
Cisco IOS Release 12.3(14)T

C H A P T E R 1

Overview

This chapter provides an overview of Interactive Voice Response (IVR), the Tool Command Language
(Tcl), and version 2.0 of the Tcl IVR Application Programming Interface (API). This section includes
the following topics:

• IVR and Tcl, page 1-1

• Tcl IVR API Version 2.0, page 1-2

– Prerequisites, page 1-2

– Benefits, page 1-3

– Features Supported, page 1-4

– Developer Support, page 1-4

• Enhanced MultiLanguage Support, page 1-4

• VoiceXML and IVR Applications, page 1-5

• Tcl IVR Call Transfer Overview, page 1-8

• SIP Subscribe and Notify, page 1-37

• SIP Headers, page 1-37

• Application Instances, page 1-38

• Session Interaction, page 1-38

• Service Registry, page 1-40

IVR and Tcl
IVR is a term used to describe systems that collect user input in response to recorded messages over
telephone lines. User input can take the form of spoken words or, more commonly, dual tone
multifrequency (DTMF) signaling.

For example, when a user makes a call with a debit card, an IVR application is used to prompt the caller
to enter a specific type of information, such as a PIN. After playing the voice prompt, the IVR
application collects the predetermined number of touch tones (digit collection), forwards the collected
digits to a server for storage and retrieval, and then places the call to the destination phone or system.
Call records can be kept and a variety of accounting functions can be performed.

The IVR application (or script) is a voice application designed to handle calls on a voice gateway, which
is a router equipped with voice features and capabilities.
1-1
Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR API Version 2.0
The prompts used in an IVR script can be either static or dynamic:

• Static prompts are audio files referenced by a static URL. The name of the audio file and its location
are specified in the Tcl script.

• Dynamic prompts are formed by the underlying system assembling smaller audio prompts and
playing them out in sequence. The script uses an API command with a notation form (see the media
play, page 3-48) to instruct the system what to play. The underlying system then assembles a
sequence of URLs, based on the language selected and audio file locations configured, and plays
them in sequence. This provides simple Text-to-Speech (TTS) operations.

For example, dynamic prompts are used to inform the caller of how much time is left in their debit
account, such as:

“You have 15 minutes and 32 seconds of call time left in your account.”

Note The above prompt is created using eight individual prompt files. They are: youhave.au, 15.au,
minutes.au, and.au, 30.au, 2.au, seconds.au, and leftinyouraccount.au. These audio files are assembled
dynamically by the underlying system and played as a prompt based on the selected language and prompt
file locations.

The Cisco Interactive Voice Response (IVR) feature, available in Cisco IOS Release 12.0(6)T and
later, provides IVR capabilities using Tcl 1.0 scripts. These scripts are signature locked, and can be
modified only by Cisco. The IVR feature allows IVR scripts to be used during call processing.
Cisco IOS software to perform various call-related functions. Starting with Cisco IOS Release
12.1(3), no longer is any Tcl script lock in place, so customers can create and change their own Tcl
scripts.

Tcl is an interpreted scripting language. Because Tcl is an interpreted language, scripts written in
Tcl do not have to be compiled before they are executed. Tcl provides a fundamental command set,
which allows for standard functions such as flow control (if, then, else) and variable management.
By design, this command set can be expanded by adding extensions to the language to perform
specific operations.

Cisco created a set of extensions, called Tcl IVR commands, that allows users to create IVR scripts
using Tcl. Unlike other Tcl scripts, which are invoked from a shell, Tcl IVR scripts are invoked when
a call comes into the gateway.

The remainder of this document assumes that you are familiar with Tcl and how to create scripts
using Tcl. If you are not, we recommend that you read Tcl and the TK Toolkit, by John Ousterhout
(published by Addison Wesley Longman, Inc).

Tcl IVR API Version 2.0
This section describes the prerequisites, restrictions, benefits, features, and the developer support
program for this application programming interface.

Prerequisites
In order to use the open Tcl IVR feature, you need the following:

• Cisco AS5300, Cisco AS5400, or Cisco AS5800

• Cisco IOS Release 12.1(3)T, or later
1-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR API Version 2.0
• Tcl Version 7.1 or later

Calls can come into a gateway using analog lines, ISDN lines, a VoIP link, or a Voice over Frame Relay
(VoFR) link. Tcl IVR scripts can provide full functionality for calls received over analog or ISDN lines.

The functionality provided for calls received over VoIP or VoFR links varies depending on the release
of Cisco IOS software being used. For example, if you are using Cisco IOS Release 12.0, you cannot
play prompts or tones, and you cannot collect tones.

Note Tcl IVR API Version 2.0 is a separate product from Tcl IVR API Version 1.0.

Benefits
Tcl IVR API Version 2.0 has the following benefits:

• The scripts are event-driven and the flow of the call is controlled by a Finite State Machine (FSM),
which is defined by the Tcl script.

• Prompts can be played over VoIP call legs.

• Digits can be collected over VoIP call legs.

• Real-Time Streaming Protocol (RTSP)-based prompts are supported (depending on the release of
Cisco IOS software and the platform).

• Scripts can control more than two legs simultaneously.

• Call legs can be handed off between scripts.

• All verbs are nonblocking, meaning that they can execute without causing the script to wait, which
allows the script to perform multiple tasks at once. See the following example code:

leg collect digits 1 callInfo
leg collect digits 2 callInfo
leg setup 295786 setupInfo $callID5
puts "\n This will be executed immediately i.e. before the collect digits or call
setup is actually complete"

In the preceding script example, digit collection is initiated on legs 1 and 2 and a call setup process
is started using the callID5 as the incoming leg. The script has issued each of the commands and will
later receive events regarding their completion. None of these commands ever requires that any other
command wait until it is finished processing.
1-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Enhanced MultiLanguage Support
Features Supported
Tcl IVR API Version 2.0 commands provide access to the following facilities and features:

• Call handling (setup, conferencing, disconnect, and so forth)

• Media playout and control (both memory-based and RTSP-based prompts)

• AAA authentication and authorization

• OSP settlements

• Call and leg timers

• Play tones

• Call handoff and return

• Digit collection

For more information, see Chapter 3, “Tcl IVR Commands.”

Developer Support
Developers using this guide may be interested in joining the Cisco Developer Support Program. This new
program has been developed to provide you with a consistent level of support that you can depend on
while leveraging Cisco interfaces in your development projects.

A signed Developer Support Agreement is required to participate in this program. For more details, and
access to this agreement, visit us at:
http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup, or contact
developer-support@cisco.com

Enhanced MultiLanguage Support
Beginning with Cisco IOS Release 12.2(2)T, a new feature has been introduced into Tcl IVR Version 2.0
that provides support for adding new languages and text-to-speech (TTS) notations to the core IVR
infrastructure of the Cisco IOS gateway.

In the past, if you wanted an IVR application to do text-to-speech, you were limited to English, Spanish,
and Chinese languages, and a fixed set of TTS notations. If an IVR application wanted to support more
languages, it needed to do its own translation and include the language translation procedures with every
Tcl IVR application that needed it.

With this new feature, you can make a new Tcl language module for any language and any set of TTS
notations. You can test and deliver the module, and the audio files that go with it, as a language package,
then document the language it delivers and the TTS notations it supports. When you configure this
module on the gateway, any IVR application running on that gateway and using those TTS notations
would work and speak that language.

For more information, refer to the Enhanced Multi-Language Support for Cisco IOS Interactive Voice
Response document.

Note Tcl language modules are not Tcl IVR scripts. They are pure Tcl scripts that implement a specific Tcl
language module interface (TLMI), so they must not use the Tcl IVR API extensions that are available
for writing IVR scripts.
1-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
VoiceXML and IVR Applications
VoiceXML and IVR Applications
VoiceXML brings the advantages of web-based development and content to IVR applications. For more
discussion on using VoiceXML with IVR applications, refer to the Cisco IOS Tcl and VoiceXML
Application Guide and the Cisco VoiceXML Programmer’s Guide.

Call Handoff in Tcl
Call handoff can best be understood when the concept of an application instance is first understood. In
the Cisco IOS IVR infrastructure, an application instance is an entity that executes the application code
and receives, creates, and manages one or more call legs to form a call, or to deliver a service to the user.
The application instance owns and controls these call legs and receives all events associated with them.
Although there can be exceptions, applications typically use a single application instance to deliver the
services of a single call. Tcl IVR applications, when executing, act as one or more application instances.

Call Handoff is a term used to describe the act of transferring complete control of a call leg from one
application instance to another. When handed off, all future events associated with that call leg will be
received and handled by the target application instance.

Handoff can happen in several different ways, depending on whether the call leg needs to return to the
source application instance of the handoff operation or not. A normal handoff application operation is
similar to a goto event, with no automatic memory of a return address. The target cannot return the leg
back to the source instance.

The call app operation is similar to a function call. The application instance performing the call app
operation is saved on a stack and the target application instance can do a handoff return operation that
returns the call leg to application instance on the top of the stack.

When doing a handoff of a call leg, any legs that are conferenced to that call leg are also handed off, even
if they are not explicitly specified. When doing a handoff or a handoff return operation, an application
instance can pass parameters as argument strings. Call handoff can take place between any combination
of VoiceXML and Tcl IVR 2.0 applications.

The call handoff functionality allows a developer to write applications that may want to interact with
each other for various purposes. This may be to use or leverage functionality in existing applications or
to modularize a larger application into smaller application segments and use the handoff mechanism to
coordinate and communicate between them. There may be times when the application developer need to
leverage the functionality and features of both VoiceXML and Tcl IVR 2.0 in their applications. This
may also be another application of the handoff operation.

Though handoff operations provide a certain amount of flexibility in achieving modularity and
application interaction, they are limited when it comes to sharing control over a call leg. Only one
application instance is in total control of the call leg and will receive events, which can prove to be
limiting in certain scenarios. So, when considering a choice of mechanism for implementing applications
involving both Tcl IVR 2.0 and VoiceXML, it is recommended that developers also consider hybrid
scripting as an alternative.

Hybrid applications differ from call handoff operations. Hybrid applications are written using Tcl IVR
scripts with VoiceXML dialogs either embedded or invoked in them. The Tcl IVR scripts are used for
call control and the VoiceXML script is used for dialog management and they all run as part of one
application instance allowing for a certain level of shared control of the call leg. Hybrid scripting is
discussed in more detail in a later section.
1-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
VoiceXML and IVR Applications
Call Handoff in VoiceXML
The call handoff functionality in Cisco VoiceXML implementation is similar to the call handoff initiated
by the handoff appl and handoff callappl verbs in Tcl IVR 2.0. For a discussion of call handoff in
VoiceXML implementations, refer to the Cisco VoiceXML Programmer Guide.

Tcl/VoiceXML Hybrid Applications
Tcl IVR 2.0 and VoiceXML APIs each have their own strong points and some weak points. Tcl IVR 2.0
is very flexible when it comes to call control, able to describe multiple call legs, how they should be
controlled, and how they should interwork. A weak point, however, is when it comes to user interface
primitives being limited to leg collectdigits and media play commands.

VoiceXML on the other hand is both familiar and easy to use to design voice user interfaces, but is very
limited in its call control capabilities. For example, VoiceXML dialog is good at IVR activities, such as
collecting user input or playing prompts.

It would be advantageous, therefore, to use Tcl IVR 2.0 to describe the call legs , and the call flow and
call control interactions between them, while using VoiceXML to describe user interface dialogs on one
or more of the legs it is controlling.

Though it may be possible, to a limited extent, to use the handoff mechanism to have separate application
instances in Tcl IVR 2.0 and use VoiceXML to deal with the call control and dialog aspects of the
application, it is difficult to clearly partition, in time, the call control and dialog activities. This requires
that the call control script and the dialog execution share control over the call leg, which is difficult to
do in the handoff approach.

Cisco IOS Release 12.2(11)T introduces the ability for developers to use Tcl and VoiceXML scripts to
develop hybrid applications. Tcl IVR 2.0 extensions allow Tcl applications to leverage support for ASR
and TTS by invoking and managing VoiceXML dialogs from within Tcl IVR scripts. Hybrid applications
can be developed using Tcl IVR for call control and VoiceXML for dialog management, allowing
applications to use both Tcl IVR 2.0 and VoiceXML APIs, yet behave as a single application instance.

Hybrid scripting requires that some control sharing and precedence rules be established. In hybrid
applications, the Tcl IVR 2.0 script is in control of the call and all of its call legs. It receives
ev_setup_indication events for incoming call legs, and has the primitives to issue a leg alert or to accept
the call leg through a leg connect command. It also has the primitives and event support to create
outgoing call legs, bridging one or more call legs together, or other similar operations.

When the Tcl IVR script wants to communicate with the user on one of the call legs, it has two ways to
do this. It can use the existing leg collectdigits and media play commands in native Tcl IVR 2.0 to play
individual audio prompts and collect digits, or it can use the leg vxmldialog command to initiate the
VoiceXML dialog operation on the leg. The leg vxmldialog command starts up a VoiceXML interpreter
session on the call leg under the direct control of the Tcl IVR 2.0 script. The initial VoiceXML document
that the session starts up could either be embedded in the Tcl IVR 2.0 script invoking it or it can simply
refer to a VoiceXML document on a web server.

This VoiceXML session started on the leg is a normal VoiceXML session for the most part, but with the
following exceptions:

• There are some synchronization primitives and mechanisms that have been added to allow
information exchange between the VoiceXML dialog session and the Tcl IVR 2.0 call control script.

• VoiceXML supports some call control commands, such as the <transfer> and <disconnect> tags,
which behave differently in this mode because the Tcl IVR 2.0 script should have complete control
of all call control activities.
1-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
VoiceXML and IVR Applications
Communication Between VoiceXML and Tcl IVR 2.0 in Hybrid Applications.

When the Tcl IVR 2.0 script initiates a VoiceXML dialog on a call leg, it can pass an array of parameters
to the leg vxmldialog command. These parameters becomes accessible from within the VoiceXML
session through the com.cisco.params.xxxxxx variables. In the VoiceXML session, the com.cisco.params
object gets populated with a information from the Tcl IVR array, where xxxxx is the index of the Tcl
array.

When the VoiceXML dialog finishes, it can return some information back to the Tcl IVR script through
the namelist attribute of the <exit/> tag. When the VoiceXML dialog finishes executing, the Tcl script
receives the ev_vxmldialog_done event, which can carry with it the information returned in the exit tag.
The event also carries with it a status code, which can be accessed through the evt_status information tag.

Apart from the start and end of a VoiceXML dialog, the Tcl script can send an intermediate message to
a dialog in progress through the leg vxmlsend command. The event specified in the command is thrown
inside VoiceXML interpreter and can be caught by a <catch> handler looking for that event. The
command can also have a Tcl parameter array, whose information is accessible inside the VoiceXML
catch handler through a scoped _message.params.xxxxxx variable, similar to com.cisco.params.xxxx
described above.

Similarly, the VoiceXML interpreter environment or the executing document can send events to the Tcl
script at various points. These events arrive at the Tcl script as ev_vxmldialog_event events. An executing
VoiceXML document can use an <object> extension with
classid="builtin://com.cisco.ivrscript.sendevent" to send an explicit message, with associated parameter
information, to the parent Tcl script. If the VoiceXML document executes certain tags, such as
<disconnect> or <transfer>, in the hybrid mode, that results in the Tcl script receiving an
ev_vxmldialog_event event implicitly.

An ev_vxmldialog_done event or ev_vxmldialog_event event can come with two pieces of information:

• A VoiceXML-specific event name to differentiate the various reasons for the ev_vxmldialog_done
or ev_vxmldialog_event event, which is accessible through the evt_vxmlevent information tag. This
event name is a string in the form of vxml.*. This indicates that the event name could be from the
VoiceXML interpreter environment (vxml.session.*) or from the dialog executing in the VoiceXML
interpreter (vxml.dialog.*). Examples of environment-level messages are vxml.session.complete, to
indicate normal completion of a dialog, or vxml.session.transfer, to indicate that the document tried
to execute a <transfer> tag, which is not supported in this mode of operation. If the document
throws a error.badfetch message which is not caught and this causes the dialog to complete, or if the
document uses the <object> send tag to send Tcl an explicit message, evt_vxmlevent will contain a
vxml.dailog.* string.

• A parameter array of information that is accessible through the evt_vxmlevent_params information
tag.

Hybrid Mode and VoiceXML Call Control Tags

In the hybrid mode, the VoiceXML <disconnect> tag does not disconnect the call leg. Instead, a
vxml.session.disconnect event is sent to the Tcl IVR script. From a VoiceXML execution perspective, a
<disconnect> is emulated, throwing a disconnect event and then continuing execution. The dialog will
not be able to play prompts or collect input from this point onwards.

When the user hangs up, a <disconnect> is again emulated, as above. But the leg is not disconnected yet.
The Tcl script receives the ev_disconnected event as part of the control events, then has the responsibility
of either terminating, or waiting for the termination of the dialog, and then disconnecting the leg.
1-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
When the document executes a <transfer> tag, this results in the following:

• A vxml.session.transfer event is sent by the VoiceXML environment to the Tcl script.

• The VoiceXML environment will throw an error.unsupported.transfer event at the VoiceXML
session, which can be caught. If not caught, the default handler causes the termination of the dialog,
resulting in an eventual ev_vxmldialog_done event to the Tcl script.

SendEvent Object
Recorded objects are represented as audio object variables in VoiceXML/JAVA scripting. In Tcl, which
is totally text based, objects are represented as a ram://XXXXX URI. Tcl array elements that have a value
of ram://XXX are available as audio variables or objects in VoiceXML. A similar reverse transformation
happens when information is passed from VoiceXML to the Tcl script.

Tcl IVR Call Transfer Overview
Tcl IVR scripts can be used to provide blind- and consultation-transfer support for a variety of call
transfer protocols. This section provides some background information about call-transfer terminology
and usage scenarios as related to Tcl IVR applications. It also describes the call-transfer capabilities of
each supported protocol and how these protocols can be interworked when the endpoints involved in the
transfer use different signaling protocols.

Call Transfer Terminology

Transfer participants

A call transfer typically involves three participants:

• Transferor (XOR)—The endpoint that initiates the transfer.

• Transferee (XEE)—The endpoint that is transferred to different destination.

• Transfer target (XTO)—The endpoint that the transferee is transferred to.

Transfer Trigger

A call-transfer trigger is the mechanism a transferor endpoint uses to initiate a call-transfer procedure.
This is normally a hookflash event for analog phones, or a button or softkey on an IP phone registered
with the Cisco IOS voice gateway operating in Cisco CallTw55tieManager Express (CME) mode.

Transfer Commit

A transfer commit is the action a transferor endpoint takes when it wants to connect the transferee and
transfer target endpoints, possibly after consulting with the transfer target endpoint. For analog phones
and Cisco CME IP phones, the transfer commit is usually performed by hanging up the phone. When a
Tcl IVR script receives a transfer-commit indication, it normally attempts to send a transfer request to
the transferee call leg.
1-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Supported Tcl IVR Call Transfer Script
Cisco provides an official Tcl IVR script that supports the H.450 call transfer scenarios discussed in the
remainder of this section. This script is available in the Cisco CallManager Express (CME) zip files
found at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-key. The current version of the script is named
app_h450_transfer.2.0.0.3.tcl. Refer to the README file associated with the script for more details.

Call Transfer Support in the Cisco IOS Default Session Application
Call transfer support has been added to the default voice session application in the 12.2(15)ZJ Cisco IOS
release. The default application now provides H.450 and SIP transferee and transfer target functionality
for blind and consultation transfers. It also provides H.450 and SIP blind and consultation transferor
support for IP phones connected to the Cisco IOS gateway while operating in Cisco CallManager
Express (CME) mode.

Note The enhanced default session application does not provide support for transfer initiation using an analog
phone connected to the Cisco IOS gateway. This functionality is provided in the
app_h450_transfer.2.0.0.3.tcl script mentioned above or can be implemented in a custom Tcl IVR
application.

Custom Tcl IVR Call Transfer Scripts
The Cisco IOS default session application and app_h450_transfer.tcl script described above can be used
to support many typical call transfer scenarios. In cases where a variant of this functionality is needed,
a custom Tcl IVR script can be written. The call-transfer-sample.zip file on the Developer Support
Central page contains sample Tcl IVR scripts and associated documentation that can be used as a guide
in writing such a script.

Further assistance in Tcl IVR script writing can be obtained by joining the Cisco Developer Support
program. This program provides a central resource for all development needs. Members of the program
gain access to all available product and documentation downloads, bug reports, sample scripts, and
frequently asked questions to facilitate development efforts.

The Developer Support engineers have subject matter expertise in Cisco interfaces and protocols. This
team is dedicated to helping customers, and Cisco AVVID Partner Program and other ecosystem
members, to use Cisco application programming interfaces (APIs) in their development projects. In
addition to the benefits accessed from Cisco.com, the program provides an easy process to open, update,
and track issues through Cisco.com. The Developer Support Agreement, which defines support
commitments, fees, and available options, can be obtained from the Cisco Developer Support Web site
at http://www.cisco.com/warp/public/570/.

Call Transfer Scenarios
There are many call transfer scenarios to consider when writing a Tcl IVR script. This subsection
describes several such scenarios involving one, two, or three Cisco IOS voice gateways. To illustrate the
call transfer scenarios, each description that follows includes the following diagrams:

• The first diagram shows the two-party call before the transfer.

• The second diagram shows a blind call transfer in progress.
1-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
• The third diagram shows a consultation transfer in progress.

• The fourth diagram shows the final call after a successful blind or consultation transfer.

Depending on the specific requirements, a script can be written to provide support for one or more of the
scenarios that follow. In some cases, such as the consultation transfer scenario shown in Figure 1-7, two
independent instances of the script may be active on the same gateway.

In the figures that follow, the labels XOR, XEE, and XTO designate the role each call leg plays in the
call transfer. The IN and OUT labels track the incoming and outgoing call legs during a two-party call.
This allows a script to keep track of the call leg topology and determine what action to take when an
event is received.

In all scenarios described here, the original two-party call between phone A and phone B is already
established. Phone A is the transferor endpoint (XOR), phone B is the transferee endpoint (XEE), and
phone C is the transfer target endpoint (XTO). Transferor phone A is either an analog FXS phone or an
IP phone registered with the Cisco IOS voice gateway operating in Cisco CallManager Express (CME)
mode.

One Gateway Scenario with Analog Transferor

The first call transfer scenario is one in which phones A, B, and C are connected to the same gateway,
as shown in Figure 1-1. In this case, all transferor, transferee, and transfer-target functionality is
provided by a single instance of the Tcl IVR script.

Figure 1-1 Single GW: Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, and
then hangs up. The script then places a regular call to the transfer target, connects the transferee and
transfer-target call legs, then disconnects the transferor call leg. See Figure 1-2.
1-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-2 Single GW: Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). Because phone C is a local analog phone, the gateway generates a local
consultation ID and registers it to this script instance. The script then places the outbound transfer call
to phone C that includes this consultation ID. Because the consultation ID is registered to this script
instance, the transferee call leg is handed off to this same script. See Figure 1-3.

Figure 1-3 Single GW: Analog XOR Consultation Transfer

When the script receives the handoff event, it bridges the transferee and transfer-target legs and releases
the transferor. See Figure 1-4.

Note In this single gateway scenario, it would be possible to simplify the call flow and avoid having the script
hand off the transferee call leg to itself; however, using the handoff mechanism is the preferred approach
as it also works in the multi-gateway scenarios described below.
1-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-4 Single GW: Analog XOR After Transfer

One Gateway Scenario with Cisco CME IP Phone Transferor

In this transfer scenario, phones A, B, and C are all connected to the same gateway. See Figure 1-5. In
this case the transferor, transferee, and transfer-target functionality is provided by one or two instances
of the Tcl IVR script.

Figure 1-5 Single GW: Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone, places a regular call to
the transfer target, and connects the transferee and transfer target call legs. It then disconnects the
transferor call leg. See Figure 1-6.
1-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-6 Single GW: Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer-destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on the gateway,
which treats the call as a normal two-party call, unaware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. Because phone C is a local analog
phone, the gateway generates a local consultation ID and registers it to this script instance. The script
then sends a consultation response to IP phone A that includes this consultation ID. Next, the first script
instance receives a transfer request from IP phone A that includes the consultation ID it received from
the second script instance. See Figure 1-7.

Figure 1-7 Single GW: Cisco CME IP Phone XOR Consultation Transfer

This script instance then places the outbound transfer call to phone C that includes the consultation ID.
Because the consultation ID is registered to the second script instance, the transferee call leg is handed
off to the second script instance. The second script instance receives the handoff event and bridges the
transferee and transfer-target legs. The first script instance releases the transferor call leg. See
Figure 1-8.
1-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-8 Single GW: Cisco CME IP Phone XOR After Transfer

Two Gateway Scenarios with Analog Transferor

There are several call transfer scenarios that involve two Cisco IOS gateways and an analog transferor.
Several of these are described in the following subsections.

XOR and XTO on Gateway 1 and XEE on Gateway 2

In the first scenario, the transferor (phone A) and transfer-target (phone C) endpoints are connected to
Gateway 1. The transferee endpoint (phone B) is connected to Gateway 2. See Figure 1-9.

Figure 1-9 Two Gateways (XOR/XTO & XEE): Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call between phone A and phone B on Gateway 2. This script places
an outbound call to phone C and disconnects its transferor call leg when the call setup succeeds. See
Figure 1-10.

Although phone C is also connected to Gateway 1, the incoming call from phone B to phone C is handled
by a separate instance of the Tcl IVR script. This script simply places a normal call to phone C, without
knowledge that this call was part of a call transfer.
1-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-10 Two Gateways (XOR/XTO & XEE): Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). Because phone C is a local analog phone, the gateway generates a local
consultation ID and registers it to this script instance. The script then sends a SIP or H.450 transfer
request to phone B that includes the consultation ID. The transfer request is received by the script
handling the call on Gateway 2. This script places an outbound call to phone C and disconnects its
transferor call leg when the call setup succeeds. See Figure 1-11.

Figure 1-11 Two Gateways (XOR/XTO & XEE): Analog XOR Consult Transfer

The setup request includes the consultation ID received in the transfer request. Unlike the blind transfer
case above, the incoming setup request to phone C is handled by the same instance of the script that is
handling the original call between phones A and B, and the consultation call between phones A and C.
This script connects the incoming call to phone C and disconnects phone A. See Figure 1-12.
1-15
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-12 Two Gateways (XOR/XTO & XEE): Analog XOR After Transfer

XOR and XEE on Gateway 1 and XTO on Gateway 2

In this scenario, the transferor (phone A) and transferee (phone B) are connected to Gateway 1. The
transfer target (phone C) is connected to Gateway 2. See Figure 1-13.

Figure 1-13 Two Gateways (XOR/XEE & XTO): Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, and
then hangs up. The script places a call to phone C by sending a SIP or H.323 setup request to Gateway
2. The script that handles this setup request on Gateway 2 places a normal call to phone C, unaware that
this call was part of a call transfer. After a successful call setup, the script on Gateway 1 bridges phone
B and phone C and releases the call from phone A. See Figure 1-14.
1-16
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-14 Two Gateways (XOR/XEE & XTO): Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A is able to consult
with phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID
from the transfer target (phone C).

For H.450 transfers, Gateway 1 sends an H.450 consultation request message to phone C. This request
is received by the script instance on Gateway 2 that is handling the call between phones A and C. This
script sends a consultation response that includes a consultation ID. See Figure 1-15.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 setup request to Gateway 2 that includes this consultation ID. When the setup request
arrives at Gateway 2, it is delivered to the same script instance that is handling the consultation call
between phone A and phone C.

Figure 1-15 Two Gateways (XOR/XEE & XTO): Analog XOR Consultation Transfer

This script connects the incoming call to phone C and disconnects the consultation call from phone A.
See Figure 1-16.
1-17
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-16 Two Gateways (XOR/XEE & XTO): Analog XOR After Transfer

XOR on Gateway 1 and XEE and XTO on Gateway 2

The third call transfer scenario involving two gateways is shown in Figure 1-17. The transferor (phone
A) is connected to Gateway 1, and the transferee (phone B) and transfer target (phone C) are connected
to Gateway 2.

Figure 1-17 Two gateways (XOR & XEE/XTO): Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call between phone A and phone B on Gateway 2. This script places
an outbound call to phone C. When the setup succeeds, this script connects phone B to phone C and
disconnects the call from phone A. See Figure 1-18.
1-18
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-18 Two Gateways (XOR & XEE/XTO): Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. The incoming call from phone A is handled by a different script instance on Gateway 2 than is
handling the call between phones A and B. See Figure 1-19.

When the user commits the transfer (by hanging up), the script on Gateway 1 requests a consultation ID
from the transfer target. For H.450 transfers, Gateway 1 sends an H.450 consultation request message to
phone C. The request is received by the script instance on Gateway 2 that is handling the call between
phones A and C. This script sends a consultation response that includes a consultation ID.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 transfer request to Gateway 2 that includes this consultation ID.

Figure 1-19 Two Gateways (XOR & XEE/XTO): Analog XOR Consultation Transfer

The transfer request is received by the script instance handling the call between phones A and B on
Gateway 2. This script places a call to phone C. The setup request includes the consultation ID received
in the transfer request. Because the consultation ID included in the setup request matches the one sent
to Gateway 1 in the consultation response, the call setup completes by handing off the incoming call to
the second script instance. After the handoff, the original call from phone A to phone B is disconnected
by the first script instance on Gateway 2 and the consultation call from phone A is disconnected by the
second script instance. See Figure 1-20.
1-19
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-20 Two Gateways (XOR & XEE/XTO): Analog XOR After Transfer

Two Gateway Scenarios with Cisco CME IP Phone Transferor

There are several call transfer scenarios that involve two Cisco IOS gateways and a Cisco CallManager
Express (CME) IP phone transferor. Several of these are described in the following subsections.

XOR and XTO on Gateway 1 and XEE on Gateway 2

The first scenario is shown in Figure 1-21. Here, the transferor (phone A) and transfer-target (phone C)
endpoints are connected to Gateway 1. The transferee endpoint (phone B) is connected to Gateway 2.

Figure 1-21 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer-request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call between phone
A and phone B on Gateway 2. This script places an outbound call to phone C and disconnects its
transferor call leg when the call setup succeeds. Although phone C is also connected to Gateway 1, the
incoming call from phone B to phone C is handled by a separate instance of the Tcl IVR script. This
script simply places a normal call to phone C without knowledge that this call was part of a call transfer.
See Figure 1-22.
1-20
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-22 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. The
script instance treats the call as a normal two-party call, unaware that it is a consultation call. See
Figure 1-23.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. Because phone C is a local analog
phone, the gateway generates a local consultation ID and registers it to this script instance. The script
then sends a consultation response to IP phone A that includes this consultation ID.

Next, the first script instance receives a transfer request from IP phone A that includes the consultation
ID it received from the second script instance. This script instance then sends a SIP or H.450 transfer
request to phone B that includes the consultation ID. The transfer request is received by the script
handling the call between phone A and phone B on Gateway 2. This script places an outbound call to
phone C and disconnects its transferor call leg when the call setup succeeds. The setup request includes
the consultation ID received in the transfer request.

Figure 1-23 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR Consult Transfer

The incoming setup request is delivered to the script instance on Gateway 1 that is handling the
consultation call between phone A and phone C. This script connects the incoming call to phone C and
releases the call from phone A. See Figure 1-24.
1-21
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-24 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR After Transfer

XOR and XEE on Gateway 1 and XTO on Gateway 2

The second scenario involving two gateways and an IP phone transferor. The transferor (phone A) and
transferee (phone B) are connected to Gateway 1. The transfer target (phone C) is connected to
Gateway 2. See Figure 1-25.

Figure 1-25 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone A and places a call to
phone C by sending a SIP or H.323 setup request to Gateway 2. The script that handles this setup request
on Gateway 2 places a normal call to phone C, unaware that this call was part of a call transfer. After a
successful call setup, the script on Gateway 1 bridges phone B and phone C and releases the call from
phone A. See Figure 1-26.
1-22
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-26 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. The
script instance treats this as a normal two-party call and is not aware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 2 handling the call between phones A and C. This
script sends a consultation response that includes a consultation ID. See Figure 1-27.

For SIP, the consultation request is not relayed to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it relays
it to IP phone A. In addition, due to the internal consultation ID management scheme in the Cisco IOS
application framework, the consultation ID received from Gateway 2 is registered to this script instance
(the second instance).

Note Because the script instance on Gateway 2 sent a consultation response to Gateway 1, it expects to receive
an incoming call from the transferee. Because the transfer was handled locally on Gateway 1 through a
handoff, Gateway 2 will not receive this incoming call. A guard timer in Cisco IOS eventually expires,
and the script continues processing the call between Phone A and phone C as a normal two-party call.

Next, the first script instance receives a transfer request from IP phone A that includes the consultation
ID from the second script instance. This script instance places the outbound call to phone C that includes
the consultation ID.
1-23
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-27 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR Consultation Transfer

Because the consultation ID is registered to the second script instance, the transferee call leg is handed
off to the second script instance. This script instance receives the handoff event and bridges the
transferee and transfer target legs. The first script instance releases the transferor call leg. See
Figure 1-28.

Figure 1-28 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR After Transfer

XOR on Gateway 1 and XEE and XTO on Gateway 2

The third call transfer scenario involving two gateways and an IP phone transferor is shown in
Figure 1-29. The transferor (phone A) is connected to Gateway 1, and the transferee (phone B) and
transfer target (phone C) are connected to Gateway 2.
1-24
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-29 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call between phone
A and phone B on Gateway 2. This script places an outbound call to phone C. After a successful call
setup, the script on Gateway 2 bridges phone B and phone C and releases the call from phone A. See
Figure 1-30.

Figure 1-30 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
The call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. This
script instance treats the call as a normal two-party call and is not aware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 2 that is handling the call between phones A and
C. This script sends a consultation response that includes a consultation ID. For SIP, the consultation
request is not relayed to phone C. Instead, a consultation ID is generated locally by Gateway 1. In both
cases, when the script on Gateway 1 receives the consultation response, it relays it to IP phone A. In
addition, due to the internal consultation ID management scheme in the Cisco IOS application
framework, the consultation ID received from Gateway 2 is registered to this script instance (the second
instance).
1-25
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Next, the first script instance on Gateway 1 receives a transfer request from IP phone A that includes the
consultation ID it received from the second script instance on Gateway 1. The script instance then sends
a SIP or H.450 transfer request to phone B that includes this consultation ID. The transfer request is
received by the script instance handling the call between phones A and B on Gateway 2. This script
places a call to phone C. Because the consultation ID included in the setup request matches the one sent
to Gateway 1 in the consultation response, the call setup is completed by handing off the incoming call
to the second script instance. See Figure 1-31.

Figure 1-31 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR Consultation Transfer

After the handoff, the original call from phone A to phone B is disconnected by the first script instance
on Gateway 2 and the consultation call from phone A is disconnected by the second script instance. See
Figure 1-32.

Figure 1-32 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR After Transfer

Three Gateway Scenario with Analog Transferor

Figure 1-33 shows a scenario where three gateways are involved in the call transfer. Each call transfer
participant is connected to a separate Cisco IOS gateway.
1-26
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-33 Three Gateways: Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call on Gateway 2. This script places a regular outbound call to
phone C. The script that receives the incoming call setup on Gateway 3 treats this as a normal two-party
call. When the setup completes, the script on Gateway 2 sends a transfer response to phone A. The script
on Gateway 1 receives the transfer response and releases the call from phone A. See Figure 1-34.
1-27
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-34 Three Gateways: Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). For H.450 call transfers, a consultation request protocol message is sent to
phone C. This request is received by the script instance on Gateway 3 that is handling the call between
phones A and C. The script sends a consultation response that includes a consultation ID. See
Figure 1-35.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 transfer request to phone B that includes the consultation ID.

This transfer request is received by the script handling the call between phones A and B on Gateway 2.
This script places a call to phone C. The setup request includes the consultation ID received in the
transfer request from phone A. When the incoming setup request from phone B arrives at Gateway 2, it
is delivered to the script instance handling the call between phones A and C.
1-28
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-35 Three Gateways: Analog XOR Consultation Transfer

This script instance connects the incoming call to phone C and disconnects the call from phone A. See
Figure 1-36.

Figure 1-36 Three Gateways: Analog XOR After Transfer
1-29
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Three Gateway Scenario with Cisco CME IP Phone Transferor

Figure 1-37 shows a scenario where three gateways are involved in the call transfer. Each call transfer
participant is connected to a separate Cisco IOS gateway.

Figure 1-37 Three Gateways: Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call on Gateway
2. This script places a regular outbound call to phone C. The script that receives the incoming call setup
on Gateway 3 treats this as a normal two-party call. When the setup completes, the script on Gateway 2
sends a transfer response to phone A. The script on Gateway 1 receives the transfer response and releases
the call from phone A. See Figure 1-38.
1-30
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-38 Three Gateways: Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. The
script instance treats this call as a normal two-party call and is not aware it is a consultation call. See
Figure 1-39.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 3 that is handling the call between phones A and
C. This script sends a consultation response that includes a consultation ID.

For SIP, the consultation request is not relayed to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it relays
it to IP phone A. In addition, due to the internal consultation ID management scheme in the Cisco IOS
application framework, the consultation ID received from Gateway 2 is registered to this script instance
(the second instance).

Next, the first script instance on Gateway 1 receives a transfer request from IP phone A that includes the
consultation ID it received from the second script instance. This script instance then sends a SIP or H.450
transfer request to phone B that includes this consultation ID.

The transfer request is received by the script instance handling the call between phones A and B on
Gateway 2. This script places a call to phone C. The setup request includes the consultation ID received
in the transfer request from phone A. When the incoming setup request from phone B arrives at Gateway
3, it is delivered to the script instance handling the call between phones A and C.
1-31
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-39 Three Gateways: Cisco CME IP Phone XOR Consultation Transfer

This script instance connects the incoming call to phone C and disconnects the call from phone A. See
Figure 1-40.

Figure 1-40 Three Gateways: Cisco CME IP Phone XOR After Transfer
1-32
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Call Transfer Protocol Support
The following subsection provides an overview of the call transfer protocols supported using Tcl IVR
scripting on a Cisco IOS voice gateway. Refer to the appropriate section above for various scenarios that
may use these protocols.

Analog Hookflash and T1 CAS Release Link Trunk (RLT) Transfers

Transferor Support

A script cannot initiate a hookflash transfer towards a T1 CAS or analog FXO endpoint. Instead, the
script can place an outbound call to the transfer target and connect the transferee and transfer target call
legs after the call is established.

Transferee Support

A Tcl IVR script can receive a hookflash transfer request from a T1 CAS or analog FXS endpoint
connected to the gateway. The subscriber is able to initiate a blind or consultation call transfer using
hookflash and DTMF digits.

When the script receives a hookflash transfer trigger, it can provide dialtone and collect the transfer
target destination through DTMF.

When the script receives a transfer commit request, it can do one of the following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script cannot receive a consultation request or setup indication containing a consultation ID
from an analog endpoint.

ISDN Call Transfer

Transferor Support

A Tcl IVR script can send an ISDN Two B-Channel Transfer (TBCT) request to the transferee call leg
when the transferee and transfer target are both part of the same TBCT group on the PBX connected to
the gateway.

When the script initiates a TBCT request, the Cisco IOS software places a call to the transfer target.
When the transfer target answers, the Cisco IOS software initiates the TBCT if both the transferee and
transfer target are part of the same TBCT group configured on the PBX. If the transferee and transfer
target are not part of the same TBCT group, the transferee and transfer target call legs are bridged by the
script. If the call is successfully transferred to the PBX, the transferee and transfer target call legs are
released and the script can close the call. In some cases, the script can re-connect the transferor and
transferee call legs if the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

• Place a consultation call to the transfer target device and connect the transferor and transfer target
call leg when the call is established.
1-33
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
• If the transferee and transfer target are part of the same TBCT group, the script can do the following
when the transfer is committed:

– Request a local TBCT consultation ID.

– Send a TBCT request to the transferee call leg. The transfer request includes the consultation
ID.

– If the call is successfully transferred to the PBX, the transferee and transfer target call legs are
released, and the script can close the call.

– In some cases, the script may re-connect the transferor and transferee call legs if the transfer
attempt is unsuccessful.

• If the transferee and transfer target are not part of the same TBCT group, the transferee and transfer
target call legs can be bridged by the script when the transfer is committed.

Transferee Support

A Tcl IVR script does not support any network-side ISDN call transfer protocols and is not able to
receive a call-transfer request from an ISDN device.

Note It is possible to allow an ISDN subscriber to initiate a blind transfer using DTMF input to trigger the
transfer. This mechanism is similar to the analog FXS and T1 CAS transfer mechanisms described above
and is not discussed further in this document.

Transfer Target Support

A Tcl IVR script cannot receive a consultation request or setup indication with a consultation ID from
an ISDN endpoint.

SIP Call Transfer

Transferor Support

A Tcl IVR script can send a REFER transfer request to a remote transferee call leg. The script can also
initiate a consultation call when performing a consultation transfer.

The script can initiate a blind transfer by sending a REFER message to the remote transferee. If the
transfer is successful, the transferee places a call the transfer target. The call is established without
involvement of this script and the script can close the call. In some cases, the script can re-connect the
transferor and transferee call legs if the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

• Place a consultation call to the transfer target device, and connect the transferor and transfer target
call leg when the call is established.

• When the transfer is committed, request a consultation ID.

Note Unlike H.450 transfers, the script handling the consultation call between the transferor and transfer
target does not receive a consultation request from the transferor. Instead, the consultation ID is
generated locally by the script handling the original call between the transferor and transferee.

• Send a REFER to the transferee call leg. This includes the consultation ID. The transferee device
includes the consultation ID in the INVITE message it sends to the transfer target.
1-34
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
• If the transfer is successful, the transferee calls the transfer target. The call is established without
involvement of this script and the script can close the call.

• In some cases, the script may re-connect the transferor and transferee call legs if the transfer attempt
is unsuccessful.

Transferee Support

A Tcl IVR script can receive a SIP REFER or BYE/ALSO transfer request from a remote SIP transferor.
When the script receives a transfer request, the script can do one of the following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

Note It is not currently possible to interwork SIP and H.450 transfer requests.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

When the gateway receives an INVITE request from the remote transferee that includes a consultation
ID, it is delivered to the script instance handling the consultation call to the transfer target. The script
can then connect the transferee and transfer target call legs and disconnect the transferor call leg.

Note Unlike H.450 transfers, the script handling the consultation call between the transferor and transfer
target does not receive a consultation request from the transferor. Instead, the consultation ID is
generated locally by the script that is handling the original call between the transferor and transferee.

H.450 Call Transfer

Transferor Support

A Tcl IVR script can send a H450.2 transfer request to a transferee call leg. The script can also initiate
a consultation call when performing a consultation transfer.

The script can initiate a blind transfer by sending an H450.2 transfer request to the remote transferee. If
the transfer is successful, the transferee calls the transfer target. The call is established without
involvement of this script and the script can close the call. In some cases, the script can re-connect the
transferor and transferee call legs if the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

• Place a consultation call to the transfer target device, and connect the transferor and transfer target
call leg when the call is established.

• When the transfer is committed, request a consultation ID from the transfer target.

• Send an H450.2 transfer request to the transferee call leg. This includes the consultation ID received
in the consultation response from the transfer target device. The transferee includes the consultation
ID in the SETUP request it sends to the transfer target.

• If the transfer is successful, the transferee calls the transfer target and the call is established without
involvement of this script. The script can then close the call.

• In some cases, the script can re-connect the transferor and transferee call legs if the transfer attempt
is unsuccessful.
1-35
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Transferee Support

A Tcl IVR script can receive an H450.2 transfer request from a remote H.323 transferor. When the script
receives a transfer request, it can do one of the following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

Note It is not possible to interwork SIP and H.450 transfer requests.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script can receive a consultation request from a remote H450 transferor and send a
consultation response that includes the consultation ID and transfer destination. This transfer destination
is the number the transferee should use when placing a call to the transfer target.

When the gateway receives a SETUP request from the remote transferee that includes an H450.2
consultation ID, it is delivered to the script instance handling the consultation call to the transfer target.
The script can then connect the transferee and transfer target call legs and disconnect the transferor call
leg.

Cisco CallManager Express Call Transfer

Transferor Support

A Tcl IVR script cannot send a call transfer request to a local IP phone registered with the Cisco IOS
gateway operating in Cisco CallManager Express (CME) mode. Instead, the script can place an outbound
call to the transfer target and connect the transferee and transfer target call legs after the call is
established.

Transferee Support

A Tcl IVR script can receive a call transfer request from a local IP phone registered with the Cisco IOS
gateway operating in Cisco CME mode. When the script receives a transfer request, it can do one of the
following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script can receive a consultation request from a local Cisco CME IP phone and do one of the
following:

• Interwork the consultation request by relaying it to the other call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

• Send a local consultation response to the IP phone that includes a locally generated consultation ID
and transfer destination. This transfer destination is the number the transferee should use when
placing a call to the transfer target.
1-36
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
SIP Subscribe and Notify
When the gateway receives a SETUP request from the remote transferee that includes a consultation ID,
it is delivered to the script handling the consultation call to the transfer target. The script can then
connect the transferee and transfer target call legs and disconnect the transferor call leg.

SIP Subscribe and Notify
Tcl IVR 2.0 scripts provide the ability to subscribe to a SIP subscribe server and receive notify events.
Applications can be invoked when notification is received, which is useful when the subscribed event
will probably take a long time to complete, say several minutes or hours. In this case, the application can
choose to free its instance and cause the system to create another instance to handle the notification when
it is received.

The application that handles the notification need not be the same one that made the subscription. This
provides the flexibility to make separate applications for handling subscriptions and notifications.

The application that made the subscription can perform any of the following tasks:

• Keep alive and handle notifications from the server.

• Free its instance and cause another instance of the same application to generate on notification.

• Free its instance and cause a different application to generate on notification.

• Make another module to handle notification.

SIP Headers
Tcl IVR 2.0 scripts can specify headers to be sent in SIP invite or H.323 setup messages. The script
writer can piggy-back the header-value pairs in the destination URI after the ‘?”. For example:

set destination “sip:joe@big.com?Subject=Hotel Reservation&Priority=urgent&
X-ReferenceNumber=1234567890”
leg setup destination callInfo leg_incoming

In cases where the destination string is an E.164 number instead of a URI, where headers cannot be
appended to the destination URI, the set command can be used to set the headers. For example:

set setupSignal(Subject) “Hotel Reservation”
set setupSignal(Priority) “urgent”
set setupSignal(X-ReferenceNumber) “1234567890”
set callInfo(protoHeaders) setupSignal
set destination “4085550100”
leg setup destination callInfo leg_incoming

A data-passing mechanism is provided to pass application-specified headers to the SPI for outbound
calls. Tcl scripts can retrieve headers using the evt_proto_headers or leg_proto_headers information
tags. As of Cisco IOS release 12.3(4)T, access to headers is limited to SIP invite, subscribe, and notify
messages, and to H.323 setup messages. The following list of headers, however, cannot be overwritten:

• call-ID

• Supported

• Require

• Min-SE

• Session-Expires

• Max-Forwards

• CSeq
1-37
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Application Instances
Note Each call leg is limited to a maximum of 20K memory allocation for header passing. Each header avpair
is limited to 256 characters. The application throws an error if the Tcl script tries to pass a header avpair
greater than 256 characters or if the 20K memory has been used up.

If a call is handed off to an outbound application, the outbound application can retrieve all headers
handed off to it from the previous application, plus headers from the incoming call leg set by the SPI,
through the evt_handoff proto_headers information tag.

Application Instances
A Tcl IVR 2.0 application that is configured on the Cisco voice gateway is typically triggered by an
incoming call. The application then delivers IVR services to the caller, and can create and control one
or more call legs. When a voice call invokes an application, the application starts an instance, or session,
of that application. The application instance executes the application script, and can place or transfer a
call to a other applications. A call can initiate a single application instance or multiple application
instances, depending on how the system is configured to handle the call. A single application session can
manage multiple voice calls.

In Cisco IOS Release 12.3(x), you can manually start an instance of a Tcl IVR 2.0 application on the
gateway without a call leg. This enables you to launch an application session on the gateway without
requiring an incoming call. For example, you might write an application that monitors the status of a
server group to provide a keep-alive service. An instance of this application could pass status
information to other applications that are handling incoming calls. This type of service application can
run on the gateway without being triggered by a call.

An instance of a Tcl IVR 2.0 application can be started on the gateway by using the call application
session start CLI command. An application instance can communicate with other sessions on the same
gateway and calls can be bridged between different sessions.

The mod_all_handles information tag can be used to retrieve a list of all the instances currently running on
the gateway.

Note Tcl IVR 2.0 limits the number of subscriptions per handler to 18. Because each script instance is a
handler, an application instance can only handle a maximum of 18 subscriptions simultaneously.

Session Interaction
A session is an instance of a Tcl application and is independent from other sessions in that they do not
share data directly. For example, a global Tcl variable in one session is not available to another session.
However, application sessions can communicate with other sessions on the gateway for the purpose of
sending and receiving messages, or to hand off calls between sessions.

A Tcl session can initiate multiple outgoing call legs, and can have incoming and outgoing call legs
handed off to it. A Tcl session can be running with no call legs if it was started in the CLI from a sendmsg
or a notify, or if it disconnects the legs it is handling.
1-38
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Session Interaction
Session Start and Stop
The most common way for a session to start is when a Tcl application handles an incoming voice call,
however, a session can also run with no call legs if it is started in the CLI, from a sendmsg, from a notification,
or if it disconnects the call legs it was handling.

When a Tcl instance starts up, it receives one of the following events, depending on how it got started:

• ev_msg_indication

• ev_notify

• ev_session_indication

• ev_call_indication

If a user stops a Tcl session using the call app session stop CLI command, the Tcl script receives an
ev_session_terminate event. The Tcl script is expected to close. If the Tcl script does not close after 10
seconds, the session is shut down anyway and all call legs are disconnected. This gives the Tcl script
time to clean up gracefully.

If the session returns after handling an event and there are no active timers, legs, registered services, or
subscriptions, the session is closed.

Sending Messages
Messages are sent to other application instances using the sendmsg command. The sendmsg command
is an asynchronous command that does not have to wait for the destination to act on the event. If an
application name is provided, a new instance of that application is generated.

Receiving Messages
Applications are notified of incoming messages from other applications through the ev_msg_indication
event. Any parameters passed with the message are then available to the application through the evt_msg
information tag. The handle of the sending application is available through the evt_msg_source
information tag.

Call Handoff
In addition to passing the name of an application, the handoff command allows the passing of a handle.
For example, assume a Tcl script gathers the caller’s account number, then receives a notification that
the call is being handled by another instance. The script can hand the incoming call leg to the other
application instance using the handoff command, providing information in the argument string. When
the other application instance returns the call leg, this application receives an ev_returned event.

Handoff Return

Handoff returns of a set of separate call legs received from different sessions should be done with a
separate handoff return commands for each leg. The command “handoff return leg_all” is undefined in
this case. The entire set of legs should return to the return location for the first user-defined leg.
1-39
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Service Registry
Handoff return of a set of conferenced legs returns both legs to the same session. For example, if a
session has been handed leg1 from session1 and leg2 from session2, and it conferenced the two legs
together. Then the command handoff return $leg2 returns both legs, conferenced together, to session2.

Service Registry
The services registry is a database that keeps track of every Tcl IVR 2.0 application instance that
registers as a service. Other Tcl applications can then find and communicate with any registered
application.

A Tcl session is not registered as a service through Cisco IOS software. A running instance of a Tcl IVR
2.0 application registers itself as a service by using the Tcl service command. The handle of any
registered service can be retrieved using the mod_handle_service information tag.
1-40
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

	Overview
	IVR and Tcl
	Tcl IVR API Version 2.0
	Prerequisites
	Benefits
	Features Supported
	Developer Support

	Enhanced MultiLanguage Support
	VoiceXML and IVR Applications
	Call Handoff in Tcl
	Call Handoff in VoiceXML
	Tcl/VoiceXML Hybrid Applications
	Communication Between VoiceXML and Tcl IVR 2.0 in Hybrid Applications.
	Hybrid Mode and VoiceXML Call Control Tags

	SendEvent Object

	Tcl IVR Call Transfer Overview
	Call Transfer Terminology
	Supported Tcl IVR Call Transfer Script
	Call Transfer Support in the Cisco IOS Default Session Application
	Custom Tcl IVR Call Transfer Scripts
	Call Transfer Scenarios
	One Gateway Scenario with Analog Transferor
	One Gateway Scenario with Cisco CME IP Phone Transferor
	Two Gateway Scenarios with Analog Transferor
	Two Gateway Scenarios with Cisco CME IP Phone Transferor
	Three Gateway Scenario with Analog Transferor
	Three Gateway Scenario with Cisco CME IP Phone Transferor

	Call Transfer Protocol Support
	Analog Hookflash and T1 CAS Release Link Trunk (RLT) Transfers
	ISDN Call Transfer
	SIP Call Transfer
	H.450 Call Transfer
	Cisco CallManager Express Call Transfer

	SIP Subscribe and Notify
	SIP Headers
	Application Instances
	Session Interaction
	Session Start and Stop
	Sending Messages
	Receiving Messages
	Call Handoff
	Handoff Return

	Service Registry

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

