfaces, Virtual LAN Interfaces or Virtual LAN Multiplexers)

VC Multiplexer

The following VC Multiplexer object is bounded by its Containing Termination Points attribute to either an ATM Interface or a Frame Relay Interface object, and is primarily accessed by the Data Link layer VC Encapsulations bound by its Contained Connection Termination Points attribute.

Table 19-4VC Multiplexer (EncapMux)

Attribute Name	Attribute Description
Virtual Connection Count	Bounded virtual connection count
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (ATM Interface or Frame Relay Interface)
Contained Connection Termination Points	Bound Connection Termination Points (VC Encapsulations)

VC Encapsulation

The following Data Link layer VC Encapsulation object, is bound by its Containing Termination Points attribute to an ATM or Frame Relay VC Multiplexer object, and is primarily accessed by a network layer such as an IP Interface as well as a Data Link layer such as Ethernet Interface and Point To Point Protocol Encapsulation bound by its Contained Connection Termination Points attribute.

 Table 19-5
 VC Encapsulation (IVcBasedEncapsulation)

Attribute Name	Attribute Description
Virtual Connection	Virtual connection (ATM Virtual Connection or Frame Relay Virtual Connection)
Binding Information	Binding information (User Name,)
Binding Status	Binding status (Not Bound, Bound)
IANA Type	IANA type of the sub/layer
Containing Termination Points	Underlying termination points (connection or physical)
Contained Connection Termination Points	Bound Connection Termination Points

Virtual Connection Switching Entity

The following Virtual Connection Switching Entity object describes the standard forwarding component of an ATM or Frame Relay Switch, which is bound by its Logical Sons attribute to all the Data Link layers such as ATM Interface or Frame Relay Interface objects, which cells or frames respectively are being switched between, by this Virtual Connection Switching Entity.

 Table 19-6
 VC Switching Entity (IVcSwitchingEntity)

Attribute Name	Attribute Description
Cross Connect Table	Array of Virtual Cross Connections
Logical Sons	Array of all ATM Interfaces or Frame Relay Interfaces, which cells or frames respectively are being switched between, by this Virtual Connection Switching Entity

Virtual Cross Connection

The following Virtual Cross Connection object describes either a Virtual Connection Switching Entity wide or an ATM Interface specific Cross Connect table's entry.

Table 19-7 Virtual Cross Connection (IVcCrossConnect)

Attribute Name	Attribute Description
Ingress and Egress Virtual Connection	Ingress and egress virtual connections (ATM Virtual Connection or Frame Relay Virtual Connection)
Ingress and Egress Port	Ingress and egress ports (Port Connectors)

Forwarding Component Container

The following Forwarding Component Container object aggregates a single type Forwarding Components, such as Routing Entity, Bridging Entity and Virtual Connection Switching Entity.

 Table 19-8
 Forwarding Component Container (IFWComponentContainer)

Attribute Name	Attribute Description
Forwarding Components	Array of a single type forwarding components
Туре	Forwarding component (Null, Routing Entities, Bridges, VRFs, LSEs, VC Switching Entities, L2TP Peers, MPBGPs, IMA Groups)

Traffic Descriptor Container

The following Traffic Descriptor Container object, which basically is a container of any table's entries, aggregates a single type Traffic Descriptors such as OSPF Entry.

Attribute Name	Attribute Description
Traffic Descriptors	Array of a single type traffic descriptors
Туре	Descriptor type (Null, ATM Traffic Profiles, ADSL Traffic Descriptors, SDSL Traffic Descriptors, IDSL Traffic Descriptors, SHDSL Traffic Descriptors, MPLS Properties, CAC Profiles, ATM Access Profiles, OSPF Networks, BGP Neighbor, Access Lists, Tunnel Traffic Descriptors, QoS Policies, QoS Classes, IS-IS Database, QoS WRED, ATM Traffic Shaping Profile, Frame Relay Traffic Profiles, Rate Limit, Filter, Policer, IP Pools, ISAKMP Policies, IPsec Maps, Process List, Installed Software, L2TP Peer Group, L2TP Domain Group, QoS Object Table, QoS Class Map, QoS Policy Map, QoS Match Statments Table, QoS Queueing Config Table, QoS Service Policy Table, ADSL2 Traffic Descriptors, ADSL2 Spectrum Descriptors)

 Table 19-9
 Traffic Descriptor Container (ITrafficDescriptorContainer)

Tunnel Container

The following Tunnel Container object aggregates single type tunnel interfaces, which are either MPLS TE Tunnel Interfaces or PTP Layer 2 MPLS Tunnel Interfaces.

Table 19-10 Tunnel Container (ITunnelContainer)

Attribute Name	Attribute Description
Tunnel Edges	Array of either PTP Layer 2 MPLS Tunnel Interfaces or MPLS TE Tunnel Interfaces

Network Topology

The Cisco Discovery Protocol (CDP), although a proprietary one, plays a major role in discovery of all Cisco's network equipment. Hence it is used as part of the physical topology discovery of Cisco's equipment by searching for the existence of local CDP neighbors signature, gathered from the physical layer, in any remote side's port of the same type.

Service Alarms

The following alarms are supported for this technology:

- Cloud Problem
- Discard Input Packets/Normal Discard Input Packets
- Dropped Output Packets/Normal Dropped Output Packets
- Link Down/Link Up
- Port Down/Port Up
- Receive Utilization/Receive Utilization Normal
- Transmit Utilization/Transmit Utilization Normal

For a detailed description of these alarms and for information about correlation see the *Cisco Active Network Abstraction Fault Management User Guide*, *3.6.*