

Cisco Carrier Routing System and Cisc
OL-29005-01

A
 P P E N D I X E

IOS XR SNMP Best Practices

Simple Network Management Protocol (SNMP) is the most common network management protocol in
the routing industry. This chapter describes best practices to be adopted by an Operations Support
System (OSS) for optimized use of the IOS-XR SNMP protocol.

Note OSS platform tuning and Data Communication Network (DCN) considerations are outside the scope of
this document.

Overview
The implementation of management infrastructure for IOS XR network elements usually makes use of
SNMP as a first line tool, in particular for fault management and statistics reports.

This chapter provides guidelines on how to interface the SNMP Agent of the IOS XR network equipment
in different ways. The goals are to:

• Prevent SNMP congestion

• Achieve a better response time

• Avoid losing traps

Timeouts and Retries
The access to SNMP tables or variables cannot be instantaneous, and given the UDP nature of the
protocol, the OSS cannot rely on a fast response time. In addition, SNMP is a non confirmed protocol
and therefore, the OSS has to be tuned to retry after a GET operation times out.

Timeouts
The timeout to be tuned on the SNMP management application depends on various factors:

• Response time of the Network Element (NE), which largely depends on the presence of data in cache
vs. dynamic retrieve

• DCN delay, usually shorter than the above, but sometimes not negligible because of congestion

• Number of SNMP management applications polling the same NE
E-215
o XR 12000 Series Router MIB Support Guide

Appendix E IOS XR SNMP Best Practices
Tables
While a timeout of 1 second can be considered in a lab, in a real application at least 3.5 seconds is
preferred. The best approach is a dynamic timeout, where the OSS automatically adjusts the timeout
upon different poll retries. This approach, where present, optimizes response time and takes into account
all of the above factors.

Where dynamic tuning is not available at OSS level, a row formula for a timeout can be the following:

N x TRT + DCNd

Where:

• N—Number of management applications (for example, SNMP Managers) polling an SNMP agent
at the same time. Maximum recommended is 5

• RT—Regular timeout for a single management application. As stated above, 3.5 seconds is
recommended

• DCNd—DCN delay for the given OSS or NE pair

Timeout Recommendations

1. Use dynamic timeout if available

2. Use a 3.5 second timeout if dynamic timeout is not available

3. Have no more than 5 management applications polling SNMP at the same time.

Retries
When a poll timeout expires, the typical OSS performs a certain number of retries before declaring an
object as unreachable. For timeout fine tuning, the number of retries should also be tuned depending on
the same factors. Dynamic adjustment is recommended when present, otherwise heuristic calculations
need to be used.

As a general consideration, a retry should be done with the same SNMP request-id and the same IP
source port. This takes the first available response and also helps the SNMP agent to drop multiple retries
directed to the same object.

Retry Recommendations

1. Use dynamic retry if available

2. Calculate static retry based on factors listed, if dynamic retry is not available

3. On all retries, use the same SNMP request-id and IP source port

Tables
A typical MIB table is defined as SEQUENCE of SEQUENCE in MIB syntax, where each SEQUENCE
contains a set of MIB objects. An instance of a SEQUENCE represents a row, and all instances of the
MIB objects represent a column in a conceptual MIB table. The way in which a table is traversed
significantly impacts the response time. Many considerations need to be examined when accessing a
table and these depend on the table itself. First, the way in which the table is traversed may affect the
response time, and secondly, the nature of the table itself suggests some good practices.
E-216
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

Appendix E IOS XR SNMP Best Practices
Tables
Accessing Tables
Data in a table can be retrieved by doing a sequence of SNMP GET-NEXT requests by one or more
GET-BULK requests. Irrespective of the type of request, traversal in a table is essentially fetching the
‘next’ instance of an object. This is possible because MIB tables are expected to be sorted
lexicographically based on one or more indices.

Each row in a conceptual MIB table contains attributes or statistics for a specific entity. What this entity
represents is purely based on MIB definition. Most of the MIB implementations act as front end for a
specific feature. The set of data that is required could be deep within a process or hardware counter that
implements the actual feature. In a distributed environment, that data could even be in a line card.
Various data pertaining to a specific entity is often kept together as a group and thus the cost of fetching
this group is often the same as getting one element from this group—because of inter-process
communication overhead (here the cost is in terms of CPU and time).

It is therefore much more efficient to access all objects for an instance or entity than accessing them one
by one. This can be considered as row-by-row traversal. Achieving this with GET-NEXT or GET-BULK
operation means specifying all required objects of a table in the same request. This approach is usually
better, except in the case of sparse tables. For more information, see the “Sparse Tables” section on
page E-218.

Table E-1 is an example of SNMP best practices when accessing a table.

Note In Table E-1 each line under ‘Column-wise’ represents the output of a single SNMP request and in the
‘Row-wise’ column not all of the objects are listed (for brevity each SNMP request includes only three
objects).

Table E-1 Accessing the ifTable of IF-MIB

Column-wise Row-wise

bash-2.03$ getmany -v2c 12.25.26.10 public
ifTable

ifIndex.1 = 1
ifIndex.2 = 2
ifIndex.3 = 3
ifIndex.4 = 4
ifIndex.5 = 5
ifIndex.6 = 6
ifIndex.7 = 7

bash-2.03$ bash-2.03$ getmany -v2c 12.25.26.10
public ifDescr ifType ifAdminStatus

ifDescr.1 = MgmtEth0/RP1/CPU0/0
ifType.1 = ethernetCsmacd(6)
ifAdminStatus.1 = up(1)
ifDescr.2 = Null0
ifType.2 = other(1)
ifAdminStatus.2 = up(1)
ifDescr.3 = SONET0/2/0/0
ifType.3 = sonet(39)
ifAdminStatus.3 = up(1)
ifDescr.4 = POS0/2/0/0
ifType.4 = pos(171)
ifAdminStatus.4 = down(2)
E-217
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

Appendix E IOS XR SNMP Best Practices
Tables
Sparse Tables
A sparse table is a table where only a subset of columnar objects is instantiated for each row. In MIB
tables this occurs when certain objects are not instantiated for certain rows, because it is either not
applicable or not available at that time (for example, in the ifTable, some of the counters are not
applicable for tunnel interfaces). Sparse MIB tables are potential sources of low performance during
table traversal, especially with row-wise access.

Table E-2 is a snapshot from the ifTable of IF-MIB showing a sparse entry for SONET0/2/0/0.

During row-wise traversal each request would contain objects that are of interest to the OSS. MIB
implementation processes each of the requests one by one. For each of these objects it needs to identify
the ‘next’ instance and the value for this instance. Identifying “next” instance could be a CPU intensive
operation as it might involve sorting or searching internal data structures or even external data structures
in distributed environments. As an optimization, this “next” instance identification needs to be done only
once per request containing multiple objects from the same table. This optimization would break if one
of the objects is not applicable or not available for already identified “next” instance. This will result in
further searching until the system identifies a new “next” instance for that object.

Note The best approach is to avoid these sparse objects during row-wise traversal of MIB tables by avoiding
GET-NEXT over unsupported objects.

A row-wise GET on some of the selected objects from IF-MIB (ifTable) is shown below. Each request
contains two objects. Third response onwards contains a “jump” over sparse object and this “jump”
requires additional searching every time.
bash-2.03$ getmany -v2c 12.25.26.10 public ifDescr ifInOctets

ifDescr.1 = MgmtEth0/RP1/CPU0/0
ifInOctets.1 = 5072278
ifDescr.2 = Null0
ifInOctets.2 = 0
ifDescr.3 = SONET0/2/0/0
ifInOctets.4 = 0
ifDescr.4 = POS0/2/0/0
ifInOctets.6 = 0
ifDescr.5 = SONET0/2/0/1
ifInOctets.8 = 0

Requests Addressed to Interleaved Objects
Accessing all the required objects of a row in a single request is much more efficient than making
multiple queries for each. Single requests can contain objects for multiple rows also. It is important to
note that the request should contain objects with the same instance in sequence. Interleaving objects with
different instances would result in issues similar to sparse tables and multiple retrieval of same
information from feature related process.

Table E-2 Example of sparse entry from IF-MIB

ifDescr isInOctets

MgmtEth0/RP1/CPU0/0
SONET0/2/0/0
POS0/2/0/0

5036844

1024
E-218
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

Appendix E IOS XR SNMP Best Practices
Tables
The example below shows an SNMP-GET request performed on IF-MIB (ifTable). The request contains
objects from two different interfaces. Object instances are interleaved in the request.

bash-2.03$ getone -v2c 12.25.26.10 public ifDescr.1 ifType.2 ifType.1 ifDescr.2
ifDescr.1 = MgmtEth0/RP1/CPU0/0
ifType.2 = other(1)
ifType.1 = ethernetCsmacd(6)
ifDescr.2 = Null0
bash-2.03$

Rearranging this request with consecutive objects for the same instance would be more efficient in terms
of processing.

bash-2.03$ getone -v2c 12.25.26.10 public ifDescr.1 ifType.1 ifType.2 ifDescr.2
ifDescr.1 = MgmtEth0/RP1/CPU0/0
ifType.1 = ethernetCsmacd(6)
ifType.2 = other(1)
ifDescr.2 = Null0
bash-2.03$

Large Tables
Any MIB table that is expected to contain 100 entries is considered a large table. IF-MIB,
IPFORWARD-MIB, and IP-MIB have examples of large tables. Traversing these tables should be
performed in a more intelligent way as it can consume a lot of resources. OSSs should make use of any
existing additional objects which provide overall information about the table, for example, an object
describing number of entries or last modified time. Last modified time could be used to identify whether
there have been any changes to the table since last retrieval. An object representing number of entries
could be used to split the retrieval into multiple sets of smaller discoveries separated by time. For
example:

• IP-FORWARD-MIB::ipCidrRouteNumber

• IP-MIB::ipv4InterfaceTableLastChange

• ENTITY-MIB::entLastChangeTime

Static Data
Some tables actually contain data which do not change during a management session. Data which are
almost static should be retrieved at the beginning once and then no longer accessed. In other words an
SNMP agent should not be used as a repository to be polled for constant data. Of course a smart OSS
should know when it is time to fetch the data again, if some event takes place of OIR. If these data are
fetched once only, this saves CPU time for other requests as well as useless DCN load.

• ENTITY-MIB::entPhysicalTable

Use of SNMP views
Access to MIB tables or objects can be optimized with the use of appropriate SNMP view configurations.
This is useful when an OSS makes frequent retrieval of very large tables and there is no direct control
on it. To achieve this, an SNMP view has to be configured by excluding respective MIB sub-trees and
attaching this view to the SNMP community name or group name being used. This approach can also be
applied in cases where certain MIB implementations being polled have to be prevented (for example,
very slow response or impacting the performance of other MIBs). The following shows a view
E-219
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

Appendix E IOS XR SNMP Best Practices
Multiple OSS
configuration and associated community configuration which prevents IP-FORWARDMIB
(ipCidrRouteTable) and IP-MIB (ipNetToMediaTable) being polled. SNMP query made with community
string “mycom” will not access these two tables.

• snmp-server view cutdown 1.3.6.1.2.1.4.22 excluded

• snmp-server view cutdown 1.3.6.1.2.1.4.24.4 excluded

• snmp-server community mycom view cutdown

Cut down views can also be created by excluding everything and including only what is required by
OSSs.

Table Access Recommendations

1. In a sparse table do specific GETs and avoid using GET-NEXT over unsupported objects.

2. In non-sparse tables, use GET or GET-BULK to acquire all related objects in one request instead of
using GET-NEXT to walk a table.

3. Consider if objects are interleaved and use this information to efficiently make GET requests.

4. When possible, use objects which provide information about large tables instead of accessing the
whole table.

5. Do not retrieve nearly static data more often than absolutely necessary (for example, at the start of
an OSS session).

6. Use SNMP views to carefully select what information is retrieved.

Multiple OSS
Parallel access of the same MIB from multiple polling stations can lead to slower response and higher
CPU utilization. This is evident especially in the case of large tables, where multiple stations access
different part of the same MIB table. In distributed environments most of the MIB implementations
would have some kind of look-ahead caching done. This holds well if requests fall in this cache. This
would lead to performance issues because of repeated cache misses OTHERs.

Multiple OSS recommendation: Avoid having multiple OSSs polling the same MIB—instead share the
data between the OSSs.

MIB Specific Functionality
Some MIBs provide key features that permit improved NMS/OSS operation.

One such feature is IF-MIB ifindex persistence feature (also relevant for other MIBs that use the ifIndex
such as Etherlike-MIB). This feature permits ifindices to remain constant across reboots, which prevents
the need for the NMS/OSS to perform interface rediscovery after a reboot. Another similar feature is
the ENTITY-MIB entphyscialindex persistence (also relevant for MIBs that extend the Entity-MIB such
as the CISCO-ENTITY-FRUCONTROL-MIB). Similar to ifindex persistence, this feature permits
entphysical indices to persist across reboots. Finally, the CISCO-CLASS-BASED-QOS-MIB also has
an index persistence function, which prevents the need to rediscover QoS indices after reboot. To obtain
information on the configuration of these features see the IOS-XR System Management Command
Reference documents at:

http://www.cisco.com/en/US/products/ps5845/prod_command_reference_list.html
E-220
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

http://www.cisco.com/en/US/products/ps5845/prod_command_reference_list.html

Appendix E IOS XR SNMP Best Practices
General Performance Considerations and Tunable Parameters
General Performance Considerations and Tunable Parameters
Performance tuning and considerations for SNMP stem from two different perspectives:

• Desire to adjust/improve the performance of SNMP in specific operations

• Desire to limit impact of SNMP performance on overall device operations

IOS-XR provides a number of options to assist in both of these areas. IOS-XR supports both in band and
out of band SNMP operation. In band processing can be controlled via LPTS (control plane policing)
in the same way as other control plane operations. Both in band and out of band operation can further be
tuned by the following mechanisms:

• Request throttling [snmp-server throttle-time]

• Queue length throttling (trap only) [snmp-server queue-length]

Note This only affects the outgoing trap queue, not the incoming request queue.

• SNMP Overload Control [snmp-server overload]

• Protection of critical operations (such as routing convergence) from SNMP CPU overuse.

To obtain information on the configuration of these features see the IOS-XR System Management
Command Reference documents at:

http://www.cisco.com/en/US/products/ps5845/prod_command_reference_list.html

Note that many SNMP performance considerations are related to specific MIB implementations, but the
above system wide settings do have some affect on performance.

MIB Specific Performance Considerations and Tunable
Parameters

MIB polling performance is frequently associated with the implementation of a specific MIB and there
are some tunable parameters for specific MIBs. For the IF-MIB, caching support is configured using the
snmp-server ifmib stats cache command.

Note This command only affects the SNMP specific interface statistic operation, the behavior of the IOS-XR
internal statistics collection mechanism in IOS-XR is not controllable from SNMP.

The CISCO-CLASS-BASED-QOS-MIB also has caching support, this is configured via the
snmp-server mibs cbqosmib cache command. The obvious tradeoff in the use of these caches is faster
performance versus most recent data. To obtain information on the configuration of these features see
the IOS-XR System Management Command Reference documents at:

http://www.cisco.com/en/US/products/ps5845/prod_command_reference_list.html
E-221
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

http://www.cisco.com/en/US/products/ps5845/prod_command_reference_list.html
http://www.cisco.com/en/US/products/ps5845/prod_command_reference_list.html

Appendix E IOS XR SNMP Best Practices
MIB Specific Performance Considerations and Tunable Parameters
E-222
Cisco Carrier Routing System and Cisco XR 12000 Series Router MIB Support Guide

OL-29005-01

	IOS XR SNMP Best Practices
	Overview
	Timeouts and Retries
	Timeouts
	Timeout Recommendations

	Retries
	Retry Recommendations

	Tables
	Accessing Tables
	Sparse Tables
	Requests Addressed to Interleaved Objects
	Large Tables
	Static Data
	Use of SNMP views
	Table Access Recommendations

	Multiple OSS
	MIB Specific Functionality
	General Performance Considerations and Tunable Parameters
	MIB Specific Performance Considerations and Tunable Parameters

