
Tcl IVR 2.0 Programming Guide
Cisco IOS Release 12.3(14)T

Doc Release Date 3/28/2005
Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number:
Text Part Number: OL

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCIP, the Cisco Powered Network mark, the Cisco Systems Verified logo, Cisco Unity, Follow Me Browsing, FormShare, Internet Quotient, iQ Breakthrough, iQ Expertise,
iQ FastTrack, the iQ Logo, iQ Net Readiness Scorecard, Networking Academy, ScriptShare, SMARTnet, TransPath, and Voice LAN are trademarks of Cisco Systems, Inc.;
Changing the Way We Work, Live, Play, and Learn, Discover All That’s Possible, The Fastest Way to Increase Your Internet Quotient, and iQuick Study are service marks
of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, the Cisco
IOS logo, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherSwitch,
Fast Step, GigaStack, IOS, IP/TV, LightStream, MGX, MICA, the Networkers logo, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, RateMUX, Registrar,
SlideCast, StrataView Plus, Stratm, SwitchProbe, TeleRouter, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other
countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company.

Tcl IVR 2.0 Programming Guide
Copyright © 2004, Cisco Systems, Inc.
All rights reserved.

Cisco IOS Release 12.3(14)T

C O N T E N T S
Preface xi

Revision History xii

Command History xii

Audience xx

Structure of This Guide xxi

Related Documents xxi

Conventions xxii

Obtaining Documentation xxiii

World Wide Web xxiii

Documentation CD-ROM xxiii

Ordering Documentation xxiii

Documentation Feedback xxiv

Obtaining Technical Assistance xxiv

Cisco.com xxiv

Technical Assistance Center xxv

C H A P T E R 1 Overview 1-1

IVR and Tcl 1-1

Tcl IVR API Version 2.0 1-2

Prerequisites 1-2

Benefits 1-3

Features Supported 1-4

Developer Support 1-4

Enhanced MultiLanguage Support 1-4

VoiceXML and IVR Applications 1-5

Call Handoff in Tcl 1-5

Call Handoff in VoiceXML 1-6

Tcl/VoiceXML Hybrid Applications 1-6

SendEvent Object 1-8

Tcl IVR Call Transfer Overview 1-8

Call Transfer Terminology 1-8

Supported Tcl IVR Call Transfer Script 1-9

Call Transfer Support in the Cisco IOS Default Session Application 1-9

Custom Tcl IVR Call Transfer Scripts 1-9
iii
Tcl IVR 2.0 Programming Guide

Contents
Call Transfer Scenarios 1-9

Call Transfer Protocol Support 1-33

SIP Subscribe and Notify 1-37

SIP Headers 1-37

Application Instances 1-38

Session Interaction 1-38

Session Start and Stop 1-39

Sending Messages 1-39

Receiving Messages 1-39

Call Handoff 1-39

Service Registry 1-40

C H A P T E R 2 Using Tcl IVR Scripts 2-1

How Tcl IVR Version 2.0 Works 2-1

Writing an IVR Script Using Tcl Extensions 2-3

Prompts in Tcl IVR Scripts 2-3

Sample Tcl IVR Script 2-4

Initialization and Setup of State Machine 2-8

Testing and Debugging Your Script 2-8

Loading Your Script 2-9

Associating Your Script with an Inbound Dial Peer 2-10

Displaying Information About IVR Scripts 2-10

Using URLs in IVR Scripts 2-13

Tips for Using Your Tcl IVR Script 2-14

C H A P T E R 3 Tcl IVR API Command Reference 3-1

Standard Tcl Commands Used in Tcl IVR Scripts 3-1

HTTP Commands 3-2

Tcl IVR Commands At a Glance 3-3

Tcl IVR Commands 3-6

aaa accounting 3-6

aaa accounting get status 3-7

aaa accounting probe 3-8

aaa accounting set status 3-9

aaa authenticate 3-9

aaa authorize 3-10

call close 3-12

call lookup 3-13
iv
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Contents
call register 3-13

call unregister 3-14

clock 3-15

command export 3-17

command terminate 3-18

connection create 3-19

connection destroy 3-19

fsm define 3-20

fsm setstate 3-21

handoff 3-22

handoff return 3-23

infotag get 3-23

infotag set 3-24

leg alert 3-24

leg callerid 3-25

leg collectdigits 3-26

leg connect 3-29

leg consult abandon 3-29

leg consult response 3-30

leg consult request 3-31

leg disconnect 3-31

leg disconnect_prog_ind 3-32

leg facility 3-33

leg proceeding 3-34

leg progress 3-35

leg senddigit 3-36

leg sendhookflash 3-37

leg setup 3-37

leg setup_continue 3-40

leg setupack 3-41

leg tonedetect 3-42

leg transferdone 3-43

leg vxmldialog 3-44

leg vxmlsend 3-45

log 3-46

media pause 3-47

media play 3-48

media record 3-50

media resume 3-53

media seek 3-53
v
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Contents
media stop 3-54

modulespace 3-55

object create dial-peer 3-58

object create gtd 3-59

object destroy 3-60

object append gtd 3-60

object delete gtd 3-61

object replace gtd 3-62

object get gtd 3-63

object get dial-peer 3-64

param read 3-65

param register 3-65

phone assign 3-66

phone query 3-67

phone unassign 3-67

playtone 3-68

puts 3-69

requiredversion 3-69

sendmsg 3-70

service 3-71

set avsend 3-72

set callinfo 3-72

subscription open 3-78

subscription close 3-79

subscription notify_ack 3-80

timer left 3-81

timer start 3-81

timer stop 3-82

C H A P T E R 4 Information Tags 4-1

aaa_accounting_last_sent 4-2

aaa_avpair 4-2

aaa_avpair_exists 4-2

aaa_new_guid 4-4

cfg_avpair 4-4

cfg_avpair_exists 4-4

con_all 4-4

con_ofleg 4-5

evt_aaa_status_info 4-5

evt_address_resolve_reject_reason 4-5
vi
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Contents
evt_address_resolve_term_cause 4-6

evt_connections 4-6

evt_consult_info 4-6

evt_dcdigits 4-6

evt_dest_handle 4-7

evt_digit 4-7

evt_digit_duration 4-7

evt_disc_iec 4-8

evt_disc_rsi 4-8

evt_endpoint_addresses 4-9

evt_event 4-9

evt_facility_id 4-9

evt_facility_report 4-10

evt_feature_param 4-10

evt_feature_report 4-11

evt_feature_type 4-11

evt_gtd 4-12

evt_handoff ani 4-12

evt_handoff argstring 4-12

evt_handoff dnis 4-13

evt_handoff_legs 4-13

evt_handoff proto_headers 4-13

evt_handoff_string 4-14

evt_iscommand_done 4-14

evt_last_disconnect_cause 4-15

evt_last_event_handle 4-15

evt_last_iec 4-16

evt_legs 4-16

evt_module_handle 4-17

evt_module_subevent 4-17

evt_module_context 4-17

evt_msg 4-17

evt_msg_source 4-19

4-19

evt_params 4-19

evt_progress_indication 4-19

evt_proto_content 4-21

evt_proto_content_type 4-21

evt_proto_headers 4-21

evt_report ev_transfer_request 4-22
vii
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Contents
evt_redirect_info 4-22

evt_service_control 4-23

evt_service_control_count 4-23

evt_status 4-23

evt_status_text 4-24

evt_subscription_id 4-25

evt_timer_name 4-25

evt_transfer_info 4-25

evt_vxmlevent 4-26

evt_vxmlevent_params 4-26

gtd_attr_exists 4-27

last_command_handle 4-27

leg_all 4-27

leg_ani 4-28

leg_ani_pi 4-28

leg_ani_si 4-29

leg_dn_tag 4-29

leg_dnis 4-29

leg_display_info 4-30

leg_guid 4-30

leg_incoming 4-30

leg_incoming_guid 4-30

leg_inconnection 4-31

leg_isdid 4-31

leg_outgoing 4-31

leg_password 4-32

leg_proto_headers 4-32

leg_rdn 4-33

leg_rdn_pi 4-33

leg_rdn_si 4-33

leg_redirect_cnt 4-34

leg_remoteipaddress 4-34

leg_remote_media_ip_address 4-34

leg_remote_signaling_ip_address 4-34

leg_rgn_noa 4-35

leg_rgn_npi 4-36

leg_rgn_num 4-36

leg_rgn_pi 4-37

leg_rgn_si 4-37

leg_settlement_time 4-38
viii
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Contents
leg_source_carrier_id 4-38

leg_subscriber_type 4-38

leg_suppress_outgoing_auto_acct 4-39

leg_target_carrier_id 4-39

leg_tdm_hairpin 4-39

leg_type 4-39

leg_username 4-40

med_backup_server 4-41

med_language 4-41

med_language_map 4-42

med_location 4-42

med_total_languages 4-42

media_timer_factor 4-43

mod_all_handles 4-43

mod_handle 4-44

mod_handle_service 4-44

set iec 4-45

subscription_context 4-45

subscription_info 4-46

subscription_server_ipaddress 4-46

sys_version 4-46

C H A P T E R 5 Events and Status Codes 5-1

Events 5-1

Status Codes 5-6

Authentication Status 5-6

Authorization Status 5-6

Digit Collection Status 5-7

Consult Response 5-7

Consult Status 5-7

Disconnect Cause 5-8

Facility 5-10

Feature Type 5-10

Leg Setup Status 5-10

Media Status 5-12

Subscribe/Notify 5-12

Tone Detect 5-13

Transfer Status 5-13

VoiceXML Dialog Completion Status 5-14
 A-1
ix
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Contents
Sample Scripts A-1

SIP Headers A-1

Passing SIP Headers A-1

Retrieving SIP Headers A-3

Services A-5

Service Register and Start A-5

Session Interaction A-7

Hybrid Scripting A-15

GL O S S A R Y
x
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Preface

November 17, 2006

This guide describes Version 2.0 of the Tool Command Language (Tcl) Interactive Voice Response
(IVR) Application Programming Interface (API). The Tcl IVR API can be used to create Tcl scripts that
control calls coming in to or going out of a Cisco gateway. This guide provides an annotated example of
a Tcl IVR script and instructions for testing and loading a Tcl IVR script.
xi
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

Preface
Revision History
Revision History

Command History
This section provides tables of changes and applicable Cisco IOS releases.

Release Modification

12.3(14)T • Added the following commands to Tcl IVR 2.0 for the Takeback and
Transfer feature:

– consumeDigit parameter to the leg collectdigits command.

– leg senddigit command.

– leg sendhookflash command.

• Added the following to Tcl IVR 2.0 for HTTP support:

– New and modified commands:

command export, media play (modified), media record
(modified), modulespace, param read, param register.

– New information tags:

ev_params, ev_module_handle, ev_module_subevent,
ev_module_context.

– New event:

ev_synthesizer

– Standard Tcl 8.3.4 commands supported are:

cd, close, eof, fconfigure, file, fileevent, flush, gets, glob, open,
package, pwd, read, seek.

– HTTP commands supported are:

config, geturl, formatQuery, reset, status, size, code, ncode, data,
error, cleanup.

12.4(4)XC Added the following commands to Tcl IVR 2.1 for the Extension Assigner
feature:

– phone assign command.

– phone query command.

– phone unassign command.

Table 1 Feature History: Commands

Cisco IOS Release Command

12.2(11)T leg vxmldialog

12.2(11)T leg vxmlsend

12.2(11)T command terminate

12.2(11)T aaa authentication

12.2(11)T aaa authorization
xii
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

Preface
Command History
12.2(11)T aaa accounting

12.2(11)T clock

12.2(11)T media play

12.2(11)YT leg callerid

12.2(11)YT leg consult abandon

12.2(11)YT leg consult response

12.2(11)YT leg consult request

12.2(11)YT leg tranferdone

12.2(15)T leg alert

12.2(15)T leg disconnect_progind

12.2(15)T leg setup_continue

12.2(15)T leg progress

12.2(15)T object create

12.2(15)T object destroy

12.2(15)T object append

12.2(15)T object delete

12.2(15)T object replace

12.2(15)T object get

12.2(15)T leg facility

12.2(15)T log

12.2(15)T media record

12.3(4)T call close

12.3(4)T handoff

12.3(4)T handoff return

12.3(4)T leg setup

12.3(4)T sendmsg

12.3(4)T service

12.3(4)T set callinfo

12.3(4)T subscription open

12.3(4)T subscription close

12.3(4)T subscription notify_ack

12.3(4)T leg disconnect

12.3(4)T call register

12.3(4)T call unregister

12.3(4)T call lookup

12.3(4)T leg callerid

Table 1 Feature History: Commands (continued)

Cisco IOS Release Command
xiii
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

Preface
Command History
12.3(4)T leg collectdigits

12.3(4)T aaa accounting set status

12.3(4)T aaa accounting get status

12.3(4)T aaa accounting probe

12.3(4)T timer left

12.3(4)T timer start

12.3(4)T timer stop

12.3(14)T leg senddigit

12.3(14)T leg sendhookflash

12.3(14)T command export

12.3(14)T modulespace

12.3(14)T param read

12.3(14)T param register

Table 2 Feature History: callInfo Parameters

Cisco IOS Release callInfo Parameters

12.2(11)T guid

12.2(11)T incomingGuid

12.2(11)YT destinationNum

12.2(11)YT originationNum

12.2(11)YT accountNum

12.2(11)YT redirectNum

12.2(11)YT mode

12.2(11)YT reroutemode

12.2(11)YT transferConsultID

12.2(11)YT notifyEvents

12.2(11)YT originalDest

12.2(15)T retryCount

12.2(15)T interceptEvents

12.2(15)T notifyEvents

12.2(15)T previousCauseCode

12.3(14)T consumeDigit

Table 1 Feature History: Commands (continued)

Cisco IOS Release Command
xiv
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

Preface
Command History
Table 3 Feature History: Information Tags

Cisco IOS Release Information Tag

12.2(11)T leg_rgn_noa

12.2(11)T leg_rgn_npi

12.2(11)T leg_rgn_pi

12.2(11)T leg_rgn_si

12.2(11)T leg_rgn_num

12.2(11)T leg_rni_ri

12.2(11)T leg_rni_orr

12.2(11)T leg_rni_rc

12.2(11)T leg_rni_rr

12.2(11)T leg_ocn_noa

12.2(11)T leg_ocn_npi

12.2(11)T leg_ocn_pi

12.2(11)T leg_ocn_num

12.2(11)T leg_chn_noa

12.2(11)T leg_chn_npi

12.2(11)T leg_chn_num

12.2(11)T leg_rnn_noa

12.2(11)T leg_rnn_inn

12.2(11)T leg_rnn_npi

12.2(11)T leg_rnn_num

12.2(11)T leg_rnr

12.2(11)T leg_cdi_nso

12.2(11)T leg_cdi_rr

12.2(11)T leg_gno_ni

12.2(11)T leg_cnn_noa

12.2(11)T leg_cnn_npi

12.2(11)T leg_cnn_pi

12.2(11)T leg_cnn_si

12.2(11)T leg_cnn_num

12.2(11)T leg_gea_type

12.2(11)T leg_gea_noa

12.2(11)T leg_gea_npi

12.2(11)T leg_gea_cni

12.2(11)T leg_gea_pi

12.2(11)T leg_gea_si
xv
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

Preface
Command History
12.2(11)T leg_gea_num

12.2(11)T leg_cpc

12.2(11)T leg_oli

12.2(11)T leg_cid_ton

12.2(11)T leg_cid_cid

12.2(11)T leg_tns_ton

12.2(11)T leg_tns_nip

12.2(11)T leg_tns_cc

12.2(11)T leg_tns_ns

12.2(11)T leg_pci_instr

12.2(11)T leg_pci_tri

12.2(11)T leg_pci_dat

12.2(11)T leg_fdc_parm

12.2(11)T leg_fdc_fname

12.2(11)T leg_fdc_instr

12.2(11)T leg_fdc_dat

12.2(11)T ev_vxmlevent

12.2(11)T ev_vxmlevent_params

12.2(11)T ev_status

12.2(11)T ev_iscommand_done

12.2(11)T ev_legs

12.2(11)T last_command_handle

12.2(11)T leg_guid

12.2(11)T leg_incoming_guid

12.2(11)T aaa_new_guid

12.2(11)YT evt_consult_info

12.2(11)YT evt_feature_report

12.2(11)YT evt_feature_type

12.2(11)YT evt_redirect_info

12.2(11)YT evt_transfer_info

12.2(11)YT leg_display_info

12.2(11)YT leg_dn_tag

12.2(15)T evt_gtd

12.2(15)T evt_endpoint_address

12.2(15)T evt_service_control_count

12.2(15)T evt_service_control

Table 3 Feature History: Information Tags (continued)

Cisco IOS Release Information Tag
xvi
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

Preface
Command History
12.2(15)T evt_address_resolve_reject_reason

12.2(15)T evt_address_resolve_term_cause

12.2(15)T evt_last_event_handle

12.2(15)T evt_facility_id

12.2(15)T evt_facility_report

12.2(15)T evt_gtd

12.2(15)T evt_progress_indication

12.2(15)T evt_status

12.2(15)T gtd_attr_exists

12.3(100) leg_rni_ri (removed)

12.3(100) leg_rni_orr (removed)

12.3(100) leg_rni_rc (removed)

12.3(100) leg_rni_rr (removed)

12.3(100) leg_ocn_noa (removed)

12.3(100) leg_ocn_npi (removed)

12.3(100) leg_ocn_pi (removed)

12.3(100) leg_ocn_num (removed)

12.3(100) leg_chn_noa (removed)

12.3(100) leg_chn_npi (removed)

12.3(100) leg_chn_num (removed)

12.3(100) leg_rnn_noa (removed)

12.3(100) leg_rnn_inn (removed)

12.3(100) leg_rnn_npi (removed)

12.3(100) leg_rnn_num (removed)

12.3(100) leg_rnr (removed)

12.3(100) leg_cdi_nso (removed)

12.3(100) leg_cdi_rr (removed)

12.3(100) leg_gno_ni (removed)

12.3(100) leg_cnn_noa (removed)

12.3(100) leg_cnn_npi (removed)

12.3(100) leg_cnn_pi (removed)

12.3(100) leg_cnn_si (removed)

12.3(100) leg_cnn_num (removed)

12.3(100) leg_gea_type (removed)

12.3(100) leg_gea_noa (removed)

12.3(100) leg_gea_npi (removed)

Table 3 Feature History: Information Tags (continued)

Cisco IOS Release Information Tag
xvii
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

Preface
Command History
12.3(100) leg_gea_cni (removed)

12.3(100) leg_gea_pi (removed)

12.3(100) leg_gea_si (removed)

12.3(100) leg_gea_num (removed)

12.3(100) leg_cpc (removed)

12.3(100) leg_oli (removed)

12.3(100) leg_cid_ton (removed)

12.3(100) leg_cid_cid (removed)

12.3(100) leg_tns_ton (removed)

12.3(100) leg_tns_nip (removed)

12.3(100) leg_tns_cc (removed)

12.3(100) leg_tns_ns (removed)

12.3(100) leg_pci_instr (removed)

12.3(100) leg_pci_tri (removed)

12.3(100) leg_pci_dat (removed)

12.3(100) leg_fdc_parm (removed)

12.3(100) leg_fdc_fname (removed)

12.3(100) leg_fdc_instr (removed)

12.3(100) leg_fdc_dat (removed)

12.3(4)T leg_proto_headers

12.3(4)T evt_handoff proto_headers

12.3(4)T evt_handoff dnis

12.3(4)T evt_handoff ani

12.3(4)T evt_handoff argstring

12.3(4)T evt_proto_content

12.3(4)T evt_proto_content_type

12.3(4)T evt_proto_headers

12.3(4)T evt_status

12.3(4)T evt_subscription_id

12.3(4)T mod_all_handles

12.3(4)T mod_handle

12.3(4)T mod_handle_service

12.3(4)T evt_msg

12.3(4)T evt_msg_source

12.3(4)T subscription_context

12.3(4)T subscription_info

Table 3 Feature History: Information Tags (continued)

Cisco IOS Release Information Tag
xviii
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

Preface
Command History
12.3(4)T subscription_server_ipaddress

12.3(4)T evt_disc_rsi

12.3(4)T evt_disc_iec

12.3(4)T evt_feature_report

12.3(4)T evt_feature_param

12.3(4)T evt_feature_type

12.3(4)T evt_last_iec

12.3(4)T media_timer_factor

12.3(4)T set iec

12.3(4)T evt_dest_handle

12.3(4)T evt_handoff_legs

12.3(4)T leg_type

12.3(4)T aaa_accounting_last_sent

12.3(4)T evt_aaa_status_info

12.3(4)T evt_timer_name

12.3(4)T leg_remote_media_ip_address

12.3(4)T leg_remote_signaling_ip_address

Table 4 Feature History: Events

Cisco IOS Release Events

12.2(11)T ev_vxmldialog_done

12.2(11)T ev_vxmldialog_event

12.2(11)T leg_suppress_outgoing_auto_acct

12.2(11)YT ev_consult_request

12.2(11)YT ev_consult_response

12.2(11)YT ev_consultation_done

12.2(11)YT ev_transfer_request

12.2(11)YT ev_transfer_status

12.2(15)T ev_facility

12.2(15)T ev_disc_prog_ind

12.2(15)T ev_address_resolved

12.2(15)T ev_alert

12.2(15)T ev_connected

12.2(15)T ev_proceeding

12.2(15)T ev_progress

12.3(4)T ev_accounting_status_ind

Table 3 Feature History: Information Tags (continued)

Cisco IOS Release Information Tag
xix
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

Preface
Audience
Audience
This document is a reference guide for developers writing voice application software for Cisco voice
interfaces, such as the Cisco AS5x00 series universal access servers. Voice application developers may
include:

• Independent software vendors (ISVs)

• Corporate developers

• System integrators

• Original equipment manufacturers (OEMs)

This document presumes:

• Tcl programming knowledge and experience

Although examples of how to create and use Tcl IVR scripts are provided in this document, this
document is not intended to be a tutorial on how to write Tcl scripts.

12.3(4)T ev_named_timer

12.3(4)T ev_feature

Table 5 Feature History: Status Codes

Cisco IOS Release Status Codes

12.2(11)T ls_016

12.2(11)T vd_xxx—VoiceXML Dialog Completion Status

12.2(11)YT cd_001 to cd_010

12.2(11)YT cr_000 to cr_004

12.2(11)YT cs_000 to cs_005

12.2(11)YT ft_001 to ft_006

12.2(11)YT ls_026

12.2(11)YT ls_031 to ls_033

12.2(11)YT ls_040 to ls_042

12.2(11)YT ls_050 to ls_059

12.2(11)YT ts_000 to ts_009

12.2(15)T fa_000, fa_003, fa_007, fa_009, fa_010, fa_050
to fa_052

12.3(4)T su_xxx, no_xxx, us_xxx, ul_xxx (000–010, 099)

Table 4 Feature History: Events (continued)

Cisco IOS Release Events
xx
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

Preface
Structure of This Guide
Structure of This Guide
This guide contains the following chapters and appendixes:

• Chapter 1, “Overview” provides an overview of Interactive Voice Response (IVR), the Tool
Command Language (Tcl), and version 2.0 of the Tcl IVR Application Programming Interface
(API).

• Chapter 2, “Using Tcl IVR Scripts” contains information on how to create and use Tcl IVR scripts.

• Chapter 3, “Tcl IVR API Command Reference” provides an alphabetical listing of the Tcl IVR API
commands.

• Chapter 4, “Information Tags” discusses identifiers that can be used to retrieve information about
call legs, events, the script itself, the current configuration, and values returned from RADIUS.

• Chapter 5, “Events and Status Codes,” describes events received and status codes returned by Tcl
IVR scripts.

• Appendix , “Sample Scripts,” provides some sample Tcl scripts.

• Glossary, presents an alphabetical listing of common terms used throughout this document.

Related Documents
• Configuring Interactive Voice Response for Cisco Access Platforms:

http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull_i
vr.htm

• Service Provider Features for Voice over IP:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/voip1203.
htm

• Voice over IP for the Cisco AS5300:

http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip5300/index.htm

• Voice over IP for the Cisco AS5800:

http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip5800/index.htm

• Voice over IP for the Cisco 2600/Cisco 3600 Series:

http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip3600/index.htm

• Configuring H.323 VoIP Gateway for Cisco Access Platforms:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/multi_c/mcprt1/mcdvo
ip.htm

• Prepaid Distributed Calling Card via Packet Telephony:

http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull01
34.htm

• RADIUS Vendor-Specific Attributes Implementation Guide:

http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/vsaig3.htm

• Tcl IVR API Version 1.0 Programmer's Guide:

http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/tclivrpg.htm
xxi
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull_ivr.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull_ivr.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/voip1203.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/voip1203.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip5300/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip5300/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip5800/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip5800/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip3600/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/nubuvoip/voip3600/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/multi_c/mcprt1/mcdvoip.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/multi_c/mcprt1/mcdvoip.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull0134.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull0134.htm
http://www.cisco.com/univercd/cc/td/doc/product/access/acs_serv/as5400/sw_conf/ios_121/pull0134.htm
http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/vsaig3.htm
http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/vsaig3.htm
http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/tclivrpg.htm
http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/tclivrpg.htm

Preface
Conventions
• Interactive Voice Response Version 2.0 on Cisco VoIP Gateways:

http://cco/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dt_skyn.htm

• Enhanced Multilanguage Guide:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t2/ftmultil.ht
m

• Cisco IOS Security Configuration Guide, Release 12.2:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm

• Cisco IOS Tcl and VoiceXML Application Guide

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t11/ivrapp/in
dex.htm

• Cisco VoiceXML Programmer’s Guide

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/index.htm

• Introduction to writing Tcl scripts:Tcl and the TK Toolkit, by John Ousterhout (published by
Addison Wesley Longman, Inc)

• Developer Support Agreement:

http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup

Conventions
This guide uses the following conventions to convey instructions and information.

Note Means reader take note. Notes contain helpful suggestions or references to additional information and
material.

Convention Description

boldface font Commands and keywords.

italic font Variables for which you supply values.

[] Keywords or arguments that appear within square brackets are optional.

{x | y | z} A choice of required keywords appears in braces separated by vertical bars.
You must select one.

screen font Examples of information displayed on the screen.

boldface screen font Examples of information you must enter.

< > Nonprinting characters, for example passwords, appear in angle brackets in
contexts where italic font is not available.

[] Default responses to system prompts appear in square brackets.
xxii
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

http://cco/univercd/cc/td/doc/product/access/acs_serv/vapp_dev/tclivrpg.htm
http://cco/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dt_skyn.htm
http://cco/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dt_skyn.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t2/ftmultil.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t2/ftmultil.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t11/ivrapp/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t11/ivrapp/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/index.htm
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/index.htm
http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup
http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup

Preface
Obtaining Documentation
Timesaver This symbol means the described action saves time. You can save time by performing the action
described in the paragraph.

Caution This symbol means reader be careful. In this situation, you might do something that could result in
equipment damage or loss of data.

Tip This symbol means the following information will help you solve a problem. The tips information might
not be troubleshooting or even an action, but could be useful information, similar to a Timesaver.

Obtaining Documentation
The following sections provide sources for obtaining documentation from Cisco Systems.

World Wide Web
You can access the most current Cisco documentation on the World Wide Web at the following URL:

http://www.cisco.com

Translated documentation is available at the following URL:

http://www.cisco.com/public/countries_languages.shtml

Documentation CD-ROM
Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM
package, which is shipped with your product. The Documentation CD-ROM is updated monthly and may
be more current than printed documentation. The CD-ROM package is available as a single unit or
through an annual subscription.

Ordering Documentation
Cisco documentation is available in the following ways:

• Registered Cisco Direct Customers can order Cisco Product documentation from the Networking
Products MarketPlace:

http://www.cisco.com/cgi-bin/order/order_root.pl

• Registered Cisco.com users can order the Documentation CD-ROM through the online Subscription
Store:

http://www.cisco.com/go/subscription

• Nonregistered Cisco.com users can order documentation through a local account representative by
calling Cisco corporate headquarters (California, USA) at 408 526-7208 or, in North America, by
calling 800 553-NETS (6387).
xxiii
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

http://www.cisco.com
http://www.cisco.com/public/countries_languages.shtml
http://www.cisco.com/cgi-bin/order/order_root.pl
http://www.cisco.com/go/subscription

Preface
Obtaining Technical Assistance
Documentation Feedback
If you are reading Cisco product documentation on Cisco.com, you can submit technical comments
electronically. Click the Fax or Email option under the “Leave Feedback” at the bottom of the Cisco
Documentation home page.

You can e-mail your comments to bug-doc@cisco.com.

To submit your comments by mail, use the response card behind the front cover of your document, or
write to the following address:

Cisco Systems
Attn: Document Resource Connection
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance
Cisco provides Cisco.com as a starting point for all technical assistance. Customers and partners can
obtain documentation, troubleshooting tips, and sample configurations from online tools by using the
Cisco Technical Assistance Center (TAC) Web Site. Cisco.com registered users have complete access to
the technical support resources on the Cisco TAC Web Site.

Cisco.com
Cisco.com is the foundation of a suite of interactive, networked services that provides immediate, open
access to Cisco information, networking solutions, services, programs, and resources at any time, from
anywhere in the world.

Cisco.com is a highly integrated Internet application and a powerful, easy-to-use tool that provides a
broad range of features and services to help you to

• Streamline business processes and improve productivity

• Resolve technical issues with online support

• Download and test software packages

• Order Cisco learning materials and merchandise

• Register for online skill assessment, training, and certification programs

You can self-register on Cisco.com to obtain customized information and service. To access Cisco.com,
go to the following URL:

http://www.cisco.com
xxiv
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

http://www.cisco.com

Preface
Obtaining Technical Assistance
Technical Assistance Center
The Cisco TAC is available to all customers who need technical assistance with a Cisco product,
technology, or solution. Two types of support are available through the Cisco TAC: the Cisco TAC
Web Site and the Cisco TAC Escalation Center.

Inquiries to Cisco TAC are categorized according to the urgency of the issue:

• Priority level 4 (P4)—You need information or assistance concerning Cisco product capabilities,
product installation, or basic product configuration.

• Priority level 3 (P3)—Your network performance is degraded. Network functionality is noticeably
impaired, but most business operations continue.

• Priority level 2 (P2)—Your production network is severely degraded, affecting significant aspects
of business operations. No workaround is available.

• Priority level 1 (P1)—Your production network is down, and a critical impact to business operations
will occur if service is not restored quickly. No workaround is available.

Which Cisco TAC resource you choose is based on the priority of the problem and the conditions of
service contracts, when applicable.

Cisco TAC Web Site

The Cisco TAC Web Site allows you to resolve P3 and P4 issues yourself, saving both cost and time. The
site provides around-the-clock access to online tools, knowledge bases, and software. To access the
Cisco TAC Web Site, go to the following URL:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco services contract have complete access to
the technical support resources on the Cisco TAC Web Site. The Cisco TAC Web Site requires a
Cisco.com login ID and password. If you have a valid service contract but do not have a login ID or
password, go to the following URL to register:

http://www.cisco.com/register/

If you cannot resolve your technical issues by using the Cisco TAC Web Site, and you are a Cisco.com
registered user, you can open a case online by using the TAC Case Open tool at the following URL:

http://www.cisco.com/tac/caseopen

If you have Internet access, it is recommended that you open P3 and P4 cases through the Cisco TAC
Web Site.

Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses issues that are classified as priority level 1 or priority
level 2; these classifications are assigned when severe network degradation significantly impacts
business operations. When you contact the TAC Escalation Center with a P1 or P2 problem, a Cisco TAC
engineer will automatically open a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country, go to the following
URL:

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml
xxv
Cisco IOS Release 12.3(4)T Tcl IVR 2.0 Programming Guide
Doc Release 12.3.4

http://www.cisco.com
http://www.cisco.com/tac
http://www.cisco.com/register/
http://www.cisco.com/tac/caseopen
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Preface
Obtaining Technical Assistance
Before calling, please check with your network operations center to determine the level of Cisco support
services to which your company is entitled; for example, SMARTnet, SMARTnet Onsite, or Network
Supported Accounts (NSA). In addition, please have available your service agreement number and your
product serial number.

Developer Support

Developers using this guide may be interested in joining the Cisco Developer Support Program. This
program was created to provide you with a consistent level of support that you can depend on while
leveraging Cisco interfaces in your development projects.

Tip A signed Developer Support Agreement is required to participate in this program. For more details go
to http://www.cisco.com/go/developersupport or contact developer-support@cisco.com.
xxvi
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(4)T

Doc Release 12.3.4

http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

Cisco IOS Release 12.3(14)T

C H A P T E R 1

Overview

This chapter provides an overview of Interactive Voice Response (IVR), the Tool Command Language
(Tcl), and version 2.0 of the Tcl IVR Application Programming Interface (API). This section includes
the following topics:

• IVR and Tcl, page 1-1

• Tcl IVR API Version 2.0, page 1-2

– Prerequisites, page 1-2

– Benefits, page 1-3

– Features Supported, page 1-4

– Developer Support, page 1-4

• Enhanced MultiLanguage Support, page 1-4

• VoiceXML and IVR Applications, page 1-5

• Tcl IVR Call Transfer Overview, page 1-8

• SIP Subscribe and Notify, page 1-37

• SIP Headers, page 1-37

• Application Instances, page 1-38

• Session Interaction, page 1-38

• Service Registry, page 1-40

IVR and Tcl
IVR is a term used to describe systems that collect user input in response to recorded messages over
telephone lines. User input can take the form of spoken words or, more commonly, dual tone
multifrequency (DTMF) signaling.

For example, when a user makes a call with a debit card, an IVR application is used to prompt the caller
to enter a specific type of information, such as a PIN. After playing the voice prompt, the IVR
application collects the predetermined number of touch tones (digit collection), forwards the collected
digits to a server for storage and retrieval, and then places the call to the destination phone or system.
Call records can be kept and a variety of accounting functions can be performed.

The IVR application (or script) is a voice application designed to handle calls on a voice gateway, which
is a router equipped with voice features and capabilities.
1-1
Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR API Version 2.0
The prompts used in an IVR script can be either static or dynamic:

• Static prompts are audio files referenced by a static URL. The name of the audio file and its location
are specified in the Tcl script.

• Dynamic prompts are formed by the underlying system assembling smaller audio prompts and
playing them out in sequence. The script uses an API command with a notation form (see the media
play, page 3-48) to instruct the system what to play. The underlying system then assembles a
sequence of URLs, based on the language selected and audio file locations configured, and plays
them in sequence. This provides simple Text-to-Speech (TTS) operations.

For example, dynamic prompts are used to inform the caller of how much time is left in their debit
account, such as:

“You have 15 minutes and 32 seconds of call time left in your account.”

Note The above prompt is created using eight individual prompt files. They are: youhave.au, 15.au,
minutes.au, and.au, 30.au, 2.au, seconds.au, and leftinyouraccount.au. These audio files are assembled
dynamically by the underlying system and played as a prompt based on the selected language and prompt
file locations.

The Cisco Interactive Voice Response (IVR) feature, available in Cisco IOS Release 12.0(6)T and
later, provides IVR capabilities using Tcl 1.0 scripts. These scripts are signature locked, and can be
modified only by Cisco. The IVR feature allows IVR scripts to be used during call processing.
Cisco IOS software to perform various call-related functions. Starting with Cisco IOS Release
12.1(3), no longer is any Tcl script lock in place, so customers can create and change their own Tcl
scripts.

Tcl is an interpreted scripting language. Because Tcl is an interpreted language, scripts written in
Tcl do not have to be compiled before they are executed. Tcl provides a fundamental command set,
which allows for standard functions such as flow control (if, then, else) and variable management.
By design, this command set can be expanded by adding extensions to the language to perform
specific operations.

Cisco created a set of extensions, called Tcl IVR commands, that allows users to create IVR scripts
using Tcl. Unlike other Tcl scripts, which are invoked from a shell, Tcl IVR scripts are invoked when
a call comes into the gateway.

The remainder of this document assumes that you are familiar with Tcl and how to create scripts
using Tcl. If you are not, we recommend that you read Tcl and the TK Toolkit, by John Ousterhout
(published by Addison Wesley Longman, Inc).

Tcl IVR API Version 2.0
This section describes the prerequisites, restrictions, benefits, features, and the developer support
program for this application programming interface.

Prerequisites
In order to use the open Tcl IVR feature, you need the following:

• Cisco AS5300, Cisco AS5400, or Cisco AS5800

• Cisco IOS Release 12.1(3)T, or later
1-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR API Version 2.0
• Tcl Version 7.1 or later

Calls can come into a gateway using analog lines, ISDN lines, a VoIP link, or a Voice over Frame Relay
(VoFR) link. Tcl IVR scripts can provide full functionality for calls received over analog or ISDN lines.

The functionality provided for calls received over VoIP or VoFR links varies depending on the release
of Cisco IOS software being used. For example, if you are using Cisco IOS Release 12.0, you cannot
play prompts or tones, and you cannot collect tones.

Note Tcl IVR API Version 2.0 is a separate product from Tcl IVR API Version 1.0.

Benefits
Tcl IVR API Version 2.0 has the following benefits:

• The scripts are event-driven and the flow of the call is controlled by a Finite State Machine (FSM),
which is defined by the Tcl script.

• Prompts can be played over VoIP call legs.

• Digits can be collected over VoIP call legs.

• Real-Time Streaming Protocol (RTSP)-based prompts are supported (depending on the release of
Cisco IOS software and the platform).

• Scripts can control more than two legs simultaneously.

• Call legs can be handed off between scripts.

• All verbs are nonblocking, meaning that they can execute without causing the script to wait, which
allows the script to perform multiple tasks at once. See the following example code:

leg collect digits 1 callInfo
leg collect digits 2 callInfo
leg setup 295786 setupInfo $callID5
puts "\n This will be executed immediately i.e. before the collect digits or call
setup is actually complete"

In the preceding script example, digit collection is initiated on legs 1 and 2 and a call setup process
is started using the callID5 as the incoming leg. The script has issued each of the commands and will
later receive events regarding their completion. None of these commands ever requires that any other
command wait until it is finished processing.
1-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Enhanced MultiLanguage Support
Features Supported
Tcl IVR API Version 2.0 commands provide access to the following facilities and features:

• Call handling (setup, conferencing, disconnect, and so forth)

• Media playout and control (both memory-based and RTSP-based prompts)

• AAA authentication and authorization

• OSP settlements

• Call and leg timers

• Play tones

• Call handoff and return

• Digit collection

For more information, see Chapter 3, “Tcl IVR Commands.”

Developer Support
Developers using this guide may be interested in joining the Cisco Developer Support Program. This new
program has been developed to provide you with a consistent level of support that you can depend on
while leveraging Cisco interfaces in your development projects.

A signed Developer Support Agreement is required to participate in this program. For more details, and
access to this agreement, visit us at:
http://www.cisco.com/warp/public/779/servpro/programs/ecosystem/devsup, or contact
developer-support@cisco.com

Enhanced MultiLanguage Support
Beginning with Cisco IOS Release 12.2(2)T, a new feature has been introduced into Tcl IVR Version 2.0
that provides support for adding new languages and text-to-speech (TTS) notations to the core IVR
infrastructure of the Cisco IOS gateway.

In the past, if you wanted an IVR application to do text-to-speech, you were limited to English, Spanish,
and Chinese languages, and a fixed set of TTS notations. If an IVR application wanted to support more
languages, it needed to do its own translation and include the language translation procedures with every
Tcl IVR application that needed it.

With this new feature, you can make a new Tcl language module for any language and any set of TTS
notations. You can test and deliver the module, and the audio files that go with it, as a language package,
then document the language it delivers and the TTS notations it supports. When you configure this
module on the gateway, any IVR application running on that gateway and using those TTS notations
would work and speak that language.

For more information, refer to the Enhanced Multi-Language Support for Cisco IOS Interactive Voice
Response document.

Note Tcl language modules are not Tcl IVR scripts. They are pure Tcl scripts that implement a specific Tcl
language module interface (TLMI), so they must not use the Tcl IVR API extensions that are available
for writing IVR scripts.
1-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
VoiceXML and IVR Applications
VoiceXML and IVR Applications
VoiceXML brings the advantages of web-based development and content to IVR applications. For more
discussion on using VoiceXML with IVR applications, refer to the Cisco IOS Tcl and VoiceXML
Application Guide and the Cisco VoiceXML Programmer’s Guide.

Call Handoff in Tcl
Call handoff can best be understood when the concept of an application instance is first understood. In
the Cisco IOS IVR infrastructure, an application instance is an entity that executes the application code
and receives, creates, and manages one or more call legs to form a call, or to deliver a service to the user.
The application instance owns and controls these call legs and receives all events associated with them.
Although there can be exceptions, applications typically use a single application instance to deliver the
services of a single call. Tcl IVR applications, when executing, act as one or more application instances.

Call Handoff is a term used to describe the act of transferring complete control of a call leg from one
application instance to another. When handed off, all future events associated with that call leg will be
received and handled by the target application instance.

Handoff can happen in several different ways, depending on whether the call leg needs to return to the
source application instance of the handoff operation or not. A normal handoff application operation is
similar to a goto event, with no automatic memory of a return address. The target cannot return the leg
back to the source instance.

The call app operation is similar to a function call. The application instance performing the call app
operation is saved on a stack and the target application instance can do a handoff return operation that
returns the call leg to application instance on the top of the stack.

When doing a handoff of a call leg, any legs that are conferenced to that call leg are also handed off, even
if they are not explicitly specified. When doing a handoff or a handoff return operation, an application
instance can pass parameters as argument strings. Call handoff can take place between any combination
of VoiceXML and Tcl IVR 2.0 applications.

The call handoff functionality allows a developer to write applications that may want to interact with
each other for various purposes. This may be to use or leverage functionality in existing applications or
to modularize a larger application into smaller application segments and use the handoff mechanism to
coordinate and communicate between them. There may be times when the application developer need to
leverage the functionality and features of both VoiceXML and Tcl IVR 2.0 in their applications. This
may also be another application of the handoff operation.

Though handoff operations provide a certain amount of flexibility in achieving modularity and
application interaction, they are limited when it comes to sharing control over a call leg. Only one
application instance is in total control of the call leg and will receive events, which can prove to be
limiting in certain scenarios. So, when considering a choice of mechanism for implementing applications
involving both Tcl IVR 2.0 and VoiceXML, it is recommended that developers also consider hybrid
scripting as an alternative.

Hybrid applications differ from call handoff operations. Hybrid applications are written using Tcl IVR
scripts with VoiceXML dialogs either embedded or invoked in them. The Tcl IVR scripts are used for
call control and the VoiceXML script is used for dialog management and they all run as part of one
application instance allowing for a certain level of shared control of the call leg. Hybrid scripting is
discussed in more detail in a later section.
1-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
VoiceXML and IVR Applications
Call Handoff in VoiceXML
The call handoff functionality in Cisco VoiceXML implementation is similar to the call handoff initiated
by the handoff appl and handoff callappl verbs in Tcl IVR 2.0. For a discussion of call handoff in
VoiceXML implementations, refer to the Cisco VoiceXML Programmer Guide.

Tcl/VoiceXML Hybrid Applications
Tcl IVR 2.0 and VoiceXML APIs each have their own strong points and some weak points. Tcl IVR 2.0
is very flexible when it comes to call control, able to describe multiple call legs, how they should be
controlled, and how they should interwork. A weak point, however, is when it comes to user interface
primitives being limited to leg collectdigits and media play commands.

VoiceXML on the other hand is both familiar and easy to use to design voice user interfaces, but is very
limited in its call control capabilities. For example, VoiceXML dialog is good at IVR activities, such as
collecting user input or playing prompts.

It would be advantageous, therefore, to use Tcl IVR 2.0 to describe the call legs , and the call flow and
call control interactions between them, while using VoiceXML to describe user interface dialogs on one
or more of the legs it is controlling.

Though it may be possible, to a limited extent, to use the handoff mechanism to have separate application
instances in Tcl IVR 2.0 and use VoiceXML to deal with the call control and dialog aspects of the
application, it is difficult to clearly partition, in time, the call control and dialog activities. This requires
that the call control script and the dialog execution share control over the call leg, which is difficult to
do in the handoff approach.

Cisco IOS Release 12.2(11)T introduces the ability for developers to use Tcl and VoiceXML scripts to
develop hybrid applications. Tcl IVR 2.0 extensions allow Tcl applications to leverage support for ASR
and TTS by invoking and managing VoiceXML dialogs from within Tcl IVR scripts. Hybrid applications
can be developed using Tcl IVR for call control and VoiceXML for dialog management, allowing
applications to use both Tcl IVR 2.0 and VoiceXML APIs, yet behave as a single application instance.

Hybrid scripting requires that some control sharing and precedence rules be established. In hybrid
applications, the Tcl IVR 2.0 script is in control of the call and all of its call legs. It receives
ev_setup_indication events for incoming call legs, and has the primitives to issue a leg alert or to accept
the call leg through a leg connect command. It also has the primitives and event support to create
outgoing call legs, bridging one or more call legs together, or other similar operations.

When the Tcl IVR script wants to communicate with the user on one of the call legs, it has two ways to
do this. It can use the existing leg collectdigits and media play commands in native Tcl IVR 2.0 to play
individual audio prompts and collect digits, or it can use the leg vxmldialog command to initiate the
VoiceXML dialog operation on the leg. The leg vxmldialog command starts up a VoiceXML interpreter
session on the call leg under the direct control of the Tcl IVR 2.0 script. The initial VoiceXML document
that the session starts up could either be embedded in the Tcl IVR 2.0 script invoking it or it can simply
refer to a VoiceXML document on a web server.

This VoiceXML session started on the leg is a normal VoiceXML session for the most part, but with the
following exceptions:

• There are some synchronization primitives and mechanisms that have been added to allow
information exchange between the VoiceXML dialog session and the Tcl IVR 2.0 call control script.

• VoiceXML supports some call control commands, such as the <transfer> and <disconnect> tags,
which behave differently in this mode because the Tcl IVR 2.0 script should have complete control
of all call control activities.
1-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
VoiceXML and IVR Applications
Communication Between VoiceXML and Tcl IVR 2.0 in Hybrid Applications.

When the Tcl IVR 2.0 script initiates a VoiceXML dialog on a call leg, it can pass an array of parameters
to the leg vxmldialog command. These parameters becomes accessible from within the VoiceXML
session through the com.cisco.params.xxxxxx variables. In the VoiceXML session, the com.cisco.params
object gets populated with a information from the Tcl IVR array, where xxxxx is the index of the Tcl
array.

When the VoiceXML dialog finishes, it can return some information back to the Tcl IVR script through
the namelist attribute of the <exit/> tag. When the VoiceXML dialog finishes executing, the Tcl script
receives the ev_vxmldialog_done event, which can carry with it the information returned in the exit tag.
The event also carries with it a status code, which can be accessed through the evt_status information tag.

Apart from the start and end of a VoiceXML dialog, the Tcl script can send an intermediate message to
a dialog in progress through the leg vxmlsend command. The event specified in the command is thrown
inside VoiceXML interpreter and can be caught by a <catch> handler looking for that event. The
command can also have a Tcl parameter array, whose information is accessible inside the VoiceXML
catch handler through a scoped _message.params.xxxxxx variable, similar to com.cisco.params.xxxx
described above.

Similarly, the VoiceXML interpreter environment or the executing document can send events to the Tcl
script at various points. These events arrive at the Tcl script as ev_vxmldialog_event events. An executing
VoiceXML document can use an <object> extension with
classid="builtin://com.cisco.ivrscript.sendevent" to send an explicit message, with associated parameter
information, to the parent Tcl script. If the VoiceXML document executes certain tags, such as
<disconnect> or <transfer>, in the hybrid mode, that results in the Tcl script receiving an
ev_vxmldialog_event event implicitly.

An ev_vxmldialog_done event or ev_vxmldialog_event event can come with two pieces of information:

• A VoiceXML-specific event name to differentiate the various reasons for the ev_vxmldialog_done
or ev_vxmldialog_event event, which is accessible through the evt_vxmlevent information tag. This
event name is a string in the form of vxml.*. This indicates that the event name could be from the
VoiceXML interpreter environment (vxml.session.*) or from the dialog executing in the VoiceXML
interpreter (vxml.dialog.*). Examples of environment-level messages are vxml.session.complete, to
indicate normal completion of a dialog, or vxml.session.transfer, to indicate that the document tried
to execute a <transfer> tag, which is not supported in this mode of operation. If the document
throws a error.badfetch message which is not caught and this causes the dialog to complete, or if the
document uses the <object> send tag to send Tcl an explicit message, evt_vxmlevent will contain a
vxml.dailog.* string.

• A parameter array of information that is accessible through the evt_vxmlevent_params information
tag.

Hybrid Mode and VoiceXML Call Control Tags

In the hybrid mode, the VoiceXML <disconnect> tag does not disconnect the call leg. Instead, a
vxml.session.disconnect event is sent to the Tcl IVR script. From a VoiceXML execution perspective, a
<disconnect> is emulated, throwing a disconnect event and then continuing execution. The dialog will
not be able to play prompts or collect input from this point onwards.

When the user hangs up, a <disconnect> is again emulated, as above. But the leg is not disconnected yet.
The Tcl script receives the ev_disconnected event as part of the control events, then has the responsibility
of either terminating, or waiting for the termination of the dialog, and then disconnecting the leg.
1-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
When the document executes a <transfer> tag, this results in the following:

• A vxml.session.transfer event is sent by the VoiceXML environment to the Tcl script.

• The VoiceXML environment will throw an error.unsupported.transfer event at the VoiceXML
session, which can be caught. If not caught, the default handler causes the termination of the dialog,
resulting in an eventual ev_vxmldialog_done event to the Tcl script.

SendEvent Object
Recorded objects are represented as audio object variables in VoiceXML/JAVA scripting. In Tcl, which
is totally text based, objects are represented as a ram://XXXXX URI. Tcl array elements that have a value
of ram://XXX are available as audio variables or objects in VoiceXML. A similar reverse transformation
happens when information is passed from VoiceXML to the Tcl script.

Tcl IVR Call Transfer Overview
Tcl IVR scripts can be used to provide blind- and consultation-transfer support for a variety of call
transfer protocols. This section provides some background information about call-transfer terminology
and usage scenarios as related to Tcl IVR applications. It also describes the call-transfer capabilities of
each supported protocol and how these protocols can be interworked when the endpoints involved in the
transfer use different signaling protocols.

Call Transfer Terminology

Transfer participants

A call transfer typically involves three participants:

• Transferor (XOR)—The endpoint that initiates the transfer.

• Transferee (XEE)—The endpoint that is transferred to different destination.

• Transfer target (XTO)—The endpoint that the transferee is transferred to.

Transfer Trigger

A call-transfer trigger is the mechanism a transferor endpoint uses to initiate a call-transfer procedure.
This is normally a hookflash event for analog phones, or a button or softkey on an IP phone registered
with the Cisco IOS voice gateway operating in Cisco CallTw55tieManager Express (CME) mode.

Transfer Commit

A transfer commit is the action a transferor endpoint takes when it wants to connect the transferee and
transfer target endpoints, possibly after consulting with the transfer target endpoint. For analog phones
and Cisco CME IP phones, the transfer commit is usually performed by hanging up the phone. When a
Tcl IVR script receives a transfer-commit indication, it normally attempts to send a transfer request to
the transferee call leg.
1-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Supported Tcl IVR Call Transfer Script
Cisco provides an official Tcl IVR script that supports the H.450 call transfer scenarios discussed in the
remainder of this section. This script is available in the Cisco CallManager Express (CME) zip files
found at http://www.cisco.com/cgi-bin/tablebuild.pl/ip-key. The current version of the script is named
app_h450_transfer.2.0.0.3.tcl. Refer to the README file associated with the script for more details.

Call Transfer Support in the Cisco IOS Default Session Application
Call transfer support has been added to the default voice session application in the 12.2(15)ZJ Cisco IOS
release. The default application now provides H.450 and SIP transferee and transfer target functionality
for blind and consultation transfers. It also provides H.450 and SIP blind and consultation transferor
support for IP phones connected to the Cisco IOS gateway while operating in Cisco CallManager
Express (CME) mode.

Note The enhanced default session application does not provide support for transfer initiation using an analog
phone connected to the Cisco IOS gateway. This functionality is provided in the
app_h450_transfer.2.0.0.3.tcl script mentioned above or can be implemented in a custom Tcl IVR
application.

Custom Tcl IVR Call Transfer Scripts
The Cisco IOS default session application and app_h450_transfer.tcl script described above can be used
to support many typical call transfer scenarios. In cases where a variant of this functionality is needed,
a custom Tcl IVR script can be written. The call-transfer-sample.zip file on the Developer Support
Central page contains sample Tcl IVR scripts and associated documentation that can be used as a guide
in writing such a script.

Further assistance in Tcl IVR script writing can be obtained by joining the Cisco Developer Support
program. This program provides a central resource for all development needs. Members of the program
gain access to all available product and documentation downloads, bug reports, sample scripts, and
frequently asked questions to facilitate development efforts.

The Developer Support engineers have subject matter expertise in Cisco interfaces and protocols. This

team is dedicated to helping customers, and Cisco AVVID Partner Program and other ecosystem

members, to use Cisco application programming interfaces (APIs) in their development projects. In

addition to the benefits accessed from Cisco.com, the program provides an easy process to open, update,

and track issues through Cisco.com. The Developer Support Agreement, which defines support

commitments, fees, and available options, can be obtained from the Cisco Developer Support Web site

at http://www.cisco.com/warp/public/570/.

Call Transfer Scenarios
There are many call transfer scenarios to consider when writing a Tcl IVR script. This subsection
describes several such scenarios involving one, two, or three Cisco IOS voice gateways. To illustrate the
call transfer scenarios, each description that follows includes the following diagrams:

• The first diagram shows the two-party call before the transfer.

• The second diagram shows a blind call transfer in progress.
1-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
• The third diagram shows a consultation transfer in progress.

• The fourth diagram shows the final call after a successful blind or consultation transfer.

Depending on the specific requirements, a script can be written to provide support for one or more of the
scenarios that follow. In some cases, such as the consultation transfer scenario shown in Figure 1-7, two
independent instances of the script may be active on the same gateway.

In the figures that follow, the labels XOR, XEE, and XTO designate the role each call leg plays in the
call transfer. The IN and OUT labels track the incoming and outgoing call legs during a two-party call.
This allows a script to keep track of the call leg topology and determine what action to take when an
event is received.

In all scenarios described here, the original two-party call between phone A and phone B is already
established. Phone A is the transferor endpoint (XOR), phone B is the transferee endpoint (XEE), and
phone C is the transfer target endpoint (XTO). Transferor phone A is either an analog FXS phone or an
IP phone registered with the Cisco IOS voice gateway operating in Cisco CallManager Express (CME)
mode.

One Gateway Scenario with Analog Transferor

The first call transfer scenario is one in which phones A, B, and C are connected to the same gateway,
as shown in Figure 1-1. In this case, all transferor, transferee, and transfer-target functionality is
provided by a single instance of the Tcl IVR script.

Figure 1-1 Single GW: Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, and

then hangs up. The script then places a regular call to the transfer target, connects the transferee and

transfer-target call legs, then disconnects the transferor call leg. See Figure 1-2.

95
85

7

Gateway 1

TCL IVR script

In

Out

Phone A

Phone B

Phone C
1-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-2 Single GW: Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). Because phone C is a local analog phone, the gateway generates a local
consultation ID and registers it to this script instance. The script then places the outbound transfer call
to phone C that includes this consultation ID. Because the consultation ID is registered to this script
instance, the transferee call leg is handed off to this same script. See Figure 1-3.

Figure 1-3 Single GW: Analog XOR Consultation Transfer

When the script receives the handoff event, it bridges the transferee and transfer-target legs and releases
the transferor. See Figure 1-4.

Note In this single gateway scenario, it would be possible to simplify the call flow and avoid having the script
hand off the transferee call leg to itself; however, using the handoff mechanism is the preferred approach
as it also works in the multi-gateway scenarios described below.

95
85

8

Gateway 1

TCL IVR script

XOR

XEE

XTO
Phone A

Phone B

Phone C

setup requestsetup request

95
85

9
Gateway 1

TCL IVR script

XOR

XEEa

XEEb

XTO
Phone A

Phone B

Phone C

Handoff
(to itself)

Setup request
Consult request

Consult response
1-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-4 Single GW: Analog XOR After Transfer

One Gateway Scenario with Cisco CME IP Phone Transferor

In this transfer scenario, phones A, B, and C are all connected to the same gateway. See Figure 1-5. In
this case the transferor, transferee, and transfer-target functionality is provided by one or two instances
of the Tcl IVR script.

Figure 1-5 Single GW: Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone, places a regular call to
the transfer target, and connects the transferee and transfer target call legs. It then disconnects the
transferor call leg. See Figure 1-6.

95
86

0

Gateway 1

TCL IVR script

In

Out

Phone B

Phone C

95
86

1

Gateway 1

TCL IVR script

In

Out

Phone A

Phone B

Phone C

IP
1-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-6 Single GW: Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer-destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on the gateway,
which treats the call as a normal two-party call, unaware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. Because phone C is a local analog
phone, the gateway generates a local consultation ID and registers it to this script instance. The script
then sends a consultation response to IP phone A that includes this consultation ID. Next, the first script
instance receives a transfer request from IP phone A that includes the consultation ID it received from
the second script instance. See Figure 1-7.

Figure 1-7 Single GW: Cisco CME IP Phone XOR Consultation Transfer

This script instance then places the outbound transfer call to phone C that includes the consultation ID.
Because the consultation ID is registered to the second script instance, the transferee call leg is handed
off to the second script instance. The second script instance receives the handoff event and bridges the
transferee and transfer-target legs. The first script instance releases the transferor call leg. See
Figure 1-8.

95
86

2

Gateway 1

TCL IVR script

XOR

XEE

Phone A

Phone B

Phone C

IP

Transfer request

Setup request

Transfer request

Setup request

95
86

3

Gateway 1
Setup request

Consult request
Consult response

Consult request
Consult response

Script 2

Script 1

XOR

XEE

XOR XTO

Phone A

Phone B

Phone C

IP

Transfer requestTransfer request Handoff
1-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-8 Single GW: Cisco CME IP Phone XOR After Transfer

Two Gateway Scenarios with Analog Transferor

There are several call transfer scenarios that involve two Cisco IOS gateways and an analog transferor.
Several of these are described in the following subsections.

XOR and XTO on Gateway 1 and XEE on Gateway 2

In the first scenario, the transferor (phone A) and transfer-target (phone C) endpoints are connected to
Gateway 1. The transferee endpoint (phone B) is connected to Gateway 2. See Figure 1-9.

Figure 1-9 Two Gateways (XOR/XTO & XEE): Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call between phone A and phone B on Gateway 2. This script places
an outbound call to phone C and disconnects its transferor call leg when the call setup succeeds. See
Figure 1-10.

Although phone C is also connected to Gateway 1, the incoming call from phone B to phone C is handled
by a separate instance of the Tcl IVR script. This script simply places a normal call to phone C, without
knowledge that this call was part of a call transfer.

95
86

4

Gateway 1

TCL IVR script

In

Out

Phone B

Phone C

95
86

5

Gateway 2

TCL IVR script

Out

Phone B

Gateway 1

H.323 or
SIP

TCL IVR script

In InOut

Phone C

Phone A
1-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-10 Two Gateways (XOR/XTO & XEE): Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). Because phone C is a local analog phone, the gateway generates a local
consultation ID and registers it to this script instance. The script then sends a SIP or H.450 transfer
request to phone B that includes the consultation ID. The transfer request is received by the script
handling the call on Gateway 2. This script places an outbound call to phone C and disconnects its
transferor call leg when the call setup succeeds. See Figure 1-11.

Figure 1-11 Two Gateways (XOR/XTO & XEE): Analog XOR Consult Transfer

The setup request includes the consultation ID received in the transfer request. Unlike the blind transfer
case above, the incoming setup request to phone C is handled by the same instance of the script that is
handling the original call between phones A and B, and the consultation call between phones A and C.
This script connects the incoming call to phone C and disconnects phone A. See Figure 1-12.

95
86

6

Gateway 2

TCL IVR script

XEE

Phone B

Gateway 1

Transfer request

Setup request

H.323 or
SIP

H.323 or
SIP

Script 1

XOR XORXEE

Phone C

Script 2

Out In

Phone A

XTO

95
86

7

Gateway 2

TCL IR scriptTCL IR script

XEE

Phone B

Gateway 1

Transfer request

Setup request

H.323 or
SIP

H.323 or
SIP

XOR

Consult
response

XORXEEa

Phone C
XTO XEEb

Phone A

XTO

Consult
request
Consult
request
1-15
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-12 Two Gateways (XOR/XTO & XEE): Analog XOR After Transfer

XOR and XEE on Gateway 1 and XTO on Gateway 2

In this scenario, the transferor (phone A) and transferee (phone B) are connected to Gateway 1. The
transfer target (phone C) is connected to Gateway 2. See Figure 1-13.

Figure 1-13 Two Gateways (XOR/XEE & XTO): Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, and
then hangs up. The script places a call to phone C by sending a SIP or H.323 setup request to Gateway
2. The script that handles this setup request on Gateway 2 places a normal call to phone C, unaware that
this call was part of a call transfer. After a successful call setup, the script on Gateway 1 bridges phone
B and phone C and releases the call from phone A. See Figure 1-14.

95
86

8

Gateway 2

TCL IVR script

In

Phone B

Gateway 1

H.323 or
SIP

TCL IR script

In OutOut

Phone C

95
86

9

Gateway 2

Phone C

Gateway 1

H.323 or
SIP

TCL IVR script

In

Phone B

Phone A

Out
1-16
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-14 Two Gateways (XOR/XEE & XTO): Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A is able to consult
with phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID
from the transfer target (phone C).

For H.450 transfers, Gateway 1 sends an H.450 consultation request message to phone C. This request
is received by the script instance on Gateway 2 that is handling the call between phones A and C. This
script sends a consultation response that includes a consultation ID. See Figure 1-15.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 setup request to Gateway 2 that includes this consultation ID. When the setup request
arrives at Gateway 2, it is delivered to the same script instance that is handling the consultation call
between phone A and phone C.

Figure 1-15 Two Gateways (XOR/XEE & XTO): Analog XOR Consultation Transfer

This script connects the incoming call to phone C and disconnects the consultation call from phone A.
See Figure 1-16.

95
87

0

Gateway 2

TCL IVR script

Out

Phone C

Gateway 1

Setup request

H.323 or
SIP

TCL IVR script

XOR

XEE

XTO

Phone B

Phone A
In

95
87

1

Gateway 2

TCL IVR script

XTO

Phone C

Gateway 1

Consult response

Consult request

Setup request

H.323 or
SIP

H.323 or
SIP

XOR

Phone B

Phone A

XEE

TCL IVR script

XTOa

XTOb

XOR

XEE

Setup request
1-17
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-16 Two Gateways (XOR/XEE & XTO): Analog XOR After Transfer

XOR on Gateway 1 and XEE and XTO on Gateway 2

The third call transfer scenario involving two gateways is shown in Figure 1-17. The transferor (phone
A) is connected to Gateway 1, and the transferee (phone B) and transfer target (phone C) are connected
to Gateway 2.

Figure 1-17 Two gateways (XOR & XEE/XTO): Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call between phone A and phone B on Gateway 2. This script places
an outbound call to phone C. When the setup succeeds, this script connects phone B to phone C and
disconnects the call from phone A. See Figure 1-18.

95
87

2

Gateway 2

TCL IVR script

Out

Phone C

Gateway 1

H.323 or
SIP

TCL IVR script

In

InOut

Phone B

95
87

3

Gateway 2

TCL IVR script

Out

Phone B

Phone C

Gateway 1

H.323 or
SIP

TCL IVR script

In InOut

Phone A
1-18
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-18 Two Gateways (XOR & XEE/XTO): Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. The incoming call from phone A is handled by a different script instance on Gateway 2 than is
handling the call between phones A and B. See Figure 1-19.

When the user commits the transfer (by hanging up), the script on Gateway 1 requests a consultation ID
from the transfer target. For H.450 transfers, Gateway 1 sends an H.450 consultation request message to
phone C. The request is received by the script instance on Gateway 2 that is handling the call between
phones A and C. This script sends a consultation response that includes a consultation ID.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 transfer request to Gateway 2 that includes this consultation ID.

Figure 1-19 Two Gateways (XOR & XEE/XTO): Analog XOR Consultation Transfer

The transfer request is received by the script instance handling the call between phones A and B on
Gateway 2. This script places a call to phone C. The setup request includes the consultation ID received
in the transfer request. Because the consultation ID included in the setup request matches the one sent
to Gateway 1 in the consultation response, the call setup completes by handing off the incoming call to
the second script instance. After the handoff, the original call from phone A to phone B is disconnected
by the first script instance on Gateway 2 and the consultation call from phone A is disconnected by the
second script instance. See Figure 1-20.

95
87

4

Gateway 2

TCL IVR script

XEE

Phone B

XTO
Phone C

Gateway 1

H.323 or
SIP

Transfer requestTCL IVR script

XOR XORXEE

Phone A

95
87

5

Gateway 2

Script 1

Script 2

Phone A

Gateway 1

Consult response

Consult request

Transfer request

H.323 or
SIP

H.323 or
SIP

XOR XOR
XTO

XEE

XOR XTO

Phone C

Phone B

TCL IVR script

XEE

XTO

XOR

Setup request

HandoffHandoff
1-19
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-20 Two Gateways (XOR & XEE/XTO): Analog XOR After Transfer

Two Gateway Scenarios with Cisco CME IP Phone Transferor

There are several call transfer scenarios that involve two Cisco IOS gateways and a Cisco CallManager
Express (CME) IP phone transferor. Several of these are described in the following subsections.

XOR and XTO on Gateway 1 and XEE on Gateway 2

The first scenario is shown in Figure 1-21. Here, the transferor (phone A) and transfer-target (phone C)
endpoints are connected to Gateway 1. The transferee endpoint (phone B) is connected to Gateway 2.

Figure 1-21 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer-request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call between phone
A and phone B on Gateway 2. This script places an outbound call to phone C and disconnects its
transferor call leg when the call setup succeeds. Although phone C is also connected to Gateway 1, the
incoming call from phone B to phone C is handled by a separate instance of the Tcl IVR script. This
script simply places a normal call to phone C without knowledge that this call was part of a call transfer.
See Figure 1-22.

95
87

6

Gateway 2

TCL IVR script

Gateway 1

H.323 or
SIP

XEE

XTO

Phone C

Phone B

95
87

7

Gateway 2

TCL IVR script

Out

Phone B

Gateway 1

H.323 or
SIP

TCL IVR script

In InOut

Phone C

Phone A

IP
1-20
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-22 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. The
script instance treats the call as a normal two-party call, unaware that it is a consultation call. See
Figure 1-23.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. Because phone C is a local analog
phone, the gateway generates a local consultation ID and registers it to this script instance. The script
then sends a consultation response to IP phone A that includes this consultation ID.

Next, the first script instance receives a transfer request from IP phone A that includes the consultation
ID it received from the second script instance. This script instance then sends a SIP or H.450 transfer
request to phone B that includes the consultation ID. The transfer request is received by the script
handling the call between phone A and phone B on Gateway 2. This script places an outbound call to
phone C and disconnects its transferor call leg when the call setup succeeds. The setup request includes
the consultation ID received in the transfer request.

Figure 1-23 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR Consult Transfer

The incoming setup request is delivered to the script instance on Gateway 1 that is handling the
consultation call between phone A and phone C. This script connects the incoming call to phone C and
releases the call from phone A. See Figure 1-24.

95
87

8

Gateway 2

TCL IVR script

XEE

Phone B

Gateway 1

Transfer request

Setup request

H.323 or
SIP

H.323 or
SIP

Script 1

XOR XORXEE

Phone C

Script 2

Out In

Phone A

XTO

IP

Transfer requestTransfer request

95
87

9

Gateway 2

TCL IVR script

XEE

Phone B

Gateway 1

Transfer request

Setup request

Setup request
Consult request

Consult
response

H.323 or
SIP

H.323 or
SIP

Script 1
XOR XORXEE

Phone C

Script 2

XTO
XOR XEE

Phone A

XTO

IP

Transfer
request
Transfer
request
1-21
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-24 Two Gateways (XOR/XTO & XEE): Cisco CME IP Phone XOR After Transfer

XOR and XEE on Gateway 1 and XTO on Gateway 2

The second scenario involving two gateways and an IP phone transferor. The transferor (phone A) and
transferee (phone B) are connected to Gateway 1. The transfer target (phone C) is connected to
Gateway 2. See Figure 1-25.

Figure 1-25 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone A and places a call to
phone C by sending a SIP or H.323 setup request to Gateway 2. The script that handles this setup request
on Gateway 2 places a normal call to phone C, unaware that this call was part of a call transfer. After a
successful call setup, the script on Gateway 1 bridges phone B and phone C and releases the call from
phone A. See Figure 1-26.

95
88

0

Gateway 2

TCL IVR script

In

Phone B

Gateway 1

H.323 or
SIP

TCL IR script

In OutOut

Phone C

95
88

1

Gateway 2

Phone C

Gateway 1

H.323 or
SIP

TCL IVR script

In

Phone B

Phone A

Out

IP
1-22
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-26 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. The
script instance treats this as a normal two-party call and is not aware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 2 handling the call between phones A and C. This
script sends a consultation response that includes a consultation ID. See Figure 1-27.

For SIP, the consultation request is not relayed to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it relays
it to IP phone A. In addition, due to the internal consultation ID management scheme in the Cisco IOS
application framework, the consultation ID received from Gateway 2 is registered to this script instance
(the second instance).

Note Because the script instance on Gateway 2 sent a consultation response to Gateway 1, it expects to receive
an incoming call from the transferee. Because the transfer was handled locally on Gateway 1 through a
handoff, Gateway 2 will not receive this incoming call. A guard timer in Cisco IOS eventually expires,
and the script continues processing the call between Phone A and phone C as a normal two-party call.

Next, the first script instance receives a transfer request from IP phone A that includes the consultation
ID from the second script instance. This script instance places the outbound call to phone C that includes
the consultation ID.

95
88

2

Gateway 2

TCL IVR script

Out

Phone C

Gateway 1

Setup request

H.323 or
SIP

TCL IVR script

XOR

XEE

XTO

Phone B

Phone A In
IP

Setup requestSetup request
1-23
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-27 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR Consultation Transfer

Because the consultation ID is registered to the second script instance, the transferee call leg is handed
off to the second script instance. This script instance receives the handoff event and bridges the
transferee and transfer target legs. The first script instance releases the transferor call leg. See
Figure 1-28.

Figure 1-28 Two Gateways (XOR/XEE & XTO): Cisco CME IP Phone XOR After Transfer

XOR on Gateway 1 and XEE and XTO on Gateway 2

The third call transfer scenario involving two gateways and an IP phone transferor is shown in
Figure 1-29. The transferor (phone A) is connected to Gateway 1, and the transferee (phone B) and
transfer target (phone C) are connected to Gateway 2.

95
88

3

Gateway 1 Gateway 2
Setup request

Consult request
Consult response

Setup request

Consult request

Consult responseScript 2

Script 1

XOR XTO
XEE

XEE

XOR XTO

Phone A

Phone B

Phone C

TCL IVR script
XOR

XTO

IP

HandoffTransfer requestTransfer request

95
88

4

Gateway 2

TCL IVR script

In

Phone C

Gateway 1

H.323 or
SIP

TCL IVR script

In Out

Out

Phone B
1-24
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-29 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call between phone
A and phone B on Gateway 2. This script places an outbound call to phone C. After a successful call
setup, the script on Gateway 2 bridges phone B and phone C and releases the call from phone A. See
Figure 1-30.

Figure 1-30 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
The call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. This
script instance treats the call as a normal two-party call and is not aware it is a consultation call.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 2 that is handling the call between phones A and
C. This script sends a consultation response that includes a consultation ID. For SIP, the consultation
request is not relayed to phone C. Instead, a consultation ID is generated locally by Gateway 1. In both
cases, when the script on Gateway 1 receives the consultation response, it relays it to IP phone A. In
addition, due to the internal consultation ID management scheme in the Cisco IOS application
framework, the consultation ID received from Gateway 2 is registered to this script instance (the second
instance).

95
88

5

Gateway 2

TCL IVR script

Out

Phone B

Phone C

Gateway 1

H.323 or
SIP

TCL IVR script

In InOut

Phone A

IP

95
88

6

Gateway 2

TCL IVR script

XEE

Phone B

XTO
Phone C

Gateway 1

H.323 or
SIP

Transfer requestTCL IVR script

XOR XORXEE

Phone A

IP

Transfer requestTransfer request
1-25
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Next, the first script instance on Gateway 1 receives a transfer request from IP phone A that includes the
consultation ID it received from the second script instance on Gateway 1. The script instance then sends
a SIP or H.450 transfer request to phone B that includes this consultation ID. The transfer request is
received by the script instance handling the call between phones A and B on Gateway 2. This script
places a call to phone C. Because the consultation ID included in the setup request matches the one sent
to Gateway 1 in the consultation response, the call setup is completed by handing off the incoming call
to the second script instance. See Figure 1-31.

Figure 1-31 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR Consultation Transfer

After the handoff, the original call from phone A to phone B is disconnected by the first script instance
on Gateway 2 and the consultation call from phone A is disconnected by the second script instance. See
Figure 1-32.

Figure 1-32 Two Gateways (XOR & XEE/XTO): Cisco CME IP Phone XOR After Transfer

Three Gateway Scenario with Analog Transferor

Figure 1-33 shows a scenario where three gateways are involved in the call transfer. Each call transfer
participant is connected to a separate Cisco IOS gateway.

95
88

7

Gateway 2

Script 1

Script 2

Phone A

Gateway 1

Consult response

Consult response
Consult requestConsult request

Transfer request

H.323 or
SIP

H.323 or
SIP

XOR XOR
XTO

XEE

XOR XTO

Phone C

Phone B

Transfer request

Setup request

HandoffHandoff

Script 1

Script 2

XOR XOR
XTO

XOR XTO

IP

95
88

8

Gateway 2Gateway 1

H.323 or
SIP

TCL IVR script

XEE

Phone B

Phone A

XTO
1-26
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-33 Three Gateways: Analog XOR Before Transfer

To initiate a blind transfer, the analog phone user presses hookflash, enters the transfer destination, then
hangs up. The script on Gateway 1 sends a SIP or H.450 transfer request to phone B. The transfer request
is received by the script handling the call on Gateway 2. This script places a regular outbound call to
phone C. The script that receives the incoming call setup on Gateway 3 treats this as a normal two-party
call. When the setup completes, the script on Gateway 2 sends a transfer response to phone A. The script
on Gateway 1 receives the transfer response and releases the call from phone A. See Figure 1-34.

95
88

9

Gateway 2

In

Out

Phone B

Gateway 1

TCL IVR script

In Out

Phone A

Gateway 3

H.323

SIP

Phone C
1-27
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-34 Three Gateways: Analog XOR Blind Transfer

To initiate a consultation transfer, the analog phone user presses hookflash and enters the transfer
destination number. The script then places a call to the transfer target so that phone A can consult with
phone C. When the user commits the transfer (by hanging up), the script requests a consultation ID from
the transfer target (phone C). For H.450 call transfers, a consultation request protocol message is sent to
phone C. This request is received by the script instance on Gateway 3 that is handling the call between
phones A and C. The script sends a consultation response that includes a consultation ID. See
Figure 1-35.

For SIP, the consultation request is not sent to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it sends
a SIP or H.450 transfer request to phone B that includes the consultation ID.

This transfer request is received by the script handling the call between phones A and B on Gateway 2.
This script places a call to phone C. The setup request includes the consultation ID received in the
transfer request from phone A. When the incoming setup request from phone B arrives at Gateway 2, it
is delivered to the script instance handling the call between phones A and C.

95
89

0

Gateway 2

XOR XTO

XEE

Phone B

Gateway 1
Transfer
request

Setup
request

TCL IVR script

XOR XEE

Phone A

Gateway 3

H.323

SIP

Phone C

In Out

H.323

SIP
1-28
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-35 Three Gateways: Analog XOR Consultation Transfer

This script instance connects the incoming call to phone C and disconnects the call from phone A. See
Figure 1-36.

Figure 1-36 Three Gateways: Analog XOR After Transfer

95
89

1

Gateway 2

XOR XTO

XEE

Phone B

Gateway 1
Transfer
request

Setup
request

TCL IVR script

XOR

XEE

XTO XOR
Phone A

Gateway 3

H.323

SIP

Phone C

XEE

XTO

H.323

SIP

Consult response

Consult request

Setup request

95
89

2

Gateway 2

In

Out

Phone B

Gateway 1

In Out

Gateway 3

H.323

SIP

Phone C
1-29
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Three Gateway Scenario with Cisco CME IP Phone Transferor

Figure 1-37 shows a scenario where three gateways are involved in the call transfer. Each call transfer
participant is connected to a separate Cisco IOS gateway.

Figure 1-37 Three Gateways: Cisco CME IP Phone XOR Before Transfer

To initiate a blind transfer, the IP phone user presses the transfer button on the phone and enters the
transfer destination. The script receives a transfer request event from the phone and sends a SIP or H.450
transfer request to phone B. The transfer request is received by the script handling the call on Gateway
2. This script places a regular outbound call to phone C. The script that receives the incoming call setup
on Gateway 3 treats this as a normal two-party call. When the setup completes, the script on Gateway 2
sends a transfer response to phone A. The script on Gateway 1 receives the transfer response and releases
the call from phone A. See Figure 1-38.

95
89

3

Gateway 2

In

Out

Phone B

Gateway 1

In Out

Phone A

Gateway 3

H.323

SIP

Phone C
IP
1-30
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-38 Three Gateways: Cisco CME IP Phone XOR Blind Transfer

To initiate a consultation transfer, the IP phone user presses the transfer button on the phone and enters
the transfer destination number. The IP phone uses a separate line to place a call to the transfer target.
This call is independently handled by a second instance of the Tcl IVR script running on Gateway 1. The
script instance treats this call as a normal two-party call and is not aware it is a consultation call. See
Figure 1-39.

After consulting with the transfer target, the user commits the transfer by hanging up and the second
script instance receives a consultation request from IP phone A. For H.450 transfers, Gateway 1 relays
this consultation request to phone C by sending an H.450 consultation request message to phone C. The
request is received by the script instance on Gateway 3 that is handling the call between phones A and
C. This script sends a consultation response that includes a consultation ID.

For SIP, the consultation request is not relayed to phone C. Instead, a consultation ID is generated locally
by Gateway 1. In both cases, when the script on Gateway 1 receives the consultation response, it relays
it to IP phone A. In addition, due to the internal consultation ID management scheme in the Cisco IOS
application framework, the consultation ID received from Gateway 2 is registered to this script instance
(the second instance).

Next, the first script instance on Gateway 1 receives a transfer request from IP phone A that includes the
consultation ID it received from the second script instance. This script instance then sends a SIP or H.450
transfer request to phone B that includes this consultation ID.

The transfer request is received by the script instance handling the call between phones A and B on
Gateway 2. This script places a call to phone C. The setup request includes the consultation ID received
in the transfer request from phone A. When the incoming setup request from phone B arrives at Gateway
3, it is delivered to the script instance handling the call between phones A and C.

95
89

4

Gateway 2

XOR XTO

XEE

Phone B

Gateway 1
Transfer
request

Setup
request

XOR XEE

Phone A

Gateway 3

H.323

SIP

Phone C

In Out

H.323

SIPIP
Transfer requestTransfer request
1-31
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Figure 1-39 Three Gateways: Cisco CME IP Phone XOR Consultation Transfer

This script instance connects the incoming call to phone C and disconnects the call from phone A. See
Figure 1-40.

Figure 1-40 Three Gateways: Cisco CME IP Phone XOR After Transfer

95
89

5

Gateway 2

XOR XTO

XEE

Phone B

Gateway 1
Transfer
request

Transfer
request

Consult
response

Consult
request

Setup
request

Script 1

XEEXOR

XOR

Phone A Script 1

XEEXOR

Gateway 3

H.323

SIP

Phone C

XEE

XTO

H.323

SIP

Consult response

Consult request

Setup request

IP SetupSetup
request
Setup

request

95
89

6

Gateway 2

In

Out

Phone B

Gateway 1 Gateway 3

Phone C

In Out

H.323

SIP
1-32
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Call Transfer Protocol Support
The following subsection provides an overview of the call transfer protocols supported using Tcl IVR
scripting on a Cisco IOS voice gateway. Refer to the appropriate section above for various scenarios that
may use these protocols.

Analog Hookflash and T1 CAS Release Link Trunk (RLT) Transfers

Transferor Support

A script cannot initiate a hookflash transfer towards a T1 CAS or analog FXO endpoint. Instead, the
script can place an outbound call to the transfer target and connect the transferee and transfer target call
legs after the call is established.

Transferee Support

A Tcl IVR script can receive a hookflash transfer request from a T1 CAS or analog FXS endpoint
connected to the gateway. The subscriber is able to initiate a blind or consultation call transfer using
hookflash and DTMF digits.

When the script receives a hookflash transfer trigger, it can provide dialtone and collect the transfer
target destination through DTMF.

When the script receives a transfer commit request, it can do one of the following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script cannot receive a consultation request or setup indication containing a consultation ID
from an analog endpoint.

ISDN Call Transfer

Transferor Support

A Tcl IVR script can send an ISDN Two B-Channel Transfer (TBCT) request to the transferee call leg
when the transferee and transfer target are both part of the same TBCT group on the PBX connected to
the gateway.

When the script initiates a TBCT request, the Cisco IOS software places a call to the transfer target.
When the transfer target answers, the Cisco IOS software initiates the TBCT if both the transferee and
transfer target are part of the same TBCT group configured on the PBX. If the transferee and transfer
target are not part of the same TBCT group, the transferee and transfer target call legs are bridged by the
script. If the call is successfully transferred to the PBX, the transferee and transfer target call legs are
released and the script can close the call. In some cases, the script can re-connect the transferor and
transferee call legs if the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

• Place a consultation call to the transfer target device and connect the transferor and transfer target
call leg when the call is established.
1-33
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
• If the transferee and transfer target are part of the same TBCT group, the script can do the following
when the transfer is committed:

– Request a local TBCT consultation ID.

– Send a TBCT request to the transferee call leg. The transfer request includes the consultation
ID.

– If the call is successfully transferred to the PBX, the transferee and transfer target call legs are
released, and the script can close the call.

– In some cases, the script may re-connect the transferor and transferee call legs if the transfer
attempt is unsuccessful.

• If the transferee and transfer target are not part of the same TBCT group, the transferee and transfer
target call legs can be bridged by the script when the transfer is committed.

Transferee Support

A Tcl IVR script does not support any network-side ISDN call transfer protocols and is not able to
receive a call-transfer request from an ISDN device.

Note It is possible to allow an ISDN subscriber to initiate a blind transfer using DTMF input to trigger the
transfer. This mechanism is similar to the analog FXS and T1 CAS transfer mechanisms described above
and is not discussed further in this document.

Transfer Target Support

A Tcl IVR script cannot receive a consultation request or setup indication with a consultation ID from
an ISDN endpoint.

SIP Call Transfer

Transferor Support

A Tcl IVR script can send a REFER transfer request to a remote transferee call leg. The script can also
initiate a consultation call when performing a consultation transfer.

The script can initiate a blind transfer by sending a REFER message to the remote transferee. If the
transfer is successful, the transferee places a call the transfer target. The call is established without
involvement of this script and the script can close the call. In some cases, the script can re-connect the
transferor and transferee call legs if the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

• Place a consultation call to the transfer target device, and connect the transferor and transfer target
call leg when the call is established.

• When the transfer is committed, request a consultation ID.

Note Unlike H.450 transfers, the script handling the consultation call between the transferor and transfer
target does not receive a consultation request from the transferor. Instead, the consultation ID is
generated locally by the script handling the original call between the transferor and transferee.

• Send a REFER to the transferee call leg. This includes the consultation ID. The transferee device
includes the consultation ID in the INVITE message it sends to the transfer target.
1-34
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Tcl IVR Call Transfer Overview
• If the transfer is successful, the transferee calls the transfer target. The call is established without
involvement of this script and the script can close the call.

• In some cases, the script may re-connect the transferor and transferee call legs if the transfer attempt
is unsuccessful.

Transferee Support

A Tcl IVR script can receive a SIP REFER or BYE/ALSO transfer request from a remote SIP transferor.
When the script receives a transfer request, the script can do one of the following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

Note It is not currently possible to interwork SIP and H.450 transfer requests.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

When the gateway receives an INVITE request from the remote transferee that includes a consultation
ID, it is delivered to the script instance handling the consultation call to the transfer target. The script
can then connect the transferee and transfer target call legs and disconnect the transferor call leg.

Note Unlike H.450 transfers, the script handling the consultation call between the transferor and transfer
target does not receive a consultation request from the transferor. Instead, the consultation ID is
generated locally by the script that is handling the original call between the transferor and transferee.

H.450 Call Transfer

Transferor Support

A Tcl IVR script can send a H450.2 transfer request to a transferee call leg. The script can also initiate
a consultation call when performing a consultation transfer.

The script can initiate a blind transfer by sending an H450.2 transfer request to the remote transferee. If
the transfer is successful, the transferee calls the transfer target. The call is established without
involvement of this script and the script can close the call. In some cases, the script can re-connect the
transferor and transferee call legs if the transfer attempt is unsuccessful.

The script can do the following to initiate a consultation transfer:

• Place a consultation call to the transfer target device, and connect the transferor and transfer target
call leg when the call is established.

• When the transfer is committed, request a consultation ID from the transfer target.

• Send an H450.2 transfer request to the transferee call leg. This includes the consultation ID received
in the consultation response from the transfer target device. The transferee includes the consultation
ID in the SETUP request it sends to the transfer target.

• If the transfer is successful, the transferee calls the transfer target and the call is established without
involvement of this script. The script can then close the call.

• In some cases, the script can re-connect the transferor and transferee call legs if the transfer attempt
is unsuccessful.
1-35
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Tcl IVR Call Transfer Overview
Transferee Support

A Tcl IVR script can receive an H450.2 transfer request from a remote H.323 transferor. When the script
receives a transfer request, it can do one of the following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

Note It is not possible to interwork SIP and H.450 transfer requests.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script can receive a consultation request from a remote H450 transferor and send a
consultation response that includes the consultation ID and transfer destination. This transfer destination
is the number the transferee should use when placing a call to the transfer target.

When the gateway receives a SETUP request from the remote transferee that includes an H450.2
consultation ID, it is delivered to the script instance handling the consultation call to the transfer target.
The script can then connect the transferee and transfer target call legs and disconnect the transferor call
leg.

Cisco CallManager Express Call Transfer

Transferor Support

A Tcl IVR script cannot send a call transfer request to a local IP phone registered with the Cisco IOS
gateway operating in Cisco CallManager Express (CME) mode. Instead, the script can place an outbound
call to the transfer target and connect the transferee and transfer target call legs after the call is
established.

Transferee Support

A Tcl IVR script can receive a call transfer request from a local IP phone registered with the Cisco IOS
gateway operating in Cisco CME mode. When the script receives a transfer request, it can do one of the
following:

• Interwork the transfer request by propagating it to the transferee call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

• Place an outbound call to the transfer target and connect the transferee and transfer target call legs
after the call is established.

Transfer Target Support

A Tcl IVR script can receive a consultation request from a local Cisco CME IP phone and do one of the
following:

• Interwork the consultation request by relaying it to the other call leg. This can be done if the
transferee call leg supports one of the transfer protocols described in this document.

• Send a local consultation response to the IP phone that includes a locally generated consultation ID
and transfer destination. This transfer destination is the number the transferee should use when
placing a call to the transfer target.
1-36
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
SIP Subscribe and Notify
When the gateway receives a SETUP request from the remote transferee that includes a consultation ID,
it is delivered to the script handling the consultation call to the transfer target. The script can then
connect the transferee and transfer target call legs and disconnect the transferor call leg.

SIP Subscribe and Notify
Tcl IVR 2.0 scripts provide the ability to subscribe to a SIP subscribe server and receive notify events.
Applications can be invoked when notification is received, which is useful when the subscribed event
will probably take a long time to complete, say several minutes or hours. In this case, the application can
choose to free its instance and cause the system to create another instance to handle the notification when
it is received.

The application that handles the notification need not be the same one that made the subscription. This
provides the flexibility to make separate applications for handling subscriptions and notifications.

The application that made the subscription can perform any of the following tasks:

• Keep alive and handle notifications from the server.

• Free its instance and cause another instance of the same application to generate on notification.

• Free its instance and cause a different application to generate on notification.

• Make another module to handle notification.

SIP Headers
Tcl IVR 2.0 scripts can specify headers to be sent in SIP invite or H.323 setup messages. The script
writer can piggy-back the header-value pairs in the destination URI after the ‘?”. For example:

set destination “sip:joe@big.com?Subject=Hotel Reservation&Priority=urgent&
X-ReferenceNumber=1234567890”
leg setup destination callInfo leg_incoming

In cases where the destination string is an E.164 number instead of a URI, where headers cannot be
appended to the destination URI, the set command can be used to set the headers. For example:

set setupSignal(Subject) “Hotel Reservation”
set setupSignal(Priority) “urgent”
set setupSignal(X-ReferenceNumber) “1234567890”
set callInfo(protoHeaders) setupSignal
set destination “4085550100”
leg setup destination callInfo leg_incoming

A data-passing mechanism is provided to pass application-specified headers to the SPI for outbound
calls. Tcl scripts can retrieve headers using the evt_proto_headers or leg_proto_headers information
tags. As of Cisco IOS release 12.3(4)T, access to headers is limited to SIP invite, subscribe, and notify
messages, and to H.323 setup messages. The following list of headers, however, cannot be overwritten:

• call-ID

• Supported

• Require

• Min-SE

• Session-Expires

• Max-Forwards

• CSeq
1-37
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Application Instances
Note Each call leg is limited to a maximum of 20K memory allocation for header passing. Each header avpair
is limited to 256 characters. The application throws an error if the Tcl script tries to pass a header avpair
greater than 256 characters or if the 20K memory has been used up.

If a call is handed off to an outbound application, the outbound application can retrieve all headers
handed off to it from the previous application, plus headers from the incoming call leg set by the SPI,
through the evt_handoff proto_headers information tag.

Application Instances
A Tcl IVR 2.0 application that is configured on the Cisco voice gateway is typically triggered by an
incoming call. The application then delivers IVR services to the caller, and can create and control one
or more call legs. When a voice call invokes an application, the application starts an instance, or session,
of that application. The application instance executes the application script, and can place or transfer a
call to a other applications. A call can initiate a single application instance or multiple application
instances, depending on how the system is configured to handle the call. A single application session can
manage multiple voice calls.

In Cisco IOS Release 12.3(x), you can manually start an instance of a Tcl IVR 2.0 application on the
gateway without a call leg. This enables you to launch an application session on the gateway without
requiring an incoming call. For example, you might write an application that monitors the status of a
server group to provide a keep-alive service. An instance of this application could pass status
information to other applications that are handling incoming calls. This type of service application can
run on the gateway without being triggered by a call.

An instance of a Tcl IVR 2.0 application can be started on the gateway by using the call application
session start CLI command. An application instance can communicate with other sessions on the same
gateway and calls can be bridged between different sessions.

The mod_all_handles information tag can be used to retrieve a list of all the instances currently running on

the gateway.

Note Tcl IVR 2.0 limits the number of subscriptions per handler to 18. Because each script instance is a
handler, an application instance can only handle a maximum of 18 subscriptions simultaneously.

Session Interaction
A session is an instance of a Tcl application and is independent from other sessions in that they do not
share data directly. For example, a global Tcl variable in one session is not available to another session.
However, application sessions can communicate with other sessions on the gateway for the purpose of
sending and receiving messages, or to hand off calls between sessions.

A Tcl session can initiate multiple outgoing call legs, and can have incoming and outgoing call legs
handed off to it. A Tcl session can be running with no call legs if it was started in the CLI from a sendmsg

or a notify, or if it disconnects the legs it is handling.
1-38
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 1 Overview
Session Interaction
Session Start and Stop
The most common way for a session to start is when a Tcl application handles an incoming voice call,
however, a session can also run with no call legs if it is started in the CLI, from a sendmsg, from a notification,

or if it disconnects the call legs it was handling.

When a Tcl instance starts up, it receives one of the following events, depending on how it got started:

• ev_msg_indication

• ev_notify

• ev_session_indication

• ev_call_indication

If a user stops a Tcl session using the call app session stop CLI command, the Tcl script receives an
ev_session_terminate event. The Tcl script is expected to close. If the Tcl script does not close after 10
seconds, the session is shut down anyway and all call legs are disconnected. This gives the Tcl script
time to clean up gracefully.

If the session returns after handling an event and there are no active timers, legs, registered services, or
subscriptions, the session is closed.

Sending Messages
Messages are sent to other application instances using the sendmsg command. The sendmsg command
is an asynchronous command that does not have to wait for the destination to act on the event. If an
application name is provided, a new instance of that application is generated.

Receiving Messages
Applications are notified of incoming messages from other applications through the ev_msg_indication
event. Any parameters passed with the message are then available to the application through the evt_msg
information tag. The handle of the sending application is available through the evt_msg_source
information tag.

Call Handoff
In addition to passing the name of an application, the handoff command allows the passing of a handle.
For example, assume a Tcl script gathers the caller’s account number, then receives a notification that
the call is being handled by another instance. The script can hand the incoming call leg to the other
application instance using the handoff command, providing information in the argument string. When
the other application instance returns the call leg, this application receives an ev_returned event.

Handoff Return

Handoff returns of a set of separate call legs received from different sessions should be done with a
separate handoff return commands for each leg. The command “handoff return leg_all” is undefined in
this case. The entire set of legs should return to the return location for the first user-defined leg.
1-39
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 1 Overview
Service Registry
Handoff return of a set of conferenced legs returns both legs to the same session. For example, if a
session has been handed leg1 from session1 and leg2 from session2, and it conferenced the two legs
together. Then the command handoff return $leg2 returns both legs, conferenced together, to session2.

Service Registry
The services registry is a database that keeps track of every Tcl IVR 2.0 application instance that
registers as a service. Other Tcl applications can then find and communicate with any registered
application.

A Tcl session is not registered as a service through Cisco IOS software. A running instance of a Tcl IVR
2.0 application registers itself as a service by using the Tcl service command. The handle of any
registered service can be retrieved using the mod_handle_service information tag.
1-40
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Cisco IOS Release 12.3(14)T

C H A P T E R 2

Using Tcl IVR Scripts

This chapter contains information on how to create and use Tcl IVR scripts and includes the following
topics:

• How Tcl IVR Version 2.0 Works, page 2-1

• Writing an IVR Script Using Tcl Extensions, page 2-3

– Prompts in Tcl IVR Scripts, page 2-3

– Sample Tcl IVR Script, page 2-4

– Initialization and Setup of State Machine, page 2-8

• Testing and Debugging Your Script, page 2-8

– Loading Your Script, page 2-9

– Associating Your Script with an Inbound Dial Peer, page 2-10

– Displaying Information About IVR Scripts, page 2-10

– Using URLs in IVR Scripts, page 2-13

– Tips for Using Your Tcl IVR Script, page 2-14

Note Sample Tcl IVR scripts are found at http://www.cisco.com/cgi-bin/tablebuild.pl/tclware.

How Tcl IVR Version 2.0 Works
With Tcl IVR Version 2.0, scripts can be divided into three parts: the initialization procedures, the action
functions, and the Finite State Machine (FSM).

• Initialization procedures are used to initialize variables. There are two types of initialization
procedures:

– Those functions that are called in the main code section of the script. These initialization
functions are called only once—when an execution instance of the script is created. (An
execution instance is an instance of the Tcl interpreter that is created to execute the script.) It is
a good idea to initialize global variables (which will not change during the execution of the
script) during these initialization functions. This is also a good time to read command-line
interface (CLI) parameters.
2-1
Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
How Tcl IVR Version 2.0 Works
– Those functions that are called when the execution instance receives an ev_setup_indication or
ev_handoff event, which mark the beginning of a call. It is good to initialize call-specific
variables during these initialization functions.

When an execution instance of a script is created for handling a call, the execution instance is not
deleted at the end of the call, but is instead held in cache. The next incoming call uses this cached
execution instance, if it is available. Therefore, any global variables that were defined by the script
when the first call was handled are used to handle the next call. The script should re-initialize any
call-specific variables in the action function for ev_setup_indication or ev_handoff.

Variables that need to be initialized once and that will never change during the call can be initialized
in the main code section of the script. For example, reading in configuration parameters is a one-time
process and does not need to occur for every call. Therefore, it is more efficient to include these
variables in the main code.

• Action functions are a set of Tcl procedures used in the definition of the FSM. These functions
respond to events from the underlying system and take the appropriate actions.

• The FSM defines the control flow of a call by specifying the action function to call in response to a
specific event under the current state.

The starting state of the FSM is the state that the FSM is in when it receives a new call (indicated
by an ev_handoff or ev_setup_indication event). This state is defined when the state machine table
is registered using the fsm define command. From this point on, the events that are received from
the system drive the state machine and the script invokes the appropriate action procedure based on
the current state and the events received as defined by the set variable commands.

The FSM supports two wildcard states and one wildcard event:

– any_state, which can be used only as the begin state in a state transition and matches any state
for which a state event combination is not already being handled.

– same_state, which can be used only as the end state of a state transition and maintains the same
state.

– ev_any_event, which can be used to represent any event received by the script.

For example, to create a default handler for any unhandled event, you could use:

set callfsm(any_state,ev_any_event)”defaultProc,same_state”

To instruct the script to close a call if it receives a disconnect on any call leg, you could use:

set callfsm(any_state,ev_disconnected) “cleanupCall,CLOSE_CALL”

In the following example, by default if the script receives an ev_disconnected event, it closes the
call. However, if the script is in the media_playing state and receives an ev_disconnected event, it
waits for the prompt to finish and then closes the call.

set callfsm(any_state,ev_disconnected) “cleanupCall,CLOSE_CALL”
set callfsm(MEDIA_PLAYING,ev_disconnected) “doSomthingProc,MEDIA_WAIT_STATE”
set callfsm(MEDIA_WAIT_STATE,ev_media_done) ”cleanupCall,CLOSE_CALL”

For more information about events, see Chapter 5, “Events and Status Codes.”

When the gateway receives a call, the gateway hands the call to an application that is configured on the
system. If the application is a Tcl script that uses Tcl IVR API Version 2.0, an execution instance of the
application (or script) is created and executed.
2-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 2 Using Tcl IVR Scripts
Writing an IVR Script Using Tcl Extensions
When the script is executed, the Tcl interpreter reads the procedures in the script and executes the main
section of the script (including the initialization of global variables). At this point, the fsm define
command registers the state machine and the start state. This initialized execution instance is handed the
call. From then on (until the call close command), when an event is received, the appropriate action
procedure is called according to the current state of the call and the event received by the script.

An execution instance can handle only one call. Therefore, if the system is handling 10 calls using the
same script, there will be 10 instances of that script. In between calls, the execution instances are cached
to handle the next call. These cached execution instances are removed when the application is reloaded.
Cached execution instances are also removed if a CLI parameter or attribute-value (AV)-pair is changed,
removed, or added, or if an application is unconfigured.

Note With the previous version of the Tcl IVR API, every execution instance of a script ran under its own
Cisco IOS process. As a result, handling 100 calls required 100 processes, each one running an execution
instance of the script. With Tcl IVR API Version 2.0, multiple execution instances share the same Cisco
IOS process. However, multiple Cisco IOS processes can be spawned to share the load—depending on
the resources on the system and the number of calls.

Writing an IVR Script Using Tcl Extensions
Before you write an IVR script using Tcl, you should familiarize yourself with the Tcl extensions for
IVR scripts. You can use any text editor to create your Tcl IVR script. Follow the standard conventions
for creating a Tcl script and incorporate the Tcl IVR commands as necessary.

A sample script is provided in this section to illustrate how the Tcl IVR API Version 2.0 commands can
be used.

Note If the caller hangs up, the script stops running and the call legs are cleared. No further processing is done
by the script.

Prompts in Tcl IVR Scripts
Tcl IVR API Version 2.0 allows two types of prompts: memory-based and RTSP-based prompts.

• With memory-based prompts, the prompt (audio file) is read into memory and then played out to the
appropriate call legs as needed. Memory-based prompts can be read from Flash memory, a TFTP
server, or an FTP server.

• With RTSP-based prompts, you can use an external (RTSP-capable) server to play a specific audio
file or content and to stream the audio to the appropriate call leg as needed. Some platforms may not
support RTSP-based prompts. For those platforms, the prompt fails with a status code in the
ev_media_done event.

As mentioned earlier, through the use of dynamic prompts, Tcl IVR API Version 2.0 also provides some
basic TTS functionality, like playing numbers, dollar amounts, date, and time. It also allows you to
classify prompts using different languages so that when the script is instructed to play a particular
prompt, it automatically plays the prompt in the active or specified language.

Note When setting up scripts, we recommend not to using RTSP with very short prompts or dynamic prompts
because of poor performance.
2-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
Writing an IVR Script Using Tcl Extensions
Sample Tcl IVR Script
The following example shows how to use the Tcl IVR API Version 2.0 commands. We recommend that
you start with the header information. This includes the name of the script, the date that the script was
created and by whom, and some general information about what the script does.

We also recommend that you include a version number for the script, using a three-digit system, where
the first digit indicates a major version of the script, the second digit is incremented with each minor
revision (such as a change in function within the script), and the third digit is incremented each time any
other changes are made to the script.

The following sample script plays dial-tone, collects digits to match a dial-plan, places an outgoing call
to the destination, conferences the two call legs, and destroys the conference call legs and the disconnect
call legs, when anyone hangs up.

app_session.tcl
Script Version 1.0.1
#--
August 1999, Saravanan Shanmugham

Copyright (c) 1998, 1999 by cisco Systems, Inc.
All rights reserved.
#--

This tcl script mimics the default SESSION app

If DID is configured, place the call to the dnis.
Otherwise, output dial-tone and collect digits from the
caller against the dial-plan.

Then place the call. If successful, connect it up. Otherwise,
the caller should hear a busy or congested signal.

The main routine establishes the state machine and then exits.
From then on, the system drives the state machine depending on the
events it receives and calls the appropriate Tcl procedure.

Next, we define a series of procedures.

The init procedure defines the initial parameters of the digit collection. In this procedure:

• Users are allowed to enter information before the prompt message is complete.

• Users are allowed to abort the process by pressing the asterisk key.

• Users must indicate that they have completed their entry by pressing the pound key.

proc init { } {
 global param

 set param(interruptPrompt) true
 set param(abortKey) *
 set param(terminationKey) #

}

The act_Setup procedure is executed when an ev_setup_indication event is received. It gathers the
information necessary to place the call. In this procedure:

• A setup acknowledgement is sent to the incoming call leg.
2-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 2 Using Tcl IVR Scripts
Writing an IVR Script Using Tcl Extensions
• If the call is Direct Inward Dial (DID), the destination is set to the Dialed Number Information
Service (DNIS), and the system responds with a proceeding message on the incoming leg and tries
to set up the outbound leg with the leg setup command.

• If not, a dial tone is played on the incoming call leg and digits are collected against a dial plan.

proc act_Setup { } {
 global dest
 global beep

 set beep 0
 leg setupack leg_incoming

 if { [infotag get leg_isdid] } {
 set dest [infotag get leg_dnis]
 leg proceeding leg_incoming
 leg setup $dest callInfo leg_incoming
 fsm setstate PLACECALL
 } else {

 playtone leg_incoming tn_dial

 set param(dialPlan) true
 leg collectdigits leg_incoming param
 }

}

The act_GotDest procedure is executed when an ev_collectdigits_done event is received. It determines
whether the collected digits match the dial plan, in which case the call should be placed. In this
procedure:

• If the digit collection succeeds with a match to the dial plan (cd_004), the script proceeds with
setting up the call.

• Otherwise, the script reports the error and ends the call. For a list of other digit collection status
values, see the “Digit Collection Status” section on page 5-7.

proc act_GotDest { } {
 global dest

 set status [infotag get evt_status]

 if { $status == "cd_004" } {
 set dest [infotag get evt_dcdigits]
 leg proceeding leg_incoming
 leg setup $dest callInfo leg_incoming

 } else {
 puts "\nCall [infotag get con_all] got event $status collecting destination"
 call close
 }
}

The act_CallSetupDone procedure is executed when an ev_setup_done event is received. It determines
whether there is a time limit on the call. In this procedure:

• When the call is successful (ls_000), the script obtains the amount of credit time.

• If a value other than unlimited or uninitialized is returned, a timer is started.

• If the call is not successful, the script reports the error and closes the call. For a list of other leg setup
status values, see the “Leg Setup Status” section on page 5-10.

proc act_CallSetupDone { } {
 global beep
2-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
Writing an IVR Script Using Tcl Extensions

 set status [infotag get evt_status]

 if { $status == "ls_000"} {

 set creditTimeLeft [infotag get leg_settlement_time leg_outgoing]

 if { ($creditTimeLeft == "unlimited") ||
 ($creditTimeLeft == "uninitialized") } {
 puts "\n Unlimited Time"
 } else {
 # start the timer for ...
 if { $creditTimeLeft < 10 } {
 set beep 1
 set delay $creditTimeLeft
 } else {
 set delay [expr $creditTimeLeft - 10]
 }
 timer start leg_timer $delay leg_incoming
 }
 } else {
 puts "Call [infotag get con_all] got event $status while placing an outgoing
call"
 call close
 }
}

The act_Timer procedure is executed when an ev_leg_timer event is received. It is used in the last
10 seconds of credit time and warns the user that time is expiring and terminates the call when the credit
limit is reached. In this procedure:

• While there is time left, the script inserts a beep to warn the user that time is running out.

• Otherwise, the “out of time” audio file is played and the state machine is instructed to disconnect
the call.

proc act_Timer { } {
 global beep
 global incoming
 global outgoing

 set incoming [infotag get leg_incoming]
 set outgoing [infotag get leg_outgoing]

 if { $beep == 0 } {
 #insert a beep ...to the caller
 connection destroy con_all
 set beep 1
 } else {
 media play leg_incoming flash:out_of_time.au
 fsm setstate CALLDISCONNECTED
 }
}

The act_Destroy procedure is executed when an ev_destroy_done event is received. It plays a beep to
the incoming call leg.

proc act_Destroy { } {
 media play leg_incoming flash:beep.au
}

The act_Beeped procedure is executed when an ev_media_done event is received. It creates a
connection between the incoming and outgoing call legs.
2-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 2 Using Tcl IVR Scripts
Writing an IVR Script Using Tcl Extensions
proc act_Beeped { } {
 global incoming
 global outgoing

 connection create $incoming $outgoing
}

The act_ConnectedAgain procedure is executed when an ev_create_done event is received. It resets the
timer on the incoming call leg to 10 seconds.

proc act_ConnectedAgain { } {
 timer start leg_timer 10 leg_incoming
}

The act_Ignore procedure reports “Event Capture.”

proc act_Ignore { } {
Dummy
 puts "Event Capture"
}

The act_Cleanup procedure is executed when an ev_disconnected event is received and when the state
is CALLDISCONNECTED. It closes the call.

Note When the script receives an ev_disconnected event, the script has 15 seconds to clear the leg with the leg
disconnect command. After 15 seconds, a timer expires, the script is cleaned up, and an error message
is displayed to the console. This avoids the situation where a script might not have cleared a leg after a
disconnect.

proc act_Cleanup { } {
 call close
}

Finally, we put all the procedures together in a main routine. The main routine defines a Tcl array that
defines the actual state transitions for the various state and event combinations. It registers the state
machine that will drive the calls. In the main routine:

• If the call is disconnected while in any state, the act_Cleanup procedure is called and the state
remains as it was.

• If a “setup indication” event is received while in the CALL_INIT state, the act_Setup procedure is
called (to gather the information necessary to place the call) and the state is set to GETDEST.

• If a “digit collection done” event is received while in the GETDEST state, the act_GotDest
procedure is called (to determine whether the collected digits match the dial plan and the call can
be placed) and the state is set to PLACECALL.

• If a “setup done” event is received while in the PLACECALL state, the act_CallSetupDone
procedure is called (to determine whether there is a time limit on the call) and the state is set to
CALLACTIVE.

• If a “leg timer” event is received while in the CALLACTIVE state, the act_Timer procedure is
called (to warn the user that time is running out) and the state is set to INSERTBEEP.

• If a “destroy done” event is received while in the INSERTBEEP state, the act_Destroy procedure is
called (to play a beep on the incoming call leg) and the state remains INSERTBEEP.

• If a “media done” event is received while in the INSERTBEEP state, the act_Beeped procedure is
called (to reconnect the incoming and outgoing call legs) and the state remains INSERTBEEP.
2-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
• If a “create done” event is received while in the INSERTBEEP state, the act_ConnectedAgain
procedure is called (to reset the leg timer on the incoming call leg to 10 seconds) and the state is set
to CALLACTIVE.

• If a “disconnect” event is received while in the CALLACTIVE state, the act_Cleanup procedure is
called (to end the call) and the state is set to CALLDISCONNECTED.

• If a “disconnect” event is received while in the CALLDISCONNECTED state, the act_Cleanup
procedure is called (to end the call) and the state remains CALLDISCONNECTED.

• If a “media done” event is received while in the CALLDISCONNECTED state, the act_Cleanup
procedure is called (to end the call) and the state remains CALLDISCONNECTED.

• If a “disconnect done” event is received while in the CALLDISCONNECTED state, the
act_Cleanup procedure is called (to end the call) and the state remains CALLDISCONNECTED.

• If a “leg timer” event is received while in the CALLDISCONNECTED state, the act_Cleanup
procedure is called (to end the call) and the state remains CALLDISCONNECTED.

init

#----------------------------------
State Machine
#----------------------------------
 set TopFSM(any_state,ev_disconnected) "act_Cleanup,same_state"
 set TopFSM(CALL_INIT,ev_setup_indication) "act_Setup,GETDEST"
 set TopFSM(GETDEST,ev_collectdigits_done) "act_GotDest,PLACECALL"
 set TopFSM(PLACECALL,ev_setup_done) "act_CallSetupDone,CALLACTIVE"
 set TopFSM(CALLACTIVE,ev_leg_timer) "act_Timer,INSERTBEEP"
 set TopFSM(INSERTBEEP,ev_destroy_done) "act_Destroy,same_state"
 set TopFSM(INSERTBEEP,ev_media_done) "act_Beeped,same_state"
 set TopFSM(INSERTBEEP,ev_create_done) "act_ConnectedAgain,CALLACTIVE"
 set TopFSM(CALLACTIVE,ev_disconnected) "act_Cleanup,CALLDISCONNECTED"
 set TopFSM(CALLDISCONNECTED,ev_disconnected) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_media_done) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_disconnect_done) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_leg_timer) "act_Cleanup,same_state"

Initialization and Setup of State Machine
The following command is used to initialize and set up the State Machine (SM):

 fsm define TopFSM CALL_INIT

Testing and Debugging Your Script
It is important to thoroughly test a script before it is deployed. To test a script, you must place it on a
router and place a call to activate the script. When you test your script, make sure that you test every
procedure in the script and all variations within each procedure.

You can view debugging information applicable to the Tcl IVR scripts that are running on the router. The
debug voip ivr command allows you to specify the type of debug output you want to view. To view
debug output, enter the following command in privileged-exec mode:

[no] debug voip ivr [states | error | tclcommands | callsetup | digitcollect | script |
dynamic | applib | settlement | all]

For more information about the debug voip ivr command, refer to the Interactive Voice Response
Version 2.0 on Cisco VoIP Gateways document.
2-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
The output of any Tcl puts commands is displayed if script debugging is on.

Possible sources of errors are:

• An unknown or misspelled command (for example, if you misspell media play as mediaplay)

• A syntax error (such as, specifying an invalid number of arguments)

• Executing a command in an invalid state (for example, executing the media pause command when
no prompt is playing)

• Using an information tag (info-tag) in an invalid scope (for example, specifying evt_dcdigits when
not handling the ev_collectdigits_done event). For more information about info-tags, see Chapter 4,
“Information Tags.”

In most cases, an error such as these causes the underlying infrastructure to disconnect the call legs and
clean up.

Loading Your Script
To associate an application with your Tcl IVR script, use the following command:

(config)# call application voice application_name script_url

After you associate an application with your Tcl IVR script, use the following command to configure
parameters:

(config)# call application voice application_name script_url [parameter value]

In this command:

• application_name specifies the name of the Tcl application that the system is to use for the calls
configured on the inbound dial peer. Enter the name to be associated with the Tcl IVR script.

• script_url is the pathname where the script is stored. Enter the pathname of the storage location first
and then the script filename. Tcl IVR scripts can be stored in Flash memory or on a server that is
acceptable using a URL, such as a TFTP server.

• parameter value allows you to configure values for specific parameters, such as language or PIN
length.

For more information about the call application voice command, refer to Interactive Voice Response
Version 2.0 on Cisco VoIP Gateways.

In the following example, the application named “test” is associated with the Tcl IVR script called
newapp.tcl, which is located at tftp://keyer/debit_audio/:

(config)# call application voice test tftp://keyer/debit_audio/newapp.tcl

Note If the script cannot be loaded, it is placed in a retry queue and the system periodically retries to load it.
If you modify your script, you can reload it using only the script name:(config)# call application
voice load script_name

For more information about the call application voice and call application voice load commands, refer
to Interactive Voice Response Version 2.0 on Cisco VoIP Gateways.
2-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
Associating Your Script with an Inbound Dial Peer
To invoke your Tcl IVR script to handle a call, you must associate the application configured with an
inbound dial peer. To associate your script with an inbound dial peer, enter the following commands in
configuration mode:

(config)# dial-peer voice number voip

(conf-dial-peer)# incoming called-number destination_number

(conf-dial-peer)# application application_name

In these commands:

• number uniquely identifies the dial peer. (This number has local significance only.)

• destination_number specifies the destination telephone number. Valid entries are any series of digits
that specify the E.164 telephone number.

• application_name is the abbreviated name that you assigned when you loaded the application.

For example, the following commands indicate that the application called “newapp” should be invoked
for calls that come in from an IP network and are destined for the telephone number of 125.

(config)# dial-peer voice 3 voip
(conf-dial-peer)# incoming called-number 125
(conf-dial-peer)# application newapp

For more information about inbound dial peers, refer to the Cisco IOS software documentation.

Displaying Information About IVR Scripts
To view a list of the voice applications that are configured on the router, use the show call application
voice command. A one-line summary of each application is displayed.

show call application voice [[name] | [summary]]

In this command:

• name indicates the name of the desired IVR application. If you enter the name of a specific
application, the system supplies information about that application.

• summary indicates that you want to view summary information. If you specify the summary
keyword, a one-line summary is displayed about each application. If you omit this keyword, a
detailed description of the specified application is displayed.

The following is an example of the output of the show call application voice command:

router# show call application voice session2
Idle call list has 0 calls on it.
Application session2
 The script is read from URL tftp://dirt/sarvi/scripts/tcl/app_session.tcl
 The uid-len is 10 (Default)
 The pin-len is 4 (Default)
 The warning-time is 60 (Default)
 The retry-count is 3 (Default)
 It has 0 calls active.

The Tcl Script is:

app_session.tcl
#--
2-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
August 1999, Saravanan Shanmugham

Copyright (c) 1998, 1999 by cisco Systems, Inc.
All rights reserved.
#--

This tcl script mimics the default SESSION app

If DID is configured, just place the call to the dnis
Otherwise, output dial-tone and collect digits from the
caller against the dial-plan.

Then place the call. If successful, connect it up, otherwise
the caller should hear a busy or congested signal.

The main routine just establishes the state machine and then exits.
From then on the system drives the state machine depending on the
events it receives and calls the appropriate tcl procedure

#---------------------------------
Example Script
#---------------------------------

proc init { } {
 global param

 set param(interruptPrompt) true
 set param(abortKey) *
 set param(terminationKey) #

}

proc act_Setup { } {
 global dest
 global beep

 set beep 0
 leg setupack leg_incoming

 if { [infotag get leg_isdid] } {
 set dest [infotag get leg_dnis]
 leg proceeding leg_incoming
 leg setup $dest callInfo leg_incoming
 fsm setstate PLACECALL
 } else {

 playtone leg_incoming tn_dial

 set param(dialPlan) true
 leg collectdigits leg_incoming param
 }

}

proc act_GotDest { } {
 global dest

 set status [infotag get evt_status]

 if { $status == "cd_004" } {
2-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
 set dest [infotag get evt_dcdigits]
 leg proceeding leg_incoming
 leg setup $dest callInfo leg_incoming

 } else {
 puts "\nCall [infotag get con_all] got event $status while placing an outgoing
call"
 call close
 }
}

proc act_CallSetupDone { } {
 global beep

 set status [infotag get evt_status]

 if { $status == "CS_000"} {

 set creditTimeLeft [infotag get leg_settlement_time leg_outgoing]

 if { ($creditTimeLeft == "unlimited") ||
 ($creditTimeLeft == "uninitialized") } {
 puts "\n Unlimited Time"
 } else {
 # start the timer for ...
 if { $creditTimeLeft < 10 } {
 set beep 1
 set delay $creditTimeLeft
 } else {
 set delay [expr $creditTimeLeft - 10]
 }
 timer start leg_timer $delay leg_incoming
 }
 } else {
 puts "Call [infotag get con_all] got event $status collecting destination"
 call close
 }
}

proc act_Timer { } {
 global beep
 global incoming
 global outgoing

 set incoming [infotag get leg_incoming]
 set outgoing [infotag get leg_outgoing]

 if { $beep == 0 } {
 #insert a beep ...to the caller
 connection destroy con_all
 set beep 1
 } else {
 media play leg_incoming flash:out_of_time.au
 fsm setstate CALLDISCONNECTED
 }
}

proc act_Destroy { } {
 media play leg_incoming flash:beep.au
}

proc act_Beeped { } {
 global incoming
2-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
 global outgoing

 connection create $incoming $outgoing
}

proc act_ConnectedAgain { } {
 timer start leg_timer 10 leg_incoming
}

proc act_Ignore { } {
Dummy
 puts "Event Capture"
}

proc act_Cleanup { } {
 call close
}

init

#----------------------------------
State Machine
#----------------------------------
 set TopFSM(any_state,ev_disconnected) "act_Cleanup,same_state"
 set TopFSM(CALL_INIT,ev_setup_indication) "act_Setup,GETDEST"
 set TopFSM(GETDEST,ev_digitcollect_done) "act_GotDest,PLACECALL"
 set TopFSM(PLACECALL,ev_setup_done) "act_CallSetupDone,CALLACTIVE"
 set TopFSM(CALLACTIVE,ev_leg_timer) "act_Timer,INSERTBEEP"
 set TopFSM(INSERTBEEP,ev_destroy_done) "act_Destroy,same_state"
 set TopFSM(INSERTBEEP,ev_media_done) "act_Beeped,same_state"
 set TopFSM(INSERTBEEP,ev_create_done) "act_ConnectedAgain,CALLACTIVE"
 set TopFSM(CALLACTIVE,ev_disconnected) "act_Cleanup,CALLDISCONNECTED"
 set TopFSM(CALLDISCONNECTED,ev_disconnected) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_media_done) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_media_done) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_disconnect_done) "act_Cleanup,same_state"
 set TopFSM(CALLDISCONNECTED,ev_leg_timer) "act_Cleanup,same_state"

 fsm define TopFSM CALL_INIT

Using URLs in IVR Scripts
With IVR scripts, you use URLs to call the script and to call the audio files that the script plays. The
VoIP system uses Cisco IOS File System (IFS) to read the files, so any IFS supported URLs can be used,
which includes TFTP, FTP, or a pointer to a device on the router.

Note There is a limit of 32 entries in Flash memory, so you may not be able to copy all your audio files into
Flash memory.
2-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 2 Using Tcl IVR Scripts
Testing and Debugging Your Script
URLs for Loading the IVR Script

The URL of the IVR script is a standard URL that points to the location of the script. Examples include:

• flash:myscript.tcl—The script called myscript.tcl is being loaded from Flash memory on the router.

• slot0:myscript.tcl—The script called myscript.tcl is being loaded from a device in slot 0 on the
router.

• tftp://BigServer/myscripts/betterMouseTrap.tcl—The script called myscript.tcl is being loaded
from a server called BigServer in a directory within the tftpboot directory called myscripts.

URLs for Loading Audio Files

URLs for audio files are different from those used to load IVR scripts. With URLs for audio files:

• For static prompts, you can use the IFS-supported URLs as described in the “URLs for Loading the
IVR Script” section on page 2-14.

• For dynamic prompts, the URL is created by the software, using information from the parameters
specified for the media play command and the language CLI configuration command.

Tips for Using Your Tcl IVR Script
This section provides some answers to frequently asked questions about using Tcl IVR scripts.

• How do I get information from my RADIUS server to the Tcl IVR script?

After you have performed an authentication and authorization, you can use the infotag get command
to obtain the credit amount, credit time, and cause codes maintained by the RADIUS server.

• What happens if my script encounters an error?

When an error is encountered in the script, the call is cleared with a cause of
TEMPORARY_FAILURE (41). If the IVR application has already accepted the incoming call, the
caller hears silence. If the script has not accepted the incoming call, the caller might hear a fast busy
signal.

If the script exits with an error and IVR debugging is on (as described in the “Testing and Debugging
Your Script” section on page 2-8), the location of the error in the script is displayed at the command
line.
2-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

C

Cisco IOS Release 12.3(14)T

H A P T E R 3

Tcl IVR API Command Reference

This chapter provides an alphabetical listing of the Tcl IVR API commands and includes the following
topics:

• Standard Tcl Commands Used in Tcl IVR Scripts, page 3-1

• Tcl IVR Commands At a Glance, page 3-3

• Tcl IVR Commands, page 3-6

The following is provided for each command:

• Description of the purpose or function of the command

• Description of the syntax

• List of arguments and a description of each

• List of the possible return values and a description of each

• List of events received upon command completion

• Example of how the command can be used

For information about returns and events, see Chapter 5, “Events and Status Codes.”

Standard Tcl Commands Used in Tcl IVR Scripts
The following standard Tcl 8.3.4 commands can be used in Tcl IVR 2.0 scripts:

Table 3-1 Standard Tcl Commands supported by Cisco IVR 2.0

append array binary break

case catch cd clock

close concat continue encoding

eof1 error eval expr

fconfigure1 file2 fileevent flush

for foreach format gets1

glob global history if

incr info join lappend

lindex linsert list llength

lrange lreplace lsearch lsort

namespace open package3 proc
3-1
Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
HTTP Commands
Note For the puts command, the display is limited to a character size of 2K.

HTTP Commands
The http package is included with Tcl 8.3.4 and provides the client side of the HTTP1.0 protocol.
Table 3-2 identifies HTTP commands that are used in Tcl IVR 2.0 scripts with commands and options
that are not supported on Cisco IOS .

puts pwd read regexp

regsub rename return scan

seek set split string

subst switch tcl_trace time

unset update uplevel upvar

variable while – – – –

1. ChannelId must be an identifier for an open channel, such as a Tcl standard channel (stdin, stdout, or stderr) or the return
value from an invocation of open.

2. The file readlink option is not supported. For file attributes, only group, owner, and permissions are supported.

3. The package ifneeded and package unknown options are not supported.

Table 3-1 Standard Tcl Commands supported by Cisco IVR 2.0

Table 3-2 HTTP Commands

Supported
Commands

Unsupported
Commands Unsupported Options

config -proxyhost hostname

-proxyport number

-proxyfilter command

geturl -channel name

-handler callback

-blocksize size

-progress callback

-queryblocksize size

-queryprogress callback

formatQuery

reset

wait

status

size

code

ncode

data
3-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands At a Glance
Tcl IVR Commands At a Glance
In addition to the standard Tcl commands, you can use the Tcl IVR 2.0 extensions created by Cisco.

Also, Cisco modified the existing puts Tcl command to perform specific tasks. Table 3-2.

error

cleanup

register

unregister

Table 3-2 HTTP Commands

Supported
Commands

Unsupported
Commands Unsupported Options

Table 3-3 Tcl IVR Commands

Command Description

aaa accounting Sends start or update accounting records

aaa accounting get status Queries the accounting status of the leg or retrieves the status of any
method list.

aaa accounting probe Sends an accounting probe record.

aaa accounting set status Changes the method list status.

aaa authenticate Sends an authentication request to an external system, typically a
Remote Access Dial-In User Services (RADIUS) server.

aaa authorize Sends an authorization request to an external system, typically a
RADIUS server.

call close Marks the end of the call, releases all resources associated with that
call, and frees the execution instance to handle the next call.

call lookup Retrieves the application handle of an application that has registered
for calls matching the specified parameters.

call register Used by an application to indicate that it wants to receive any future
incoming calls that match the specified call criteria. It also enables
another application to lookup and retrieve this application’s
instance handle by matching the call criteria.

call unregister Removes the call-registration entries for the specified call criteria.

clock Performs one of several operations that can obtain or manipulate
strings or values that represent some amount of time.

command terminate Terminates a previously issued command.

connection create Connects two call legs.

connection destroy Destroys a connection.

command export Allows the Tcl script to register or export a Tcl procedure to be
invoked from C-code through a dynamic linking mechanism.

fsm define Registers a state machine specified by a Tcl array and its start state.
3-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands At a Glance
fsm setstate Specifies the next state of the FSM after completion of the current
action procedure.

handoff Hands off the name or handle of the application.

handoff return Returns the call leg to the application.

infotag get Retrieves information from a call leg, script, or system.

infotag set Allows you to set information in the system.

leg alert Sends an alert message to the specified leg.

leg callerid Sends an updated call number and name after a transfer.

leg collectdigits Moves the call into Digit Collect mode and collects the digits.

leg connect Sends a call connect message to the incoming call leg.

leg consult abandon Sends a call transfer consultation abandon request on the specified
leg.

leg consult response Sends a call transfer consultation identifier response on the
specified leg.

leg consult request Sends a call transfer consultation identifier request on the specified
leg.

leg disconnect Disconnects one or more call legs that are not part of a connection.

leg disconnect_prog_ind Sends a disconnect message with the specified progress indicator
value to the specified leg.

leg facility Originates a facility message.

leg proceeding Sends a call proceeding message to the incoming call leg.

leg progress Sends a progress message to the specified leg.

leg senddigit Transmits a digit on the specified call leg.

leg sendhookflash Transmits a hook flash on the specified call leg.

leg setup Initiates an outgoing call setup to the destination number.

leg setup_continue Initiate a setup to an endpoint address or lets the system continue its
action after an event interrupts the call processing.

leg setupack Sends a call setup acknowledgement back to the incoming call leg.

leg tonedetect Enables or disables the detection of specific tones during a call.

leg transferdone Indicates the status of the call transfer on a call-leg and disconnects
the call-leg.

leg vxmldialog Initiates a VoiceXML dialog on the specified leg.

leg vxmlsend Throws an event at an ongoing VoiceXML dialog on the leg.

log Originates a syslog message.

media pause Pauses the prompt playing on a specific call leg.

media play Plays a prompt on a specific call leg.

media record Records the the audio received on the specified call leg and saves it
to the location specified by the URL.

media resume Resumes play of a prompt on a specific call leg.

Table 3-3 Tcl IVR Commands (continued)

Command Description
3-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands At a Glance
media seek Seeks forward or backward in the current prompt.

media stop Stops the prompt playing on a specific call leg.

modulespace Allows the creation, access, and deletion of a modulespace in which
a module can execute code.

object create dial-peer Creates a list of dial-peer handles.

object create gtd Creates a GTD Handle to a new GTD area from scratch.

object destroy Destroys one or more dial peer items.

object append gtd Appends one or more GTD attributes to a handle.

object delete gtd Deletes one or more GTD attributes.

object replace gtd Replaces one or more GTD attributes.

object get gtd Retrieves the value of an attribute instance or a list of attributes
associated with the specified GTD handle.

object get dial-peer Returns dial peer information of a dial peer item or a set of dial
peers.

param read Reads configuration parameters associated with the call into a variable

with the name <variable-name>, which becomes read-only.

param register Registers a parameter, with description and default values, allowing
them to be configured and validated through the CLI.

phone assign Plays a specific tone or one according to the status code provided on
a call leg.

phone query Plays a specific tone or one according to the status code provided on
a call leg.

phone unassign Plays a specific tone or one according to the status code provided on
a call leg.

playtone Plays a specific tone or one according to the status code provided on
a call leg.

puts Prints the parameter to the console. Used for debugging.

requiredversion Verifies the current version of the Tcl IVR API.

sendmsg Sends a message to another application instance.

service Registers or unregisters a service.

set avsend Sets an associative array containing standard AV or VSA pairs.

set callinfo Sets the parameters in an array that determines how the call is
placed.

subscription open Sends a subscription request to a subscription server.

subscription close Removes an existing subscription.

subscription notify_ack Sends a positive or negative acknowledgment for a notification event.

timer left Returns the time left on an active timer.

timer start Starts a timer for a call on a specific call leg.

timer stop Stops the timer.

Table 3-3 Tcl IVR Commands (continued)

Command Description
3-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Tcl IVR Commands
The following is an alphabetical list of available Tcl IVR commands.

aaa accounting
The aaa accounting command sends start or update accounting records.

Note There is no stop verb. The stop record should always be generated automatically because of data availability.

Use the update verb to add additional AVs to the stop record.

Syntax

aaa accounting start {legID | info-tag} [-a avlistSend][-s servertag][-t acctTempName]

aaa accounting update {legID | info-tag} [-a avlistSend]

Arguments

• legID—The call leg id (incoming or outgoing).

• info-tag—A direct mapped info-tag mapping to one leg. For more information on information tags,
see Chapter 4, “Information Tags.”

• -s servertag—The server (or server group)’s identifier. This value refer to the method-list-name as
in AAA configuration:

aaa accounting connection {default | method-list-name} group group-name

Default value is h323 (backward-compatible).

• -t acctTempName—Choose an accounting template which defines what attributes to send to the
RADIUS server.

• -a avlistSend—Specify a list of av-pairs to append to the accounting buffer, which will be sent in the
accounting record, or replace existing one(s) if the attribute in the list has a r flag associated with
it. For example:

set avlistSend(h323-credit-amount, r) 50.

Return Values

None.

Command Completion

Immediate.

Examples
aaa accounting start leg_incoming -a avList -s $method -t $template
aaa accounting update leg_incoming -a avList

Usage Notes

• After a start packet is issued, a corresponding stop packet is issued regardless of any suppressing
configuration.
3-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• If debug voip aaa is enabled and an accounting start packet has already been issued, either by the
VoIP infrastrucure (enabled by Cisco IOS configuration command gw-accounting aaa) or execution
of this Tcl verb in the script, the start request is ignored and a warning message is issued.

• If debug voip aaa is enabled and the update verb is called before start, the request is ignored and
a warning message is issued.

• Although the original intent of this option is for additional application-level attributes (which are
only known by the script rather than the underlying VoIP infrastructure) in the accounting packet,
all the AAA attributes that can be included in an accounting request can be sent by using the -a
option. Only the following list of attributes are supported for use in this manner with the -a option,
although there is no sanity checking:

– h323-ivr-out

– h323-ivr-in

– h323-credit-amount

– h323-credit-time

– h323-return-code

– h323-prompt-id

– h323-time-and-day

– h323-redirect-number

– h323-preferred-lang

– h323-redirect-ip-addr

– h323-billing-model

– h323-currency

There is also no sanity check if an attribute is only allowed to be included once. It is the
responsibility of the script writer to maintain such integrity.

aaa accounting get status
The aaa accounting get status command queries the accounting status of the leg or retrieves the status
of any method list.

Syntax

aaa accounting get status {-l <legID | info-tag> | -m method-list-name}

Arguments

• -l legID—The call leg ID.

• -l info-tag—A direct-mapped information tag that maps to one leg.

• -m method-list-name—The server or server group identifier. This value refers to the
method-list-name, as in the following AAA configuration:

aaa accounting connection {default | method-list-name} group group-name

Return Values

This command returns the following:

• unreachable—The accounting status is unreachable.
3-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• reachable—The accounting status is reachable.

• unknown—The accounting status is unknown. If the monitoring of RADIUS-server connectivity is
not enabled, the default status is unknown.

• invalid—The method list or legID specified is invalid.

Command Completion

Immediate

Examples
aaa accounting get status -l leg_incoming
aaa accounting get status -l [infotag get evt_leg]
set m1_1_status [aaa accounting get status -m m1_1]

Usage Notes

• This command only takes one leg, not multiple legs.

• The -l and -m options are mutually exclusive. If one is specified, the other should not be.

aaa accounting probe
The aaa accounting probe command sends an accounting probe record.

Syntax

aaa accounting probe <-s servertag> [-a avlistSend] [-t recordType]

Arguments

• -s servertag—The server or server group identifier. This value refers to the method-list name, as in
the following AAA configuration:

aaa accounting connection {default | method-list-name} group group-name

• -a avlistSend—Specifies a list of av-pairs to append to the accounting buffer to be sent in the
accounting record.

• -t recordType—Specifies a start, stop, or accounting-on accounting record type.

Return Values

probe success—Probing is successful.

probe failed—Probing failed.

Command Completion

Immediate

Examples
aaa accounting probe -s m1_1

set av_send(username) “1234567890”
aaa accounting probe -s m1_1 -a av_send -t stop

Usage Notes

This command sends a dummy accounting probe record.
3-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
aaa accounting set status
The aaa accounting set status command changes the method list status.

Syntax

aaa accounting set status method-list-status method-list-name

Arguments

• method-list-status—Sets the server status. Possible values are:

– unreachable—The server status is unreachable.

– reachable—The server status is reachable.

• method-list-name—The server or server group identifier. This value refers to the method-list-name,
as in the following AAA configuration:

aaa accounting connection {default | method-list-name} group group-name

Return Values

invalid—The method list specified is invalid.

unknown—The method list specified is not subscribed for status monitoring.

reachable—The method list specified is successfully set to the reachable state.

unreachable—The method list specified is successfully set to the unreachable state.

Command Completion

Immediate

Examples
set m1_status “unreachable”
aaa accounting set status reachable m1_1
aaa accounting set status unreachable m1_2

Usage Notes

This command sets the status of the specified method list.

aaa authenticate
The aaa authenticate command validates the authenticity of the user by sending the account number
and password to the appropriate server for authentication. This command returns an accept or reject; it
does not support the infotag get aaa-avpair avpair-name command for retrieving information returned
by the RADIUS server in the authentication response.

Syntax

aaa authenticate account password [-a avlistSend][-s servertag][-l legID]

Arguments

• account—The user’s account number.

• password—The user’s password (or PIN).
3-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• -a avlistSend—This argument is a replacement for the existing [av-send] optional argument.

Backward-compatibility is provided.

• -s servertag—The server (or server group)’s identifier. This value refers to the method-list-name as in

AAA configuration:

aaa authentication login {default | method-list-name} group group-name

Default value is h323 (backward-compatible).

Note Only general-purpose AAA server is currently supported.

• -l legID—The call leg for the access request. Causes voice-specific attributes (VSAs) associated
with the call leg, such as h323-conf-id, to be packed into the access request.

Return Values

None

Command Completion

When the command has finished, the script receives an ev_authenticate_done event.

Example
aaa authenticate $account $password -a $avlistSend -s $method -l leg_incoming

Usage Notes

• Typically a RADIUS server is used for authentication, but any AAA-supported method can be used.

• If Tcl IVR command debugging is on (see the “Testing and Debugging Your Script” section on
page 2-8), the account number and password are displayed.

• Account numbers and PINs are truncated to 32 characters, the E.164 maximum length.

• You can use the aaa authentication login and radius-server commands to configure a number of
RADIUS parameters. For more information, see “Authentication, Authorization, and Accounting
(AAA)”, Cisco IOS Security Configuration Guide, Release 12.2, located at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm

• To define avSend, see set avsend, page 3-72.

• If the -l option is not specified, the h323-conf-id attribute may not be included in the access request.

aaa authorize
The aaa authorize command sends a RADIUS authentication or authorization request, and allows the
Tcl IVR script to retrieve information that the RADIUS server includes in its response. The command
can be used multiple times during a single call (for example, to do the authentication, then to do the
authorization).

When used in combination with the aaa authenticate command, this command provides additional
information to the RADIUS server, such as the destination and origination numbers, after a user has been
successfully authenticated. When used both to authenticate and authorize the user, the values used in
the command's parameters are altered to support each intended purpose. Parameters can be left blank
(null), as illustrated in the examples.
3-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Syntax

aaa authorize account password ani destination {legID | info-tag} [-a avlistSend] [-s servertag] [-g
GUID]

Arguments

• account—User’s account number.

• password—User’s password (or PIN).

• ani—Origination (calling) number.

• destination—Call destination (called) number.

• legID—ID of the incoming call leg.

• info-tag—A direct mapped info-tag mapping to one leg. For more information about info-tags, see
Chapter 4, “Information Tags.”

• -a avlistSend—This argument is a replacement for the existing [av-send] optional argument.

Backward-compatibility is provided.

• -s servertag—The server (or server group) identifier. This value refers to the method-list-name as in

AAA configuration:

aaa authentication exec {default | method-list-name} group group-name

Default value is h323 (backward-compatible).

• -g GUID—Specifies the GUID to use in the authorize operation.

The account and password arguments are the same as those specified in the aaa authenticate command.
The destination and ani arguments provide additional information to the external server.

Return Values

None

Command Completion

When the command finishes, the script receives an ev_authorize_done event.

Examples
aaa authorize $account $password $ani $destination $legid
aaa authorize $account "" $ani "" $legid
aaa authorize $ani "" $ani "" $legid
aaa authorize $account $pin $ani $destination $legid -a avList -s $method -t $template

Usage Notes

• Additional parameters can be returned by the RADIUS server as attribute-value (AV) pairs. To
determine whether additional parameters have been returned, use the aaa_avpair_exists info-tag.
Then to read the parameters, use the aaa_avpair info-tag. For more information about info-tags, see
Chapter 4, “Information Tags.”

• If Tcl IVR commands debugging is on (see the “Testing and Debugging Your Script” section on
page 2-8), the account number, password, and destination are displayed.

• Account numbers, PINs, and destination numbers are truncated at 32 characters, the E.164
maximum length.

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.
3-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• You can use the aaa authentication login and radius-server commands to configure a number of
RADIUS parameters. For more information, see “Authentication, Authorization, and Accounting
(AAA),” Cisco IOS Security Configuration Guide, Release 12.2, located at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_c/index.htm

• To define avSend, see set avsend, page 3-72.

call close
The call close command marks the end of the call and frees the execution instance of the script to handle
the next call. This command causes the system to clean up the resources associated with that call. If
conferenced legs exist, this command destroys the connections and clears all the call legs. If leg
collectdigits is active on any of the call legs, the digit collection process is terminated and the call is
cleared.

Syntax

call close [-r]

Arguments

-r—Retains the subscriptions pertaining to the application.

Return Values

If a call is closed using the -r argument, the resources used by that instance are freed, but any
subscriptions created with the subscribe command remain active and allow notifications to start a
session. If a notification comes in for a retained subscription after an instance closes with a -r argument,
a new instance can be generated to handle the notification.

Note A new session starts only if the original subscription request, sent with the subscription open command,
specifies a configured application as notificationReceiver.

Command Completion

Immediate

Examples
proc act_Disconnected {} {
call close -r
}
set FSM(any_state,ev_disconnected) “act_Disconnected, CALL_CLOSED”

proc act_UnsubscribeDone {} {
call close
}
set fsm(any_state,ev_unsubscribe_done) "act_UnsubscribeDone SUBS_OVER"

Usage Notes

• The call close command marks the end of the call and the end of the script. This command causes
the system to clean up the resources. If the call close command is called without the -r option, the
subscription is removed from the server before closing the running instance.

• When using the call close -r command, make sure notificationReceiver, a configured application or
application handle, is specified.
3-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
call lookup
The call lookup command retrieves the application handle of an application that has registered for calls
matching the specified parameters.

Syntax

call lookup matchParam

Arguments

• matchParam—An associative array containing the call parameters that describe the calls this
application is registering for. Supported call parameters are:

– calledNum—Value of the called number of an incoming call to be matched.

– transferConsultID—Value of the call transfer consultation identifier of an incoming call to be
matched.

Return Values

Returns an application handle if another application has registered for calls matching the specified
parameters. Returns a null string if no application has registered for calls matching the specified
parameters.

Command Completion

Immediate

Examples
set matchParam(calledNum) $calledDNIS
set matchParam(transferConsultID) $consultID
set handler [call lookup matchParam]

Usage Notes

A call registration entry must match all specified matchParam parameters to be considered a successful
match. If the application does not specify any matchParam parameters, the script terminates, an error is
printed to the console, and the call is cleared.

call register
The call register command is used by an application to indicate that it wants to receive any future
incoming calls that match the specified call criteria. It also enables another application to lookup and
retrieve this application’s instance handle by matching the call criteria. See the call lookup command
for more information.

Syntax

call register matchParam [-i]

Arguments

• matchParam—An associative array containing the call parameters that describe the calls this
application is registering for. Supported call parameters are:

– calledNum—Value of the called number of an incoming call to be matched.

– transferConsultID—Value of the call transfer consultation identifier of an incoming call to be
matched.
3-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• -i—Disable automatic call routing. If specified, the application does not receive the incoming call
even if the specified call parameters match. This is useful when an application wants other
applications to hand off call matching of the specified call parameters.

Return Values

0—Registration success

1—Registration failed, duplicate entry

Command Completion

Immediate

Examples
set matchParam(calledNum) $calledDNIS
set matchParam(transferConsultID) $consultID
set registerStatus [call register matchParam -i]

Usage Notes

• This command fails if another application has already registered for calls matching the same call
parameters.

• When an application successfully invokes the call register command, any future incoming calls that
match all parameters specified in the matchParam parameter results in a match.

• By default, a matched incoming call is immediately routed to the registered application and this
application receives an ev_setup_ind event.

• If the call registration command specifies the -i parameter, no calls automatically route to this
application. Instead, the application should be prepared to receive an ev_handoff event from another
application. See the call lookup command usage notes for more information.

• If the application specifies an invalid argument, the script terminates, an error is printed to the
console, and the call is cleared.

• If the application does not specify any matchParam parameters, the script terminates, an error is
printed to the console, and the call is cleared.

call unregister
The call unregister command removes the call-registration entries for the specified call criteria.

Syntax

call unregister matchParam

Arguments

• matchParam—An associative array containing the call parameters that describe the calls this
application is registering for. Supported call parameters are:

– calledNum—Value of the called number of an incoming call to be matched.

– transferConsultID—Value of the call transfer consultation identifier of an incoming call to be
matched.
3-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Return Values

0—Unregistration success

1—Unregistration failed, entry not available

Command Completion

Immediate

Examples
set matchParam(calledNum) $calledDNIS
set matchParam(transferConsultID) $consultID
set unregisterStatus [call unregister matchParam]

Usage Notes

• This command is used by an application when it no longer wants to receive calls that it previously
registered for. A call registration entry must match all specified matchParam parameters to be
unregistered by this command.

• If the application does not specify any matchParam parameters, the script terminates, an error is
printed to the console, and the call is cleared.

clock
This command performs one of several operations that can obtain or manipulate strings or values that
represent some amount of time.

Syntax

clock option arg arg

Arguments

• option—Valid options are:

– clicks—Return a high-resolution time value as a system-dependent integer value. The unit of
the value is system-dependent, but should be the highest resolution clock available on the
system, such as a CPU cycle counter. This value should only be used for the relative
measurement of elapsed time.

– format clockValue -format string -gmt boolean—Converts an integer time value, typically
returned by clock seconds, clock scan, or the atime, mtime, or ctime options of the file
command, to human-readable form. If the -format argument is present the next argument is a
string that describes how the date and time are to be formatted. Field descriptors consist of a %
followed by a field descriptor character. All other characters are copied into the result. Valid
field descriptors are:

– %%—Insert a %.

– %a—Abbreviated weekday name (Mon, Tue, etc.).

– %A—Full weekday name (Monday, Tuesday, etc.).

– %b—Abbreviated month name (Jan, Feb, etc.).

– %B—Full month name.

– %c—Locale specific date and time.

– %d—Day of month (01 - 31).
3-15
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– %H—Hour in 24-hour format (00 - 23).

– %I—Hour in 12-hour format (00 - 12).

– %j—Day of year (001 - 366).

– %m—Month number (01 - 12).

– %M—Minute (00 - 59).

– %p—AM/PM indicator.

– %S—Seconds (00 - 59).

– %U—Week of year (01 - 52), Sunday is the first day of the week.

– %w—Weekday number (Sunday = 0).

– %W—Week of year (01 - 52), Monday is the first day of the week.

– %x—Locale specific date format.

– %X—Locale specific time format.

– %y—Year without century (00 - 99).

– %Y—Year with century (for example, 2002)

– %Z—Time zone name.

In addition, the following field descriptors may be supported on some systems. For example, UNIX
but not Microsoft Windows. Cisco IOS software supports the following options:

– %D—Date as %m/%d/%y.

– %e—Day of month (1 - 31), no leading zeros.

– %h—Abbreviated month name.

– %n—Insert a newline.

– %r—Time as %I:%M:%S %p.

– %R—Time as %H:%M.

– %t—Insert a tab.

– %T—Time as %H:%M:%S.

If the -format argument is not specified, the format string "%a %b %d %H:%M:%S %Z %Y" is used.
If the -gmt argument is present, the next argument must be a boolean, which if true specifies that the
time will be formatted as Greenwich Mean Time. If false then the local time zone will be used as
defined by the operating environment.

• scan dateString -base clockVal -gmt boolean—Converts dateString to an integer clock value (see
clock seconds). The clock scan command parses and converts virtually any standard date and/or
time string, which can include standard time zone mnemonics. If only a time is specified, the current
date is assumed. If the string does not contain a time zone mnemonic, the local time zone is assumed,
unless the -gmt argument is true, in which case the clock value is calculated relative to Greenwich
Mean Time.

If the -base flag is specified, the next argument should contain an integer clock value. Only the date
in this value is used, not the time. This is useful for determining the time on a specific day or doing
other date-relative conversions.

The dateString consists of zero or more specifications of the following form:

– time—A time of day, which is of the form: hh:mm:ss meridian zone or hhmm meridian zone. If
no meridian is specified, hh is interpreted on a 24-hour clock.
3-16
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– date—A specific month and day with optional year. The acceptable formats are mm/dd/yy,
monthname dd, yy, dd monthname yy and day, dd monthname yy. The default year is the current
year. If the year is less then 100, then 1900 is added to it.

– relative time—A specification relative to the current time. The format is number units and
acceptable units are year, fortnight, month, week, day, hour, minute (or min), and second (or
sec). The unit can be specified in singular or plural form, as in 3 weeks. These modifiers may
also be specified: tomorrow, yesterday, today, now, last, this, next, ago.

The actual date is calculated according to the following steps:

– First, any absolute date and/or time is processed and converted. Using that time as the base,
day-of-week specifications are added.

– Next, relative specifications are used. If a date or day is specified, and no absolute or relative
time is specified, midnight is used.

– Finally, a correction is applied so that the correct hour of the day is produced after allowing for
daylight savings time differences.

• seconds—Returns the current date and time as a system-dependent integer value. The unit of the
value is seconds, allowing it to be used for relative time calculations. The value is usually defined
as total elapsed time from an “epoch.” The epoch should not be assumed.

Return Values

None

Command Completion

None

Example
set clock_seconds [clock seconds]
set time [clock format [clock seconds] -format "%H%M%S"]
set new_time [clock format [clock seconds] -format "%T"]
set time_hh [clock format [clock seconds] -format "%H"]
set date [clock format [clock seconds] -format "%Y%m%d"]
set new_date [clock format [clock seconds] -format "%D"]
set week [clock format [clock seconds] -format "%w"]

Usage Notes

None.

command export
The command export command lets the Tcl script register or export a Tcl procedure to be invoked from
C-code through a dynamic linking mechanism.

Syntax
command export <command-string> <command-template>

Arguments

• <command-string>—The expanded name, including namespace information needed to invoke the
procedure from outside its native namespace.
3-17
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• <command-template>—A parameter template that the Tcl procedure accepts, allowing the DLL
system to make sure the C-code that invokes this API calls it with the right type and number of
parameters. This string is of the form x:x:x:x:x:x, where each x indicates the type of parameter
permitted. The first x indicates the return type of the procedure. The value of x can be s to represent
a string or char* parameter.

Return Values

None

Command Completion

Immediate

Examples
command export ::Service::handle_event s

Usage Notes

None

command terminate
The command terminate command ends or stops a previously issued command.

Syntax

command terminate [commandHandle]

Arguments

commandHandle—The handler handle associated with a handler retrieved by the get
last_command_handle infotag. The leg setup command can be terminated using this verb. For more
information about info-tags, see Chapter 4, “Information Tags.”

Return Values

This command returns one of the following:

• 0 (pending)—A command termination is initiated.

• 1 (terminated)—The command termination has completed.

• 2 (failed)—The command termination verb is not valid. Either the command argument is not correct,
there is no such command pending, or the termination for that command has already been initiated.

Command Completion

If applied to a call setup verb, an ev_setup_done event is returned when the call setup handler terminates.
The status code for this event is ls_015: terminated by application request.

Example
command terminate [$commandHandle]

Usage Notes

The last command handle has to be retrieved before any other command is issued.
3-18
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
connection create
The connection create command connects two call legs.

Syntax

connection create {legID1 | info-tag1} {legID2 | info-tag2}

Arguments

• legID1—The ID of the first call leg to be connected.

• info-tag1—A direct mapped info-tag mapping to one call leg. For more information about info-tags,
see Chapter 4, “Information Tags.”

• legID2—The ID of the second call leg to be connected.

• info-tag2—A direct mapped info-tag mapping to a single second leg. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

This command returns the following:

• connectionID—A unique ID assigned to this connection. This ID is required for the connection
destroy command.

Command Completion

When this command finishes, the script receives an ev_create_done event.

Example
set connID [connection create $legID1 $legID2]

Usage Notes

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• Connections between two IP legs are not supported. Even if the command seems to execute
successfully, it actually does not work. Doing so could potentially cause problems, as there is
currently no way to capture the resulting error at the script level. Therefore, it is advisable to avoid
attempting such connections.

• If supplementary services such as hold or voice transfer are used, the called party can hear voice and
media prompts being played from the calling party after the call legs have been destroyed. To avoid
this problem, disable the voice-fastpath enable Cisco IOS command which is enabled by default.
To disable it, use the no voice-fastpath enable global configuration command.

connection destroy
The connection destroy command destroys the connection between the two call legs.

Syntax

connection destroy {connectionID | info-tag}

Arguments

• connectionID—The unique ID assigned to this connection during the connection create process.
3-19
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• info-tag—A direct mapped info-tag mapping to one connection ID. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

When this command finishes, the script receives an ev_destroy_done event.

Example
connection destroy $connID

Usage Notes

• The individual call legs are not disconnected; only the connection between the call legs is destroyed.

• If supplementary services such as hold or voice transfer are used, the called party can hear voice and
media prompts being played from the calling party after the call legs have been destroyed. To work
around this problem, disable the voice-fastpath enable Cisco IOS command which is enabled by
default. To disable it, use the no voice-fastpath enable global configuration command.

fsm define
The fsm define command registers a state machine for the script. The state machine is specified using a
Tcl array that lists the state event transition along with the appropriate action procedure.

Syntax

fsm define statemachine_array start_state

Arguments

• statemachine_array—An array that defines the state machine. The array is indexed by the current
state and current event. The value of each entry is the action function to execute and the state to
move to next. The format of the array entries is:

set statemachine_array(current_state,current_event) “actionFunction,next_state”

Note The current state and event are enclosed in parentheses and separated by a comma without
any spaces. The resulting action and next state are enclosed in quotation marks and separated
by a comma, spaces, or both.

• start_state—The starting state of the state machine. This is the state of script when a new call comes
in for this script.

Return Values

None

Command Completion

Immediate
3-20
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Example
#----------------------------------
State Machine
#----------------------------------
set FSM(CALL_INIT,ev_setup_indication) “act_Setup,DEST_COLLECT”

set FSM(DEST_COLLECT,ev_disconnect_done) “act_DCDone,CALL_SETTING”
set FSM(DEST_COLLECT,ev_disconnected) “act_DCDisc,CALL_DISCONNECTING”

set FSM(CALL_SETTING,ev_callsetup_done) “act_PCDone,CALL_ACTIVE”
set FSM(CALL_SETTING,ev_disconnected) “act_PCDisc,CALL_SETTING_WAIT”

fsm define FSM CALL_INIT

fsm setstate
The fsm setstate command allows you to specify the state to which the FSM moves to after completion
of the action procedure.

Syntax

fsm setstate StateName

Arguments

• StateName—The state that the FSM should move to after the action procedure completes its
execution. This overrides the next state specified in the current state transition of the FSM table.

Return Values

None

Command Completion

None

Example
#Check for DNIS, if there is DNIS you want to go to Call setup right away
set legID [infotag get evt_legs]
set destination [infotag get leg_dnis $legID]
if {destination != ““} {

callProceeding $legID
set callInfo(alertTime) 30
call setup $destination callInfo leg_incoming
#Moves to CALL_SETTING state
fsm setstate CALL_SETTING

} else {
leg setupack $legID
playtone $legID TN_DIAL
set DCInfo(dialPlan) true
Assumption: As per the state machine moves to DIGIT_COLLECT}
leg collectdigits $legID DCInfo

}

Usage Notes

• This command allows the action procedure to specify the state that the FSM should move to (other
than the state specified in the FSM table).
3-21
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• If you do not use this command, the state transition follows the state machine as defined in the FSM
table.

handoff
Hands off the name or handle of the application.

Syntax

handoff {appl | callappl} {legID | info-tag} [{legID2 | info-tag2} ...] {app-name | <handle>} [-s

<argstring>]

Arguments

• appl | callappl—Specific handoff command desired. The only difference is that appl does not
provide a return value, callappl does.

• legID | infotag—The call leg ID to hand off to the destination. For more information about info-tags,
see Chapter 4, “Information Tags.”

• app-name | <handle>—The application name or handle.

• -s <argstring>—Information to pass to another application instance.

Return Values

If the handoff is to an instance that is not running, it returns an “unavailable” message.

Command Completion

Immediate.

Examples
set iid newapp
set sid customer
set anum 123456
handoff appl leg_incoming $iid -s “Here is a call: service=$sid; account number=$anum”

set iid newapp
set sid customer
set anum 123456
handoff callappl leg_incoming $iid -s “Here is a call: service=$sid; account number=$anum”

Usage Notes

• The application name is the name as configured in the call app voice <name> <url> configuration
command and the application handle is the handle returned by either the mod_handle_service or the
evt_msg_source information tags.

• This command can create a new instance by providing a name or it can try to hand off to an existing
instance by providing a handle. A handle has a special internal format, which the system can parse
to determine if it is a handle or a name. If the handle points to an instance that does not exist, the
handoff command returns “unavailable”. The script does not fail and still maintains control of the
call legs.

• The application instance that receives the call leg can retrieve the argument string by using the
evt_handoff_argstring information tag.

• If the handle points to an instance that does not exist, the handoff command returns “unavailable”. The

script does not fail and still maintains control over the call legs.
3-22
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
handoff return
Returns a set of separate call legs received from different sessions or a set of conferenced legs to the same

session.

Syntax

handoff return legID [-s <argstring>]

Arguments

• legID—The call leg or legs to return. Can be a VAR_TAG, such as leg_incoming.

• -s <argstring>—Information to pass to another application instance.

Return Values

If the handoff is to an instance that is not running, it returns an “unavailable” message.

Command Completion

Immediate

Example
set leg2 leg_incoming
handoff return $leg2 -s “$sid; $anum”

Usage Notes

• The application instance that receives the call leg can retrieve the argument string by using the
evt_handoff_argstring information tag.

• Handoff return of a set of separate call legs received from different sessions should be done with a
separate handoff return command for each leg. The handoff return leg_all command is undefined
in this case. The entire set of call legs returns to the return location for the first leg; however, which
leg is listed first in the leg_all information tag is undefined.

• Handoff return of a set of conferenced legs returns both legs to the same session. For example, if a
session has been handed leg1 from session1 and leg2 from session2, and it conferenced the two legs
together. Then the command

handoff return $leg2

returns both legs, conferenced together, to session2.

infotag get
The infotag get command retrieves information from a call leg, call, script, or system. The information
retrieved is based on the info-tag specified.

Syntax

infotag get info-tag [parameter-list]

Arguments

• info-tag—The info-tag that indicates the type of information to be retrieved. For more information
about info-tags, see Chapter 4, “Information Tags.”
3-23
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• parameter-list—(Optional, depending on the info-tag) The list of parameters that further defines the
information to be retrieved.

Return Values

The information requested.

Command Completion

Immediate

Example
set dnis [infotag get leg_dnis]
set language [infotag get med_language]
set leg_list2 [infotag get leg_legs]

Usage Notes

Some info-tags have specific scopes of access. For example, you cannot call evt_dcdigits while handling
the ev_setup_done event. In other words, if the previous command is leg setup and the ev_setup_done
event has not yet returned, then you cannot execute an infotag get evt_dcdigits command, or the script
terminates with error output. For more information, see Chapter 4, “Information Tags.”.

infotag set
The infotag set command allows you to set information in the system. This command works only with
info-tags that are writable.

Syntax

infotag set {info-tag [parameters]} value

Arguments

• info-tag—The information to set. A list of info-tags that can be set is found in Chapter 4,
“Information Tags,” and are designated as “Write.”

• parameters—A list of parameters that is dependent on the info-tag used.

• value—The value to set to. This is dependent on the info-tag used.

Return Values

None

Command Completion

Immediate

Example
infotag set med_language prefix ch
infotag set med_location ch 0 tftp://www.cisco.com/mediafiles/Chinese

leg alert
Sends an alert message to the specified leg.
3-24
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Syntax

leg alert {legID | info-tag} [-p <prog_ind_value>] [-s <sig_ind_value>] [-g <GTDHandle>]

Arguments

• legID | info-tag—Points to the incoming leg to send the progress message to.

• -s <sig_ind_value>—The value of the call signal indication. The value is forwarded as is.

• -p <prog_ind_value>—The value of the call progress indication. The value is forwarded as is.

• -g <GTD handle>—The handle to a previously created GTD area. If not specified, the default is to
send a ring back signal.

Return Values

None.

Command Completion

Immediate.

Examples
leg setupack leg_incoming
leg alert leg_incoming -s 1–g gtd_progress_handle
leg connect leg_incoming

Usage Notes

• Applications that terminate a call can insert a leg alert before connecting with the incoming leg to
satisfy the switch.

• For the leg alert command to be successful, the leg must be in the proper state. The following
conditions are checked on the target leg:

– A leg setupack has been sent.

– No leg alert has been sent.

• If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the call is cleared.

leg callerid
The leg callerid command allows an application to specify caller identification information to Cisco IP
phones operating in a Cisco CallManager Express (CME) environment and analog FXS phones with the
necessary caller ID capabilities.

Syntax

leg callerid {legID | infotag} param

Arguments

• legID | infotag—The call leg ID to hand off to the destination.

• param—An associative array containing the caller identification information for the specified call.
There are two available parameters: name and number. Number is mandatory; name is optional.
3-25
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Return Values

None.

Command Completion

Immediate.

Examples
set param(name) “Xee”
set param(number) “4088531936”
leg callerid param legXto

set param(name) “Xto”
set param(number) “4088531645”
leg callerid param legXee

set param(name) “John Smith”
set param(number) “1234567890”
leg callerid leg_outgoing param

Usage Notes

• If the specified call leg is invalid, the script terminates, an error is printed to the console, and the
call is cleared.

• If param(number) is not specified, the script terminates, an error is printed to the console, and the
call is cleared.

• If the leg callerid command is used for telephony call legs that do not have call waiting (with the
exception of EFXS call legs), a beeping sound may be heard by the caller upon call connection. This
beeping sound may confuse the caller because it usually indicates call waiting for analog FXS
phones. To avoid confusion, use the leg callerid command only for EFXS call legs.

• Before using the leg callerid command, use the information tag leg_type to check the type of call
leg.

leg collectdigits
The leg collectdigits command instructs the system to collect digits on a specified call leg against a dial
plan, a list of patterns, or both.

Syntax

leg collectdigits {legID | info-tag} [param [match]]

Arguments

• legID—The ID of the call leg on which to enable digit collection.

• info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• param—An array of parameters that defines how the digits are to be collected. The array can contain
the following:

– param(abortKey)—Key to abort the digit collection. The default is none.

– param(interDigitTimeout)—Interdigit timeout value in seconds. The default is 10.

– param(initialDigitTimeout)—Initial digit timeout value in seconds. The default is 10.
3-26
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– param(interruptPrompt)—Whether to interrupt the prompt when a key is pressed. Possible
values are true and false. The default is false.

– param(terminationKey)—Key that terminates the digit collection. The default is none.

– param (consumeDigit)— Allows the application to prevent the digits dialed by the user from
being relayed to a remote end point after the incoming and outgoing call legs are bridged.

– param(dialPlan)—Whether to match the digits collected against a dial plan (or pattern, if 1 is
specified). Possible values are true and false. The default is false.

– param(dialPlanTerm)—Match incoming digits against a dial plan and, even if the match fails,
continue to collect the digits until the termination key is pressed or a digit timeout occurs.
Possible values are true and false. The default is false.

– param(maxDigits)—Maximum number of digits to collect before returning.

– param(enableReporting)—Whether to enable digit reporting when returning. Possible values
are true and false. The default is false. After you have enabled digit reporting, the script receives
an ev_digit_end event when each key is pressed and released. With digit reporting enabled, the
script may also receive periodic ev_digit_end events with digit T, indicating an interdigit
timeout, which usually can be ignored by the script.

– param(ignoreInitialTermKey)—This disallows or ignores the termination key as the first key
in digit collection. The default is false.

• match—An array variable that contains the list of patterns that determines what the leg collectdigits
command will look for. A %D string within a pattern string matches the corresponding digits against
the dial plan.

Return Values

None

Command Completion

When the command finishes, the script receives an ev_collectdigits_done event, which contains the
success or failure code and the digits collected. For more information about the success and failure
codes, see the “Status Codes” section on page 5-6.

Examples

Example 1—Collect digits to match dialplan:

set params(interruptPrompt) true
set params(dialPlan) true
leg collectdigits $legID params

Example 2—Collect digits to match a pattern:

set pattern(1) "99.....9*"
set pattern(2) "88.....9*"
leg collectdigits $legID params pattern

Example 3—Collect digits to match a dial plan with a pattern prefix:

set pattern(1) "#43#%D"
leg collectdigits $legID params pattern

Example 4— Here is an example of using the consumeDigit parameter to prevent digit relay to a remote
end point. The TCL application receives an ev_digit_end event for every dialed digit. None of these
digits are relayed to the other call leg.

set param(enableReporting) true
3-27
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
set param(consumeDigit) true
leg collectdigits {legID|info-tag} param

Usage Notes

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• By default, the script does not see any digits, because digit reporting is disabled on all call legs. For
the script to see individual digit events, digit reporting must be turned on using the leg collect digits
command with parm(enableReporting) set to TRUE.

• If enableReporting is set to TRUE, the command finishes and digit reporting remains on (allowing
the script to receive the digits pressed). This is useful if you want the script to collect digits by itself
or if you want to look for longpounds.

• If the leg collectdigits command is being issued just for enabling digit reporting, and is not expected
to collect digits or patterns, the command will finish after it has turned reporting on. The script will
receive the ev_collectdigits_done event with a status of cd_009.

• The initial timeout for collecting digits is 10 seconds and the interdigit collection timeout is
10 seconds. If the digit collection times out, a timeout status code along with the digits collected so
far is returned. You can change the timeout values at the voice port using the timeouts initial and
timeout interdigit commands.

• The consumeDigit parameter can be set to true or false (default).

– Setting the consumeDigit parameter to true or false does not affect digit collection when the
call leg is not bridged.

– Setting the consumeDigit parameter to true does not prevent dialed digits from being passed to
a remote end point if the negotiated DTMF relay is rtp-nte, cisco-rtp, or in-band voice.

• When multiple match criteria are specified for leg collectdigits, the matching preference order is
maxDigits, dialPlan, pattern.

The preference, maxDigits, is considered to be a special pattern.

This special-pattern matching terminates and is considered to be a successful match if one of the
following conditions occur:

– The user dials the maximum number of digits.

– The user presses the termination key, when set.

– A time-out occurs after the user has dialed a few digits.

When this happens, a cd_005 status code is reported. See Digit Collection Status, page 5-7.

• If the digits match the dialPlan with a pattern prefix, the command returns a pattern matched,
cd_005, status code. See Digit Collection Status, page 5-7.

• %D dialPlan pattern matching string is allowed only at the end of the pattern. If %D is specified in
any other position within the pattern, the script terminates, an error is sent to the console, and the
call is cleared.

• If both a %D pattern is specified and the dialPlan parameter is set to TRUE, the command returns a
dialplan matched, cd_004, status code on successful dialplan match. See Digit Collection Status,
page 5-7.

The evt_dcpattern and evt_dcdigits information tags can be used to retrieve the matched pattern and
digits.
3-28
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
leg connect
The leg connect command sends a signaling level CONNECT message to the incoming call leg.

Syntax

leg connect {legID | info-tag}

Arguments

• legID—The ID of the incoming call leg to which the connect signaling message is sent.

• info-tag—A direct mapped info-tag mapping to one or more incoming legs. For more information
about info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

Immediate

Examples
leg connect leg_incoming
leg connect $legID

Usage Notes

• If the specified call leg is not incoming, the script terminates and displays an error to the console,
and the call is cleared.

• If the info-tag specified maps to more than one incoming call leg, a call connect message is sent to
all the incoming call legs that have not already received a call connect message.

• If the state of the specified call leg prevents it from receiving a call connect message (for example,
if the state of the leg is disconnecting), the command fails.

• If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the call is cleared.

Note For incoming ISDN call legs, a setupack, proceeding, or alert message must be sent before the connect
message. Otherwise, the script will receive an ev_disconnected event and the incoming leg will be
disconnected.

leg consult abandon
This command is used to send a call-transfer consultation abandon request on the specified leg.
Depending on the underlying protocol, the gateway may send a message to the endpoint. Typically, the
endpoint cleans up its state and locally generates an error response indicating that the call transfer has
failed.

Syntax

leg consult abandon legID
3-29
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Arguments

legID—The ID of the call-leg to transfer-target endpoint.

Return Values

The command returns one of the following:

• 0 (success)—The abandon message successfully sent on the call-leg

• 1 (failed, invalid state)—The call-leg has not sent a consult request message earlier. It is invalid to
send a consult-abandon message on a leg that has not sent a consult-request message.

• 2 (failed, protocol error)—The abandon message could not be sent due to a protocol error.

Example
leg consult abandon $targetleg
set retcode [leg consult abandon $consultLeg]

Command Completion

Immediate

Related Events

None

leg consult response
This command is used to send a call-transfer consultation identifier response on the specified leg. A
consult-id is automatically generated. Depending on the underlying protocol, the gateway either sends a
message with the generated consult-id on the specified leg or ignores this command.

Syntax

leg consult response legID {[-i consultID][-t transferDestNum] | -c ‘xxx’}

Arguments

• legID—ID of the call-leg to transferrer endpoint.

• -i consultID—consultation-id (optional)

• -t transferDestNum—transfer-target number. Diverted-to number could be used here when the
transfer-target is locally forwarded to another number. If not specified, the legID’s corresponding
outgoing call leg’s calledNumber is used. If an appropriate outgoing call leg does not exist, the
legID’s calledNumber is used. (optional)

• -c ‘xxx’—Where ‘xxx’ is a consult failure code (optional)

– 001—consultation failure

– 002—consultation rejected

Return Values

When the command finishes, the script receives an ev_consultation_done.

Example
leg consult response leg_incoming -i $tcl_consultid
leg consult response $xorCallLeg -t $newTargetNum
leg consult response leg_incoming -c 2
3-30
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Command Completion

Immediate

Related Events

ev_consult_request

leg consult request
This command is used to send a call-transfer consultation identifier request on the specified leg.
Depending on the underlying protocol, the gateway will send a message to the endpoint or the gateway
itself generates the identifier.

Syntax

leg consult request legID

Arguments

legID—The ID of the call-leg to transfer-target endpoint.

Return Values

None

Example
leg consult request $targetleg

Command Completion

When the command finishes, the script receives an ev_consult_response.

Related Events

ev_consult_response

leg disconnect
The leg disconnect command disconnects one or more call legs that are not part of any connection.

Syntax

leg disconnect {legID | info-tag} [-c cause_code] [-g <gtd_handle>] [-i <iec>]

Arguments

• legID—ID of the call leg.

• info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• -c cause_code—An integer ISDN cause code for the disconnect. It is of the form di-xxx or just xxx,
where xxx is the ISDN cause code.
3-31
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Note Tcl IVR does not validate cause_code. For non-DID calls, the optional cause_code
parameter does not have any effect on incoming telephony legs when both of the following
conditions are true:

1. The leg setupack command has been issued for this leg.
2. The leg has not yet reached the connect state.

In this case, the cause_code parameter is ignored and the leg is disconnected using cause
code 0x10, “Normal Call Clearing.”

• -g <gtd_handle>—The handle to a previously-created GTD area.

• -i <iec>—Specifies an Internal Error Code (IEC) to be logged as the reason for the disconnect. See set
iec, page 4-45, for possible values.

Return Values

None

Command Completion

When the command finishes, the script receives an ev_disconnect_done event.

Examples
leg disconnect leg_incoming
leg disconnect leg_outgoing
leg disconnect leg_all
leg disconnect 25
leg disconnect $callId
leg disconnect [info-tag get evt_legs]
leg disconnect leg_incoming -i media_done_err
leg disconnect leg_incoming 47 -i accounting_conn_err

Usage Notes

• If the specified call leg is invalid or if any of the specified call legs are part of a connection
(conferenced), the script terminates with error output, and the call closes.

• When the script receives an ev_disconnected event, the script has 15 seconds to clear the leg with
the leg disconnect command. After 15 seconds, a timer expires, the script is cleaned up, and an error
message is displayed to the console. This avoids the situation where a script might not have cleared
a leg after a disconnect.

• Using the set iec information tag in addition to specifying the IEC with the leg disconnect -<iec>
command causes duplicate IECs to be associated with the call leg.

leg disconnect_prog_ind
The leg disconnect_prog_ind command sends a disconnect message with the specified progress
indicator value to the specified leg.

Syntax

leg disconnect_prog_ind {legID | info-tag} [-c <cause_code>][-p <prog_ind value>]
3-32
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Arguments

• legID—ID of the call leg.

• info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• -c <cause_code>—An integer ISDN cause code for the disconnect. It is of the form di-xxx or just
xxx, where xxx is the ISDN cause code.

• -p <prog_ind value>—The value of the call progress indication. Valid values are:

– 1—PROG_NOT_END_TO_END_ISDN

– 2—PROG_DEST_NON_ISDN

– 4—PROG_RETURN_TO_ISDN

– 8—PROG_INBAND

– 10—PROG_DELAY_AT_DEST

Return Values

None

Command Completion

Immediate.

Examples
leg disconnect_prog_ind leg_incoming -c19 -p8

Usage Notes

• Applications that terminate a call can insert a leg disconnect_prog_ind before playing an
announcement toward the incoming leg.

• This command is normally used on an incoming call leg before it reaches the connect state. Using
this command on an outgoing call leg may result in an error or unexpected behavior from the
terminating PSTN switch. Using this command on an incoming call leg that is already connected
may result in an error or unexpected behavior from the originating PSTN switch.

leg facility
The leg facility command originates a facility message.

Syntax

leg facility {legID | info-tag} {-s ss_Info | -g gtd_handle | -c}

Arguments

• legID—The call leg ID the facility message is sent to.

• info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• -s ss_Info—An array containing parameters that are passed to the stack to build the facility message.

• -g gtd_handle—Sends a new facility using the specified GTD handle.
3-33
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• -c—Forwards the received facility message as is. Used when forwarding a received facility message
to conferenced call legs. The raw message in the previous facility message is copied to the new
facility message and updated.

Return Values

None

Command Completion

Immediate

Examples
set ssInfo (ssID) “ss_mcid”
leg facility leg_incoming -s ssInfo

object create gtd gtd_inr INR
object append gtd gtd_inr iri.1.inf 1
leg facility leg_incoming -g gtd_inr

Usage Notes

One of the following options is mandatory: -s ss_info, or -g gtd_handle, or -c

If the -s ss_Info option is used, a mandatory parameter, ssID, must be set to indicate the service type.
The value for malicious call identification (MCID) messages is ss_mcid.

leg proceeding
The leg proceeding command sends a call proceeding message to the incoming call leg. The gateway is
responsible for translating this message into the appropriate protocol message (depending on the call leg)
and sending them to the caller.

Syntax

leg proceeding {legID | info-tag}

Arguments

• legID—The ID of the incoming call leg.

• info-tag—A call leg info-tag that maps into one or more call legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

Immediate

Example
leg proceeding leg_incoming

Usage Notes

• If the specified call leg is not incoming, this command clears the call.
3-34
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• If leg_incoming is specified and there is more than one incoming call leg, a call proceeding message
is sent to all the incoming call legs that have not already received a call preceding message.

• If the state of the specified call leg prevents it from receiving a call proceeding message (for
example, if the state of the call leg is disconnecting) the command fails.

• If a call proceeding message has already been sent, this command is ignored. If IVR debugging is
on (see the “Testing and Debugging Your Script” section on page 2-8), the command that has been
ignored is displayed.

• If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the call is cleared.

leg progress
Sends a progress message to the specified leg.

Syntax

leg progress {legID | info-tag} [-p <prog_ind_value>] [-s <sig_ind_value>] [-g <GTDHandle>]

Arguments

• legID | info-tag—Points to the incoming leg to send the progress message to.

• -s <sig_ind_value>—The value of the call signal indication. The value is forwarded as is.

• -p <prog_ind_value>—The value of the call progress indication. Valid values are:

– 1 (PROG_NOT_END_TO_END_ISDN)

– 2 (PROG_DEST_NON_ISDN)

– 4 (PROG_RETURN_TO_ISDN)

– 8 (PROG_INBAND)

– 10 (PROG_DELAY_AT_DEST)

• -g <GTD handle>—The handle to a previously created GTD area.

Return Values

None.

Command Completion

Immediate.

Examples
leg progress leg_incoming -p 8 –g gtd_progress_handle

Usage Notes

• Applications that terminate a call can insert a leg progress before playing an announcement toward
the incoming leg.

• If the specified call leg is already in the connect state, the script terminates and displays an error to
the console, and the call is cleared.
3-35
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Note For incoming ISDN call legs, a setupack, proceeding, or alert message must be sent before the connect
message. Otherwise, the script will receive an ev_disconnected event and the incoming leg will be
disconnected.

leg senddigit
Transmits a digit on the specified call leg.

Syntax

leg senddigit {legID | info-tag} digit [-t duration]

Arguments

• legID—The ID of the call leg on which to send a digit.

• info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• digit— Specifies a single digit {0-9, A-D, *, #}

• -t duration— Specifies the duration of the digit in milliseconds.

Return Values

None

Example:

set digit 5
set duration 55
leg senddigit leg_outgoing $digit
or
leg senddigit leg_outgoing $digit -t $duration

Usage Notes

• Only a single digit can be specified for the leg senddigit verb. If more than one digit is specified, a
syntax error is generated. The script terminates and displays an error message on the console, and
call is cleared.

• The specified digit must be either 0 to 9, A to D, *, or #, otherwise the digit is not transmitted and
a debug message is printed.

• The default digit duration is 100 ms. If the digit duration is not specified, the default value is used.

• The minimum digit duration is 40 ms, and the maximum digit duration is 4 seconds. The maximum
duration is approximately twice the duration required for the longpound (#). If the duration specified
is less than 40 milliseconds or greater than 4 seconds, the digit duration is reset to the default value
and a debug message is printed.

• The DTMF relay H245 alphanumeric mode of transportation does not transport digit duration. The
digit duration is not used if it is specified in the TCL verb and the negotiated DTMF relay mode of
transportation is H245 alphanumeric.

• Digit transmission fails if the leg senddigit verb is executed and the negotiated DTMF relay is either
rtp-nte or cisco-rtp.

• In-band transmission of digits is not supported. Digit transmission fails if leg senddigit is executed
and DTMF relay is not negotiated.
3-36
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
leg sendhookflash
Transmits a hook flash on the specified call leg.

Syntax

leg sendhookflash {legID | info-tag}

Arguments

• legID—The ID of the call leg on which to generate a hookflash.

• info-tag—A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Usage Notes

• A hook flash can be generated on IP call legs, FXO ports, and T1 CAS trunks if the signaling type
and platform supports it.

• Restrictions:

– Hook flash transmission fails if the DTMF relay is not negotiated, or if the negotiated DTMF
relay is rtp-nte or cisco-rtp.

– In-band transmission of hook flash is not supported.

leg setup
The leg setup command requests the system to place a call to the specified destination numbers.

Syntax

leg setup {destination | array-of-destinations} callinfo [legID | info-tag] [-g <GTDHandle>] [–d
<dialpeerHandle>]

Arguments

• destination—The call destination number.

• array-of-destinations—An array containing multiple call destination numbers.

• callinfo—An array containing parameters that determine how the call is placed. See the set callinfo
command for possible values.

• legID—The call leg ID to conference if the call setup succeeds. For call transfer, this is usually the
call leg that was conferenced with the leg that received the ev_transfer_request event. This leg
should not be part of any conference.

• info-tag—A direct mapped info-tag mapping to one incoming leg. For more information about
info-tags, see the “Information Tags” section on page 4-1.

• -g <GTD handle>—The handle to a previously created GTD area.

• -d <dialpeerHandle>—Specifies the dial-peer handle to use for the setup.
3-37
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Return Value

None

Command Completion

When the command finishes, the script receives an ev_setup_done event.

Example
set callInfo(alertTime) 25
leg setup 9857625 callInfo leg_incoming
set destinations(1) 9787659
set destinations(2) 2621336
leg setup destinations callInfo leg_incoming

set dest leg_outgoing
set dialpeer_handle new_handle
leg setup $dest callInfo –d $dialpeer_handle

set setupSignal(Subject) “Hotel Reservation”
set setupSignal(Priority) “urgent”
set setupSignal(X-ReferenceNumber) “1234567890”
set callInfo(protoHeaders) setupSignal
set destination “4085551234”
leg setup destination callInfo leg_incoming

Usage Notes

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• If a single destination number is specified, the leg setup command places a call to that destination
number. When the destination phone rings, the incoming call leg is alerted (in-band or out-of-band,
as appropriate). When the destination phone is answered, the call is connected, and the leg setup
command returns an ev_setup_done event. If the call fails to reach its destination through the dial
peer, the leg setup command tries the next dial peer until all dial peers that match the destination
have been tried. (This is called rotary hunting.) At that point, the leg setup command fails with a
failure code (an ev_setup_done event with a status code of alert timeout). For more information
about the failure codes, see the “Status Codes” section on page 5-6.

• If multiple destination numbers are specified, the leg setup command places the call to all the
specified numbers simultaneously (causing all the destination phones to ring at the same time).
When the first destination phone is answered, the call is connected and the remaining calls are
disconnected. (This is called blast calling.) Therefore, when you receive the ev_setup_done event
and then issue an infotag get evt_legs info-tag command, the incoming leg is returned.

• A script can initiate more than one leg setup command, each for a different call leg ID. After a call
setup message has been issued for a specific call leg ID, you cannot issue another leg setup
command for this call leg ID until the first one finishes.

• If a prompt is playing on the call leg when the call setup is issued, the leg setup proceeds and the
destination phones ring. However, the caller does not hear the ring tone until the prompt has finished
playing. If, during the prompt, the destination phone is answered, the prompt is terminated and the
call is completed.

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• The leg ID used in the leg setup command should not be conferenced. Otherwise, the command fails
and the script terminates.

• If successful, this command returns the following:
3-38
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– legID—The unique IDs assigned to the two legs that are part of the connection. The ID of the
incoming leg might not be what you passed as the incoming leg. The incoming leg might have
been cleared and a new incoming leg conferenced. This is an exception case that might happen
because of supplementary services processing or H.450 services.

– connectionID—A unique ID assigned to this connection. This ID is required for the connection
destroy command.

The above information can be obtained from evt_legs and evt_connections info-tags. For more
information about info-tags, see the “Information Tags” section on page 4-1.

If unsuccessful, this command returns nothing or a single leg ID. You may get the incoming leg ID
because the incoming leg that was passed may have been disconnected. These are exception cases
that may happen due to supplementary services processing or H.450 services.

• The script can terminate a pending call setup by issuing the command terminate verb. See the
command terminate section for more information.

• Leg setup cannot use a leg that has a dialog running in its [legID | info-tag] parameter.

• The [legID | info-tag] is an optional parameter. Tcl IVR applications can initiate a leg setup without
referencing an incoming leg. This ability can be useful in applications such as a callback application.
After the leg setup successfully completes, the application can connect the new leg with an existing
leg using the connection create verb.

• If there is no destinationNum, then <destination> is used for outbound dial-peer selection. If both
destinationNum and <destination> exist, then <destination> is used to select the outbound dial peer,
but destinationNum is used to fill out the signaling fields.

• If the destinationNum and originationNum contain a URL, the application extracts the E.164 from
the URL, if any, and stores it directly into the calledNumber and callingNumber fields, respectively.
Otherwise, they work as normal. These fields take only E.164 or sip:/tel: URLs. If any other URL
format is used, the application throws an Unsupported Format error.

• Passing and accessing SIP message bodies is not supported.

• An example of how multiple SIP headers are set in Tcl is as follows:

set <array_name_xxx>(<header name>) <“header value”>
set <array_name_xxx>(<another header name>) <“header value”>
...
set callinfo(protoHeaders) <array_name_xxx>

For example, if we wanted to set the following headers to be sent in the call setup:

From = abc@xyz.com
To = joe@big.com
Subject = “Hello”

we could do this in a Tcl script as follows:

The array name “headers” can be any name you want
set headers (From) “blah@xyz.com”
set headers (To) “joe@big.com”
set headers (Subject) “Hello”
Here, we set the array “headers” in the callInfo array, mimicking a
two-dimensional array
set callInfo(headers) headers

We then send them in the call setup, as follows:

leg setup $dest callinfo leg_incoming
3-39
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
leg setup_continue
The leg setup_continue command allows the application to interact with the system during setup. This
command is used to initiate a setup to an endpoint address or to let the system continue its action after an event
interrupts the call processing. Typically, the application uses this verb after it receives the result of the address
resolution or a call signal.

Note The application can stop the leg setup by using the ‘handler terminate’ verb.

Syntax

leg setup_continue <command handle> [-a <endpointAddress | next>] [-d <dialpeerHandle>]
[-g <GTDHandle>] [-c <callInfo>]

Arguments

• command handle—The command handler received from the get evt_last_event_handle
information tag.

• -a <endpointAddress|next>—Indicates to the system to initiate the setup with a particular endpoint
address or the next endpoint address. The initial address is typically the primary endpoint address. If the
application specifies ‘next’ after it receives the address resolution results, the first (primary) endpoint
address is used.

• -d <dialpeerHandle>—Specifies the dial peer handle to use for the setup.

• -g <GTD handle>—The handle to a previously created GTD area.

• -c <callInfo>—If this optional parameter is used, the application passes the callInfo array for use in the
endpoint setup. The following parameters can be updated on a per-endpoint setup basis:

– originationNum

– originationNumToN

– originationNumPI

– originationNumSI

See set callinfo, page 3-72, for more information.

Return Values

None.

Command Completion

If the command is used to initiate the setup to an endpoint address, when it finishes, the script receives
an ev_setup_done event if successful or an ev_disconnect if the setup fails.

If the command is used to let the system continue its action after an event interrupts the call processing,
it finishes immediately.

Examples
leg setup_continue $commandHandle -a next –g gtd_alert_handle
3-40
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Usage Notes

• To retrieve the command handle associated with the leg setup, the application can use the infotag
get evt_last_event_handle.

• The leg setup_continue should not be used if the address resolution fails with a status code other
than ar_000. In such cases, the application may issue a new leg setup command with another dial
peer.

• Other fields of the callInfo structure, if set, are ignored.

• New callInfo parameter values will continue to be used for subsequent endpoint setups until
changed.

• To continue the call setup after intercepting the ev_address_resolved event, -a <endpointAddress |
next> should be specified. When only the command handle is specified to leg setup_continue, the
system assumes you are continuing the call setup after intercepting a backward signaling event.

leg setupack
The leg setupack command sends a setup acknowledgement message on the specified incoming call leg.

Note The ISDN state machine actually connects the incoming call on a setup acknowledgement.

Syntax

leg setupack {legID | info-tag}

Arguments

• legID—The ID of the call leg to be handed off.

• info-tag—A call leg info-tag that maps to one or more incoming legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

Immediate

Example
leg setupack leg_incoming

Usage Notes

• The leg setupack command can be used only once in a Tcl IVR application. Any application that
executes this command more than once will abort.

• If the specified call leg is not an incoming call leg, this command clears the call.

• If leg_incoming is specified and there are multiple incoming call legs, a setup acknowledgement is
sent to all the call legs that have not been previously acknowledged.

• When the leg setupack command is applied to an incoming ISDN call leg, the underlying ISDN
protocol stack sends a proceeding message followed by a connect messge to the originating ISDN
switch. This is done to establish the voice path so the voice application is able to collect digits.
3-41
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• The specified call leg must be in the initial call state. If a setupack, proceeding, progress, alerting,
or connect messsage has already been sent on the specified call leg, the script terminates and
displays an error to the console, and the call is cleared.

leg tonedetect
The leg tonedetect command enables or disables the detection of specific tones during a call.

If tone detection is enabled and a tone is detected, an ev_tone_detected event is generated. This event is
generated only after a required minimum time has elapsed, as determined by <Number Cycles>. At most,
one event is generated per tone type requested. If an enable command is issued again for a tone type that
is already being detected, that tone type is reenabled.

Syntax
leg tonedetect {legID | info-tag} enable {tonetype} [<Number Cycles>]
leg tonedetect {legID | info-tag} disable <{tonetype}> <{ignoremintime}>

Arguments

• legID—The ID of the call leg

• info-tag—A call leg info-tag that maps to one or more incoming legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• tonetype—The type of tone to detect.

– Possible value: cng (a series of CNG tones)

• Number Cycles—The number of consecutive single tone cycles required before ev_tone_detected is
generated. If this argument is not specified, the default value is 1 cycle.

• ignoremintime—Suppress messages that may warn that insufficient time was allowed for tone
detection.

Return Values

• For enable:

– A string indicating the period (in seconds) required for the tone to be detected and for the event
to be generated or a string indicating error. The required minimum time is computed by Number
Cycles times the minimum time required for that specific tone.

• For disable:

– Tcl_OK or Tcl_ERROR. Error occurs when this command is called in less than the minimum
time required and when ignoremintime is not specified. For example, if the required minimum
time is 7 seconds and this command is called after 3 seconds, the tone detection can only be
disabled if ignoremintime is specified.)

Example
set MIN_CNG_DETECTION_TIME [leg tonedetect leg_incoming enable cng]
leg tonedetect leg_incoming disable cng ignoremintime

Command Completion

None

Usage Notes

None
3-42
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
leg transferdone
This command indicates the status of the call transfer on a call-leg and, depending on the status, may
send a disconnect or facility message to the call leg.

Syntax

leg transferdone {legID | info-tag} transferStatusCode

Arguments

• legID—The ID of the call-leg

• transferStatusCode—Success/Failure. See Transfer Status, page 5-13, for a list of possible values.

Return Values

The command returns one of the following:

• 0 (success)—Success

• 1 (failed, unsupported)—The signaling protocol associated with the specified leg is not capable of
carrying this information. This will not trigger a script error.

Example
leg transferdone leg_incoming ts_011
set retcode [leg transferdone leg_incoming ts_000]

Command Completion

For a success return value, the command finishes by sending ev_disconnected to the script.

Usage Notes

If the specified call leg is invalid for this operation, the script terminates with error output, and the call
closes.

leg vxmldialog
The leg vxmldialog command initiates a VoiceXML dialog on the specified leg. The markup for the
dialog to be directed at the leg is specified either by a URI or by an actual markup as a string parameter.
The script can also pass a list of variables as parameters. These variables are available, by copy, to the
VoiceXML dialog session.

When a VoiceXML dialog is active on a leg, no other operations or commands are permitted on the leg
except for the command terminate and leg vxmlsend commands. If the VoiceXML dialog completes
or terminates, either normally or abnormally, an ev_vxmldialog_done event will be received by the script
and an appropriate status code, indicating the reason for termination, can be retrieved through the
evt_status information tag.

If both the -u and -v options are specified, the inline VoiceXML dialog executes in the -v option and uses
the -u URI as the default base URI as if the inline code was downloaded from there. A VoiceXML dialog
refers the entire VoiceXML session that is initiated on a leg by a leg vxmldialog command, starting with
an initial inline document or URI, and may span through multiple documents during the course of the
conversation.
3-43
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Initiating a VoiceXML dialog segment on individual call legs from within a Tcl application is called
hybrid scripting. Hybrid scripting differs from the concept of application handoff, where the call leg is
completed and handed off to another application, then loses control of the leg. For more information on
call handoff, see the “Call Handoff in Tcl” section on page 1-5. For more information on hybrid
scripting, see the “Tcl/VoiceXML Hybrid Applications” section on page 1-6.

Syntax

leg vxmldialog <legID> -u <dialog-uri> [-p <param-array>] [-v <dialog-markup-string>]

Arguments

• legID—The ID of the call leg to be handed off.

• dialog-uri—A URI to retrieve the dialog markup from or to use as a base URI when used with the
-v option.

• param-array—A Tcl array containing the list of parameters to pass to the dialog markup. The
VoiceXML session can access these parameters through session variables of the form
com.cisco.params.xxxxxx, where xxxxxx was the index in the Tcl array array. The values of the Tcl
array variables will be available to the VoiceXML application as text strings. The only exception to
this rule is when a Tcl array variable contains memory ram://URI, pointing to an audio clip in
memory. In this case, the audio clip will be available to the VoiceXML document as an audio clip
object.

• dialog-markup-string—A string containing the VoiceXML markup specifying the dialog to initiate
on the leg.

Return Values

None

Command Completion

ev_vxmldialog_done

Example
leg vxmldialog leg_incoming

Usage Notes

• The VoiceXML dialog can be terminated using the command terminate command.

• When the dialog command is active on a leg, other Tcl IVR command operations, like medial play,
leg collectdigits, and leg setup, are illegal. If these commands are executed, the application errors
out and terminates as a Tcl IVR script error. The VoiceXML dialog also terminates.

• The <transfer> tag is not supported when VoiceXML is running in the dialog mode. If the VoiceXML
dialog executes a <transfer> tag, an error.unsupported.transfer event is thrown to the VoiceXML
interpreter.

• From a VoiceXML dialog, events can be sent to Tcl by usingthe com.cisco.ivr.script.sendevent
object. For more information on sendevent objects, see SendEvent Object, page 1-8.

leg vxmlsend
The leg vxmlsend command throws an event at an ongoing VoiceXML dialog on the leg. The event
thrown to the VoiceXML dialog is of the form <event-name>. The event can carry parameters associated
with it and are specified by <param-array>. The Tcl associative array contains the list of parameters to
3-44
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
send to the dialog along with the event. The index of the array is the name of the parameter as accessible
from the VoiceXML dialog and the value is the value of the parameter as accessible from the VoiceXML
dialog.

These parameters are available to the VoiceXML script through the variable_message and is an object
containing all the Tcl array indexes as subelements of the message object. If there is not a VoiceXML
dialog executing on the leg, this command simply succeeds and is ignored.

Syntax

leg vxmlsend <legID> <event-name> [-p <param-array>]

Arguments

• legID—The ID of the call leg to be handed off.

• event-name—Name of the event to throw to the VoiceXML dialog.

• param-array—A Tcl array containing a list of parameters to pass to the ongoing VoiceXML dialog.
The VoiceXML session can access these parameters when the thrown VoiceXML event is caught in
a catch handler. The parameters are accessible through the _message.params.xxxxxx variable, which
is catch-handler scoped and therefore available within the catch handler. The values of the Tcl array
variables are available to the VoiceXML application as text strings. The only exception to this rule
is when a Tcl array variable contains memory ram:// URI pointing to an audio clip in memory. In
this case the audio clip is available to the VoiceXML document as an audio clip object to the
VoiceXML document.

Return Values

None

Command Completion

Immediate

Example
leg vxmlsend leg_incoming $event-name

Usage Notes

None

log
The log command originates a syslog message.

Syntax

log -s <CRIT | ERR | WARN | INFO> <message text>

Arguments

• -s <CRIT | ERR | WARN | INFO>—The severity of the message.

– CRIT—Critical

– ERR—Error message (default)

– WARN—Warning message

– INFO—Informational message
3-45
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• message text—The body of the message. Use double quotes or braces to enclose text containing
spaces or special characters.

Return Values

None

Command Completion

Immediate

Examples
set msgStr “MCID request succeeded”
append msgStr [clock format [clock seconds]]
log $msgStr

Usage Notes

• The log command uses the Cisco IOS message facility to send the message. Except for critical
messages, rate limitations are applied to the emission of IVR application log messages. The
minimum time intervals between emissions of the same message are as follows:

– ERR—1 second

– WARN—5 seconds

– INFO—30 seconds

A message is considered the same if the application issues a log command with the same severity.

• When performing the rate-limitation, the Cisco IOS message facility takes the emissions of all IVR
applications into consideration. If a message cannot tolerate the rate limitation, use the CRIT
severity level.

• The message text should be as clear and accurate as possible. The operator should be able to tell
from the message what action should be taken.

• The system appends a new line character after the message, so there is no need to use a new line
character.

• Use the log message facility to report errors. Use the puts command for debugging purpose.

• Log messages can be sent to a buffer, to another TTY, or to logging servers on another system. See
the Cisco IOS Troubleshooting and Fault Management logging command for configuration options.

• Sending a large number of log messages to the console can severely degrade system performance.
Log messages sent to the console may be suppressed by the logging console <level> CLI command.
Alternatively, the console output can be rate-limited by using the logging rate-limit console CLI
command. To disable logging to the console altogether, especially if logging is already directed to
a buffer or a syslog server, use the no logging console command.
3-46
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
media pause
The media pause command temporarily pauses the prompt that is currently playing on the specified call
leg.

Syntax

media pause {legID | info-tag}

Arguments

• legID—The ID of the call leg to which to pause play of the prompt.

• info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

This command has immediate completion. However, the script should be prepared to receive an
ev_media_done event if the command fails. An ev_media_done event is not generated when this
command is successful.

Example
media pause $legID

Usage Notes

If the specified call leg is invalid, the script terminates and displays an error to the console, and the call
is cleared.

media play
The media play command plays the specified prompt on the specified call leg.

Syntax

media play {legID | info-tag} {<url> | <token>}+

Arguments

• legID—The ID of the call leg to which to play the prompt.

• info-tag— A direct mapped info-tag mapping to exactly one leg. For more information about
info-tags, see Chapter 4, “Information Tags.”.

• url—The URLs of the prompts to be played. The value of url-list can be a list of URLs for individual
prompts or a list of strings, each of which is a collection of URLs. The URL can point to a prompt
from Flash memory, an FTP server, a TFTP server, or an RTSP prompt. The strings could be
dynamic prompts, in which case they are strings that describe the dynamic prompt using a special
notation format to specify what to play and in what language. See “Usage Notes” below.

• token—Returned from the HTTP command, geturl, or the media record command, token points to
a recording that will be played directly from RAM. When token points to any other recording url,
the url is used to fetch the audio.
3-47
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Note The media content created from playing the recording is not cached.

In order to use the token returned from geturl, the content type should be “audio/*”. If the statearray
associated with the token has a codec element defined, the body is treated as raw, or headerless,
audio in the specified codec. If there is no codec element defined, the body is parsed to match either
a .au or .wav file. If it does not contain a .au or .wav header, the media play fails.

• @C<string>—Plays out the alphanumeric characters one by one. For example, @Ccsco will play
“C” “S” “C” “O”. The supported inputs are the printable ASCII character set.

• %Wday_of_week—Plays out the day of week prompt. For example, %w1 will play “Monday”. The
values 1–7 represent Monday to Sunday.

• %Ttime_of_day—Accepts an ISO standard time format and plays out the time. For example,
%T131501 will play “one” “fifteen” “pm” “one” “second”. Supported formats are: hhmmss, hhmm
and hh, where hh is hour, mm is minute and ss is second. Hour is in 24-hour format.

• %Ddate—Accepts an ISO standard date format and plays out the date. Supported formats are:
CCYYMMDD, CCYYMM, CCYY, --MMDD, --MM or ---DD, where CC is century, YY is year,
MM is month and DD is day of month. For example, %D20000914 will play “year” “two”
“thousand” “september” “fourteenth”; %D199910 will play “year” “nineteen” “ninety” “nine”
“october”; %D2001 will play “year” “two” “thousand” “one”; %D--0102 will play “January”
“second”; %D--12 will play “december”; and %D---31 will play “thirty” “first”.

Return Values

None

Command Completion

When the media play command completes, the script receives an ev_synthesizer event instead of an
ev_media_done event. For backward compatibility the gateway still supports ev_media_done events, but
going forward its encouraged to use the ev_synthesizer event for detection of play completion.

Examples
media play leg_incoming@C$alpha
media play leg_incoming@C$ascii
media play leg_incoming@C\ !\"#\$%&'()*+,-./0123456789:\;<=>?@\[\\]^_`{|}~
media play leg_incoming%D2001
media play leg_incoming%D201211
media play leg_incoming%D20300830

media play leg_incoming%D---01 %D---02 %D---03 %D---04 %D---05 %D---06 %D---07 %D---08
%D---09 %D---10 %D---11 %D---12 %D---13 %D---14 %D---15 %D---16 %D---17 %D---18 %D---19
%D---20 %D---30

media play leg_incoming%D---21 %D---22 %D---23 %D---24 %D---25 %D---26 %D---27 %D---28
%D---29 %D---31

media play leg_incoming%T01 %T02 %T03 %T04 %T05 %T06 %T07 %T08 %T09 %T10 %T11 %T12 %T13
%T14 %T15 %T16 %T17 %T18 %T19 %T20 %T21 %T22 %T23 %T00

media play leg_incoming%T24
media play leg_incoming%W1 %W2 %W3 %W4 %W5 %W6 %W7

set audio_file http://prompt-server1/prompts/en_welcome.au
media play leg_incoming $audio_file
3-48
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Usage Notes

• If a prompt is already playing when the media play command is issued, the first prompt is
terminated and the second prompt is played.

• The media play command takes a list of URLs or prompts and plays them in sequence to form a
single prompt. The individual components of the prompt can be full URLs or Text-to-Speech (TTS)
notations. The possible components of the prompt are as follows:

– URL—The location of an audio file. The URL must contain a colon. Otherwise, the code treats
it as a file name, and adds .au to the location.

– name.au—The name of an audio file. The currently active language and the audio file location
values are appended to the name.au. The filename cannot contain a colon, or it is treated as a
URL.

– %anum—A monetary amount (in US cents). If you specify 123, the value is $1.23. The
maximum value is 99999999 for $999,999.99.

– %tnum—Time (in seconds). The maximum value is 999999999 for 277,777 hours 46 minutes
and 39 seconds.

– %dday_time—Day of week and time of day. The format is DHHMM, where D is the day of week
and 1=Monday, 7=Sunday. For example, %d52147 plays “Friday, 9:47 PM.”

– %stime—Amount of play silence (in ms).

– %pnum—Plays a phone number. The maximum number of digits is 64. This does not insert any
text, such as “the number is,” but it does put pauses between groups of numbers. It assumes
groupings as used in common numbering plans. For example, 18059613641 is read as 1 805 961
3641. The pauses between the groupings are 500 ms.

– %nnum—Plays a string of digits without pauses.

– %iid—Plays an announcement. The id must be two digits. The digits can be any character except
a period (.). The URL for the announcement is created as with _announce_<id>.au, and
appending language and au location fields.

– %clanguage-index—Language to be used for the rest of the prompt. This changes the language
for the rest of the prompts in the current media play command. It does not change the language
for the next media play command, nor does it change the active language.

• If no argument is given to the TTS notation, the notation is ignored by IVR; no error is reported.

• Media play with a NULL argument for %c uses the default language for playing prompts, if there
are valid prompts, along with a NULL %c. Previously, the script would abort.

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• If the call leg specified by an information tag maps to more than one leg, the script terminates, sends
an error message to the console, and clears the call. The use of leg_all is not recommended, since
this is more likely to map to multiple legs.

• The media play command cannot be applied to a leg that is part of a connection. When executed to
a conferenced leg, the script aborts with message "Leg is in Conferenced state". The connection
must be destroyed, then the media play can run and the connection can be re-created.

• Multi-language support through Tcl-based language scripts must be enabled in order to use the
newly defined dynamic prompts: @Ccharacters, %Wday_of_week, %Ttime_of_day, and %Ddate.
See the command call language voice in the Enhanced Multi-Language Support for Cisco IOS
Interactive Voice Response document. Only the English version of these new dynamic prompts are
supported.
3-49
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
media record
The media record command records the audio received on the specified call leg and saves it to the
location specified by the URL.

Syntax

media record {legID | info-tag} [-p <recordInfo>] [<url>]

Arguments

• legID—The ID of the call leg whose audio will be recorded.

• info-tag—A direct-mapped info-tag mapping to exactly one leg. For more information about
info-tags, see Chapter 4, “Information Tags.”

• -p <recordInfo>—A Tcl array containing any of the following:

– codec—An integer value used to specify codec to be used during recording. The following are
possible values:

2—voipCodecG726r16

3—voipCodecG726r24

4—voipCodecG726r32

5—voipCodecG711ulaw

6—voipCodecG711Alaw

7—voipCodecG728

8—voipCodecG723r63

9—voipCodecG723r53

10—voipCodecGSM

11—voipCodecGSMefr

12—voipCodecG729b

13—voipCodecG729ab

14—voipCodecG723ar63

15—voipCodecG723ar53

16—voipCodecG729IETF

– finalSilence—Finalsilence specified in milliseconds, where 0 indicates no finalsilence.

range: 0–MAXINT

default: 0

– dtmfTerm—Terminate the record with a DTMF key.

enable: Enables terminating the record with a DTMF key

disable: Disables terminating the record with a DTMF key

default: Enable
3-50
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– maxDuration—Specifies the maximum duration, in milliseconds, allowed for recording, where
0 indicates the recording will terminated by the configured limit.

range: 0–MAXINT

default: 0

– maxMemory—Specifies the maximum memory allowed for this recording in bytes, where 0
indicates the recording will be terminated by the configured session limit.

range: 0–MAXINT

default: 0

– fileFormat—Allowed file format. Possible values are:

au: Sun file format

wav: wav file format

none: raw audio (no file header will be attached)

default: au

– beep—Play a beep before recording. Possible values are:

nobeep: do not play a beep before recording

beep: play a beep before recording

default: nobeep

Note Any of the above values that are not valid results in the failure of the media record verb.

• url—The location of the target file that the audio will be recorded to. The following are possible
values:

– rtsp—Records audio to the rtsp server if the rtsp server supports recording.

– tftp—Records to the tftp server.

– flash—Records to flash.

– http—Records to an http server.

– ram—Records to memory.

If no url is specified, ram recording is assumed. The returned token represents the recording. The
token can be used to playback or to get information about the recording.

Return Values

A token describing the media content created for the recording, which can be used as a Tcl array to get
information about the recording. Use the following construct to create an easy-to-use array variable:

upvar #0 $token myrecording

The following elements of the array are returned.

• url—Contains the url of the recording.

• duration—Stores the length of the recording in milliseconds.

• totalsize—Contains the size of the recording in bytes.
3-51
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• type—Contains the content type of the audio file. Possible values include:

– audio/basic

– audio/wav

• body—The pointer to the actual voice data.

Command Completion

The script receives an ev_recorder event when the recording terminates after the specified duration, after
the application issues a media stop command, or if terminated by DTMF. If the recording is terminated
by a leg disconnect command, the script does not receive an ev_media_done event; it receives only an
ev_disconnected event for the leg. If the recording is successful, it can be accessed at the location
specified in the URL.

The status of the recording can be accessed using infotag get evt_status after receiving the
ev_media_done event.

Media seek and media pause does not affect a media recording.

Possible values are:

• ms_101—Failure to record.

• ms_103—Invalid URL.

• ms_105—Recording stopped due to dtmfKey termination.

• ms_106—Recording stopped because MaxTime allowed is reached.

• ms_107—Recording stopped because MaxMemory allowed is reached.

• ms_109—Recording stopped because of a silence timeout.

Example
set recordInfo(codec) g711ulaw
set recordInfo(finalSilence) 0
set recordInfo(dtmfTerm) enable
set recordInfo(maxDuration) 5000
set recordInfo(fileFormat) au
set recordInfo(beep) nobeep
set url ram
media record leg_incoming $recordInfo $url

Usage Notes

• If the specified call leg is invalid, the script terminates, displays an error on the console, and clears
the call.

• If the call leg specified by an information tag maps to more than one leg, the script terminates,
displays an error on the console, and clears the call. The use of leg_all is not recommended, since
this is more likely to map to multiple legs.

• If the specified call leg is already being recorded, the script receives an ev_media_done event
indicating a failure for the second media record invocation. The script receives another
ev_media_done event when the first recording completes.

• It is okay for the specified call leg to be in the conferenced state. In this case, only the audio received
from the specified leg is recorded.

• Simultaneous playout and record on a single call leg is not supported. Attempts to do this may result
in unexpected or undesirable behavior.
3-52
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
media resume
The media resume command resumes play of the prompt that is currently paused on the specified call
leg.

Syntax

media resume {legID | info-tag}

Arguments

• legID—The ID of the call leg to which to resume play of the prompt.

• info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

This command has immediate completion. However, the script should be prepared to receive an
ev_media_done event if the command fails. An ev_media_done event is not generated when this
command is successful.

Example
media resume $legID

Usage Notes

If the specified call leg is invalid, the script terminates and displays an error to the console, and the call
is cleared.

media seek
The media seek command does a relative seek on the prompt that is currently playing. This command
moves the prompt forward the specified number of seconds within the message.

Syntax

media seek {legID | info-tag} time-in-seconds

Arguments

• legID—The ID of the call leg.

• info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• time-in-seconds—The number of seconds to seek forward. If you specify a negative number, the
prompt moves backward in the message.

Return Values

None
3-53
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Command Completion

This command has immediate completion. However, the script should be prepared to receive an
ev_media_done event if the command fails. An ev_media_done event is not generated when this
command is successful.

Example
media seek $legID +25
media seek $legID -10

Usage Notes

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• This command works only with RTSP prompts. If there are non-RTSP-based prompts on the prompt
list that is currently playing, the command does not work.

• If you specify a number of seconds greater than the remaining time in the prompt, the seek moves
to the end of the prompt and the script receives an ev_media_done event.

media stop
The media stop command stops the prompt that is currently playing on the specified call leg.

Syntax

media stop {legID | info-tag}

Arguments

• legID—The ID of the call leg to which to stop the prompt.

• info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

Return Values

None

Command Completion

Immediate. However, the script receives an ev_media_done event if the prompt completed before being
stopped.

Example
media stop $legID

Usage Notes

If the specified call leg is invalid, the script terminates and displays an error to the console, and the call
is cleared.

modulespace
The modulespace command allows the creation, access, and deletion of a modulespace in which a
module can execute code.
3-54
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Syntax
modulespace new arg
modulespace terminate arg
modulespace listen arg
modulespace unlisten arg
modulespace return final arg
modulespace return interim arg
modulespace event intercept arg
modulespace event consume arg
modulespace children module-handle
modulespace code script
modulespace current
modulespace eval module-handle arg arg
modulespace exists module-handle
modulespace inscope module-handle arg arg
modulespace parent

Arguments

• modulespace new <context-string>—Creates and installs a new submodule by creating a
modulespace for it to run in. The new modulespace is created under the parent modulespace. This
modulespace can execute a sub-state machine that is initialized by the existing fsm define command.
The modulespace new command returns a module-handle to the newly-created modulespace.
Creation of the modulespace also creates a variable namespace in the interpreter it is tied to. This
variable namespace is active whenever the modulespace is active.

The modulespace and its namespace is invoked by using the defined modulespace commands. These
modulespace commands are very similar to the equivalent namespace command, with some
limitations as noted in their sections. The value of context-string is available in all events generated
by this module, such as the ev_module_event and the ev_module_done events. This context string
could be used to provide some context information associated with this module, such as a data
structure name or handle, or a call-back function to invoke for such events. This information can be
accessed in the parent modulespace when processing a module event with the evt_module_context
information tag.

• modulespace terminate <module-handle>—This command initiates the termination of an active
modulespace. When the modulespace completes termination, its listeners will receive an
ev_module_done event.

• modulespace listen <leg-id | connection-id>—This command adds a leg or connection object to
the listen list of the modulespace. This means that all events associated with that leg or context are
seen by this module before it is seen by the parent module. This allows the module to take action to
implement its functionality and also decide whether the parent module should see this event or if it
should be consumed or filtered from the parent. Note that when installing such modules to listen on
objects, they are added in a specific order, and when the system receives an event for that object, the
event is submitted for inspection to the modules on the listen list of the object one by one. Doing a
listen on a leg that is already being listened by the current module is acceptable and is a no-op.

• modulespace unlisten <leg-id | connection-id>—This command does the opposite of the
modulespace listen command. It removes the module from the listen list of the specified object. All
events associated with the object will not be submitted to this module after this command is
executed. Doing an unlisten on a leg that is not being listened by the current module is acceptable
and is a no-op.

• modulespace return final <param-array>—This command results in the completion of the module
execution, completing with an ev_module_done event to the parent module that invoked it. In the
process, the module is removed from all objects currently listening and is added to the return list of
3-55
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
objects accessible by the parent module when it receives the ev_module_done event. These objects
can be accessed by the parent module through the use of the evt_legs and evt_connections
information tags.

This command also undefines or deletes the Tcl <param-array> variable or object from the current
modulespace and passes along with it the ev_module_done event to the parent module. The
information within <param-array> is accessible in the parent modulespace when handling the
ev_module_done event by using the evt_params information tag, which creates an alias to the
<param-array> information within the parent modulespace and makes it accessible from within the
parent module. The module receiving the ev_module_done event then has access to the module
handle that generated this event through the evt_module_handle information tag.

Note The modulespace return final command must be executed from within the modulespace of
the module that is completing. Note that a module does not cleanup on its own unless
orphaned. A module is classified as orphaned if it is not listening to any other objects or
modules, and has no outstanding events such as AAA, timers, media commands, or HTTP
requests. Also note that when a leg receives a disconnect event and has not been
disconnected by the application within a certain time, the safety timer kicks in with a
cleanup event that clears up the hung call and all modules, objects, and resources associated
with it.

• modulespace return interim <module-sub-event-name> <param-array>—This command results
in an intermediate ev_module_event event, which is generated by the module the command was
executed in and received by the parent module that invoked the current module. The module
receiving the ev_module_event event then has access to the module handle that generated the event
through the evt_module_handle information tag. It also has access to the specific module subevent
name through the evt_module_subevent information tag.

The information within <param-array> is also accessible to the parent module when handling the
ev_module_event event. The parent module can access this information by using the evt_params
information tag, which can create an alias to the <param-array> information and make it accessible
within the parent modulespace.

Note This command must be executed from within the modulespace of the module that wants to
generate the interim event.
3-56
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• modulespace event intercept—This command results in the event being intercepted by the current
modulespace for its parent modulespace. The current event being processed by this module is
submitted to the parent of the current module, even though it may not be listening to the object this
event belongs to. In the absence of this command, the event is submitted to all modules that are
listening to this object in the order in which they are listening.

Note This command must be executed from within the modulespace of the module that is
processing the current event and fails if it is in another modulespace. If not specified, the
default is to continue.

• modulespace event consume—This command results in the event being consumed by the current
module. The current event being processed is completed and freed, and is not submitted to other
modules even though they may be listening to the object this event belongs to. Without this
command, the event would be submitted to all modules listening to this object in the order they are
listening.

Note This command must be executed from within the modulespace of the module that is
processing the current event and fails if it is in another modulespace. If not specified, the
default is to continue.

• modulespace children module-handle—Returns a list of all child modulespace handles that belong
to the modulespace module-handle. If module-handle is not specified, the children of the current
modulespace are returned.

• modulespace code script—Captures the current modulespace context for later execution of the
script. It returns a new script in which script has been wrapped in a modulespace code command.
The new script has two important properties. First, it can be evaluated in any modulespace and
causes script to be evaluated in the current modulespace (the one where the modulespace code
command was invoked). Second, additional arguments can be appended to the resulting script and
passed to script as additional arguments. For example, suppose the command set script
[modulespace code {foo bar}] is invoked in modulespace module-x. Then eval "$script x y" can
be executed in any modulespace, assuming the value of script has been passed properly, and will
have the same effect as the command modulespace eval module-x {foo bar x y}. A scoped
command captures a command together with its modulespace context in a way that allows it to be
executed properly later.

• modulespace current—Returns the module handle for the current modulespace.

• modulespace eval module-handle arg arg...—Activates a modulespace referred to by
module-handle and evaluates code in that context. If more than one arg argument is specified, the
arguments are concatenated together with a space between each one in the same fashion as the eval
command and the result is evaluated.

• modulespace exists module-handle—Returns 1 if module-handle is a valid modulespace in the
current context; returns 0 otherwise.

• modulespace inscope module-handle arg arg ...—Executes a script in the context of a particular
modulespace. This command is not expected to be used directly. Calls to it are generated implicitly
when applications use the modulespace code command to create callback scripts to provide as
context submodules.
3-57
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
The modulespace inscope command is much like the modulespace eval command except that it has
lappend semantics and the modulespace must already exist. It treats the first argument as a list and
appends any arguments after the first argument onto the end as proper list elements. A modulespace
inscope module-handle a x y z command is equivalent to modulespace eval module-handle
[concat a [list x y z]]. This lappend semantic is important because many calback scripts are actually
prefixes.

• modulespace parent—Returns the module handle of the parent modulespace of the current

modulespace.

Return Values

None

Command Completion

Immediate

Examples
modulespace new leg_incoming
modulespace terminate leg_incoming
modulespace listen leg_incoming
modulespace unlisten leg_incoming
modulespace return final PARAMgood|PARAMnull
modulespace return interim an-event PARAMgood|PARAMnull
modulespace event intercept leg_incoming
modulespace event consume leg_incoming
modulespace children $modHandle

set script [modulespace code {foo bar}]
modulespace code $script

modulespace current
modulespace eval module-x {foo bar x y}
modulespace exists $modHandle
modulespace inscope $modHandle $modScript
modulespace parent

Usage Notes

• None

object create dial-peer
Creates a list of dial-peer handles using <peer_handle_spec> as the prefix of the handle name.

Syntax

object create dial-peer <peer_handle_spec> <destination_number>

Arguments

• peer_handle_spec—Specifies the name of Tcl variables created to represent dial peer handles. The
format of peer_handle_spec is <handle_prefix>:<from_index>. The system concatenates the prefix
with a sequence number, starting with <from_index>, to build the dial peer handle name.

• destination_number—The call destination number.
3-58
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Return Values

Returns the number of dial peer handles created.

Command Completion

Immediate.

Examples
object create dial-peer dp_handle:0 $dest

Usage Notes

• As an example of how the system generates handle names, consider the situation where two dial
peers match the same destination. In this case, the return value will be 2, and the created handle
names will be dp_handle0 and dp_handle1.

• If a handle with a specified name already exists, the handle is deleted, regardless of its type, and a
new handle is created.

object create gtd
Used to create a GTD Handle to a new GTD area from scratch. The system creates the associated
underlying data structure ready for the application to insert (append) GTD parameters to it.

Syntax

object create gtd <GTDHandle> {<message-id>|<reference-handle>}

Arguments

• GTDHandle—The name of the handle the application wants to create and use for subsequent
manipulations of the GTD message.

• message-id—The name of the message the application wants to create. The following values are
supported:

– IAM

– CPG

– ACM

– ANM

– REL

– INF

– INR

• reference-handle—Refers to an existing GTD handle; the format is: &<handle_name>.

Return Values

Returns the number; 1 if the handle can be created, 0 otherwise.

Command Completion

Immediate.
3-59
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Examples
set gtd_creation_cnt [object create gtd gtd_setup_ind IAM]
set gtd_creation_cnt [object create gtd gtd_setup_ind2 >d_setup_ind]

Usage Notes

• This option is used if the application wants to build a GTD area from scratch. After creating the
handle, the application typically appends one or more GTD attributes to it.

• The handle name must not contain the ‘:’ character, because it has special meaning in the object
destroy command.

• If a handle with the specified name already exists, it will be deleted (regardless of its type) before a
new handle is created.

• As always, the application should check the return value before using the handle.

• A gtd handle cannot be handed off to another application.

object destroy
Destroys a specific dial peer item associated with handle or all handles specified by the handle_spec.

Syntax

object destroy [<handle> | <handle_spec>]

Arguments

• handle—The handle of the dial peer to be destroyed.

• handle_spec—Specifies a range of dial peer handles to delete. The format of handle_spec is
<handle_prefix>:<from_index>:<to_index>. The system concatenates the prefix with the index
and uses the result to delete the handle.

Return Values

Returns the number of objects destroyed.

Command Completion

Immediate.

Examples
object destroy dp_handle2
object destroy dp_handle:0:2

In the second example above, the system attempts to destroy dp_handle0, dp_handle1, and dp_handle2.

Usage Notes

• When a dial peer item, or a set of dial peers, is destroyed, the associated dial peer data is also
destroyed.

object append gtd
Appends one or more GTD attributes to a handle.
3-60
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Syntax

object append gtd <GTDHandle> <GTDSpec>

Arguments

• GTDHandle—the handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd or
could be one created from scratch using the object create gtd command.

• GTDSpec—the GTD attribute to modify.

Return Values

None

Command Completion

Immediate

Examples
object append gtd gtdhandleA >dhandleB.pci.-1
object append gtd gtdhandleA >dhandleB.pci.2
object append gtd gtdhandleA pci.1.dat "F4021234 " >dhandleB.fdc.-1
object append gtd gtdhandleA >dhandleB.fdc.-1 pci.1.dat "F4021234 "

Usage Notes

• When appending a GTD attribute instance to a GTD message, all fields of the GTD structure must
be specified.

• As many attributes may be specified in a single gtd modification as the application wishes that does
not exceed the limit of the Tcl parser. Use the backslash-newline sequence to spread a long
command across multiple lines.

• If an attribute field is specified multiple times in a command, the value of the last processed attribute
field will be used.

• The append command can have <instance_ref> as a <gtd_spec>.

• The <attr_instance> of an <instance_ref> does not contain field name. That is, operations involving
an <instance_ref> always refer to the whole attribute.

• If multiple operations are applied to an attribute the result of the last operation may override the
previous result. This is like doing multiple commands one after another.

• Any errors found during the syntax checking will abort the command.

object delete gtd
Deletes one or more GTD attributes.

Syntax

object delete gtd <GTDHandle> <GTD spec>

Arguments

• GTDHandle—the handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd or
could be one created from scratch using the object create gtd command.
3-61
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• GTDSpec—the GTD attribute to modify.

Return Values

None

Command Completion

Immediate

Examples
object delete gtd gtdhandleA pci.1
object delete gtd gtdhandleA pci.-1

Usage Notes

• As many attributes can be specified in a single gtd modification as the application wants, as long as
the limit of the Tcl parser is not exceeded. Use the backslash-newline sequence to spread a long
command across multiple lines.

• If an attribute field is specified multiple times in a command, the value of the last processed attribute
field will be used.

• The <attr_instance> in a delete command cannot specify a field name.

• The delete command does not accept <attr_value>.

• The delete command does not use <instance_ref> as <attribute_spec>.

• If multiple operations are applied to an attribute, the last operation overrides the previous result.

• Any errors found during syntax checking aborts this command.

• Deleting using the multiple instance form (-1) will not cause a script failure if no instance is found
to delete. This allows scripts to works smoothly and quickly without checking for the existence of
an attribute before deleting it.

object replace gtd
Replaces one or more GTD attributes.

Syntax

object replace gtd <GTDHandle> <GTD spec>

Arguments

• GTDHandle—The handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd or
could be one created from scratch using the object create gtd command.

• GTDSpec—the GTD attribute to modify.

Return Values

None

Command Completion

Immediate
3-62
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Examples
object replace gtd gtdhandleA pci.1 >dhandleB.pci.5
object replace gtd gtdhandleA pci.-1 >dhandleB.pci.-1
object replace gtd gtdhandleA pci.-1 >dhandleB.pci.3
object replace gtd gtdhandleA pci.1 >dhandleB.pci.5 fdc.1.dat F4021234
object replace gtd gtdhandleA fdc.1.dat " F4021234" pci.1 >dhandleB.pci.5

Usage Notes

• As many attributes can be specified in a single gtd modification as the application wants, as long as
the limit of the Tcl parser is not exceeded. Use the backslash-newline sequence to spread a long
command across multiple lines.

• If an attribute field is specified multiple times in a command, the value of the last processed attribute
field will be used.

• The <attr_instance> of an <instance_ref> does not contain field name. That is, operations involving
an <instance_ref> always refer to the whole attribute.

• If multiple operations are applied to an attribute the result of the last operation may override the
previous result. This is like doing multiple commands one after another.

• Any errors found during the syntax checking will abort the command.

• If <instance_ref> immediately follows an <attr_instance>, its value is used to update the specified
<attr_instance>.

• If a reference handle is used, the script will not get a script error if the reference handle uses –1 as
the instance number.

object get gtd
Retrieves the value of an attribute instance or a list of attributes associated with the specified GTD
handle.

Syntax

object get gtd <GTDHandle> <attr_instance>

Arguments

• GTDHandle—The handle to the GTD area the application applies the modification to. The
<GTDHandle> could be a handle that was created and assigned in a previous infotag get evt_gtd or
could be one created from scratch using the object create gtd command.

• attr_instance—An attribute instance in the format: <attr_name>,<field_instance>,<field_name>.

Return Values

None

Command Completion

Immediate

Examples
object get gtd setup_gtd_handle pci.1.dat
object get gtd setup_gtd_handle fdc.-1.dat
3-63
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Usage Notes

• If the application wants to retrieve the value of all instances of an attribute’s field, it sets the content
of <field_instance> to -1. If more than one instance is available, their values are separated by a
space. Note that it does not matter if an attribute has multiple instances or not, a -1 will always be
interpreted as "retrieve all instances."

object get dial-peer
Returns dial peer information of a dial peer item or a set of dial peers.

Syntax

object get dial-peer { <handle> | <handle_spec> } <attribute_name>

Arguments

• handle—The handle to the dial peer whose data is to be retrieved.

• handle_spec—Specifies a range of dial peer handles that and is of the format
<handle_prefix>:<from_index>:<to_index>. Use this format to retrieve attribute information from
a range of dial peer handles.

• attribute_name—Values can be one of the following:

– encapType

– voicePeerTag

– matchTarget

– matchDigitsE164

– sessionProtocol

Return Values

A string containing the requested dial peer information. Depending on the command argument, either
information about a set of dial peer handles or a specific one is returned. If information from more than
one dial peer handle is returned, the values are separated by space.

Command Completion

Immediate.

Examples
object get dial-peer dp_handle3 matchTarget
object get dial-peer dp_handle:0:2 matchTarget

Usage Notes

• If the specified dial peer item does not exist or contain any dial peer, nothing is returned.

• The values for encapType can be one of the following:

– Telephony

– VoIP

– Other (none of the above)

• The value for voicePeerTag is a number representing the peer item.
3-64
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• The value for matchTarget is a string containing the configured target specification. For example,
the value of matchTarget for a RAS session target is session target ras.

• The value for matchDigitsE164 is a number string that matches the dial peer.

• The value for sessionProtocol can be one of the following:

– H323

– SIP

– Other (none of the above)

param read
The param read command reads configuration parameters associated with the call into a variable with the

name <variable-name>, which becomes read-only.

Syntax

param read <variable-name> [<package name>]

Arguments

• package name—Specifies the name of the package that executes the package provide command. If
the package name is not specified, it implies that this command has been executed by a service.

Return Values

None

Command Completion

Immediate

Examples
param read userid

Usage Notes

None

param register
The param register command registers a parameter, with description and default values, allowing them
to be configured and validated through the CLI. These commands are executed when the service or
package is configured and loaded with commands such as package provide, which registers the
capability of the configured module and its associated scripts.

Configured modules and their scripts are loaded and executed in slave interpreters to recognize and
remember the packages they provide so they can be used when another service or package refers to this
package. The param register command is also executed to recognize the parameters that the module
registers to support.

Syntax
param register<param-name> [<param-description>] [<param-default>] [<param-type>]
3-65
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Arguments

• param-name—The name of the parameter being registered.

• param-description—Parameter description.

• param-type—Currently restricted to three reserved types: string, integer, boolean. The syntax for
specifying the type is: “s” | “i” | “b”, where “s”, “i”, or “b” designates the type of “string,” “integer,”
or “boolean” correspondingly.

• param-default—Default value of the parameter.

Return Values

None

Command Completion

Immediate

Examples
param register uid-len “The user ID length” “7” “i”

Usage Notes

None

phone assign

The phone assign command binds the MAC address from the caller’s phone to a preexisting ephone
template. This command is used with the extension assigner feature.

Syntax

phone assign {legID | info-tag} tag

Arguments

• legID—The ID of the call leg from which the MAC address will be retrieved and assigned to an
ephone tag.

• info-tag—A direct mapped info-tag mapping to one leg.

• tag—ephone tag.

Return Values

1—Assignment succeeded.

2—Assignment failed.

Command Completion

Immediate

Example
set result [phone assign leg_incoming 20]
if {$result = "2"} puts "Assignment of 20 failed.\n"
3-66
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Usage Notes

This command takes only one leg.

phone query

The phone query command verifies whether the ephone tag has been assigned a MAC address yet. This
command is used with the extension assigner feature.

Syntax

phone query {legID | info-tag} -t tag

Arguments

• legID—The ID of the incoming call leg. This is used to identify the current caller/phone, so detailed
assignment return values can be provided.

• info-tag—A direct mapped info-tag mapping to one leg.

• -t tag—ephone tag.

Return Values

• -1—Failed.

• 0—Invalid tag number.

• 1—Unassigned.

• 2—Assigned to the calling phone.

• 3—Assigned to other phone and phone is unregistered.

• 4—Assigned to other phone and phone is in idle state.

• 5—Assigned to other phone and phone is in use.

Command Completion

Immediate

Example
set result [phone query leg_incoming -t 20]
if {$result = "1"} puts "ephone 20 is available.\n"

Usage Notes

This command takes only one leg.

phone unassign
The phone unassign command removes the MAC address from the ephone tag. This command is used
with the extension assigner feature.

Syntax

phone unassign {legID | info-tag} tag
3-67
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Arguments

• legID—The ID of the call leg.

• info-tag—A direct mapped info-tag mapping to one leg.

• tag—ephone tag.

Return Values

1—Unassignment succeeded.

2—Unassignment failed.

Command Completion

Immediate

Example
set result [phone unassign leg_incoming 20]
if {$result = "2"} puts "Unassignment of ephone 20 failed.\n"

Usage Notes

This command takes only one leg.

playtone
The playtone command plays a tone on the specified call leg. If a conference is in session, the digital
signaling processor (DSP) stops sending data to the remote end while playing a tone. This command is
typically used to give the caller a dial tone if the script needs to collect digits.

Syntax

playtone {legID | info-tag} {Tone | StatusCode}

Arguments

• legID—The ID of the call leg to be handed off.

• info-tag— A direct mapped info-tag mapping to one or more legs. For more information about
info-tags, see Chapter 4, “Information Tags.”

• Tone—One of the following:

– tn_none—Stops the tone that is currently playing.

– tn_dial—Plays a dial tone.

– tn_busy—Plays a busy tone.

– tn_addrack—Plays an address acknowledgement tone.

– tn_disconnect—Plays a disconnect tone.

– tn_oos—Plays an out-of-service tone.

– tn_offhooknotice—Plays an off-the-hook notice tone.

– tn_offhookalert—Plays an off-the-hook alert tone.

• StatusCode—The status code returned by the evt_status info-tag. If a status code is specified, the
playtone command plays the tone associated with that status code.
3-68
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Return Values

None

Command Completion

Immediate

Example
playtone leg_incoming [getInfo evt_status]
playtone leg_all tn_oos

Usage Notes

• If the specified call leg is invalid, the script terminates and displays an error to the console, and the
call is cleared.

• The playtone command only works for telephony call legs and is silently ignored for VoIP legs.

puts
The puts command outputs a debug string to the console if the IVR state debug flag is set (using the
debug voip ivr script command).

Syntax

puts string

Arguments

• string—The string to output.

Return Values

None

Command Completion

None

Example:
puts “Hello $name”

requiredversion
The requiredversion command verifies that the script is running the correct version of the Tcl IVR API.

Syntax

requiredversion majorversion.minorversion

Arguments

• majorversion—Indicates the major version of the Tcl IVR API that the underlying Cisco IOS code
supports.

• minorversion—Indicates the minimum level of minor version of the Tcl IVR API that the underlying
Cisco IOS code supports.
3-69
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Return Values

None

Command Completion

None

Example
requiredversion 2.5

Usage Notes

If the version of the script does not match the major version specified or is not equal to or greater than
the minor version specified, the script terminates and an error is displayed at the console.

sendmsg
Sends a message to another application instance.

Syntax

sendmsg {<app-name> | <handle>} -p <parameter_array>

Arguments

• <app-name>—Creates a new instance using this application name.

• <handle>—The handle of an existing application instance.

• -p <parameter_array>—A Tcl array containing the list of parameters to pass.

Return Values

Returns “unavailable” or “success.”

Command Completion

Immediate.

Examples
set iid newapp
set fruit_message(text) “Request for Fruit”
set fruit_message(fruit) “Bananas”
set rval [sendmsg $iid -p fruit_message]
if $rval == “unavailable” {

call close}

Usage Notes

• If the instance is not running on the gateway, it returns an “unavailable” return value.

• If an application name is provided, a new instance of that application is generated. The new instance
will not have any active legs, but will receive an ev_msg_indication event.

• If the message is expected to generate a new instance of an application, but the gateway resources
are not configured to allow new instances, the sendmsg command fails and clears all call legs it is
handling. See the call treatment and call threshold commands in the Call Admission Control (CAC)
document.
3-70
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• The instance receiving the message, whether generated or already running, receives an
ev_msg_indication event. The instance can then use the ev_msg and ev_msg_source information
tags to retrieve more information.

• Messages cannot be sent to other gateways or servers.

service
Registers or unregisters a service.

Syntax

service {register | unregister} <service-name>

Arguments

• <service-name>—Name of the service.

Return Values

service register <service-name> returns “service already registered” or “registered.”

service unregister <service-name> returns “service not registered” or “unregistered.”

If a session tried to register or unregister a service name registered by another session, it receives the
return value “service registered by another session.”

Command Completion

Immediate.

Examples
set ret [service register cisco]
if {$ret=”registered”} puts “Service successfully registered”

set ret [service unregister cisco]
if {$ret=”unregistered”} puts “Service successfully unregistered”

Usage Notes

• This command puts the currently running handle into the service table.

• A second call to register the same service returns “service already registered.”

• If the session terminates, the service is unregistered.

• A single session can register with multiple service-names. A second session registering with the same

service-name returns “service already registered.”

• A successful registration returns “registered.”

• A list of registered services can be viewed by using the show call application CLI command.

• A Tcl script can find registered services using the mod_handle_services infotag.
3-71
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
set avsend
Sets an associative array containing standard AV or VSA pairs.

Syntax

set avSend (attrName [, index] value

Note Cisco IOS Release 12.1(2)T was the first release that incorporated the avSend argument.

Arguments

• attrName—Two IVR-specific attributes are supported: h323-ivr-out and h323-credit-amount. See
the “AV-Pair Names” section on page 4-3 for more information on these types.

• index—An optional integer index starting from 0, used to distinguish multiple values for a single
attribute.

Return Values

None

Command Completion

Immediate

Examples
set avsend(h323-credit-amount) 25.0

set avsend(h323-ivr-out,0) "payphone:true"
set avsend(h323-ivr-out,1) "creditTime:3400"

Usage Notes

If the specified call leg is invalid, the script terminates and displays an error to the console, and the call
is cleared.

set callinfo
Sets the parameters in an array that determines how the call is placed. The outgoing call is then placed
using the leg setup command.

Syntax

set callinfo (tagName [,index]) value

Arguments

• tagName—Parameter that determines how the call is placed. The array can contain the following:

– destinationNum—Called or destination number. For mode, this argument is used as
transfer-target or forwarded-to number. This parameter can accept a URL string. This
parameter does not allow indexing.

– originationNum—Origination number. For mode, this argument is used as transfer-by or
forwarded-by number. This parameter can accept a URL string. This parameter does not allow
indexing.
3-72
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– originationNumPI—Calling number Presentation Indication value.

Values allowed are:
presentation_allowed
presentation_restricted
number_lost_due_to_interworking
reserved_value

This parameter does not allow indexing.

– originationNumSI—Calling number Screening Indication value.

Values allowed are:
usr_provided_unscreened
usr_provided_screening_passed
usr_provided_screening_failed
network_provided

This parameter does not allow indexing.

– accountNum—Caller’s account number. This parameter does not allow indexing.

– redirectNum—Redirect number. Originally added to change a field in an end-to-end ISDN
redirect IE. Also used to specify the number requesting a call transfer. Typically, the calling
number of the leg that receives an ev_transfer_request event. Default value is null. This
parameter does not allow indexing.

– redirectNumPI—Redirect number Presentation Indication value.

Values allowed are:
presentation_allowed
presentation_restricted
number_lost_due_to_interworking
reserved_value

This parameter does not allow indexing.

– redirectNumSI—Redirect number Screening Indication value.

Values allowed are:
usr_provided_unscreened
usr_provided_screening_passed
usr_provided_screening_failed
network_provided

This parameter does not allow indexing.

– redirectCount<count>—Used to set the redirect number Screening Indication value. Valid count
values are in the range of 0–7. The count is automatically incremented with each forwarding
request from the destination. The decision of when to stop forwarding at a specified count is the
responsibility of the script. This parameter does not allow indexing.

– redirectReason<value>—Used to set the redirect number Reason value. This parameter does
not allow indexing.

Values allowed are:
rr_no_reason
rr_cfb
rr_cfnr
rr_rsvd1
rr_rsvd2
rr_rsvd3
3-73
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
rr_rsvd4
rr_rsvd5
rr_rsvd6
rr_rsvd7
rr_rsvd8
rr_rsvd9
rr_rsvd10
rr_ct
rr_cp
rr_not_present

In conjunction with mode, the following values specify the type while initiating
call-forwarding:

rr_cfu
rr_cfb
rr_cfnr
rr_cd

– redirectCfnrInd<value>—Used to set the CFNR Indicator.

Values allowed are:
cfnr_true
cfnr_false (default)

This parameter does not allow indexing.

– alertTime—Determines how long (in seconds) the phone can ring before the call is aborted. The
default is infinite. This parameter does not allow indexing.

– usrDstAddr—This tag maps directly to the destinationAddress in the user-to-user information
of the H.323-Setup message. The tag can set this field in either e164 format or h323-id string
format. A maximum of 10 instances of this tag is allowed. This parameter does not allow
indexing.

– usrSrcAddr—This tag maps directly to the sourceAddress in the user-to-user information of the
H.323-Setup message. The tag can set this field in either e164 format or h323-id string format.
A maximum of 10 instances of this tag is allowed. This parameter does not allow indexing.

– addrResSrcInfo—This tag maps directly to srcInfo of the ARQ RAS message to the gatekeeper.
The tag can set this field in either e164 format or h323-id string format. A maximum of 10
instances of this tag is allowed. This parameter does not allow indexing.

– addrResDstInfo—This tag maps directly to dstInfo of the ARQ RAS message to the gatekeeper.
The tag can set this field in either e164 format or h323-id string format. A maximum of 10
instances of this tag is allowed. This parameter does not allow indexing.

– displayInfo—This tag maps directly to displayInfo of the H323-Setup message. This parameter
does not allow indexing.

– mode—Possible values are: rotary / redirect / redirect_rotary. If not specified, the default value
is rotary. This parameter does not allow indexing.

• rotary—The call setup attempts to set up a call between the destination and the legID by
normal call setup (rotary) routines and to conference the legs.

• redirect—The call setup attempts to set up a call between the destination and the legID by
transferring the legID endpoint to the destination phone number. A protocol-specific transfer
request is sent on the legID to initiate the transfer. If the transfer attempt fails, the command
aborts. It the transfer successful, the legID eventually gets disconnected from the endpoint,
with the application relinquishing control of the leg as a side effect.
3-74
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
• redirect_rotary—The call setup attempts to set up a call between the destination and the
legID by first transferring the legID endpoint to the destination phone number. If the transfer
attempt fails, either internally by checking the type of call leg or after a transfer message
round trip, the command tries to reach the destination by normal call setup (rotary) methods
and to conference the legs. The application retains the control of the legID and the new leg.
If the transfer is successful, the legID eventually gets disconnected from the endpoint, with
the application relinquishing control of the leg as a side effect.

– rerouteMode—Possible values are: none / rotary / redirect / redirect_rotary. If not specified, the
value is same as mode. If both this argument and mode are not specified, the default value is
rotary. This parameter does not allow indexing.

• none—If the destination endpoint issues a redirect request while attempting a rotary call
setup, the call setup aborts and an ev_setup_done event is sent to the script with redirected-to
numbers. The redirect reason is specified in the evt_redirect_info information tag.

• rotary—If the destination endpoint issues a redirect request while attempting a rotary call
setup, a normal rotary call setup occurs towards the redirected-to number.

• redirect—If the destination endpoint issues a direct request while attempting a rotary call
setup, an attempt is made to propagate the request onto the legID. If the legID is not yet
connected, a call-forwarding request is sent. If the legID is connected, a call-transfer request
is sent. If the legID doesn’t support any redirect mechanism, an ev_setup_done event with
an appropriate error code is sent to the script.

• redirect_rotary—Similar to redirect, except that if the legID does not support any redirect
mechanism, a normal rotary call setup occurs towards the redirected-to number.

– transferConsultID—A token used in call transfer with consultation. Typically extracted from an
ev_transfer_request event. Default value is null. This parameter does not allow indexing.

– notifyEvents—A string of event names. Notify signaling messages listed in this parameter
during rotary call setup and redirect call setup. Internally, call setup continues after reporting
the event to the script. Default value is null. This parameter does not allow indexing.

– originationNumTON—Sets the calling number octet 3 TON field in the ccCallInfo structure.
This parameter does not allow indexing.

Values allowed are:
ton_unknown
ton_international
ton_national
ton_network_specific
ton_subscriber
ton_reserved1
ton_abbreviated
ton_reserved2
ton_not_present
3-75
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
– destinationNumTon—Sets the called number octet 3 TON field in the ccCallInfo structure. This
parameter does not allow indexing.

Values allowed are:
ton_unknown
ton_international
ton_national
ton_network_specific
ton_subscriber
ton_reserved1
ton_abbreviated
ton_reserved2
ton_not_present

– originationNumNPI—Sets the calling number octet 3 NPI field in the existing ccCallInfo
structure. This parameter does not allow indexing.

Values allowed are:
npi_unknown
npi_isdn_telephony_e164
npi_reserved1
npi_data_x121
npi_telex_f69
npi_reserved2
npi_reserved3
npi_reserved4
npi_national_std
npi_private
npi_reserved5
npi_reserved6
npi_reserved7
npi_reserved8
npi_reserved9
npi_reserved10
npi_not_present

– destinationNumNPI—Sets the called number octet 3 NPI field in the existing ccCallInfo
structure. This parameter does not allow indexing.

Values allowed are:
npi_unknown
npi_isdn_telephony_e164
npi_reserved1
npi_data_x121
npi_telex_f69
npi_reserved2
npi_reserved3
npi_reserved4
npi_national_std
npi_private
npi_reserved5
npi_reserved6
npi_reserved7
npi_reserved8
3-76
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
npi_reserved9
npi_reserved10
npi_not_present

– guid—The GUID of the outgoing call leg. This parameter does not allow indexing.

– incomingGuid—The incoming GUID field for the outgoing call leg. This parameter does not
allow indexing.

– originalDest—The original called number. This parameter does not allow indexing.

– protoHeaders—An array containing the header av-pair to be sent in the call setup.

– newguid—Set to true to specify that a new GUID should be generated and used for the outgoing
call setup. By default, a new GUID is not generated for the outgoing call.

• index—An optional integer, starting with 0, used to distinguish multiple instances of a single tag.

• value—The value to be set.

Return Values

None

Command Completion

Immediate

Examples
set callInfo(usrDstAddr,0) “e164=488539663”
set callInfo(addrResSrcInf,1) “h323Id=09193926573”
set callInfo(displayInfo) “hi there”
set callInfo(mode) “REDIRECT_ROTARY”
set callInfo(rotaryRedirectMode) “ROTARY”
set callInfo(notifyEvents) “ev_transfer_status ev_alert”
set callInfo(transferConsultID) $targetConsultID

set setupSignal(Subject) “Hotel Reservation”
set setupSignal(Priority) “urgent”
set setupSignal(X-ReferenceNumber) “1234567890”
set callInfo(protoHeaders) setupSignal

Usage Notes

• The name callInfo is a convention in Tcl scripts for the leg setup command, but the name is not
enforced by Cisco IOS software. The name can be different. For example:

set dest “5550100”
set myInfoForCallSetup(mode) “REDIRECT_ROTARY”
leg setup $dest myInfoForCallSetup

• The Tcl set command does not perform any call setup argument checking, since the code does not
start the call setup until the leg setup command is executed. For example:

set callInfo(redirectCount) BadValue

does not cause an error nor will it fail the call. The call fails when the leg setup command is
thereafter executed.
3-77
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
subscription open
Sends a subscription request to a subscription server.

Syntax

subscription open {URL} subscriptionInfoArray -s subscription_id

Arguments

• URL—URL of the server to send the subscription request to. Only SIP URLs are supported.

• subscriptionInfoArray—An array containing attributes about the subscription. Can contain any of
the following:

– event—Name of event to be subscribed.

– expirationTime—Time after the subscription expires, in seconds.

– protoHeaders—An array containing headers to be sent in the subscription request.

– subscriptionContext—An array containing av-pairs on the context of a subscription. This argument

allows the subscribing system to specify a list of av-pairs as context information that can be useful

to the module or application that receives the notification. The array can contain the following:

– content_type—The type of content, such as plain or XML. Only textual content is supported.

– content—A string that has significance only to the application. The content can be any
information in the form of av-pairs or any other format specified by the content_type. The
content is sent in the protocol message body. Only textual content is supported.

– notificationReceiver—This argument takes either the appName or moduleHandle attribute. If
the name of the application is specified and the application is configured, that application is
generated to receive notification. The moduleHandle attribute specifies the running instance of
a module or session. The moduleHandle can be obtained using the infotag get mod_handle
command. This handle represents a running instance of an application.

• -s subscription_id—ID of the subscription. This argument takes the subscription ID as the parameter
and is used for resubscription when the subscription already exists.

Return Values

subscriptionID—A unique ID assigned to this subscription.

Command Completion

When this command finishes, the script receives an ev_subscribe_done event.

Examples
set subcriptionInfoArray (notificationReceiver) notifyApp
set mySubID [subscription open sip:my_id@cisco.com subscriptionInfoArray]

The following example sends a subscribe request to the server for the event package "msg:"

set url sip:foo@xyz.com
set the event-package
set subinfo(event) msg

#set the expiration time for the subscription in seconds
set subinfo(expirationTime) 500

specify a header
3-78
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
set headers(Subject) "Hi There"
set subinfo(protoHeaders) headers

specify the content
set subinfo(protoContentTypes) "text/plain"
set subinfo(protoContents) "This is from client"

#set context information for subscription
set context(actNum) 1234
set context(pinNum) 5678
set subinfo(subscriptionContext) context

send the request
subscription open $url subinfo

Usage Notes

• Tcl IVR 2.0 limits the number of subscriptions per handler to 18. Because each script instance is a
handler, an application instance can only handle a maximum of 18 subscriptions simultaneously.

• The user can specify how to handle the notification received from the server in one of the following
ways:

– The current script instance that is doing the subscription can handle the notification. For this to
happen, do not specify either the application name (appName) or the moduleHandle in the
arguments.

– A new application instance, whether in the same application or in a different application, can be
created to handle the notification. For this to happen, specify the application name (appName)
in the arguments.

– A different running application instance can handle the notification. For this to happen, specify
the moduleHandle in the arguments.

• The application that makes the subscription is the controlling application. For example, it handles
the notification and removes the subscription.

• To make another application take over control of the application, the application that made the
subscription must close. For example, application A makes the subscription and specifies
“notificationReceiver” to be application B. Unless application A closes by calling “call close,” the
notification is not sent to application B. The same applies if A specifies a moduleHandle.

• A script can pass the legID associated with a leg to the subscription request being made. This allows
debugging based on a leg.

• Event and expirationTime are mandatory arguments that the script must specify.

• Context information is not sent to the server, it is kept along with the subscription information. For

example, information specific to a user, such as accountNumber or pinNumber, is kept within the

subscription. Context information is deleted whenever the subscription is removed.

subscription close
Removes an existing subscription.

Syntax

subscription close subscription_id
3-79
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Arguments

• subscription_id—ID of the subscription to close.

Return Values

None

Command Completion

When this command completes, the script receives an ev_unsubscribe_done event.

Examples
set mySubID openSub
subscription close mySubID

Usage Notes

None

subscription notify_ack
Sends a positive or negative acknowledgment for a notification event.

Syntax

subscription notify_ack <subscription_id> [-i notifyAckInfo]

Arguments

• subscription_id—ID of the subscription.

• -i notifyAckInfo - An associative array that can contain the following:

– protoHeaders—Header information.

– protoContents—Content information.

– protoContentTypes—Content type information.

– respCode—Valid values are ack or nak. If unspecified, the default value of ack is assumed. Ack
sends a positive acknowledgment for notification and nak rejects the notification. When the
application rejects the notification, it should insert headers, such as ‘Warning,’ so that the
appropriate reason is sent to the server.

Return Values

None

Command Completion

Immediate

Examples
set mySubID [infotag get evt_subscription_id]
set headers(Hello) “Hello, this is ACK header”
set ackinfo(protoHeaders) headers
set ackinfo(respCode) “ack”
subscription notify_ack $mySubID -i ackinfo
3-80
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Usage Notes

None

timer left
The timer left returns the number of seconds left on the timer associated with the name.

Syntax

timer left type [name]

Arguments

• type—The type of timer, such as named_timer.

• name—A string name associated with this timer as the key for association.

Return Values

Number of seconds left on the timer.

Command Completion

None

Examples
timer left named_timer timer_1
timer left named_timer 1

Usage Notes

None

timer start
The timer start command starts a timer for a specified number of seconds. Each timer is associated with
a name as its key, allowing multiple named_timers for each script.

Syntax

timer start type time [name]

Arguments

• type—The type of timer, such as named_timer.

• time—The time, in seconds, that the timer should run.

• name—A string name associated with this timer as the key for association.

Return Values

None

Command Completion

When the timer expires, the script receives an ev_named_timer event. The name associated with this
named_timer can be retrieved using the evt_timer_name information tag
3-81
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 3 Tcl IVR API Command Reference
Tcl IVR Commands
Examples
timer start named_timer 60 timer_1
timer start named_timer 100 1

Usage Notes

• If another timer is still running, this command stops the previous timer and start the specified timer.

timer stop
The timer stop command stops the timer associated with the name.

Syntax

timer stop type [name]

Arguments

• type—The type of timer, such as named_timer.

• name—A string name associated with this timer as the key for association.

Return Values

None

Command Completion

None

Examples
timer stop named_timer timer_1
timer stop named_timer 1

Usage Notes

None
3-82
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Cisco IOS Release 12.3(14)T

C H A P T E R 4

Information Tags

Information tags (info-tags) are identifiers that can be used to retrieve information about call legs,
events, the script itself, current configuration, and values returned from RADIUS.

Note Some info-tags have one or more parameters that are used to further identify the information to be
retrieved, set, or modified.

Info-tags are grouped according to use. The first three characters of the info-tag label indicate the
grouping:

• aaa—RADIUS information.

• cfg—Configuration information.

• con—Connection information.

• evt—Event information.

• leg—Call leg information.

• med—Media services information.

• sys—System information.

This chapter lists the available info-tags and the following information about each:

• Description—Explanation of the purpose of the info-tag.

• Syntax—The syntax of the info-tag.

• Mode—Whether the info-tag is read or read-write.

• Scope—The context in which the info-tag can be used. Some info-tags can be used at any time
(global). Others are valid only when certain events are received, and the script terminates with error
output if the info-tag is used in other situations. For example, you cannot call evt_dcdigits while
handling the ev_setup_done event. In other words, if the previous command is leg setup and the
ev_setup_done event has not yet returned, then you cannot execute an infotag get evt_dcdigits
command, or the script will terminate with error output.

• Return Type—The type of information returned by the info-tag when used with an infotag get or
infotag set command.

• Direct Mapping—Whether the info-tag can be used directly with a command (other than the
infotag get or infotag set commands) and with which commands it can be used.

Note If an info-tag is specified incorrectly, if any of the parameters are specified incorrectly, or if the info-tag
is used outside its intended scope, the script terminates with error output.
4-1
Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
aaa_accounting_last_sent

aaa_avpair

aaa_avpair_exists

Description Retrieves the timestamp of the last accounting record sent from the voice-aaa
subsystem.

Syntax infotag get aaa_accounting_last_sent {servertag}

• servertag—The server or server group identifier. This value refers to the
method-list name, as in the following AAA configuration:

aaa accounting connection {default | method-list-name} group
group-name

Mode Read

Scope Valid only on completion of a successful servertag subscription.

Return Type timestamp

Direct Mapping None

Description Returns the value of an AV-pair that was returned by RADIUS.

After an authorize command finishes, the RADIUS server could have returned
parameters as AV-pairs. This info-tag, along with aaa_avpair_exists, is used to
get the value of a parameter after checking that such a parameter was returned.
Refer to the table in “AV-Pair Names” section on page 4-3 for a list of valid VSA
AV-pair names.

Syntax infotag get aaa_avpair avpair-name

Mode Read

Scope Global

Return Type String, Number, Boolean (1 or 0), or any other value that is configured or
returned through RADIUS.

Direct Mapping None

Description Returns the number of matched AV-pairs in the RADIUS server return.

After an authorize command completes, the RADIUS server may return
parameters as AV-pairs. This info-tag, along with aaa_avpair, is used to find
out if a parameter exists before getting its value. Refer to the table in the
“AV-Pair Names” section on page 4-3 for a list of valid VSA AV-pair names.

Syntax infotag get aaa_avpair_exists avpair-name

Mode Read

Scope Global

Return Type Number

Direct Mapping None
4-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
AV-Pair Names

The info-tag aaa_avpair_exists can be used to check the availability of a VSA. The info-tag aaa_avpair
can be used to access the value returned in this VSA. The valid VSA names that can be passed as
parameters to these commands are the following.

Note If the aaa variable returns “0,” this indicates that there is no VSA match to the name returned.

Type Name Description

aaa h323-ivr-in A generic VSA for the billing server to send any
information to the gateway in the form of an AV-pair, such
as “color:blue” or
“advprompt:rtsp://www.cisco.com/rtsp/areyouready.au”

h323-ivr-out A generic VSA for the gateway to send any information to
the billing server in the form of an AV-pair, such as
“color:blue” or
“advprompt:rtsp://www.cisco.com/rtsp/areyouready.au”

h323-credit-amount The credit amount remaining in the account is returned.

h323-credit-time The credit time remaining in the account is returned.

h323-prompt-id The ID of the prompt is returned.

h323-redirect-number The number for redirection of a call is returned.

h323-redirect-ip-addr The IP address for the preferred route is returned.

h323-preferred-lang The language that the billing system returns as the
preferred language of the end user. Three languages are
supported; en (english), sp (spanish), and ch (mandarin).
You can define additional languages as needed.

h323-time-and-day The time and day at the destination.

h323-return-code This information is returned only after an authorization
command is issued. It returns either a numerical value or
“Unknown variable name.” The numerical value indicates
what action the IVR application should take, namely to
play a specific audio file to inform the end user of the
reason for the failed authorization. If “Unknown variable
name” is returned, the external AAA server is out of
service.

h323-billing-model Indicates the billing model used for the call. Initial values:
0=Credit, 1=Debit. Note: The debit card application
assumes a Debit billing model.

h323-currency ISO currency to indicate what units to use in playing the
remaining balance. The debit card application assumes
units of preferred_language_dollar.au and
preferred_language_cent.au.
4-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
aaa_new_guid

cfg_avpair

cfg_avpair_exists

con_all

Description Request the system to generate and return a new GUID.

Syntax infotag get aaa_new_guid

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns the value of an AV-pair that was configured through the CLI.

Syntax infotag get cfg_avpair avpair-name

Mode Read

Scope Global

Return Type String, Number, Boolean (1 or 0), or any other value that is configured or
returned through RADIUS.

Direct Mapping None

Description Returns an indication of whether the specified parameter or AV-pair was
configured through the CLI.

Syntax infotag get cfg_avpair_exists avpair-name

Mode Read

Scope Global

Return Type Boolean (1 = true; 0=false)

Direct Mapping None

Description Returns or maps to a list of all the connection IDs in the script.

Syntax infotag get con_all

Mode Read

Scope Global

Return Type Number list

Direct Mapping Connections
4-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
con_ofleg

evt_aaa_status_info

evt_address_resolve_reject_reason

Description Gets a list of all the connections the leg is a part of. This does not include those
connections that are in Creation or under Destruction. The info-tag should map
to just one leg.

Syntax infotag get con_ofleg {info-tag | legID}

Mode Read

Scope Global

Return Type Number list

Direct Mapping Connections

Description Retrieves the aaa information. For example, the method list from the
ev_accounting_status_ind event.

Syntax infotag get evt_aaa_status_info [attribute-name]

• attribute-name—The attribute you want to access. Defined attributes are
method-list-name and status. If no attribute is specified, the list of attributes
returns in the form of av1#av2#, where “#” is the delimiter. Status values are:

– 000—Accounting Failed

– 001—Accounting Success

Mode Read

Scope ev_accounting_status_ind

Return Type String

Direct Mapping None

Examples set method_list [infotag get evt_aaa_status_info method-list-name]

Description Returns the address resolution rejection cause.

Syntax infotag get evt_address_resolve_reject_reason

Mode Read

Scope ev_address_resolved

Return Type Number

Direct Mapping None
4-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_address_resolve_term_cause

evt_connections

evt_consult_info

evt_dcdigits

Description Returns the address resolution termination cause.

Syntax infotag get evt_address_resolve_term_cause

Mode Read

Scope ev_address_resolved

Return Type Number

Direct Mapping None

Description Returns a list of connection IDs associated with the event received.

Syntax infotag get evt_connections

Mode Read

Scope ev_handoff
ev_returned
ev_setup_done
ev_create_done
ev_destroy_done

Return Type Number list

Direct Mapping Connections

Description Returns consult information from a consult response event.

Syntax infotag get evt_consult_info {consultID | transferDest}

Mode Read

Scope ev_consult_response

Return Type String

Direct Mapping None

Description Returns the digits collected by the leg collectdigits command.

Syntax infotag get evt_dcdigits

Mode Read

Scope ev_collectdigits_done

Return Type String

Direct Mapping None
4-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_dest_handle

evt_digit

evt_digit_duration

Description Returns the application handle of the instance that registered for the destination
number. This value is only available when the destination is an analog FXS phone
and the phone is busy. If no application registered for the destination number, the
value is an empty string.

Syntax infotag get evt_dest_handle

Mode Read

Scope ev_setup_done

Return Type String; represents a TCL application handle

Direct Mapping None

Description Returns the digit key that was pressed.

Syntax infotag get evt_digit

Mode Read

Scope ev_digit_end

Return Type String

Direct Mapping None

Description Returns the duration of the digit that was pressed.

Syntax infotag get evt_digit_duration

Mode Read

Scope ev_digit_end

Return Type Number

Direct Mapping None
4-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_disc_iec

evt_disc_rsi

Description Returns the Internal Error Code (IEC). In the case of multiple IECs, only the last one

is returned. The IEC returns in the same format as Radius VSAs, as a dotted

“version.entity.category.subsystem.error.diagnostic” string.

If <component> is not specified, this command returns the dotted string with the

components of the IEC. For example, “1.1.180.3.21.0.” If there is no internal error

associated with the disconnect, the returned string is “0.0.0.0.0.0.”

Syntax infotag get evt_disc_iec [<component>]

The optional <component> argument can be one of the following parameters:

• entity—Returns the entity component of the IEC. For example, “1.”

• category—Returns the category component of the IEC. For example, “180.”

• subsystem—Returns the subsystem component. For example, “3.”

• errcode—Returns the subsystem-specific error code component. For
example, “21.”

Mode Read

Scope ev_disconnected

Return Type String

Direct Mapping None

Description Returns the RSI numeric value that indicates where the release originated from.

If there is no RSI available, this command returns 0.

Note Valid only upon receiving an ev_disconnected event. If called while
processing any other event, this command returns a TCL_ERROR,
causing the script to terminate.

Syntax infotag get evt_disc_rsi

Mode Read

Scope ev_disconnected

Return Type String

Direct Mapping None
4-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_endpoint_addresses

evt_event

evt_facility_id

Description Returns a list of endpoint addresses.

Syntax infotag get evt_endpoint_addresses

Mode Read

Scope ev_address_resolved

Return Type String

The return value has the following structure:

<endpointAddress>#<endpointAddress>#...

The first endpointAddress is the primary address. The endpointAddresses that
follow are the alternate addresses.

Direct Mapping None

Description Returns the name of the event received.

Syntax infotag get evt_event

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns the service type of the facility message response. The value is
ss_mcid_resp for MCID invocation responses.

Syntax infotag get evt_facility_id

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set facility_id [infotag get evt_facility_id]

Usage Notes None
4-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_facility_report

evt_feature_param

Description Enables the receipt of facility events.

Syntax infotag set evt_facility_report <mcid | gtd>

Mode Write

Scope Global

Return Type String

Direct Mapping None

Example infotag set evt_facility_report gtd

Usage Notes • The mcid option of this information tag must be set to receive facility
responses from MCID responses.

• The gtd option of this information tag must be set to receive facility events
that contain GTD information.

Description Returns parameters related to a specific feature event.

Syntax infotag get evt_feature_param {parameter_name}

Possible return strings for media_inactivity are as follows:

no media received—Media inactivity detected; no RTP or RTCP packets have
been received for a configured amount of time. RTCP packet has been received
before a media inactivity condition is met.

no control info received—Media inactivity detected; no RTP or RTCP packets
have been received for a configured amount of time. No RTCP packet has been
received before a media inactivity condition is met.

Mode Read

Scope ev_feature

Return Type String

Direct Mapping None

Example infotag get evt_feature_param media_inactivity_type
4-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_feature_report

evt_feature_type

Description Enables or disables certain feature events to be intercepted by the script.

Syntax infotag set evt_feature_report {[“no_”]event_names}

• event_names—A list of application event names that define what events
should or should not be reported to an application when a call is active. An
event name with a “no_” prefix means not to report it. Possible values for
event_names are as follows:

– fax

– modem

– modem_phase

– hookflash

– onhook

– offhook

– media_inactivity

Mode Write

Scope ev_feature

Return Type None

Direct Mapping None

Examples To enable hookflash and disable fax and modem feature events received by the
script: infotag set evt_feature_report hookflash nofax nomodem

To enable media_inactivity received by the script: infotag set
evt_feature_report media_activity

Description Returns the feature type string when a feature event is received.

Syntax infotag get evt_feature_type

• Possible event names returned are as follows:

– fax

– modem

– modem_phase

– hookflash

– onhook

– offhook

– media_inactivity

– media_activity

Mode Read

Scope ev_feature

Return Type String

Direct Mapping None
4-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_gtd

evt_handoff ani

evt_handoff argstring

Description Associates a handle to the GTD parameters contained in the event.

The application can use the handle to include the associated GTD parameters in
any outgoing call signal message.

Syntax infotag get evt_gtd <gtd_handle>

Mode Read

Scope ev_address_resolved
ev_alert
ev_connected
ev_disconnected
ev_proceeding
ev_progress
ev_setup_indication

Return Type Number. If a handle can be created from the event, 1 is returned, otherwise 0 is
returned.

Direct Mapping None

Example set handle [infotag get evt_gtd gtd_inf]

Usage Notes None

Description Returns the ani set by the inbound application in the <transfer>/ field of the leg
setup command.

Syntax infotag get evt_handoff ani

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set ani [infotag get evt_handoff ani]

Usage Notes This command is only available in the handoff event.

Description This command replaces the existing evt_handoff_string information tag.

Syntax infotag get evt_handoff argstring

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set hstring [infotag get evt_handoff argstring]

Usage Notes This command is only available in the handoff event.
4-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_handoff dnis

evt_handoff_legs

evt_handoff proto_headers

Description Returns the dnis set by the inbound application in the <transfer>/ field of the leg
setup command. Available only in the handoff event.

Syntax infotag get evt_handoff dnis

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set dnis [infotag get evt_handoff dnis]

Usage Notes None

Description Returns all the legs handed off to the application. Typically used to retrieve all call

legs in a multiple-leg handoff, but can also be used for a single-leg handoff.

Syntax infotag get evt_handoff_legs

Mode Read

Scope ev_handoff

Return Type String; represents legIDs separated by space characters.

Direct Mapping None

Description Retrieves the handoff header.

Syntax infotag get evt_handoff proto_headers [<attribute-name>]

<attribute-name>—Name of the header to get.

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set AccountInfo [infotag get evt_handoff proto_headers AccountInfo]

The following command returns all headers in a concatenated string. Each
header av-pair is separated by a ‘&’:

set allHeaders [infotag get evt_handoff proto_headers]

Usage Notes If <attribute-name> is not specified, all headers are returned in a concatenated string,

with each header separated by a “&” symbol.
4-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_handoff_string

evt_iscommand_done

Description Returns the handoff string when one or more call legs are handed off or returned
to the script.

Syntax infotag get evt_handoff_string

Mode Read

Scope ev_handoff
ev_returned

Return Type String

Direct Mapping None

Description Returns an indication of whether the command has finished.

Syntax infotag get evt_iscommand_done

Mode Read

Scope ev_returned
ev_setup_done
ev_collectdigits_done
ev_vxmldialog_done

Return Type Boolean (1 = true; 0 = false)

Direct Mapping None
4-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_last_disconnect_cause

evt_last_event_handle

Description Returns the value of the last failure detected during this call. The failure could
have occurred on any call leg associated with this call. If no failures have
occurred during the call, di_000 is returned.

The value of this information tag is updated while processing the following
events:

• ev_disconnected—Set to the cause value recieved in the protocol message.

• ev_disc_prog_ind—Set to the cause value recieved in the protocol message.

• ev_collectdigits_done—Set to di_028 (invalid number) when the
ev_collectdigits_done event returns status cd_006. Not modified when other
digit collect status codes are returned.

• ev_setup_done—Set to the cause code associated with the call setup attempt.
The value is di_016 (normal) if the call setup is successful.

• ev_authenticate_done—Set to di_057 (bearer capability is not available)
when the ev_authenticate_done event status is not au_000. Not modified if
event status is au_000.

• ev_authorize_done—Set to di_057 (bearer capability is not available) when
the ev_authorize_done event status is not ao_000. Not modified if event
status is ao_000.

Syntax infotag get evt_last_disconnect_cause

Mode Read

Scope Global

Return Type String. See the “Disconnect Cause” section on page 5-8 for string format.

Direct Mapping None

Description Returns the command handle of the setup.

Syntax infotag get evt_last_event_handle

Mode Read

Scope ev_address_resolved
ev_alert

Return Type String

Direct Mapping None
4-15
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_last_iec

evt_legs

Description When the script receives an ev_setup_done event that returns a bad status and

wants more information, the script can poll this infotag to find the last Internal

Error Code (IEC) associated with the rotary setup attempts and play an

appropriate message to the caller on the incoming leg based on the IEC. This
infotag is valid for any event. If there is no IEC associated with the call yet, the
returned string is 0.0.0.0.0.0, or 0 for component.

Syntax infotag get evt_last_iec [<component>]

The optional <component> argument can be one of the following parameters:

• entity—Returns the entity component of the IEC. For example, “1.”

• category—Returns the category component of the IEC. For example, “180.”

• subsystem—Returns the subsystem component. For example, “3.”

• errcode—Returns the subsystem-specific error code component. For
example, “21.”

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns a list of leg IDs associated with the event received. For information about
which legs the evt_legs info-tag returns for a specific event, see Chapter 5,
“Events.”

Syntax infotag get evt_legs

Mode Read

Scope ev_authorize_done
ev_leg_timer
ev_digit_end
ev_hookflash
ev_disconnected
ev_disconnect_done
ev_grab
ev_setup_indication
ev_media_done
ev_handoff
ev_returned
ev_setup_done
ev_collectdigits_done
ev_vxml_dialog_done
ev_vxmldialog_event

Return Type Number list

Direct Mapping Legs
4-16
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_module_handle

evt_module_subevent

evt_module_context

evt_msg

Description Returns the module handle of the module that generated the current module
event.

Syntax infotag get evt_module_handle

Mode Read

Scope ev_module_done, ev_module_event

Return Type String

Direct Mapping None

Description Returns the module subevent name specified in the module return interim
command that generated the ev_module_event being processed. This provides
access to the parameters associated with the specific module event being
handled.

Syntax infotag get evt_module_subevent

Mode Read

Scope ev_module_event

Return Type String

Direct Mapping None

Description Returns the module context specified when creating this module with the module
new command.

Syntax infotag get evt_module_context

Mode Read

Scope ev_module_done, ev_module_event

Return Type String

Direct Mapping None

Description Retrieves the message body.

Note Only valid when handling an ev_msg_indication event.

Syntax infotag get evt_msg <array-name>

<array_name>—The name of a TCL array populated with information from the
-p attribute in the sendmsg command.

Mode Read

Scope Global

Return Type A list of array item names.

Direct Mapping None
4-17
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
Examples proc act_handle_msg {
infotag get evt_msg rx_message

 if { [info exists rx_message(fruit)] == 1 } {
 set fruit $rx_message(fruit)
 } else { set fruit “peaches” }

set ident [infotag get evt_msg_source]
 set return_msg(text) “Got your message requesting $fruit,
ignoring it”

sendmsg $ident -p return_msg
}

Usage Notes None
4-18
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_msg_source

evt_params

evt_progress_indication

Description Retrieves the handle of the source of the message.

Syntax infotag get evt_msg_source

Mode Read

Scope Global

Return Type String

Direct Mapping None

Examples proc act_handle_msg {
infotag get evt_msg rx_message

 if { [info exists rx_message(fruit)] == 1 } {
 set fruit $rx_message(fruit)
 } else { set fruit “peaches” }

set ident [infotag get evt_msg_source]
 set return_msg(text) “Got your message requesting $fruit,
ignoring it”

sendmsg $ident -p return_msg
}

Usage Notes • This handle is the same kind of handle returned by the mod_handle
information tag. It can be used in a sendmsg or handoff command.

• This information tag is only valid after an ev_msg_indication event. If called
at other times, an error occurs and the script fails.

Description Creates an array variable named <array-name> within the current modulespace
from the information provided by the <param-array> parameter of the module
return command. This provides access to the parameters associated with the
specific module event being handled.

Syntax infotag get evt_params <array-name>

Mode Read

Scope ev_module_done, ev_module_event

Return Type String

Direct Mapping None

Description Returns the value of the progress indication of the received alert, connected,
disconnect, disconnect with PI, proceeding, or progress message.

Syntax infotag get evt_progress_indication

Mode Read
4-19
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
Scope ev_alert
ev_connected
ev_progress
ev_proceeding
ev_disconnected
ev_disc_prog_ind

Return Type Number

Direct Mapping None

Example set progress [infotag get evt_progress_indication]

Usage Notes None
4-20
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_proto_content

evt_proto_content_type

evt_proto_headers

Description Used to retrieve the content of the received event. The content is the body of the

protocol message.

Syntax infotag get evt_proto_content

Mode Read

Scope ev_notify, ev_subscribe_done, ev_unsubscribe_indication

Return Type String

Direct Mapping None

Examples set r_content [infotag get evt_proto_content]

Usage Notes Only textual content, such as plain text or xml text, is supported.

Description Used to retrieve the content type of the received event. This event specifies the type

of content carried in the body of the protocol message.

Syntax infotag get evt_proto_content_type

Mode Read

Scope ev_notify, ev_subscribe_done, ev_unsubscribe_indication

Return Type String

Direct Mapping None

Examples set content_type [infotag get evt_proto_content_type]

Usage Notes Only textual content, such as plain text or xml text, is supported.

Description Used to access the protocol header information associated with the events.

Syntax infotag get evt_proto_headers <attribute-name>

<attribute-name>—Name of the header to get.

Mode Read

Scope ev_notify, ev_subscribe_done, ev_unsubscribe_indication

Return Type String containing the value of the header attribute.

Direct Mapping None

Examples set event [infotag get evt_proto_headers Event]
set inviteSubject [infotag get evt_proto_headers “Subject”]
set all_headers [infotag get evt_proto_headers]

Usage Notes • Both standard and non-standard headers can be accessed using this
command. The application does not cache the header values. If an
application wants to retain header information, it must save the information
in its local or global variables.

• If <attribute-name> is not specified, all headers are returned in a
concatenated string, with each header separated by a “&” symbol.
4-21
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_report ev_transfer_request

evt_redirect_info

Description Allows notification of the call transfer request event from an endpoint to the

application.

Syntax infotag set evt_report ev_transfer_request

Mode Write

Scope Global

Return Type String

Direct Mapping None

Examples infotag set evt_report ev_transfer_request

Usage Notes • The script performs a leg setup to the transfer-to endpoint. The callinfo
(transferCall, transferBy, consultID) field is populated with information
available in the evt_transfer_info information tag.

• After the callinfo field is populated, a call is set up toward the transfer-to
endpoint.

Description Returns forwarding request information when a call is being forwarded.

Syntax infotag get evt_redirect_info {redirectDest | redirectReason | redirectCount |
originalDest}

• redirectDest—redirected-to number retrieved during call setup to the
destination

• redirectReason—the type of redirection

– rr_cfb—CF-busy

– rr_cfnr—CF-no answer

– rr_cd—CD-call deflection

– rr_cfu—CF-unconditional

• redirectCount—number of call diversions that have occurred

• originalDest—original called number

Mode Read

Scope ev_setup_done

Return Type String

Direct Mapping None
4-22
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_service_control

evt_service_control_count

evt_status

Description Returns the service control indexed by <index>, with <index> 1 being the first
service control field.

Syntax infotag get evt_service_control <index>

Mode Read

Scope ev_address_resolved

Return Type String

The string content is application dependent. The format of the content are agreed
upon between the application and the route entity.

Note The application processes the service descriptor fields. Neither the
gatekeeper nor the gateway interprets the contents of the service
descriptors.

Direct Mapping None

Description Returns the number of service control fields.

Syntax infotag get evt_service_control_count

Mode Read

Scope ev_address_resolved

Return Type Number

Direct Mapping None

Description Returns the status of the event received. This info-tag is valid only in the scope
of the function handling the event. For a list of possible statuses, see the “Status
Codes” section on page 5-6.

Syntax infotag get evt_status

Mode Read

Scope ev_setup_done
ev_collectdigits_done
ev_media_done
ev_disconnected
ev_authorize_done
ev_authenticate_done
ev_vxmldialog_done
ev_subscribe_done

ev_unsubscribe_done

ev_unsubscribe_indication

Return Type String

Direct Mapping None
4-23
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_status_text

Examples proc act_SubscribeDone { } {
 puts "***** act_Subscribe : SUBSCRIPTION DONE received"
 set sub_id [infotag get evt_subscription_id]
 set status [infotag get evt_status]
 puts "*** act_subscribe: subscription status=$status"
 if {$status == "su_000"} {
 puts "\n Subscription accepted."
 return
 } else if {$status == "su_001"} {
 puts "\n Subscription is pending"
 return
 } else {$status == "su_002"} {
 # subscription request has failed; close the subscription
 puts "\nSubscription request has failed."
 set status_text [infotag get evt_status_text]
 puts "text is: $status_text\n"
 subscription close $sub_id
 }
}

Usage Notes Return codes indicate some type of failure has occurred; therefore, the script
should be written to handle such errors accordingly.

Description Retrieves failure information associated with an event.

Syntax infotag get evt_status_text

Mode Read

Scope ev_subscribe_done, ev_unsubscribe_done, ev_unsubscribe_indication

Return Type String with failure information, if any.

Direct Mapping None

Example set sub_id [infotag get evt_subscription_id]
set status [infotag get evt_status]
puts "*** act_subscribe: subscription status=$status"
 if {$status == "su_002"} {
 # subscription request has failed; close the subscription
 puts "\nSubscription request has failed."
 set status_text [infotag get evt_status_text]
 puts "text is: $status_text\n"
 subscription close $sub_id
 }
4-24
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
evt_subscription_id

evt_timer_name

evt_transfer_info

Description Retrieves the subscription id associated with events related to a subscription or a

notification.

Syntax infotag get evt_subscription_id

Mode Read

Scope ev_subscribe_done, ev_notify, ev_subscribe_cleanup,
ev_unsubscribe_indication

Return Type Subscription ID

Direct Mapping None

Examples set sub_id [infotag get evt_subscription id]

Usage Notes None

Description Retrieves the name associated with the expired named_timer.

Syntax infotag get evt_timer_name

Mode Read

Scope ev_named_timer

Return Type String

Direct Mapping None

Description Returns transfer information from a transfer request event.

Syntax infotag get evt_transfer_info {transferBy | transferDest | consultID}

Mode Read

Scope ev_transfer_request

Return Type String

Direct Mapping None
4-25
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
evt_vxmlevent

evt_vxmlevent_params

Description Returns a string containing the VXML event that was thrown. These events are
generally of the form vxml.*.

Events thrown from the dialog markup, or the document using the VXML
sendevent object extension, are of the form vxml.dialog.*. For more information
on sendevent objects, refer to SendEvent Object, page 1-8.

Events thrown by the system due to some event, such as the vxml document
executing a <disconnect/> tag, are of the form vxml.session.*.

Syntax infotag get evt_vxmlevent

Mode Read

Scope ev_vxmldialog_done
ev_vxmldialog_event

Return Type String

Direct Mapping None

Description Retrieves parameters that may come with an event. This info-tag clears the array
variable and fills it with the parameter values indexed by the parameter names in
the param option of the sendevent object tag. Parameters can also be returned
through the <exit/> tag with a namelist attribute. For more information on
sendevent objects, refer to SendEvent Object, page 1-8.

In either case, if the namelist contains an audio clip variable, it is made available
to the Tcl script as a parameter with a string value containing the ram:// uri form
for the audio clip. The info tag returns a space-separated list of indexes that were
added to the return array variable passed as a parameter to the information tag.

Syntax infotag get evt_vxmlevent_params <array-variable-name>

Mode Read

Scope ev_vxmldialog_done
ev_vxmldialog_event

Return Type String

Parameter: array-variable-name

Direct Mapping None
4-26
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
gtd_attr_exists

last_command_handle

leg_all

Description Used to determine if an attribute instance exists in a GTD message.

Syntax infotag get gtd_attr_exists <gtd_handle><attr_instance>

• <gtd_handle>—Name of the GTD handle from which the application wants
to check the existence of a GTD attribute instance.

• <attr_instance>—This parameter is of the form <attr_name>,
<attr_instance>. <attr_instance> can be specified with a value of -1, which
means “don’t care.”

Mode Read

Scope Global

Return Type Boolean (1=true; 0=false)

Direct Mapping None

Description Retrieves the last command handle.

Syntax infotag get last_command_handle

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns or maps to one or more call legs. This is the union of leg_incoming and
leg_outgoing.

Syntax infotag get leg_all

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs
4-27
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
leg_ani

leg_ani_pi

Description Returns the ANI field of CallInfo.

Syntax infotag get leg_ani [legID]

If no leg ID is specified, this info-tag returns the ANI field of the first incoming
call leg. Not specifying a leg ID works only if there is at least one incoming call
leg.

If a leg ID is specified, this info-tag returns the ANI field of that call leg. If the
call leg is not valid, the script terminates with error output.

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Gets the calling number presentation indication value.

Syntax infotag get leg_ani_pi

Mode Read

Scope Global

Return Type Number list

Values retrieved could be one of the following:

1—presentation_allowed
2—presentation_restricted
3—number_lost_due_to_interworking
4—reserved_value
5—not_present (denotes that the Calling Number IE is absent in the incoming
signaling message.

Direct Mapping None
4-28
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
leg_ani_si

leg_dn_tag

leg_dnis

Description Gets the calling number screening indication value.

Syntax infotag get leg_ani_si

Mode Read

Scope Global

Return Type Number list

Values retrieved could be one of the following:

1—usr_provided_unscreened
2—usr_provided_screening_passed
3—usr_provided_screening_failed
4—network_provided
5—not_present (denotes that the Calling Number IE is absent in the incoming
signaling message.

Direct Mapping None

Description Returns the DN field of call info. In an Ephone-initiated call, it carries the DN
tag of the calling party.

Syntax infotag get leg_dn_tag legID

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns the DNIS field of CallInfo.

Syntax infotag get leg_dnis [legID]

If no leg ID is specified, this info-tag returns the DNIS field of the first incoming
call leg. Not specifying a leg ID works only if there is at least one incoming call
leg.

If a leg ID is specified, this info-tag returns the DNIS field of that call leg. If the
call leg is not valid, the script terminates with error output.

Mode Read

Scope Global

Return Type String

Direct Mapping None
4-29
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
leg_display_info

leg_guid

leg_incoming

leg_incoming_guid

Description Returns the display_info field of call info. In an Ephone-initiated call, this field
contains the name of the calling party.

Syntax infotag get leg_display_info legID

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns the GUID o a leg.

Syntax infotag get leg_guid [legID]

If legID is not specified, returns the GUID of the first incoming leg.

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Returns or maps to one or more incoming call legs.

Syntax infotag get leg_incoming

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs

Description Returns the incoming GUID of a leg.

Syntax infotag get leg_incoming_guid [legID]

If legID is not specified, returns the GUID of the first incoming leg.

Mode Read

Scope Global

Return Type String

Direct Mapping None
4-30
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
leg_inconnection

leg_isdid

leg_outgoing

Description Gets a list of legs that are part of this connection. The info-tag parameter maps
to just one connection.

Syntax infotag get inconnection {connID | info-tag}

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs

Description Returns the DID field of CallInfo. This is a Boolean field (1 and 0) that reflects
the FinalDestination flag of the call leg.

Syntax infotag get leg_isdid [legID]

If no leg ID is specified, this info-tag returns the DID field of the first incoming
call leg. Not specifying a leg ID works only if there is at least one incoming call
leg.

If a leg ID is specified, this info-tag returns the DID field of that call leg. If the
call leg is not valid, the script terminates with error output.

Mode Read

Scope Global

Return Type Boolean (1 = true; 0 = false)

Direct Mapping None

Description Returns or maps to one or more outgoing call legs.

Syntax infotag get leg_outgoing

Mode Read

Scope Global

Return Type Number list

Direct Mapping Legs
4-31
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
leg_password

leg_proto_headers

Description If no leg ID is specified, this info-tag returns the password field of the first
incoming call leg. Not specifying a leg ID works only if there is at least one
incoming call leg. If a leg ID is specified, this info-tag returns the password field
of that call leg. If the call leg is not valid, the script terminates with error output.

Syntax infotag get leg_password [legID]

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Provides access to headers associated with the protocol being used.

Syntax infotag get leg_proto_headers [<attribute-name>] [legID]

<attribute-name>—Name of the header to get.

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set AccountInfo [infotag get leg_proto_headers AccountInfo]

set inviteSubject [infotag get evt_proto_headers “Subject”]

set inviteFrom [infotag get leg_proto_headers “From” leg_incoming]

The following command returns all headers received from the incoming Invite
message in a concatenated string. Each header av-pair is separated by a ‘&’:

set allHeaders [infotag get evt_proto_headers]

Usage Notes • This information tag allows the accessing of SIP headers from VXML
documents or TCL IVR 2.0 scripts.

• Currently, only access to headers in SIP invite, subscribe, notify and H.323
setup messages are supported.

• If <attribute-name> is not specified, all headers are returned in a
concatenated string, with each header separated by a “&” symbol.

• If legID is not provided, the first incoming leg is applied.
4-32
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
leg_rdn

leg_rdn_pi

leg_rdn_si

Description Gets the redirect number from the first incoming leg.

Syntax infotag get leg_rdn

Mode Read

Scope Global

Return Type String

Direct Mapping None

Description Gets the redirect number presentation indication value.

Syntax infotag get leg_rdn_pi

Mode Read

Scope Global

Return Type Number list

Values retrieved could be one of the following:

1—presentation_allowed
2—presentation_restricted
3—number_lost_due_to_interworking
4—reserved_value
5—not_present (denotes that the Redirect Number IE is absent in the incoming
signaling message.

Direct Mapping None

Description Gets the redirect number screening indication value.

Syntax infotag get leg_rdn_si

Mode Read

Scope Global

Return Type Number list

Values retrieved could be one of the following:

1—usr_provided_unscreened
2—usr_provided_screening_passed
3—usr_provided_screening_failed
4—network_provided
5—not_present (denotes that the Redirect Number IE is absent in the incoming
signaling message.

Direct Mapping None
4-33
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
leg_redirect_cnt

leg_remoteipaddress

leg_remote_media_ip_address

leg_remote_signaling_ip_address

Description Retrieves redirection count information from the first incoming call leg or for a
leg if callid is specified.

Syntax infotag get leg_redirect_cnt

Mode Read

Scope Global

Return Type Number. Values retrieved between 0–7.

Direct Mapping None

Description Returns the remote IP address of the endpoint from which the call is received. If
the IP address is not available, an empty string is returned.

Syntax infotag get leg_remoteipaddress <leg-id>

Mode Read

Scope Global

Return Type String (ip address)

Direct Mapping None

Description Returns the remote media IP address of the endpoint. If the IP address is not
available, an empty string is returned.

Syntax infotag get leg_remote_media_ip_address <leg_id>

Mode Read

Scope Global

Return Type String (ip address)

Direct Mapping None

Description Returns the remote signaling IP address of the endpoint. If the IP address is not
available, an empty string is returned.

Syntax infotag get leg_remote_signaling_ip_address <leg_id>

Mode Read

Scope Global

Return Type String (ip address)

Direct Mapping None
4-34
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
leg_rgn_noa

Note This infotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in a future IOS release when an alternate method of accessing this information is made

Description Gets the redirect number nature of address value.

Syntax infotag get leg_rgn_noa

Mode Read

Scope Global

Return Type Number

Values retrieved could be one of the following:

00—Unknown, number present
01—Unknown, number absent, presentation restricted
02—Unique subscriber number
03—Nonunique subscriber number
04—Unique national (significant) number
05—Nonunique national number
06—Unique international number
07—Nonunique international number
08—Network specific number
09—Nonsubscriber number
10—Subscriber number, operator requested
11—National number, operator requested
12—International number, operator requested
13—No number present, operator requested
14—No number present, cut through call to carrier
15—950+ call from local exchange carrier public station, hotel/motel or
non-exchange access end office
16—Test line test code
17—Unique 3 digit national number
18—Credit card
19—International inbound
20—National or international with carrier access code included
21—Cellular - global ID GSM
22—Cellular - global ID NWT 900
23—Cellular - global ID autonet
24—Mobile (other)
25—Ported number
26—VNET
27—International operator to operator outside WZ1
28—International operator to operator inside WZ1
29—Operator requested - treated
30—Network routing number in national (significant) format
31—Network routing number in network specific format
32—Network routing number concatenated with called directory number
33—Screened for number portability
34—Abbreviated number

Direct Mapping None
4-35
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
available.

leg_rgn_npi

Note This infotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in a future IOS release when an alternate method of accessing this information is made
available.

leg_rgn_num

Note This infotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in a future IOS release when an alternate method of accessing this information is made
available.

Description Returns the redirect number numbering plan indicator value.

Syntax infotag get leg_rgn_npi

Mode Read

Scope Global

Return Type Number

Values retrieved could be one of the following:
1—ISDN numbering plan
2—Data numbering plan
3—Telex numbering plan
4—Private numbering plan
5—National
6—Maritime mobile
7—Land mobile
8—ISDN mobile
252—Unknown

Direct Mapping None

Description Returns the redirect number address.

Syntax infotag get leg_rgn_num

Mode Read

Scope Global

Return Type String

Direct Mapping None
4-36
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
leg_rgn_pi

Note This infotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in a future IOS release when an alternate method of accessing this information is made
available.

leg_rgn_si

Note This infotag has been provided as an interim mechanism for accessing specific signaling information. It
may be obsoleted in a future IOS release when an alternate method of accessing this information is made
available.

Description Returns the redirect number presentation indicator value.

Syntax infotag get leg_rgn_pi

Mode Read

Scope Global

Return Type Number

Values retrieved could be one of the following:

0—Unknown
1—Presentation allowed
2—Presentation not allowed
3—Address not available

Direct Mapping None

Description Returns the redirect number screening indicator value.

Syntax infotag get leg_rgn_si

Mode Read

Scope Global

Return Type Number

Values retrieved could be one of the following:

1—User provided not screened
2—User provided screening passed
3—User provided screening failed
4—Network provided
252—Unknown

Direct Mapping None
4-37
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
leg_settlement_time

leg_source_carrier_id

leg_subscriber_type

Description Returns the minimum of the OSP settlement time (in seconds) associated with the
list of specified legs.

Syntax infotag get leg_settlement_time {legID | info-tag} [minimum]

If you specify minimum, this returns the minimum of the OSP settlement time of
the list of legs and the value of the AAA AV-pair creditTime. This AAA AV-pair
creditTime was returned by a previous aaa authorize command.

If all credit times are uninitialized, “uninitialized” is returned.

If all have unlimited time, or if one is uninitialized and the others have unlimited
time, “unlimited” is returned.

Mode Read

Scope Global

Return Type Number

Direct Mapping None

Description Retrieve the source carrier ID.

Syntax infotag get leg_source_carrier_id

Mode Read

Scope Global

Return Type None

Direct Mapping None

Description Returns the subscriber type.

Syntax infotag get leg_subscriber_type

Mode Read

Scope Global

Return Type None

Direct Mapping None
4-38
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
leg_suppress_outgoing_auto_acct

leg_target_carrier_id

leg_tdm_hairpin

leg_type

Description When set, the service provider module does not automatically generate an

accounting packet on the outgoing call leg.

Syntax infotag get leg_suppress_outgoing_auto_acct

infotag set leg_suppress_outgoing_auto_acct

Mode Read/write

Scope Global

Return Type None for set
Boolean (0 | 1) for get

Direct Mapping Leg

Description Set the target carrier ID.

Syntax infotag set leg_target_carrier_id

Mode Write

Scope Global

Return Type String

Direct Mapping None

Description Enables TDM hairpinning on the incoming call leg. Copies the TDM hairpin value
to the outgoing leg and enables it for TDM hairpinning.

Syntax infotag set leg_tdm_hairpin [legID | info-tag] [enable | disable]

Mode Write

Scope Global

Return Type None

Direct Mapping None

Description Returns the interface type of the specified leg. If the detail parameter is specified,
this returns a detailed string that includes the interface subtype of the specified
leg. The detail parameter is optional. The information tag used to specify the leg
should map to just one leg.

Syntax infotag get leg_type [detail] {legID | info-tag}

Mode Read

Scope Global
4-39
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
leg_username

Return Type String

Possible return values are:

telephony
voip
mmoip
voatm
vofr
unknown
none

Possible return values with the detail parameter are:

voip-h323
voip-sip
tele-analog-em
tele-analog-fxo
tele-analog-fxs
tele-analog-efxs
tele-analog-efxo
tele-digital-isdn
tele-digital-cas
tele-digital-bri
tele-digital-r2
msp-doc
msp-fax
unknown

Direct Mapping None

Description If no leg ID is specified, this info-tag returns the username field of the first
incoming call leg. Not specifying a leg ID works only if there is at least one
incoming call leg. If a leg ID is specified, this info-tag returns the username field
of that call leg. If the call leg is not valid, the script terminates with error output.

Syntax infotag get leg_username [legID]

Mode Read

Scope Global

Return Type String

Direct Mapping None
4-40
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
med_backup_server

med_language

Description Returns or sets the backup server. This is applicable for RTSP-based prompts.

If the script attempts to play a prompt using a URL and the URL fails, it tries to
replay the URL from a list of backup servers by replacing the server portion of
the URL.

For example, if the script tries (but fails) to play a prompt from:

rtsp://www.cisco.com:5554/audiofiles/english/anounce.au

and the backup server 0 is configured as:

rtsp://www.real.com/cisco/

then the backup URL attempted is:

rtsp://www.real.com/cisco/audiofiles/english/anounce.au

A maximum of two (0 and 1) backup servers can be configured.

This info-tag applies only to streams on which you have not played any prompts
and is typically used in the one-time initialization section of the script.

Syntax infotag get med_backup_server index

infotag set med_backup_server index server-URL

Mode Read/Write

Scope Global

Return Type String

Direct Mapping None

Description Returns or sets the current active language for media playout.

This info-tag returns the language index or the language prefix (depending on
whether prefix is specified) for the currently active language.

Syntax infotag get med_language [prefix]

infotag set med_language [index | prefix prefix]

Mode Read/Write

Scope Global

Return Type String/Number

Direct Mapping None
4-41
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
med_language_map

med_location

med_total_languages

Description Returns or sets the mapping between the language index and the language prefix.

This info-tag returns the language index or the language prefix (depending on
whether prefix is specified) for the currently active language.

Syntax infotag get med_language_map [index | prefix prefix]

infotag set med_language_map index prefix

Mode Read/Write

Scope Global

Return Type String/Number

Direct Mapping None

Description Returns or sets the language locations for all the languages the script uses. The
language prefix, category, and location are the same as those configurable from
the Cisco IOS command line interface (CLI).

Syntax infotag get med_location prefix category. Valid category values are 1, 2, 3, 4.

infotag set med_location prefix category location. Category 0 can be used to set
all 1–4 categories.

Mode Read/Write

Scope Global

Return Type String

Direct Mapping None

Description Returns the total number of languages configured.

Syntax infotag get med_total_languages

Mode Read

Scope Global

Return Type Number

Direct Mapping None
4-42
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
media_timer_factor

mod_all_handles

Description Sets the receive-rtcp timer. The new value is used within the scope of the script

and does not change the gateway configuration.

Syntax infotag set media_timer_factor <timer_factor>

timer_factor—An integer between 2–1000. The value is a multiple of the RTCP
transmission interval. A value of 5 is recommended.

Note If a value outside the range of 2–1000 is used, the script receives an error
message.

Mode Write

Scope None

Return Type None

Direct Mapping None

Example infotag set media_timer_factor 5

Description Retrieves a list of all instances running on the gateway. The returned handle can be
used as an argument for handoff and sendmsg commands.

Syntax infotag get mod_all_handles

Mode Read

Scope Global

Return Type String

Direct Mapping None

Examples set all_handles [infotag get mod_all_handles]

Usage Notes • Handles are ASCII strings that are only valid within a gateway. A handle for
a session on another gateway cannot be used to send a message to that
gateway.

• The format of a handle is not designed to be parsed or printed by a TCL
script. The handle is used internally by a sendmsg or handoff command.
4-43
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
mod_handle

mod_handle_service

Description Retrieves the handle of the currently running application session. The returned
handle can be used as an argument for handoff and sendmsg commands.

Syntax infotag get mod_handle

Mode Read

Scope Global

Return Type String

Direct Mapping None

Examples set id [infotag get mod_handle]

set my_name new_customer
set recorded_name ([infotag get mod_handle]) $my_name

Usage Notes • Handles are ASCII strings that are only valid within a gateway. A handle for
a session on another gateway cannot be used to send a message to that
gateway.

• The format of a handle is not designed to be parsed or printed by a TCL
script. The handle is used internally by a sendmsg or handoff command.

• Returns “unavailable” if the service is not running.

Description Retrieves the handle of the named service.

Syntax infotag get mod_handle_service <service>

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set serv_hndl [infotag get mod_handle_service]

Usage Notes • Returns “unavailable” if the named service is not running.

• The returned handle can be used as an argument for handoff and sendmsg
commands.
4-44
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 4 Information Tags
set iec

subscription_context

Description Sets the Internal Error Code (IEC) before issuing a call close or leg disconnect

command.

Note Using the set iec information tag after specifying the IEC with the leg
disconnect -<iec> command causes duplicate IECs to be associated with
the call leg.

Syntax infotag set iec <legID | info-tag> <iec>

<iec>—Can be one of the following arguments:

• media_done_err—Indicates that the script is terminating the call because of
an error status returned by the ev_media_done event.

• collectdigits_done_err—Indicates that the script is terminating the call
because of an error status returned by the ev_collectdigits_done event.

• authenticate_done_err—Indicates that the script is terminating the call
because of an error status returned by the ev_authenticate_done_event.

• authorize_done_err—Indicates that the script is terminating the call because
of an error status returned by the ev_authorize_done event.

• media_inactivity_err—Disconnects the call when media inactivity is
detected and reported.

• accounting_conn-err—Indicates the script detects that connectivity to the
accounting server is lost.

Mode Write

Scope Global

Return Type String

Direct Mapping None

Description Retrieves the subscription context information associated with the subscription ID.

Syntax infotag get subscription_context <subscription_id> [attribute]

• subscription_id—ID associated with the subscription

• attribute—The attribute within the context information.

Mode Read

Scope Global

Return Type String containing the context.

Direct Mapping None

Example set accountNumber [infotag get subscription_context $MySubID
accountNumber]

Usage Notes If the attribute argument is missing, a string containing all attributes and values is

returned. Each av-pair is escaped by the “#” character.
4-45
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 4 Information Tags
subscription_info

subscription_server_ipaddress

sys_version

Description Retrieves the subscription information associated with a subscription ID. Retrievable

subscription attributes are url, event, expirationTime, subscription_context, and

notificationReceiver.

Syntax infotag get subscription_info <subscription_id> <attribute>

• subscription_id—ID associated with the subscription

• attribute—The attribute to access.

Mode Read

Scope Global

Return Type String

Direct Mapping None

Example set exp_time [infotag get subscription_info $sub_id expirationTime]

Usage Notes None

Description Retrieves the IP address of the subscription server.

Syntax infotag get subscription_server_ipaddress <subscription_id>

• subscription_id—ID associated with the subscription

Mode Read

Scope Global

Return Type String containing the IP address of the server.

Direct Mapping None

Example set ipaddr [infotag get subscription_server_ipaddress $sub_id]

Usage Notes None

Description Returns the version of the Tcl IVR API.

Syntax infotag get sys_version

Mode Read

Scope Global

Return Type String

Direct Mapping None
4-46
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Cisco IOS Release 12.3(14)T

C H A P T E R 5

Events and Status Codes

This chapter describes events received and status codes returned by Tcl IVR scripts. This chapter
includes the following topics:

• Events, page 5-1

• Status Codes, page 5-6

Events
The following events can be received by the Tcl IVR script. Any events received that are not included
below are ignored.

Event Description

ev_accounting_status_ind Received when the method list or server group is marked unreachable.

The accounting status and method list can be derived using infotag get
evt_aaa_status_info [attribute-name].

ev_address_resolved List of endpoint addresses.

ev_alert An intermediate event generated by the leg setup or leg
setup_continue commands to set up a call. If specified in the callinfo
parameter, notifyEvents, the script receives an ev_alert message once
the destination endpoint is successfully alerted. The script running in
the transferee gateway could then disconnect the leg towards the
transferring endpoint.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the
setup.

ev_any_event A special wildcard event that can be used in the state machine to
represent any event that might be received by the script.

ev_authorize_done Confirms the completion of the aaa authorize command. You can use
the evt_status info-tag to determine the authorization status (whether it
succeeded or failed).

ev_authenticate_done Confirms the completion of the authentication command. You can use
the evt_status info-tag to determine the authentication status (whether
it succeeded or failed).

ev_call_timer0 Indicates that the call-level timer expired.
5-1
Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Events
ev_collectdigits_done Confirms the completion of the leg collectdigits command on the call
leg. You can then use the evt_status info-tag to determine the status of
the command completion. You can use the evt_dcdigits info-tag to
retrieve the collected digits.

ev_connected An intermediate event generated by the leg setup or leg
setup_continue commands to set up a call.

If the callinfo paramater, notifyEvents, is specified, the script receives
an ev_connected message when the system receives a connect event
from the destination switch.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the
setup.

ev_consult_request Indicates a call-transfer consultation-id request from an endpoint.

ev_consult_response Indicates a response to the leg consult request command. For return
codes, see Consult Status under Status Codes.

ev_consultation_done Indicated the completion of a leg consult response command. For
return codes, see Consult Response under Status Codes.

ev_create_done Confirms the completion of the connection create command. You can
use the evt_connection info-tag to determine the ID of the completed
connection.

ev_destroy_done Confirms the completion of the connection destroy command. You can
use the evt_connection info-tag to determine the ID of the connection
that was destroyed.

ev_digit_end Indicates that a digit key is pressed and released. You can use the
evt_digit info-tag to determine which digit was pressed. You can use the
evt_digit_duration info-tag to determine how long (in seconds) the digit
was pressed. This can be used to detect long pounds or long digits.

ev_disconnect_done Indicates that the call leg has been cleared.

ev_disconnected Indicates that one of the call legs needs to disconnect. On receiving this
event, the script must issue a leg disconnect on that call leg. You can
use the evt_legs info-tag to determine which call leg disconnected.

ev_disc_prog_ind Indicates a DISC/PI message is received at a call leg.

ev_facility Indicates a response to a leg facility command.

ev_feature Indicates a feature event received by the script. The script can use the
set evt_feature_report information tag to enable or disable the feature
events to be intercepted. When the script receives an ev_feature event,
it can use the get evt_feature_type information tag to retrieve the
feature type string.

ev_grab Indicates that an application that called this script is requesting that the
script return the call leg. The script receiving this event can clean up
and return the leg with a handoff return command. Whether this is
done is at the discretion of the script receiving the ev_grab event.

Event Description
5-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 5 Events and Status Codes
Events
ev_hookflash Indicates a hook flash (such as a quick onhook-offhook in the middle
of a call), assuming that the underlying platform or interface supports
hook flash detection. It is received by the TCL script when the user
presses a hookflash.

ev_handoff Indicates that the script received one or more call legs from another
application. When the script receives this event, you can use the
evt_legs and the evt_connections info-tags to obtain a list of the call
legs and connection IDs that accompanied the ev_handoff event.

ev_leg_timer Indicates that the leg timer expired. You can use the evt_legs info-tag
to determine which leg timer expired.

ev_media_activity Indicates the detection of an active call. It is generated when the RTP
and RTCP packets are transmitted again after a period of media
inactivity.

ev_media_done Indicates that the prompt playout either completed or failed. You can
use the evt_status info-tag to determine the completion status.

ev_media_inactivity Indicates the detection of an inactive call. It is generated if the RTP and
RTCP packets are not received during a specified time period. The time
period is specified by the CLI ip rtcp report interval and timer
receive-rtcp.

ev_named_timer Received when a named_timer expires. The name of the named_timer
can be derived by using the get evt_timer_name information tag.

ev_proceeding An intermediate event generated by the leg setup or leg
setup_continue commands to set up a call.

If the callinfo paramater, notifyEvents, is specified, the script receives
an ev_proceeding message when the system receives a proceeding
event from the remote end.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the
setup.

ev_progress An intermediate event generated by the leg setup or leg
setup_continue commands to set up a call.

If the callinfo paramater, notifyEvents, is specified, the script receives
an ev_progress message when the system receives a progress event
from the destination switch.

If this event is an intercepted event, the application needs to use the leg
setup_continue command to allow the system to continue with the
setup.

ev_returned Indicates that a call leg that was sent to another application (using
handoff callappl) has been returned. This event can be accompanied
by one or more call legs that were created by the called application.
When the script receives this event, you can use the evt_legs and the
evt_connections info-tags to obtain a list of the call legs and connection
IDs that accompanied the ev_returned event. You can use the
evt_iscommand_done info-tag to verify that all of the call legs sent
have been accounted for, meaning that the handoff callappl command
is complete.

Event Description
5-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Events
ev_setup_done Indicates that the leg setup command has finished. You can then use the
evt_status info-tag to determine the status of the command completion
(whether the call was successfully set up or failed for some reason).

ev_setup_indication Indicates that the system received a call. This event and the ev_handoff
event are the events that initiate an execution instance of a script.

ev_synthesizer Indicates the completion of a media play command.

ev_tone_detected Signifies the detection of the requested tone. This event is generated, at
most, once after a leg tonedetect enable command is issued. Tone
detection is disabled after this event arrives. Use the evt_status
information tag to determine the detected tone. See Status Codes, page
5-6, for possible tone detect status values.

Example:

set fsm(WAIT_FOR_CNG, ev_tone_detected)
"act_process_td_event, same_state")

 proc act_process_td_event { } {
 set Tone1 [infotag get evt_status]
 if { $Tone1 == "td_003" }
 # Do stuff here
 }

ev_transfer_request Indicates a call transfer from an endpoint to the application.

ev_transfer_status An intermediate event generated by the leg setup command. If
specified in the callinfo parameter, notifyEvents, the script receives an
ev_trasfer_status message. The ev_status information tag would then
contain the status value of the call transfer.

ev_vxmldialog_done Received when the VXML dialog completes. This could be because of
a VXML dialog executing an <exit/> tag or interpretation completing
the current document without a transition to another document. The
dialog could also complete due to an interpretation failure or a
document error. This completion status is also available through the
evt_status info-tag.

ev_vxmldialog_event Received by the Tcl IVR application when the VXML dialog initiated
on a leg executes a sendevent object tag. The VXML subevent name is
available through the evt_vxmlevent info-tag. All events thrown from
the dialog markup are of the form vxml.dialog.*. All events generated
by the system—perhaps as an indirect reaction to the VXML document
executing a certain tag or throwing a certain event—like the dialog
completion event are of the form vxml.session.*.

ev_msg_indication Signals an incoming message.

ev_session_indication Signals the start of a new session.

ev_session_terminate Stop the current TCL session.

ev_subscribe_done Subscription request completed.

ev_unsubscribe_done Unsubscribe request completed.

ev_unsubscribe_indication Server terminated the subscription.

ev_notify Notify indication received.

ev_notify_done Notification request completed

Event Description
5-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 5 Events and Status Codes
Events
ev_subscribe_cleanup Received when a ‘clear subscription <session id | all’ CLI is executed.

ev_returned Received when another application instance returns the call leg.

ev_grab If a user stops a TCL session that has already handed a call off to a second

session, the session sends an ev_grab event to the second session. If the

second session returns the call leg, the first session cleans up. If the second

session does not return the call leg, the first session stops executing, but

does not clean up completely until the second session disconnects the call

leg, or returns it.

Usage Notes:
• Scripts must check the return status for the ev_subscribe_done event. This event indicates that a

response is received from server. A return code of su_000 indicates that a positive response has
been received. A return code of su_002 or above indicates a negative response from the server.

• A subscription is complete only when an ev_subscribe_done event and the first notification from
server are received. An application should close its instances only after making sure the
subscription is complete.

• The script receives an ev_unsubscribe_indication event when the server terminates the
subscription. The script can access header and content information associated with this event.

• If the subscription timer expires, the script receives an ev_unsubscribe_indication event with a
status code of ui_003. Since this is an internal event, there is no header or content information
associated with this event.

• When an ev_subscribe_cleanup event is received, the script must close the subscription. If no
response is received within 5 seconds, the infrastructure closes the subscription. Make sure the
script handles this event.

• If the instance making the subscription is already closed and an ev_notify_indication,
ev_subscribe_cleanup, or ev_unsubscribe_indication event is received, a new instance is created
and the event is handed to it.

Event Description
5-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Status Codes
Status Codes
The evt_status info-tag returns a status code for the event received. This sections lists the possible status
codes and their meaning.

Status codes are grouped according to function. The first two characters of the status code indicate the
grouping.

• au—Authentication status

• ao—Authorization status

• cd—Digit collection status

• cr—Consult response

• cs—Consult status

• di— Disconnect cause

• fa—Facility

• ft—Feature type

• ls—Leg setup status

• ms—Media status

• td—Tone detect

• ts—Transfer status

• vd—Voice dialog completion status

Authentication Status
Authentication status is reported in au_xxx format:

Authorization Status
Authorization status is reported in ao_xxx format:

Value for xxx Description

000 Authorization was successful.

001 Authorization error.

002 Authorization failed.

Value for xxx Description

000 Authorization was successful.

001 Authorization error.

002 Authorization failed.
5-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 5 Events and Status Codes
Status Codes
Digit Collection Status
Digit collection status is reported in cd_xxx format:

Consult Response
Feature type is reported in cr_xxx format:

Consult Status
Feature type is reported in cs_xxx format:

Value for xxx Description

001 The digit collection timed out, because no digits were pressed and not enough digits
were collected for a match.

002 The digit collection was aborted, because the user pressed an abort key.

003 The digit collection failed, because the buffer overflowed and not enough digits were
collected for a match.

004 The digit collection succeeded with a match to the dial plan.

005 The digit collection succeeded with a match to one of the patterns.

006 The digit collection failed because the number collected was invalid.

007 The digit collection was terminated because an ev_disconnected event was received
on the call leg.

008 The digit collection was terminated because an ev_grab event was received on the
call leg.

009 The digit collection successfully turned on digit reporting to the script.

010 The digit collection was terminated because of an unsupported or unknown feature
or event.

Value for xxx Description

000 Success

001 Failed, invalid state

002 Failed, timeout

003 Failed, abandon

004 Failed, protocol error

Value for xxx Description

000 Consultation success, consult-id available

001 Consultation failed, request timeout

002 Consultation failed

003 Consultation failed, request rejected

004 Consultation failed, leg disconnected

005 Consultation failed, operation unsupported
5-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Status Codes
Disconnect Cause
Disconnect causes use the format di_xxx where xxx is the Q931 cause code. Possible values are:

Value for xxx Description

000 Uninitialized

001 Unassigned number

002 No route to the transit network

003 No route to the destination

004 Send information tone

005 Misdialed trunk prefix

006 Unacceptable channel

007 Call awarded

008 Preemption

009 Preemption reserved

016 Normal

017 Busy

018 No response from the user

019 No answer from the user

020 Subscriber is absent

021 Call rejected

022 Number has changed

026 Selected user is clearing

027 Destination is out of order

028 Invalid number

029 Facility rejected

030 Response to status inquiry

034 No circuit available

035 Requested VPCI VCI is not available

036 VPCI VCI assignment failure

037 Cell rate is not available

038 Network is out of order

039 Permanent frame mode is out of service

040 Permanent frame mode is operational

041 Temporary failure

042 Switch is congested

043 Access information has been discarded

044 No required circuit

045 No VPCI VCI is available

046 Precedence call blocked
5-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 5 Events and Status Codes
Status Codes
047 No resource available

048 DSP error

049 QoS is not available

050 Facility is not subscribed

053 Outgoing calls barred

055 Incoming calls barred

057 Bearer capability is not authorized

058 Bearer capability is not available

062 Inconsistency in the information and class

063 Service or option not available

065 Bearer capability is not implemented

066 Change type is not implemented

069 Facility is not implemented

070 Restricted digital information only

079 Service is not implemented

081 Invalid call reference value

082 Channel does not exist

083 Call exists and call ID in use

084 Call ID in use

085 No call suspended

086 Call cleared

087 User is not in CUG

088 Incompatible destination

090 CUG does not exist

091 Invalid transit network

093 AAL parameters not supported

095 Invalid message

096 Mandatory information element (IE) is missing

097 Message type is not implemented

098 Message type is not compatible

099 IE is not implemented

100 Invalid IE contents

101 Message in incomplete call state

102 Recovery on timer expiration

103 Nonimplemented parameter was passed on

110 Unrecognized parameter message discarded

111 Protocol error

Value for xxx Description
5-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Status Codes
Facility
Leg setup requesting address resolution status is reported in fa_xxx format:

Feature Type
Feature type is reported in ft_xxx format:

Leg Setup Status
Leg setup status is reported in ls_xxx format:

127 Internetworking error

128 Next node is unreachable

129 Holst Telephony Service Provider Module (HTSPM) is out of service

160 DTL transit is not my node ID

Value for xxx Description

Value for xxx Description

000 supplementary service request succeeded

003 supplementary service request unavailable

007 supplementary service was invoked in an invalid call state

009 supplementary service was invokes in a non-incoming call leg

010 supplementary service interaction is not allowed

050 MCID service is not subscribed

051 MCID request timed out

052 MCID is not configured for this interface

053 Unknown error

054 Initialization error

Value for xxx Description

001 Fax

002 Modem

003 Modem_phase

004 Hookflash

005 OnHook

006 OffHook

Value for xxx Description

000 The call is active or was successful.

001 The outgoing call leg was looped.
5-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 5 Events and Status Codes
Status Codes
002 The call setup timed out (meaning that the destination phone was alerting, but no one
answered). The limit of this timeout can be specified in the leg setup command.

003 The call setup failed because of a lack of resources in the network.

004 The call setup failed because of an invalid number.

005 The call setup failed for reasons other than a lack of resources or an invalid number.

006 Unused; setup failure.

007 The destination was busy.

008 The incoming side of the call disconnected.

009 The outgoing side of the call disconnected.

010 The conferencing or connecting of the two call legs failed.

011 Supplementary services internal failure

012 Supplementary services failure

013 Supplementary services failure. Inbound call leg was disconnected.

014 The call was handed off to another application.

015 The call setup was terminated by an application request.

016 The outgoing called number was blocked.

026 Leg redirected

031 Transfer request acknowledge

032 Transfer target alerting (future SIP use)

033 Transfer target trying (future SIP use)

040 Transfer success

041 Transfer success with transfer-to party connected (SIP only)

042 Transfer success unacknowledged (SIP only)

050 Transfer fail

051 Transfer failed, bad request (SIP only)

052 Transfer failed, destination busy

053 Transfer failed, request cancelled

054 Transfer failed, internal error

055 Transfer failed, not implemented (SIP only)

056 Transfer failed, service unavailable or unsupported

057 Transfer failed, leg disconnected

058 Transfer failed, multiple choices (SIP only)

059 Transfer failed, timeout; no response to transfer request

Value for xxx Description
5-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Status Codes
Media Status
Media status is reported in ms_xyy format:

Subscribe/Notify
The following return codes are defined for Subscribe/Notify events:

• ev_subscribe_done su_xxx

• ev_notify_done no_xxx

• ev_unsubscribe_done us_xxx

• ev_unsubscribe_ind ui_xxx

where xxx in the strings above represent the following:

x indicates the command yy indicates the status of the command

Value for x Description Value for yy Description

0 Status for a media play command. 00 The command was successful and
the prompt finished.1

1. Valid for the media play command only, because media_done events are not received for successful completion of other
media commands.

1 Status for a media record
command.

01 Failure

2 Status for a media stop command. 02 Unsupported feature or request

3 Status for a media pause
command.

03 Invalid host or URL specified

4 Status for a media resume
command.

04 Received disconnected

5 Status for a media seek command
to forward.

05 The prompt was interrupted by a
key press.

6 Status for a media seek command
to rewind.

Value for xxx Description

000 Success

001 Pending

002 Generic failure

003 Subscription expired

004 Socket error

005 DNS error

006 Request timed-out error

007 Connection timed-out error

008 Connection create failed

009 Internal error
5-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Chapter 5 Events and Status Codes
Status Codes
Tone Detect
Tone detect is reported in td_xxx format:

Transfer Status
Transfer status is reported in ts_xxx format:

010 Response error

099 Undefined

Value for xxx Description

Value for xxx Description

000 Invalid inband signal

001 FAX_V21

002 FAX_CED

003 FAX_CNG

004 MODEM_2100HZ

005 MODEM_2100HZ_PHASE

006 VOICE_SILENCE

007 CP_TONE

Value for xxx Description

000 Generic transfer success

001 Transfer success, transfer-to party is alerting

002 Transfer success, transfer-to party is answered

003 Transfer finished; however, the result of the transfer is not guaranteed

004 Transfer request is accepted

005 Transferee is trying to reach transfer-to party

006 Transfer request is rejected by transferee

007 Invalid transfer number

008 Transfer-to party unreachable

009 Transfer-to party is busy
5-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Chapter 5 Events and Status Codes
Status Codes
VoiceXML Dialog Completion Status
VoiceXML dialog completion status is reported in vd_xxx format:

Value for xxx Description

000 Normal completion because of
the <exit> tag or execution
reaching the end of the
document.

001 Termination because of the
default VXML event handling
requiring VXML termination.

002 Terminated by the Tcl IVR
application.

003 Internal failure.
5-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Cisco IOS Release 12.3(14)T

A P
 P E N D I X A

Sample Scripts

Note The scripts that appear in this section are only examples. They are not necessarily intended to be fully
functional. For the latest versions of all sample scripts, go to the Developer Support web site at
http://www.cisco.com/go/developersupport

SIP Headers

Passing SIP Headers
The following script prompts for an account number, then makes a call to URL “sip:elmo@sip.tgw.com,”
where the account number is passed in the SIP header under the header named “AccountInfo.” Other
static headers, such as Subject, To, From, and Priority, are also passed from the script, either as part of
the URL or separately.

prompt_digit_xfer.tcl
Script Version: 2.0.0
#--
#
Copyright (c) 2004 by cisco Systems, Inc.
All rights reserved.
#--

proc init { } {
 global param

 set param(interruptPrompt) true
 set param(abortKey) *
 set param(terminationKey) #

}

proc act_Setup { } {

 leg setupack leg_incoming
 leg proceeding leg_incoming
 leg connect leg_incoming

 media play leg_incoming http://townsend.cisco.com/vxml/audio/enterAccount.au
}

-1
Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
SIP Headers
proc act_MediaDone { } {
 global param

 set pattern(account) .+
 set callinfo(alertTime) 30
 leg collectdigits leg_incoming param pattern

}
proc act_GotAccount { } {
 global dest
 global callinfo
 global headers
 global account

 set status [infotag get evt_status]

 if { $status == "cd_005" } {

set account [infotag get evt_dcdigits]

These are additional headers for the setup request message
set headers(AccountInfo) "[set account]"
this Subject header overwrites the one overloaded in the destination URL
set headers(Subject) "HelloSipTCL"
set headers(To) "sip:oscar@abc.com"
set headers(From) "sip:nobody"
set callinfo(protoHeaders) headers

this destination URL has an overloaded header named "Subject"
set dest "sip:elmo@sip.tgw.com?Subject=Hello&Priority=Urgent"

leg setup $dest callinfo leg_incoming

 } else {
puts "\nCall [infotag get con_all] got event $status collecting destination"
call close

 }
}

proc act_CallSetupDone { } {

 set status [infotag get evt_status]
 puts "\n STATUS=$status"
 if { $status == "ls_000"} {

 timer start leg_timer 30 leg_incoming
 return
 }
 call close
}

proc act_Cleanup { } {

 set status [infotag get evt_status]
 puts "\n STATUS is $status"

puts "\nCAME BACK FROM TRANSFER AND CLOSING CALL"
 call close
}

init
requiredversion 2.0
-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
SIP Headers
#----------------------------------
State Machine
#----------------------------------
 set fsm(any_state,ev_disconnected) "act_Cleanup same_state"
 set fsm(CALL_INIT,ev_setup_indication) "act_Setup MEDIAPLAY"
 set fsm(MEDIAPLAY,ev_media_done) "act_MediaDone GETDEST"
 set fsm(GETDEST,ev_collectdigits_done) "act_GotAccount PLACECALL"
 set fsm(PLACECALL,ev_setup_done) "act_CallSetupDone CALLACTIVE"
 set fsm(CALLACTIVE,ev_leg_timer) "act_Cleanup same_state"
 set fsm(CALLACTIVE,ev_disconnected) "act_Cleanup CALLDISCONNECT"
 set fsm(CALLDISCONNECT,ev_disconnected) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_media_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_disconnect_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_leg_timer) "act_Cleanup same_state"

 fsm define fsm CALL_INIT

Retrieving SIP Headers
The following script plays the prompt “The number is,” along with the account number received from
the originating gateway. Other headers received are displayed in debug messages.

prompt_digit_xfer.tcl
Script Version: 2.0.0
#--
#
Copyright (c) 2004 by cisco Systems, Inc.
All rights reserved.
#--

proc init { } {
 global param

 set param(interruptPrompt) true
 set param(abortKey) *
 set param(terminationKey) #

}

proc act_Setup { } {
 leg setupack leg_incoming
 leg proceeding leg_incoming
 leg connect leg_incoming
 infotag set med_language 1

 set ani [infotag get leg_ani]
 set dnis [infotag get leg_dnis]

 puts "\n get_headers.tcl: ani is $ani"
 puts "\n get_headers.tcl: dnis is $dnis"

 set Subject [infotag get evt_proto_headers Subject]
 puts "\n get_headers.tcl: Subject = $Subject"

 set Priority [infotag get evt_proto_headers Priority]
 puts "\n get_headers.tcl: Priority = $Priority"

 set From [infotag get evt_proto_headers From]
 puts "\n get_headers.tcl: From = $From"
-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
SIP Headers

 set To [infotag get evt_proto_headers To]
 puts "\n get_headers.tcl: To = $To"

 set Via [infotag get evt_proto_headers Via]
 puts "\n get_headers.tcl: Via = $Via"

 set tsp [infotag get evt_proto_headers tsp]
 puts "\n get_headers.tcl: tsp = $tsp"

 set phone_context [infotag get evt_proto_headers phone-context]
 puts "\n get_headers.tcl: phone-context = $phone_context"

 set AccountInfo [infotag get leg_proto_headers AccountInfo]
 puts "\n get_headers.tcl - act_Setup: AccountInfo = $AccountInfo"

 media play leg_incoming tftp://townsend.cisco.com/audio/num_is.au %n$AccountInfo
}

proc act_CallSetupDone { } {

 set status [infotag get evt_status]
 puts "\n STATUS=$status"
 if { $status == "ls_000"} {

 timer start leg_timer 30 leg_incoming
 return
 }
 call close
}

proc act_Cleanup { } {

 set status [infotag get evt_status]
 puts "\n STATUS is $status"

puts "\nCAME BACK FROM TRANSFER AND CLOSING CALL"
 call close
}

init
requiredversion 2.0

#----------------------------------
State Machine
#----------------------------------
 set fsm(any_state,ev_disconnected) "act_Cleanup same_state"
 set fsm(CALL_INIT,ev_setup_indication) "act_Setup MEDIAPLAY"
 set fsm(PLACECALL,ev_setup_done) "act_CallSetupDone CALLACTIVE"
 set fsm(CALLACTIVE,ev_leg_timer) "act_Cleanup same_state"
 set fsm(CALLACTIVE,ev_disconnected) "act_Cleanup CALLDISCONNECT"
 set fsm(CALLDISCONNECT,ev_disconnected) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_media_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_disconnect_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_leg_timer) "act_Cleanup same_state"

 fsm define fsm CALL_INIT
-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Services
Services
The following script demonstrates how to use the service register command and the start service
configuration. The script registers as a service to provide data to other scripts and wakes up on a timer
to get the latest data.

Service Register and Start
#--
sample_service.tcl -
This script will not accept incoming calls.
#--

set myname "sample_service.tcl"

#------------
Someone is telling us to terminate. The service will unregister
when we close.
#
proc act_Terminate { } {
 global myname

 puts "$myname received a terminate event, closing up."
 call close
}

#------------
Got an initial event when the script starts running. Register as
as service, get the initial data, and wait on a timer.
#
proc act_Session { } {
 global myname

 puts "$myname is starting up."
 puts "Starting timer for 30 seconds"
 timer start call_timer0 30

 init_data

 set r [service register data_service]
 puts " Register of data_service returned $r"
}

#-----------
Simulate getting some data. We could subscribe, or be collecting info
from calls. Just keep a counter.
#
proc init_data { } {
 global data

 set data(run_time) 0
 set data(call_count) 0
}

proc get_data { } {
 global data

 set data(run_time) [expr $data(run_time)+30]
}

-5
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Services
#------------
The initial call setup has come in. Output some display to the console.
If we are the second session, send a message to the first.
#
proc act_Setup { } {
 global myname

 puts "$myname got a setup. Refusing the call."
 leg disconnect leg_all
}

#------------
We received a message from another session.
#
proc act_Rx_Msg { } {
 global myname
 global data

 set src [infotag get evt_msg_source]
 infotag get evt_msg msg_array
 incr data(call_count)

 puts "$myname got a message. Respond with the data."
 set r [sendmsg $src -p data]
 puts "Send of data to $src returned $r"
}

#------------
The timer has gone off. Get the data, and reset the timer.
#
proc act_Timer { } {
 puts "Timer went off. Get data, and reset the timer.\n"

 get_data
 timer start call_timer0 30
}

#------------
Ignore this event. Output the event name to the console.
#
proc act_Ignore { } {
 global myname

 set ev [infotag get evt_event]
 puts "$myname is ignoring event $ev"
}

#----------------------------------
State Machine
#----------------------------------
#
 set fsm(any_state,ev_session_indication) "act_Session same_state"
 set fsm(any_state,ev_session_terminate) "act_Terminate same_state"
 set fsm(CALL_INIT,ev_setup_indication) "act_Setup same_state"
 set fsm(any_state,ev_msg_indication) "act_Rx_Msg same_state"
 set fsm(any_state,ev_call_timer0) "act_Timer same_state"
 set fsm(any_state,ev_any_event) "act_Ignore same_state"

 fsm define fsm start_state
-6
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Session Interaction
Session Interaction
The following script demonstrates session interaction. The script runs a VoiceXML script to get the list
of handles.

#
Global Data Structures
handles - list of handles of other sessions (not our own)
If they crash, we will not know, so may be out of date.
my_handle - handle of this session
my_leg - leg id of the initial leg we will keep
recorded_names - array of ptrs to RAM based recordings, indexed by handles.
includes our own.
#

#------------
The init routine runs once when the script is loaded.
Setup the global media_parm array for use every time we turn on
digit collect.
#
proc init { } {
 # Code here runs when the script is loaded.

 global media_parm

 puts "
 Loading si_demo_main.tcl

 "
 #
 # Setup parameter array for collecting digits
 #
 set media_parm(interruptPrompt) true
 set media_parm(enableReporting) true
 set media_parm(maxDigits) 1
}

#------------
#
When the call comes in, just check in with the si demo
server by firing up the vxml doc that will submit our handle.
#
I expect it to return a ptr to a recorded name of this caller,
and a list of active participants in the demo.
#
proc act_Setup { } {
 global my_handle
 global handles
 global my_leg

 set handles ""
 set my_handle [infotag get mod_handle]
 set my_leg [infotag get leg_incoming]
 puts "
 si_demo_main.tcl got a setup for leg $my_leg
 my_handle=$my_handle
 "

 leg setupack leg_incoming
 leg connect leg_incoming

 set parray(handle) [infotag get mod_handle]
 leg vxmldialog leg_incoming -u http://px1-sun/dramstha/si_demo.vxml -p parray
-7
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Session Interaction
}

#------------
Playout the list of participants so far.
#
proc play_list { } {
 global recorded_names

 puts " Playout the list of callers."

 foreach handle [array names recorded_names] {
lappend playlist $recorded_names($handle)

 }
 if { [llength $playlist] <= 0 } {

media play leg_incoming http://px1-sun/dramstha/no_others.au
 } else {

media play leg_incoming http://px1-sun/dramstha/participants_are.au $playlist
 }
}

#------------
#
Handoff the call to another leg.
We could setup a menu to select which one, but here we simply
find the first that is not us.
#
proc act_do_handoff { } {
 global handles
 global my_handle

 if { [llength $handles] <= 0 } {
 puts "Weird handofff, now no handles"

media play leg_incoming http://px1-sun/dramstha/no_others.au
fsm setstate RUNNING
return

 }

 foreach handle $handles {
set ret [handoff callappl leg_incoming $handle -s "Here is a leg"]
if { $ret != "unavailable" } break;

 }
 if { $ret == "unavailable" } {

puts "Bailing out on the handoff"
media play leg_incoming http://px1-sun/dramstha/no_others.au
fsm setstate RUNNING

 }
 puts "
 $my_handle handed off leg to $handle status=$ret"
}

#------------
We got a digit while conferenced. Don't care who sent it, disconnect.
#
proc act_Control_Conf { } {
 puts "Destroying the connection"
 connection destroy con_all
}

#------------
Main routine to handle a digit when running the demo.
Implement the 4 options, playout help for anything else.
#
proc act_Control { } {
 global media_parm
-8
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Session Interaction
 global handles

 set digit [infotag get evt_digit]
 puts "Digit entered=$digit"
 leg collectdigits leg_incoming media_parm

 if { [infotag get evt_state_current] != "RUNNING" } {
puts "
 Ignoring digit when not running yet"
return

 }

 switch $digit {
1 {

 play_list
}

2 {
 if { [llength $handles] <= 0 } {

media play leg_incoming http://px1-sun/dramstha/no_others.au
 } else {

media play leg_incoming http://px1-sun/dramstha/sending_msg.au
set oparms(id) msg
foreach handle $handles {
 set r [sendmsg $handle -p oparms]
}

 }
}

3 {
 if { [llength $handles] <= 0 } {

media play leg_incoming http://px1-sun/dramstha/no_others.au
 } else {

 puts "Playing handing_off.au"
media play leg_incoming http://px1-sun/dramstha/handing_off.au
fsm setstate PRE_HANDOFF

 }
}

4 {
 media play leg_incoming http://px1-sun/dramstha/si_feature_description.au

http://px1-sun/dramstha/si_demo_description.au
}

default {
 media play leg_incoming http://px1-sun/dramstha/si_help.au
}

 }
}

#------------
Got a return from the initial submit to the si demo server.
#
Save the recorded name of this caller, and the list of handles of other
callers.
Checkin with the other callers if there are any.
Now we are up and running, although we may not have everyones
name until we get responses from the checkin.
#
proc act_submit_done { } {
 global my_name
 global handles
 global media_parm
 global recorded_names
-9
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Session Interaction
 global my_handle

 puts "Tcl script si_demo_main got a return from VXML"
 set my_name http://px1-sun/dramstha/si_unknown_caller.au
 set handles ""

 set r_event [infotag get evt_vxmlevent]
 puts "
 Tcl got on return from initial submit:
 evt_vxmlevent=$r_event
 "

 if { [string match error $r_event] == 1 } {
 return
 }
 set rlist [infotag get evt_vxmlevent_params parray]
 set msg " Returned data from si server includes:"
 foreach i $rlist {
 append msg "\n $i=$parray($i)\n"

if { $i == "handles" } {
 set handles $parray($i)
 regsub $my_handle $handles "" $handles
 set index [lsearch $handles $my_handle]
}
if { $i == "recorded_name" } {
 set my_name $parray($i)
}

 }
 puts "
 Returned data from si server includes: $msg"

 set recorded_names([infotag get mod_handle]) $my_name
 checkin
 #
 # We are up and running:
 puts "****RUNNING handles=$handles"
 leg collectdigits leg_incoming media_parm
 media play leg_incoming http://px1-sun/dramstha/si_help.au
}

#------------
Checkin with other active calls. Send each a checking message.
#
proc checkin { } {
 global handles
 global my_name

 set oparms(recorded_name) $my_name
 set oparms(id) checkin
 foreach handle $handles {
 if { $handle == [infotag get mod_handle] } continue

set r [sendmsg $handle -p oparms]
puts "

 Just sent a checkin msg to $handle.
 Status=$r"
 }
}

#------------
All done, disconnect the calls we are handling.
#
proc act_Cleanup { } {
 set ev [infotag get evt_event]
 puts "Script for callids <[infotag get leg_all]> got event $ev"
-10
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Session Interaction
 puts "Closing now."
 call close
}

#------------
#
Send a submit to remove the incoming leg from the database. Tell the other
sessions (calls) we are gone.
#
proc act_db_remove { } {
 global handles

 puts "
 Tcl Firing up VXML to submit to remove handle [infotag get mod_handle]"
 set parray(handle) [infotag get mod_handle]
 leg vxmldialog leg_incoming -u http://px1-sun/dramstha/si_demo_disconnect.vxml -p
parray

 set oparms(id) "uncheckin"
 foreach handle $handles {

set r [sendmsg $handle -p oparms]
puts "Uncheckin message Send to $handle returned $r"

 }
}

#------------
#
Got a message from another instance. Handle it:
If they are checking in, save the info and respond.
If they are responding to a checkin, save the info.
If their caller is sending a msg, tell our caller
#
proc act_rx_msg { } {
 global handles
 global recorded_names
 global my_name

 set src [infotag get evt_msg_source]
 set parm_list [infotag get evt_msg parm_array]

 set msg ""
 foreach i $parm_list {
 append msg "\n parm($i)=$parm_array($i)"
 }
 puts "
 Leg [infotag get leg_incoming] got a message with [llength $parm_list] args
 from $src
 $msg"

 if { [info exists parm_array(id)] } {
set id $parm_array(id)

 } else {
set id "unknown"

 }

 if { [info exists parm_array(recorded_name)] } {
set recorded_name $parm_array(recorded_name)

 } else {
set recorded_name "http://px1-sun/dramstha/si_unknown_caller.au"

 }

 if { $id == "checkin" } {
 lappend handles $src

set recorded_names($src) $recorded_name
-11
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Session Interaction
 puts "\n $src checked in. Now handles=
 $handles"
 set oparms(id) "checkin_rsp"

set oparms(recorded_name) $my_name
 set r [sendmsg $src -p oparms]
 puts "Message Send to $src returned $r"
 }

 if { $id == "checkin_rsp" } {
 puts "\nSomeone responded to our check in"

if { [lsearch $handles $src] == -1 } {
 puts "

 Error, We don't have src of the checkin response
 src=$src

 handles=$handles"
} else {
 set recorded_names($src) $recorded_name
}

 }

 if { $id == "uncheckin" } {

set index [lsearch handles $src]
if { $index == -1 } {
 puts "

 Error, We don't know who is unchecking in
 src=$src

 handles=$handles"
} else {
 lreplace $handles $index $index
}
puts "

 After uncheckin, handles=$handles"
 }

 if { $id == "msg" } {
 puts "
 Telling our incoming leg we got a message"
 media stop leg_incoming
 media play leg_incoming http://px1-sun/dramstha/received_msg_from.au
$recorded_names($src)
 }
}

#------------
#
Refuse a handoff of another leg by simply returning it.
#
proc act_fail_handoff { } {
 puts "
 Got a handoff in state [infotag get evt_state_current]. Returning it."
 set legs [infotag get leg_all]
 set leg2 [lindex $legs 1]
 handoff return $leg2 refused
}

#------------
#
We got a handoff of another leg. Conference him
in.
#
proc act_handoff { } {
 global leg1
 global leg2
 global my_leg
-12
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Session Interaction
 puts "Got a handoff. string=[infotag get evt_handoff_string]"

 set legs [infotag get leg_all]
 set leg1 [lindex $legs 0]
 set leg2 [lindex $legs 1]

 if { [infotag get evt_state_current] != "RUNNING" } {
puts "
 Returning handoff leg in state [infotag get evt_state_current]"
handoff return $leg2 success
fsm setstate RUNNING
return

 }

 media stop $my_leg
 puts "Connecting legs $leg1 and $leg2 together"
 connection create $leg1 $leg2
}

#------------
#
The conference create completed. Simply turn on collect digits so
both callers can disconnect.
#
proc act_create_done { } {
 global leg1
 global leg2
 global media_parm

 puts "Connection Created."
 leg collectdigits $leg1 media_parm
 leg collectdigits $leg2 media_parm
}

#------------
#
The conference has been destroyed. Return the other leg to it's
original session.
#
proc act_destroy_done { } {
 global my_leg
 global leg1
 global leg2

 # Figure out which one to keep.
 if { $leg1 == $my_leg } {

set retleg $leg2
 } else {

set retleg $leg1
 }

 puts "
 connection destroyed.
 Returning leg $retleg, keeping $my_leg"
 handoff return $retleg "success"
 media play $my_leg http://px1-sun/dramstha/si_help.au
}

#------------
We got the call leg returned to us after handoff.
Just go back to running.
#

-13
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Session Interaction
proc act_return { } {
 global media_parm

 puts "
 Leg was returned. Going back to running"
 media play leg_incoming http://px1-sun/dramstha/si_help.au
 leg collectdigits leg_incoming media_parm
}

#------------
Ignore an event.
#
proc act_Ignore { } {
 set ev [infotag get evt_event]
 puts "
 Script for callids <[infotag get leg_all]>
 in state [infotag get evt_state_current]
 is ignoring event $ev"
}

init

#----------------------------------
State Machine
#----------------------------------
#
States:
SUBMIT - We got a setup message, and submitted our handle to the
server.
RUNNING - Waiting for a command from the caller. Could be playing a
prompt.
HANDED_OFF - We handed off the incoming leg to another session. We
have no legs here.
PRE_HANDOFF - playing a prompt to caller telling them we will handoff
CONFERENCED - Either setting up (waiting for conf create done) or
actually conferenced.
UNCONFING - Disconnecting the conference prior to returning a leg
DBREMOVE - Got a disconnect, removing ourselves from the server Data Base before
closing up shop.
CALLDISCONNECT - All done. Have disconnected the caller.
CALL_INIT - Initial state before a call comes in

 set fsm(any_state,ev_any_event) "act_Ignore same_state"
 set fsm(any_state,ev_disconnected) "act_db_remove DBREMOVE"
 set fsm(any_state,ev_msg_indication) "act_rx_msg same_state"
 set fsm(any_state,ev_handoff) "act_fail_handoff same_state"
 set fsm(any_state,ev_create_done) "act_create_done same_state"
 set fsm(any_state,ev_destroy_done) "act_destroy_done RUNNING"
 set fsm(any_state,ev_digit_end) "act_Ignore same_state"
 set fsm(any_state,ev_media_done) "act_Ignore same_state"

 set fsm(RUNNING,ev_handoff) "act_handoff CONFERENCED"
 set fsm(CONFERENCED,ev_digit_end) "act_Control_Conf UNCONFING"
 set fsm(RUNNING,ev_digit_end) "act_Control same_state"
 set fsm(SUBMIT,ev_vxmldialog_done) "act_submit_done RUNNING"
 set fsm(DBREMOVE,ev_vxmldialog_done) "act_Cleanup CALLDISCONNECT"

 set fsm(CALL_INIT,ev_setup_indication) "act_Setup SUBMIT"

 set fsm(CALLDISCONNECT,ev_disconnect_done) "act_Ignore same_state"
 set fsm(PRE_HANDOFF,ev_media_done) "act_do_handoff HANDED_OFF"
 set fsm(HANDED_OFF,ev_returned) "act_return RUNNING"
 fsm define fsm CALL_INIT
-14
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
Hybrid Scripting
The following script adds the message waiting indication(MWI) feature to an existing Tcl-VoiceXML
(VXML) hybrid application that places an outbound call. The MWI feature is implemented using the SIP
SUBSCRIBE/NOTIFY mechanism.

The script demonstrates how to separate the VXML portion to handle the IVR and the Tcl portion to
handle call control. The VXML dialogs will play prompts and collect inputs as well as interfaces with
the HTTP web server. The main Tcl script handles the call control portion which provides the equivalent
function of the standard VXML Transfer. When the user calls into the gateway, a VXML dialog is
invoked. The VXML dialog queries the backend server with the ANI of the caller. The VXML document
returned presents the user with choices of who he can call. This can be the personal phone book or a
company directory. In addition, the VXML Transfer element attributes are passed from the VXML
document to the Tcl procedure to place call. The returned information also includes a URL which
contains the location of VXML dialog to run after the called party hangs up. This VXML dialog emulates
a voicemail message which is played to the user if he chooses to listen to them.

The user also hear a prompt indicating new voicemails in his mailbox after the call has been connected.
He can choose to listen to the voicemail or ignore it. If he selects to listen to his voicemail, the music on
hold treatment will be applied to the called party This feature is enabled when the Tcl application
subscribes to a MWI event package running on a SIP server. For this sample, the MWI event package is
another Tcl application running on another gateway. The server application will notify the client
application when a new message is delivered to the mailbox.

#--
Procedure init
#
The init procedure defines the initial parameters of digit collection. Users are
expected to enter a single DTMF key within 5 secs and are allowed to enter a digit
before a prompt is played out. This is used when a prompt is played to the user
indicating a new voicemail and the user may enter any DTMF key to listen to the
voicemail message.

proc init { } {

 global param

 set param(maxDigits) 1
 set param(interruptPrompt) true
 set param(initialDigitTimeout) 5
}

#---
Procedure init_Config
#
In this procedure, CLI configurations are read
Users can configure the location of the Tcl script on the router and this is stored in
the variable, baseURI.
Users can configure the number of notifications that are sent before the subscription
closes. The default is 4.
#

proc init_ConfigVars {} {

 global notNum
 global baseURI
-15
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
 if {[infotag get cfg_avpair_exists base-url]} {
 set baseURI [string trim [infotag get cfg_avpair base-url]]
 } else {
 set baseURI tftp://TFTP-SERVER/scripts/
 }

 if {[infotag get cfg_avpair_exists notification-num]} {
 set notNum [string trim [infotag get cfg_avpair notification-num]]
 } else {
 set notNum 4
 }

 puts "\n\n\n**** Base Url is $baseURI\n\n"
 puts "\n\n\n**** Number of notifications in CLI is $notNum\n\n"
}

#---
Procedure init_perCallVars
#
In this procedure, the global variables are initialized
The IP address for the SIP server is configured on the router as follows :
ip host x.x.x.x sip-server

proc init_perCallVars { } {

 global ani
 global uri
 global menu
 global name
 global mNew
 global subId
 global mTotal
 global bridge
 global subUrl
 global subInfo
 global counter
 global tclProc
 global maxtime
 global mWaiting
 global callActive
 global longpound
 global destination
 global message_status
 global message_summary
 global connectiontimeout

 set uri ""
 set name ""
 set bridge ""
 set baseURI ""
 set tclProc ""
 set maxtime ""
 set longpound ""
 set destination ""
 set connectiontimeout ""

 set counter 0
 set callActive 0
 set subUrl sip:mwi@sip-server

}

#--
-16
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
Procedure act_Start
#
The act_Start procedure is executed when it receives an ev_setup indication event.
A setup acknowledgement, call proceeding and connect message is sent to the incoming
call leg. The parameters in the subscribe request are defined and a subscribe request
to the MWI event package is sent.
#

proc act_Start { } {

 global ani
 global subId
 global subUrl
 global subInfo
 global baseURI

 init_perCallVars
 infotag set med_language 1

 leg setupack leg_incoming
 leg proceeding leg_incoming
 leg connect leg_incoming

 set ani [infotag get leg_ani]

 set subInfo(event) mwi
 set subInfo(notificationReceiver) mwiClient
 # expiration time is 1 hour
 set subInfo(expirationTime) 3600
 set subinfo(subscriptionContext) context
 set headers(Account) $ani
 set headers(Subject) "Message Waiting Indication Subscription"
 set subInfo(protoHeaders) headers
 set subInfo(protoContents) "This is a subscription request from mwiclient"
 set subInfo(protoContentTypes) "text/plain"

 set subId [subscription open $subUrl subInfo]

}

#--
Procedure act_VxmlDialog1
#
This procedure is called from act_Notify. It is called once in the application after the
script receives a ev_notify_ind event.
In this procedure, the ANI of the user is submitted to sipWebQuery.php script on the
backend web server. The result is a dynamically generated VXML document which contains
information required for call setup. The user is prompted to enter the destination
number of the person he wishes to call. The destination number together with the
attributes to the VXML transfer element and the URL for the subsequent VXML dialog are
passed back to the Tcl script. The IP address of the Web server is configured on the
router as follows: ip host x.x.x.x HTTP-SERVER

proc act_VxmlDialog1 { } {

 global baseURI

 puts "\n\n\n******** Procedure VxmlDialog1 ********\n\n"

 set vxmlDialog1 {
<vxml version="2.0">

<form id="main">
<catch event="error.badfetch.com">

<log>Web Server down ! Submit action in VxmlDialog1 failed. </log>
-17
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
<exit/>
</catch>

<var name="WEB_SERVER" expr="'http://HTTP-SERVER/vxml/'"/>
<var name="ANI" expr="session.telephone.ani"/>

<block>
<submit expr="WEB_SERVER+'sipWebQuery.php'" method="get" namelist="ANI"/>
</block>

</form>
</vxml> }

 leg vxmldialog leg_incoming -u $baseURI -v $vxmlDialog1
 fsm setstate WEBQUERY
}

#--
Procedure act_SubscribeDone
#
This procedure is executed when an ev_unsubscribe_done event is received. The status of
the event is checked. If the subscription failed, the subscription is closed.

proc act_SubscribeDone { } {

 global subId

 puts "\n\n\n******** Procedure SubscribeDone ********\n\n"

 set subId [infotag get evt_subscription_id]

 puts "\n\n\n**** Subscription ID is $subId"
 set status [infotag get evt_status]

 switch $status {
"sn_000" {
puts "\n\n\n**** Subscription status, $status swith ID: $subId is successful\n\n"

 }
"sn_001" {
puts "\n\n\n**** Subscription status, $status with ID: $subId is pending\n\n"

 }
"sn_002" {
puts "\n\n\n**** Subscription statu, $status swith ID: $subId failed\n\n"
subscription close $subId

 }
 }
}

#--
Procedure act_Notify
#
This procedure is received when an ev_notify_ind event is received. Both standard and
non standard SIP headers sent by the server are read. The non standard headers are
MessageStatus and MessageSummary. MessageStatus indicates that there are new
voicemail and MessageSummary indicates the number of new voicemails.
An acknowledgement is sent back to the server in response to the notification event.
This procedure is called every time an ev_notify_ind event is received (except for the
last one). The subscription is terminated depending of the value configured
for the number of times a notification is sent.

proc act_Notify { } {

 global ani
-18
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
 global mNew
 global mTotal
 global notNum
 global counter
 global mWaiting

 puts "\n\n\n******** Procedure Notify ********\n\n"

 set status [infotag get evt_status]
 puts "\n\n\n**** Status of subscription is $status\n\n"

 set subId [infotag get evt_subscription_id]
 puts "\n\n\n**** Subscription ID is subId=$subId"

 set event_header [infotag get evt_proto_headers Event]
 puts "\n\n\n**** Event header is $event_header\n\n"

 set hello [infotag get evt_proto_headers "Hello"]
 puts "\n\n\n**** Hello Header from Notification is $hello\n\n"

 set message_status [infotag get evt_proto_headers "MessageStatus"]
 regexp {Messages-waiting:([a-z]+)} $message_status dummy mWaiting
 puts "\n\n\n**** Message Waiting is $mWaiting\n\n"

 set message_summary [infotag get evt_proto_headers "MessageSummary"]
 regexp {Voicemail:([0-9]+)} $message_summary dummy mNew
 puts "\n\n\n**** New message is $mNew\n\n"

 set content_type [infotag get evt_proto_content_type]
 puts "\n\n\n**** Notification content_type=$content_type\n\n"

 set content [infotag get evt_proto_content]
 puts "\n\n\n**** Notification content=$content\n\n"

 set exp_time [infotag get evt_proto_headers Expires]
 puts "\n\n\n**** Subscription Expires: $exp_time\n\n"

 set notifyRecr [infotag get subscription_info $subId notificationReceiver]
 puts "\n\n\n**** Notification Receiver is $notifyRecr\n\n"

 # subscription expired

 if {$exp_time == 0} {

 puts "\n\n\n**** Subscription is terminated"

 set headers(Title) "This is the last acknowledgement from the client"
 set ackInfo(protoContents) "Ending subscription"
 } else {
 set headers(Title) "This is an acknowledgement from the client"
 set ackInfo(protoContents) "This is CONTENT from client"
 }

 set headers(Account) $ani
 set ackInfo(protoHeaders) headers
 set ackInfo(respCode) ack
 set ackInfo(protoContentTypes) "text/plain"

 subscription notify_ack $subId -i ackInfo

 if {$counter == 0} {
 puts "\n\n\n**** Start VXML Dialog \n\n"
-19
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
 act_VxmlDialog1
 incr counter
 return
 }

 if {$counter < $notNum} {
 if {$mWaiting == "yes"} {
 act_MessageIndication
 incr counter
 }
 return
 }

 puts "\n\n\n**** Number of notifications received is $counter"

 # close the subscription
 puts "\n After $counter notifications, close the subscription now.\n\n"

 subscription close $subId
 fsm setstate CLOSESUB
}

#---
Procedure act_MessageIndication
#
This procedure is first invoked when the script receives an ev_leg_timer event. The
timer event comes up if there is a new voicemail after the call has been connected.
To play a prompt to the user that a new voicemail is in the mailbox, the connection
between the incoming and outgoing call legs is destroyed.

proc act_MessageIndication {} {

 global mNew
 global param
 global mTotal
 global mWaiting
 global callActive

 puts "\n\n\n******** Procedure MessageIndication ********\n\n"

 if {$callActive == 1} {
 set callActive 0
 connection destroy con_all
 } else {
 leg collectdigits leg_incoming param

 media play leg_incoming _new_voicemail.au %n$mNew %s1000 _check_new_voicemail.au
 }
 fsm setstate CHECKVOICEMAIL
}

#--
Procedure act_PlayMessageInd
#
This procedure plays the prompt "You have X new voicemails" to the user when the script
receives an ev_destroy_done event is received. The act_PlayMusic is invoked to provide
music on hold treatment to the called party

proc act_PlayMessageInd {} {

 global mNew
 global param
 global mTotal
-20
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
 global mWaiting

 puts "\n\n******* Procedure PlayMessageInd ********\n\n"
 puts "\n\n\n**** Number of new vmail are $mNew\n\n"

 leg collectdigits leg_incoming param
 media play leg_incoming _new_voicemail.au %n$mNew %s1000 _check_new_voicemail.au
 #media play leg_incoming _you_have.au %n$mNew %s1000 _seconds.au

 act_PlayMusic

 fsm setstate CHECKVOICEMAIL
}

#--
Procedure act_PlayMusic
#
This procedure plays a music prompt to the called party while the user is checking
his voicemail messages.

proc act_PlayMusic {} {

 puts "\n\n******* Procedure PlayMusic ********\n\n"

 media play leg_outgoing _song.au
 fsm setstate MUSICONHOLD
}

#--
Procedure act_FinalNotify
#
This procedure is invoked when the script receives the final ev_notify_ind event.
The SIP server application sends this event when the client script closes the
subscription.

proc act_FinalNotify { } {

 puts "\n\n******* Procedure FinalNotify ********\n\n"

 set status [infotag get evt_status]
 puts "\n\nstatus=$status\n\n"
 set sub_id [infotag get evt_subscription_id]

 # you can access any standard headers
 set From [infotag get evt_proto_headers From]
 puts "\n\n**** From header is: $From\n\n"

 set headers(Title) "Hello, this is the final acknowledgement from the client"
 set ackInfo(protoHeaders) headers
 set ackInfo(protoContents) "This is CONTENT from client"
 set ackInfo(protoContentTypes) "text/plain"
 set ackInfo(respCode) ack

 subscription notify_ack $sub_id -i ackInfo
}

#--
Procedure act_UnsubscribeDone
#
This procedure is invoked when the script receives an ev_unsubscribe_done event. This
event is sent when the subscription is closed.

proc act_UnsubscribeDone { } {
-21
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
 puts "\n\n\n******** Procedure UnsubscribeDone ********\n\n"

 set status [infotag get evt_status]
 puts "\n\n\n**** Status of unsubscribe_done is $status\n\n"

}

#--
Procedure act_SubscribeClose
#
This procedure is invoked when the script receives an ev_unsubscribe_indication or an
ev_subscribe_cleanup event. An ev_unsubscribe_indcation event is received if the server
sends unsubscribe request, subscription expires or other errors. An
ev_subscribe_cleanup event is received when the CLI, "clear sub all" is executed
The subscription is closed.

proc act_SubscribeClose { } {

 puts "\n\n\n******** Procedure SubscribeClose ********\n\n"

 puts "\n\n**** Unsubscribe Indication received or Subscribe Clean up event
received\n\n"

 set sub_id [infotag get evt_subscription_id]
 subscription close $sub_id
}

#--
Procedure act_GetTransferAttr
#
This procedure handles the transfer attributes sent by VxmlDialog1.
It parses the evParam array to get the attributes.

proc act_GetTransferAttr {} {

 global uri
 global name
 global bridge
 global evParam
 global tclProc
 global maxtime
 global longpound
 global destination
 global transfer_param
 global connectiontimeout

 puts "\n\n\n******** Procedure GetTransferAttr ********\n\n"

 set tclProc GetTransferAttr
 set ev [infotag get evt_vxmlevent]

 if {$ev != "vxml.dialog.transferEvent"} {
 puts "\n\n\t\t **** Expected event vxml.dialog.transferEvent, got $ev"
 }

 # get all the parameters sent from VXML dialog

 set eventParam [infotag get evt_vxmlevent_params evParam]

 for {set i 0} {$i < [llength $eventParam]} {incr i} {
 set [set value [lindex $eventParam $i]] $evParam($value)
 puts "\n\n\t\t **** $value = $evParam($value)"
 }
-22
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
}

#--
Procedure act_Transfer
#
This procedure is called when the application receives the vxml_dialog_done event.
It checks for the destination number, set the callInfo array with the relevant
transfer attributes and places a call to that number.

proc act_Transfer { } {

 global uri
 global name
 global bridge
 global tclProc
 global maxtime
 global longpound
 global destination
 global transfer_param
 global connectiontimeout

 puts "\n\n\n******** Procedure Transfer ********\n\n"

 set tclProc Transfer

 # check the sub-event name
 set exp_ev vxml.session.complete
 set ev [infotag get evt_vxmlevent]

 if {$ev != $exp_ev} {
 puts "\n\n\t\t **** Expected event $exp_ev, got $ev"
 }

 # check the dialog status
 set status [infotag get evt_status]

 switch $status {
 "vd_000" {
 #get the transfer attribute, destination
 infotag get evt_vxmlevent_params transfer_param

 if !{[info exists transfer_param(destination)]} {
 puts "\n\n\t\t **** destination number does not exist"
 act_LogStatus $status $tclProc
 }

 set destination $transfer_param(destination)
 set callInfo(alerTime) $maxtime
 set callInfo(newguid) $longpound
 leg setup $destination callInfo leg_incoming
 }

 "vd_001" -
 "vd_002" -
 "vd_003" {
 puts "\n\n\t\t **** VXML Dialog status, expected vd_000, got

$status"
 act_LogStatus $status $tclProc
 }
 }
}

#--
Procedure act_TransferDone
-23
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
#
If leg setup is successful, the 2 parties are conferenced. If not, the status of leg
setup is sent to the web server. If there are new voicemail messages, a timer is
started for 2 seconds and act_MessageIndication procedure is called.

proc act_TransferDone { } {

 global mNew
 global mTotal
 global tclProc
 global mWaiting
 global incoming
 global outgoing
 global callActive
 global destination
 global transferStatus

 puts "\n\n\n******** Procedure TransferDone ********\n\n"

 set tclProc TransferDone
 set status [infotag get evt_status]

 puts "\n\n\t\t **** Status of leg setup is $status \n"
 switch $status {

"ls_000" {
set incoming [infotag get leg_incoming]
set outgoing [infotag get leg_outgoing]
set creditTimeLeft [infotag get leg_settlement_time leg_all]

if { ($creditTimeLeft == "unlimited") || ($creditTimeLeft=="uninitialized")}
{puts "\n\n\t\t **** UnLimited Call Time\n"

set callActive 1
puts "\n\n\t\t **** Are there new voicemail messages ? $mWaiting \n\n"
if { $mWaiting == "yes" } {timer start leg_timer 2 leg_incoming}}
else {

 # start the timer for ...
 if { $creditTimeLeft < 10 } {
 set beep 1
 set delay $creditTimeLeft
 } else {
 set delay [expr $creditTimeLeft - 10]
 }
 timer start leg_timer $delay leg_incoming
 }
 }

"ls_007" {puts "\n\n\t\t **** Call status is $status, Destination is Busy \n"
set transferStatus NOANSWER
act_LogStatus $transferStatus $tclProc

 }
"ls_008" {puts "\n\n\t\t **** Call status is $status, Incoming Disconnected

\n"
set transferStatus NEAR_END_DISCONNECT
act_LogStatus $transferStatus $tclProc

 }
 "ls_009" {puts "\n\n\t\t **** Call status is $status, Outcoming Disconnect

\n"
set transferStatus FAR_END_DISCONNECT
act_LogStatus $transferStatus $tclProc

 }
 default {
 puts "\n\n\t\t **** Call status is $status\n"
 set transferStatus UNKNOWN
 act_LogStatus $transferStatus $tclProc
-24
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
 }
 }
}

#--
Procedure act_VxmlDialog2
#
This procedure is called when the caller chooses to listen to his new voicemail
messages, the script receives an ev_collectdigits_done event.
After the called party hangs up, the application invokes the second VXML dialog which
is a fake voicemail service for the user.

proc act_VxmlDialog2 { } {

 global uri
 global menu
 global baseURI
 global incoming
 global outgoing
 global callActive

 puts "\n\n\n******** Procedure VxmlDialog2 ********\n\n"
 puts "\n\n\t\t **** URL of voicemail is $uri \n\n"

 if {$callActive == 1} {
 leg disconnect leg_outgoing
 set callActive 0
 }

 set event [infotag get evt_event]
 set status [infotag get evt_status]

 switch $status {
 "cd_005" {
 puts "\n\n\n**** Caller wants to check new voicemail \n\n"
 if {$uri != ""} {
 leg vxmldialog leg_incoming -u $uri
 } else {
 # play media to say cannot access voicemails
 media play leg_incoming _technicalProblem.au
 }

 }
 "cd_001" {
 puts "\n\n\n**** Caller didn't enter digit to check new
voicemail\n\n"
 media stop $outgoing

 if {$callActive == 0} {
 connection create $incoming $outgoing
 set callActive 1
 return
 }
 }
 "cd_010" {
 puts "\n\n\n**** The digit collection was terminated because

of an unsupported or unknown feature or event\n\n"
 return
 }
 }
}

#--
Procedure act_VxmlDialog2Done
-25
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
#
This procedure is invoked when the ev_vxmldialog_done event is received.
The conference between the incoming and outgoing call legs is bridged again after the
user is done listening to the new voicemail messages.

proc act_VxmlDialog2Done { } {

 global tclProc
 global incoming
 global outgoing
 global callActive

 puts "\n\n\n******** Procedure VxmlDialog2Done ********\n\n"

 set tclProc VxmlDialog2Done
 set exp_ev vxml.session.complete
 set ev [infotag get evt_vxmlevent]

 if {$ev != $exp_ev} {
 puts "\n\n\t\t **** Expected event $exp_ev, got $ev"
 act_LogStatus $ev $tclProc
 }

 if {[infotag get evt_legs] == $incoming} {
 media stop $outgoing
 if {$callActive == 0} {
 connection create $incoming $outgoing
 set callActive 1
 return
 }

 }
}

#--
Procedure act_LogStatus
#
The status code for leg setup, vxml dialog are sent to the backend web server in this
procedure.

proc act_LogStatus {statusCode tclProcedure} {

 global baseURI

 puts "\n\n\n******** Procedure LogStatus ********\n\n"
 puts "\n\n\t\t***** Status Code is $statusCode in procedure $tclProcedure"

 set vxmlDialog3 {
<vxml version="2.0">

<form id="main">

<var name="WEB_SERVER" expr="'http://HTTP-SERVER/vxml/'"/>
<var name="ANI" expr="session.telephone.ani"/>
<var name="STATUSCODE" expr="com.cisco.params.code"/>
<var name="PROCEDURE" expr="com.cisco.params.procedure"/>

<catch event="error.badfetch.com">
<log>Web Server down ! Submit action in VxmlDialog3 failed. </log>
<exit/>

</catch>

<block>
<log> Tcl Status Code : <value expr="STATUSCODE"/> found in Tcl
Procedure : <value expr="PROCEDURE"/></log>
-26
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
<submit expr="WEB_SERVER+'status.php'" method="get" namelist="ANI
STATUSCODE PROCEDURE"/>

</block>

</form>
</vxml> }

 set tclStatusParam(code) $statusCode
 set tclStatusParam(procedure) $tclProcedure

 leg vxmldialog leg_incoming -u $baseURI -v $vxmlDialog3 -p tclStatusParam
 fsm setstate LOGSTATUS

}

#--
Procedure act_Timer
#
This procedure is invoked when the timer expires. If the call duration is unlimited,
this will not be invoked.

proc act_Timer { } {

 global beep
 global incoming
 global outgoing

 puts "\n\n\n******** Procedure Timer ********\n\n"

 set incoming [infotag get leg_incoming]
 set outgoing [infotag get leg_outgoing]

 if { $beep == 0 } {
 #insert a beep ...to the caller
 connection destroy con_all
 set beep 1
 } else {
 connection destroy con_all
 fsm setstate LASTWARN
 }
}

proc act_LastWarn { } {
 media play leg_incoming _outOfTime.au
}

proc act_Destroy { } {
 media play leg_incoming _beep.au
}

#--
Procedure act_PlayMessageIndDone
When the script receives an ev_media_done event is received, this procedure will be
executed. If the event happened on the outgoing leg, the music prompt is repeated to
the called party. If the event is received on the incoming leg, the prompt playout
is terminated on the outgoing side and the 2 legs are conferenced.

proc act_PlayMessageIndDone { } {

 global callActive
 global incoming
 global outgoing

 puts "\n\n\n******** Procedure PlayMessageIndDone ********\n\n"
-27
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
 set incoming [infotag get leg_incoming]
 set outgoing [infotag get leg_outgoing]

 if {[infotag get evt_legs] == $outgoing} {
 media play leg_outgoing _song.au
 return
 }
 if {[infotag get evt_legs] == $incoming} {
 media stop $outgoing
 if {$callActive == 0} {
 connection create $incoming $outgoing
 set callActive 1
 return
 }
 }
}
proc act_Beeped { } {

 global incoming
 global outgoing

 connection create $incoming $outgoing
}

proc act_ConnectedAgain { } {

 puts "\n\n\t\t***** Call Connected Again\n\n "
}

#--
Procedure act_HandleOutgoing
#
When the called party hangs up, the connection is destroyed

proc act_HandleOutgoing { } {

 global outgoingDisconnect

 puts "\n\n\t\t********* Procedure HandleOutgoing *********\n\n "

 if {[infotag get evt_legs] == [infotag get leg_outgoing]} {

 # Outgoing disconnected

 connection destroy con_all
 set outgoingDisconnect 1
 } else {
 call close
 fsm setstate CALLDISCONNECT
 }
}

#--
Procedure act_LongPound
#
If the user enters the Pound key, the connection to the called party will be destroyed.
The user hear the voicemail emulation in VxmlDialo2

proc act_LongPound { } {

 puts "\n\n\n******** Procedure LongPound ********\n\n"
 puts "\n\n\t\t***** Calling Party entered long pound"
-28
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Appendix A: Sample Scripts
Hybrid Scripting
 set DURATION 1000

 if {[infotag get evt_digit] != "#"} {
 fsm setstate same_state
 } else {
 set duration [infotag get evt_digit_duration]

 if {$duration < $DURATION} {
 fsm setstate same_state
 } else {
 connection destroy con_all
 }
 }
}

#---
Procedure act_Cleanup
#
This procedure is invoked when the application receives an ev_disconnected event.

proc act_Cleanup { } {

 puts "\n\n\n******** Procedure Cleanup ********\n\n"
 call close
}

#--
Procedure act_SessionClose
#
This procedure will be invoked if a script receives an ev_session_terminate event.
Note that this will not be invoked in this application since this application requires
an incoming call leg

proc act_SessionClose { } {

 puts "\n\n\n******** Procedure SessionClose ********\n\n"
 call close
}

proc act_Ignore { } {
Dummy Procedure
 puts "Event Capture"
}

requiredversion 2.0
init

init_ConfigVars

#----------------------------------
State Machine
#----------------------------------
 set fsm(any_state,ev_disconnected) "act_Cleanup same_state"
 set fsm(any_state,ev_subscribe_done) "act_SubscribeDone SUBSCRIBED"
 set fsm(any_state,ev_notify_ind) "act_Notify NOTIFIED"
 set fsm(any_state,ev_unsubscribe_done) "act_UnsubscribeDone same_state"
 set fsm(any_state,ev_unsubscribe_indication) "act_SubscribeClose same_state"
 set fsm(any_state,ev_subscribe_cleanup) "act_SubscribeClose same_state"
 set fsm(any_state,ev_session_terminate) "act_SessionClose same_state"

 set fsm(CALL_INIT,ev_setup_indication) "act_Start SUBSCRIBE"
 set fsm(NOTIFIED,ev_media_done) "act_Ignore same_state"
 set fsm(CHECKVOICEMAIL,ev_collectdigits_done) "act_VxmlDialog2 same_state"
-29
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Appendix A: Sample Scripts
Hybrid Scripting
 set fsm(MUSICONHOLD,ev_media_done) "act_PlayMessageIndDone same_state"
 set fsm(CLOSESUB,ev_notify_ind) "act_FinalNotify same_state"

 set fsm(WEBQUERY,ev_vxmldialog_event) "act_GetTransferAttr same_state"
 set fsm(WEBQUERY,ev_vxmldialog_done) "act_Transfer TRANSFER"
 set fsm(TRANSFER,ev_setup_done) "act_TransferDone CALLACTIVE"
 set fsm(CALLACTIVE,ev_leg_timer) "act_MessageIndication CHECKVOICEMAIL"
 set fsm(CALLACTIVE,ev_disconnected) "act_HandleOutgoing CONNDESTROY"
 set fsm(CALLACTIVE,ev_digit_end) "act_LongPound CONNDESTROY"
 set fsm(CHECKVOICEMAIL,ev_vxmldialog_done) "act_VxmlDialog2Done same_state"
 set fsm(CHECKVOICEMAIL,ev_create_done) "act_ConnectedAgain CALLACTIVE"
 set fsm(LOGSTATUS,ev_vxmldialog_done) "act_Cleanup same_state"
 set fsm(CHECKVOICEMAIL,ev_destroy_done) "act_PlayMessageInd same_state"
 set fsm(PLAYBEEP,ev_media_done) "act_Beeped same_state"
 set fsm(INSERTBEEP,ev_destroy_done) "act_Destroy same_state"
 set fsm(INSERTBEEP,ev_media_done) "act_Beeped same_state"
 set fsm(INSERTBEEP,ev_create_done) "act_ConnectedAgain CALLACTIVE"
 set fsm(LASTWARN,ev_destroy_done) "act_LastWarn CALLDISCONNECT"
 set fsm(CALLDISCONNECT,ev_disconnect_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_media_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_disconnect_done) "act_Cleanup same_state"
 set fsm(CALLDISCONNECT,ev_leg_timer) "act_Cleanup same_state"

 fsm define fsm CALL_INIT
-30
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Cisco IOS Release 12.3(14)T

G L O S S A R Y
This chapter lists common terms and acronyms used throughout this document. For a more detailed list of internetworking
terms and acronyms, refer to the Internetworking and Acronyms web site at:

http://www.cisco.com/univercd/cc/td/doc/cisintwk/ita/index.htm

A

AAA Authentication, authorization, and accounting. A suite of network security services that provides the
primary framework through which you can set up access control on your Cisco router or access server.

ANI Automatic number identification. Same as calling party.

API Application programming interface.

AV-pair An attribute-value pair used in authentication.

C

CDR Call data record.

CLI Command-line interface.

connection The tying together of two streams or call legs so that the incoming voice stream of one call leg is sent as the
outgoing voice stream of the other call leg.

D

DID Direct inward dial. Calls in which the gateway uses the number that you initially dialed (DNIS) to make
the call instead of prompting you to dial additional digits.

DNIS Dialed number information service.

DSP Digital signaling processor.

DTMF Dual tone multi-frequency. Use of two simultaneous voice-band tones for dialing (such as touch tone).

E

execution instance An instance of the Tcl interpreter that is created to execute the script.
GL-1
Tcl IVR 2.0 Programming Guide

Glossary
F

FSM Finite State Machine.

I

IE Information element.

IVR Interactive voice response. Term used to describe systems that provide information in the form of
recorded messages over telephone lines in response to user input in the form of spoken words or, more
commonly, DTMF signaling. Examples include banks that allow you to check your balance from any
telephone and automated stock quote systems.

R

RADIUS Remote Authentication Dial-In User Service. A protocol used for access control, such as
authentication and authorization, or accounting.

RTSP Real-Time Streaming Protocol. Enables the controlled delivery of real-time data, such as audio and
video. Sources of data can include both live data feeds, such as live audio and video, and stored
content, such as prerecorded events. RTSP is designed to work with established protocols, such as RTP
and HTTP.

T

Tcl Tool Command Language. A scripting language used for gateway products both internally and
externally to Cisco IOS software code.

TFTP Trivial File Transfer Protocol. Simplified version of FTP that allows files to be transferred from one
computer to another over a network, usually without the use of client authentication (for example,
username and password).

TTS Real Time Streaming Protocol. Enables the controlled delivery of real-time data, such as audio and
video. Sources of data can include both live data feeds, such as live audio and video, and stored
content, such as prerecorded events. RTSP is designed to work with established protocols, such as RTP
and HTTP.

U

URI Uniform Resource Identifier. Type of formatted identifier that encapsulates the name of an Internet
object, and labels it with an identification of the name space, thus producing a member of the universal
set of names in registered name spaces and of addresses referring to registered protocols or name
spaces. [RFC 1630]
GL-2
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

Glossary
V

VoFR Voice over Frame Relay. VoFR enables a router to carry voice traffic (for example, telephone calls and
faxes) over a Frame Relay network. When sending voice traffic over Frame Relay, the voice traffic is
segmented and encapsulated for transit across the Frame Relay network using FRF.12 encapsulation.

VoIP Voice over IP. The capability to carry normal telephony-style voice over an IP-based internet with
POTS-like functionality, reliability, and voice quality. VoIP enables a router to carry voice traffic (for
example, telephone calls and faxes) over an IP network. In VoIP, the DSP segments the voice signal
into frames, which then are coupled in groups of two and stored in voice packets. These voice packets
are transported using IP in compliance with ITU-T specification H.323.
GL-3
Cisco IOS Release 12.3(14)T Tcl IVR 2.0 Programming Guide

Glossary
GL-4
Tcl IVR 2.0 Programming Guide Cisco IOS Release 12.3(14)T

	Tcl IVR 2.0 Programming Guide
	Preface�����xi

	chapter 1
	Overview�����1-1

	chapter 2
	Using Tcl IVR Scripts�����2-1

	chapter 3
	Tcl IVR API Command Reference�����3-1

	chapter 4
	Information Tags�����4-1

	chapter 5
	Events and Status Codes�����5-1
	Sample Scripts�����A-1

	Glossary
	Preface
	November 17, 2006
	Revision History
	Command History
	Audience
	Structure of This Guide
	Related Documents
	Conventions
	Obtaining Documentation
	World Wide Web
	Documentation CD-ROM
	Ordering Documentation
	Documentation Feedback

	Obtaining Technical Assistance
	Cisco.com
	Technical Assistance Center
	Cisco TAC Web Site
	Cisco TAC Escalation Center
	Developer Support

	Overview
	IVR and Tcl
	Tcl IVR API Version 2.0
	Prerequisites
	Benefits
	Features Supported
	Developer Support

	Enhanced MultiLanguage Support
	VoiceXML and IVR Applications
	Call Handoff in Tcl
	Call Handoff in VoiceXML
	Tcl/VoiceXML Hybrid Applications
	Communication Between VoiceXML and Tcl IVR 2.0 in Hybrid Applications.
	Hybrid Mode and VoiceXML Call Control Tags

	SendEvent Object

	Tcl IVR Call Transfer Overview
	Call Transfer Terminology
	Supported Tcl IVR Call Transfer Script
	Call Transfer Support in the Cisco IOS Default Session Application
	Custom Tcl IVR Call Transfer Scripts
	Call Transfer Scenarios
	One Gateway Scenario with Analog Transferor
	One Gateway Scenario with Cisco CME IP Phone Transferor
	Two Gateway Scenarios with Analog Transferor
	XOR and XTO on Gateway 1 and XEE on Gateway 2
	XOR and XEE on Gateway 1 and XTO on Gateway 2
	XOR on Gateway 1 and XEE and XTO on Gateway 2

	Two Gateway Scenarios with Cisco CME IP Phone Transferor
	XOR and XTO on Gateway 1 and XEE on Gateway 2
	XOR and XEE on Gateway 1 and XTO on Gateway 2
	XOR on Gateway 1 and XEE and XTO on Gateway 2

	Three Gateway Scenario with Analog Transferor
	Three Gateway Scenario with Cisco CME IP Phone Transferor

	Call Transfer Protocol Support
	Analog Hookflash and T1 CAS Release Link Trunk (RLT) Transfers
	ISDN Call Transfer
	SIP Call Transfer
	H.450 Call Transfer
	Cisco CallManager Express Call Transfer

	SIP Subscribe and Notify
	SIP Headers
	Application Instances
	Session Interaction
	Session Start and Stop
	Sending Messages
	Receiving Messages
	Call Handoff
	Handoff Return

	Service Registry

	Using Tcl IVR Scripts
	How Tcl IVR Version 2.0 Works
	Writing an IVR Script Using Tcl Extensions
	Prompts in Tcl IVR Scripts
	Sample Tcl IVR Script
	Initialization and Setup of State Machine

	Testing and Debugging Your Script
	Loading Your Script
	Associating Your Script with an Inbound Dial Peer
	Displaying Information About IVR Scripts
	Using URLs in IVR Scripts
	URLs for Loading the IVR Script
	URLs for Loading Audio Files

	Tips for Using Your Tcl IVR Script

	Tcl IVR API Command Reference
	Standard Tcl Commands Used in Tcl IVR Scripts
	HTTP Commands
	Tcl IVR Commands At a Glance
	Tcl IVR Commands
	aaa accounting
	aaa accounting get status
	aaa accounting probe
	aaa accounting set status
	aaa authenticate
	aaa authorize
	call close
	call lookup
	call register
	call unregister
	clock
	command export
	command terminate
	connection create
	connection destroy
	fsm define
	fsm setstate
	handoff
	handoff return
	infotag get
	infotag set
	leg alert
	leg callerid
	leg collectdigits
	leg connect
	leg consult abandon
	leg consult response
	leg consult request
	leg disconnect
	leg disconnect_prog_ind
	leg facility
	leg proceeding
	leg progress
	leg senddigit
	leg sendhookflash
	leg setup
	leg setup_continue
	leg setupack
	leg tonedetect
	leg transferdone
	leg vxmldialog
	leg vxmlsend
	log
	media pause
	media play
	media record
	media resume
	media seek
	media stop
	modulespace
	object create dial-peer
	object create gtd
	object destroy
	object append gtd
	object delete gtd
	object replace gtd
	object get gtd
	object get dial-peer
	param read
	param register
	phone assign
	phone query
	phone unassign
	playtone
	puts
	requiredversion
	sendmsg
	service
	set avsend
	set callinfo
	subscription open
	subscription close
	subscription notify_ack
	timer left
	timer start
	timer stop

	Information Tags
	aaa_accounting_last_sent
	aaa_avpair
	aaa_avpair_exists
	aaa_new_guid
	cfg_avpair
	cfg_avpair_exists
	con_all
	con_ofleg
	evt_aaa_status_info
	evt_address_resolve_reject_reason
	evt_address_resolve_term_cause
	evt_connections
	evt_consult_info
	evt_dcdigits
	evt_dest_handle
	evt_digit
	evt_digit_duration
	evt_disc_iec
	evt_disc_rsi
	evt_endpoint_addresses
	evt_event
	evt_facility_id
	evt_facility_report
	evt_feature_param
	evt_feature_report
	evt_feature_type
	evt_gtd
	evt_handoff ani
	evt_handoff argstring
	evt_handoff dnis
	evt_handoff_legs
	evt_handoff proto_headers
	evt_handoff_string
	evt_iscommand_done
	evt_last_disconnect_cause
	evt_last_event_handle
	evt_last_iec
	evt_legs
	evt_module_handle
	evt_module_subevent
	evt_module_context
	evt_msg
	evt_msg_source
	evt_params
	evt_progress_indication
	evt_proto_content
	evt_proto_content_type
	evt_proto_headers
	evt_report ev_transfer_request
	evt_redirect_info
	evt_service_control
	evt_service_control_count
	evt_status
	evt_status_text
	evt_subscription_id
	evt_timer_name
	evt_transfer_info
	evt_vxmlevent
	evt_vxmlevent_params
	gtd_attr_exists
	last_command_handle
	leg_all
	leg_ani
	leg_ani_pi
	leg_ani_si
	leg_dn_tag
	leg_dnis
	leg_display_info
	leg_guid
	leg_incoming
	leg_incoming_guid
	leg_inconnection
	leg_isdid
	leg_outgoing
	leg_password
	leg_proto_headers
	leg_rdn
	leg_rdn_pi
	leg_rdn_si
	leg_redirect_cnt
	leg_remoteipaddress
	leg_remote_media_ip_address
	leg_remote_signaling_ip_address
	leg_rgn_noa
	leg_rgn_npi
	leg_rgn_num
	leg_rgn_pi
	leg_rgn_si
	leg_settlement_time
	leg_source_carrier_id
	leg_subscriber_type
	leg_suppress_outgoing_auto_acct
	leg_target_carrier_id
	leg_tdm_hairpin
	leg_type
	leg_username
	med_backup_server
	med_language
	med_language_map
	med_location
	med_total_languages
	media_timer_factor
	mod_all_handles
	mod_handle
	mod_handle_service
	set iec
	subscription_context
	subscription_info
	subscription_server_ipaddress
	sys_version

	Events and Status Codes
	Events
	Status Codes
	Authentication Status
	Authorization Status
	Digit Collection Status
	Consult Response
	Consult Status
	Disconnect Cause
	Facility
	Feature Type
	Leg Setup Status
	Media Status
	Subscribe/Notify
	Tone Detect
	Transfer Status
	VoiceXML Dialog Completion Status

	Sample Scripts
	SIP Headers
	Passing SIP Headers
	Retrieving SIP Headers

	Services
	Service Register and Start

	Session Interaction
	Hybrid Scripting

	Glossary

