

Multi-Topology Routing

First Published: February 27, 2007 Last Updated: June 4, 2007

Multi-Topology Routing (MTR) allows the configuration of service differentiation through class-based forwarding. MTR supports multiple unicast topologies and a separate multicast topology. A topology is a subset of the underlying network (or base topology) characterized by an independent set of Network Layer Reachability Information (NLRI). A topology can overlap with another or share any subset of the underlying network. MTR provides separate forwarding capabilities on a per topology basis. A separate forwarding table is maintained for each topology, allowing you to broadly apply independent forwarding configurations or add a level of granularity to independent forwarding configurations. MTR can be used, for example, to define separate topologies for voice, video, and data traffic classes.

Finding Feature Information in This Module

Your Cisco IOS software release may not support all of the features documented in this module. To reach links to specific feature documentation in this module and to see a list of the releases in which each feature is supported, use the "Feature Information for Multi-Topology Routing" section on page 69.

Finding Support Information for Platforms and Cisco IOS and Catalyst OS Software Images

Use Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Contents

- Prerequisites for Multi-Topology Routing, page 2
- Restrictions for Multi-Topology Routing, page 2
- Information About Multi-Topology Routing, page 2
- How to Configure Multi-Topology Routing, page 13
- Configuration Examples for Multi-Topology Routing, page 52
- Additional References, page 67

- Feature Information for Multi-Topology Routing, page 69
- Glossary, page 72

Prerequisites for Multi-Topology Routing

- You should have a clear understanding of the physical topology and traffic classification in your network before deploying MTR.
- MTR should be deployed consistently throughout the network. Cisco Express Forwarding (CEF) or distributed CEF (dCEF) and IP routing must be enabled on all networking devices.
- We recommend that you deconfigure custom route configurations, such as route summarization and default routes before enabling a topology and that you reapply custom route configuration only after the topology is fully enabled. This recommendation is designed to prevent traffic interruption, as some destinations may be obscured during the transition. It is also a best practice when disabling an existing topology. Custom route configuration is most useful when all of the more specific routes are available in the routing table of the topology.

Restrictions for Multi-Topology Routing

- Only the IPv4 address family is supported.
- Multiple unicast topologies cannot be configured within a Virtual Routing and Forwarding (VRF) instance. However, multiple unicast topologies and a separate multicast topology can be configured under the global address space, and a separate multicast topology can be configured within a VRF.
- All topologies share a common address space. MTR is not intended to enable address reuse. Configuring address reuse in separate topologies is not supported.
- IP Differentiated Services or IP Precedence can be independently configured in a network where MTR is also deployed. However, MTR requires exclusive use of some subset of the DiffServ Code Point (DSCP) bits in the IP packet header for specific topology traffic. For this reason, simultaneous configuration must be carefully coordinated. Remarking DSCP bits in the IP packet header is not recommended or supported on routers that contain class-specific topologies.
- Distance Vector Multicast Routing Protocol (DVMRP) CLI and functionality are not provided in Cisco IOS software images that provide MTR support.

Information About Multi-Topology Routing

You should understand the following concepts before configuring MTR in a production network:

- MTR Overview, page 3
- Unicast Topology Configuration for MTR, page 6
- Multicast Topology Configuration for MTR, page 6
- Routing Protocol Support for MTR, page 7
- BGP Routing Protocol Support for MTR, page 8
- MTR Traffic Classification, page 9
- Network Management Support for MTR, page 10

- ISSU—MTR, page 10
- MTR Deployment Models, page 10
- MTR Deployment Configuration, page 11
- Guidelines for Enabling and Disabling MTR, page 12

MTR Overview

MTR introduces the capability to configure service differentiation through class-based forwarding. There are two primary components to configuring MTR: independent topology configuration and traffic classification configuration.

A topology is defined as a subset of routers and links in a network, for which a separate set of routes is calculated. The entire network itself, for which the usual set of routes is calculated, is known as the base topology. The base topology (or underlying network) is characterized by the NLRI that a router uses to calculate the global routing table to make routing and forwarding decisions. In other words, the base topology is the default routing environment that exists prior to enabling MTR.

Any additional topologies are known as class-specific topologies and are a subset of the base topology. Each class-specific topology carries a class of traffic and is characterized by an independent set of NLRI that is used to maintain a separate Routing Information Base (RIB) and Forwarding Information Base (FIB). This design allows the router to perform independent route calculation and forwarding for each topology.

Within a given router, MTR creates a selection of routes upon which to forward to a given destination. The specific choice of route is based on the class of the packet being forwarded, a class that is an attribute of the packet itself. This design allows packets of different classes to be routed independently from one another. The path that the packet follows is determined by classifiers configured on the routers and interfaces in the network. Figure 1 shows the base topology, which is a superset of the red, blue, and green topologies.

Figure 2 shows an MTR-enabled network that is configured using the service separation model. The base topology (shown in black) uses NLRI from all reachable devices in the network. The blue, red, and purple paths each represent a different class-specific topology. Each class-specific topology calculates a separate set of paths through the network. Routing and forwarding are independently calculated based on individual sets of NLRI that are carried for each topology.

Figure 3 shows that the traffic is marked at the network edge. As the traffic traverses the network, the marking is used during classification and forwarding to constrain the traffic to its own colored topology.

Figure 3 Traffic Follows Class-Specific Forwarding Paths

The same topology can have configured backup paths. In Figure 4, the preferential path for the voice topology is represented by the solid blue line. In case this path becomes unavailable, MTR can be configured to choose the voice backup path represented by the dotted blue line. Both of these paths represent the same topology and none overlap.

Figure 4 MTR Backup Contingencies Within a Topology

Figure 5 shows the MTR forwarding model at the system level. When a packet arrives at the incoming interface, the marking is examined. If the packet marking matches a topology, the associated topology is consulted, the next hop for that topology is determined, and the packet is forwarded. If there is no forwarding entry within a topology, the packet is dropped. If the packet does not match any classifier, it is forwarded to the base topology. The outgoing interface is a function of the colored route table in which the lookup is done.

Figure 5 MTR Forwarding at the System Level

MTR is implemented in Cisco IOS software on a per address family and subaddress family basis. Only the IPv4 (unicast and multicast) address family is currently supported. MTR supports up to 32 unicast topologies (including the base topology) and a separate multicast topology. A topology can overlap with

I

another or share any subset of the underlying network. Each topology is configured with a unique topology ID. The topology ID is configured under the routing protocol and is used to identify and group NLRI for each topology in updates for a given protocol.

Unicast Topology Configuration for MTR

Up to 32 unicast topologies can be configured on each router. The topology is first defined by entering the **global-address-family** command in global configuration mode. The address family and optionally the subaddress family are specified in this step. The **topology** subcommand is then entered in global address family configuration mode. This command places the router in address family topology configuration mode. The following global topology configuration parameters are applied in this mode:

- Global interface configuration—The topology can be configured on all interfaces by entering the **all-interfaces** command in address family topology configuration mode. All interfaces are removed from the topology by entering the **no** form of this command, which is the default.
- Forwarding mode—The method that the router uses to look up forwarding entries in the FIB is configured by entering the **forward-base** command. Entering this command enables incremental forwarding mode. Entering the **no** form enables strict forwarding mode, which is the default mode for MTR. In strict forwarding mode, the router will look for a forwarding entry only within the class-specific topology FIB. If an entry is not found, the packet is dropped. In incremental mode, the router will first look in the class-specific topology FIB. If a class-specific forwarding entry is not found, the router will then look in the base topology FIB.
- Maximum route limit—A limit for the number of routes that will be permitted in the topology and installed to the topology RIB is configured by entering the **maximum routes** (MTR) command. This functionality is similar to routing and VPN maximum route features. No limit is the default.

Per-interface topology configuration parameters override configurations applied in global address family topology configuration mode and router address family topology configuration mode.

Multicast Topology Configuration for MTR

Cisco IOS software supports legacy (pre-MTR) IP multicast behavior by default. MTR support for IP multicast must be explicitly enabled. Legacy IP multicast uses reverse path forwarding on routes in the unicast RIB (base unicast topology) to build multicast distribution trees (MDTs).

Note

Legacy DVMRP support is not provided in Cisco IOS software images that provide support for MTR.

MTR introduces a multicast topology that is completely independent from the unicast topology. MTR integration with multicast will allow the user to control the path of multicast traffic in the network.

The multicast topology maintains separate routing and forwarding tables. The following list summarizes MTR multicast support that is integrated into Cisco IOS software:

- Conventional longest match support for multicast routes.
- RPF support for Protocol Independent Multicast (PIM).
- Border Gateway Protocol (BGP) MDT subaddress family identifier (SAFI) support for Inter-AS Virtual Private Networks (VPNs) (SAFI number 66).

• Support for static multicast routes is integrated into the **ip route topology** command (modifying the **ip mroute** command).

Multicast support is enabled by configuring the **ip multicast-routing** command in global configuration mode, as in pre-MTR software. MTR support for multicast is enabled by configuring the **ip multicast rpf multitopology** command. The **global-address-family** command is entered with the IPv4 address family and multicast subaddress family. The **topology** command is then entered with the **base** keyword. The following global topology configuration parameters are applied in this mode:

- Topology route replication—The **route-replicate** command is used to replicate (copy) routes from another multicast topology RIB. Routes can be replicated from the unicast base topology or a class-specific topology. However, route replication cannot be configured from a class-specific topology that is configured to forward the base topology (incremental forwarding).
- Unicast topology RPF— The **use-topology** command configures the multicast topology to perform RPF checks on routes in a unicast topology RIB. The base unicast or a class-specific topology can be specified. The RIB of the base multicast topology is not used when this command is enabled.

Only a single multicast topology is currently supported. Support for multiple multicast topologies will be provided in a future development phase.

Routing Protocol Support for MTR

IP routing must be enabled on the router in order for MTR to operate. MTR supports static and dynamic routing in Cisco IOS software. Dynamic routing can be enabled per-topology to support inter-domain and intra-domain routing. Route calculation and forwarding are independent for each topology. MTR support is integrated into Cisco IOS software for the following protocols:

- Border Gateway Protocol (BGP)
- Enhanced Interior Gateway Routing Protocol (EIGRP)
- Integrated Intermediate System-to-Intermediate System (IS-IS)
- Open Shortest Path First (OSPF)

Per-topology configuration is applied under the router address family configuration of the global routing process (router configuration mode). The address family and subaddress family are specified when entering address-family configuration mode. The topology name and topology ID are specified under the address-family configuration by entering the **topology** command.

Each topology is configured with a unique topology ID. The topology ID is configured under the routing protocol and is used to identify and group NLRI for each topology in updates for a given protocol. In OSPF, EIGRP, and IS-IS, the topology ID is entered during the first configuration of the **topology** command for a class-specific topology. In BGP, the topology ID is configured by entering the **bgp tid** command under the topology configuration.

Class-specific topologies can be configured with different metrics than the base topology. Interface metrics configured on the base topology can be inherited by the class-specific topology. Inheritance occurs if no explicit inheritance metric is configured in the class-specific topology.

BGP support is configured only in router configuration mode. IGP support is configured in router configuration mode and/or interface configuration mode.

By default, interfaces are not included in non-base topologies. For routing protocol support for EIGRP, IS-IS, and OSPF, explicit configuration of a non-base topology on an interface is required. The default behavior can be overridden by using the **all-interfaces** command in address family topology

configuration mode. The **all-interfaces** command causes the non-base topology to be configured on all interfaces of the router that are part of the default address space or the VRF in which the topology is configured.

BGP Routing Protocol Support for MTR

Before using BGP to support MTR, you should be familiar with the following concepts:

- BGP Network Scope, page 8
- MTR CLI Hierarchy Under BGP, page 8
- BGP Sessions for Class-Specific Topologies, page 9
- Topology Translation Using BGP, page 9
- Topology Import Using BGP, page 9

BGP Network Scope

A new configuration hierarchy, named scope, has been introduced into the BGP protocol. To implement MTR for BGP, the scope hierarchy is required, but the scope hierarchy is not limited to MTR use. The scope hierarchy introduces some new configuration modes such as router scope configuration mode. Router scope configuration mode is entered by configuring the **scope** command in router configuration mode, and a collection of routing tables is created when this command is entered. BGP commands configured under the scope hierarchy are configured for a single network (globally), or on a per-VRF basis, and are referred to as scoped commands. The scope hierarchy can contain one or more address families.

MTR CLI Hierarchy Under BGP

The BGP CLI has been modified to provide backwards compatibility for pre-MTR BGP configuration and to provide a hierarchical implementation of MTR. Router configuration mode is backwards compatible with the pre-address family and pre-MTR configuration CLI. Global commands that affect all networks are configured in this configuration mode. For address-family and topology configuration, general session commands and peer templates can be configured to be used in the address-family or topology configuration modes.

After any global commands are configured, the scope is defined either globally or for a specific VRF. Address family configuration mode is entered by configuring the **address-family** command in router scope configuration mode or router configuration mode. Unicast is the default address family if no subaddress family (SAFI) is specified. MTR supports only the IPv4 address family with a SAFI of unicast or multicast. Entering address family configuration mode from router configuration mode configures BGP to use pre-MTR-based CLI. This configuration mode is backwards compatible with pre-existing address family configurations. Entering address family configuration mode from router scope configuration mode configures the router to use the hierarchical CLI that supports MTR. Address family configuration parameters that are not specific to a topology are entered in this address family configuration mode.

BGP topology configuration mode is entered by configuring the **topology** (BGP) command in address family configuration mode. Up to 32 topologies (including the base topology) can be configured on a router. The topology ID is configured by entering the **bgp tid** command. All address family and subaddress family configuration parameters for the topology are configured here.

<u>Note</u>

Configuring a scope for a BGP routing process removes CLI support for pre-MTR-based configuration.

The following shows the hierarchy levels that are used when configuring BGP for MTR implementation:

```
router bgp <autonomous-system-number>
! Global commands
scope {global | vrf <vrf-name>}
! Scoped commands
address-family {<afi>} [<safi>]
! Address family specific commands
topology {<topology-name> | base}
! topology specific commands
```

BGP Sessions for Class-Specific Topologies

MTR is configured under BGP on a per-session basis. The base unicast and multicast topologies are carried in the global (default) session. A separate session is created for each class-specific topology that is configured under a BGP routing process. Each session is identified by its topology ID. BGP performs a best-path calculation individually for each class-specific topology. A separate RIB and FIB are maintained for each session.

Topology Translation Using BGP

Depending on the design and policy requirements for your network, you may need to install routes from a class-specific topology on one router in a class-specific topology on a neighboring router. Topology translation functionality using BGP provides support for this operation. Topology translation is BGP neighbor-session based. The **neighbor translate-topology** command is configured using the IP address and topology ID from the neighbor.

The topology ID identifies the class-specific topology of the neighbor. The routes in the class-specific topology of the neighbor are installed in the local class-specific RIB. BGP performs a best-path calculation on all installed routes and installs these routes into the local class-specific RIB. If a duplicate route is translated, BGP will select and install only one instance of the route per standard BGP best-path calculation behavior.

Topology Import Using BGP

Topology import functionality using BGP is similar to topology translation. The difference is that routes are moved between class-specific topologies on the same router using BGP. This function is configured by entering the **import topology** command. The name of the class-specific topology or base topology is specified when entering this command. Best-path calculations are run on the imported routes before they are installed into the topology RIB. This command also includes a **route-map** keyword to allow you to filter routes that are moved between class-specific topologies.

MTR Traffic Classification

MTR cannot be enabled on a router until traffic classification has been configured, even if only one class-specific topology has been configured. Traffic classification is used to configure topology specific forwarding behaviors when multiple topologies are configured on the same router. Traffic classification must be applied consistently throughout the network. Class-specific packets are associated with the corresponding topology table forwarding entries.

I

Traffic classification is configured using the Modular QoS CLI (MQC). MTR traffic classification is similar to QoS traffic classification. However, there is an important distinction. MTR traffic classification is defined globally for each topology, rather than at the interface level as in Quality of Service (QoS).

A subset of DSCP bits is used to encode classification values in the IP packet header. A class map is configured to define the traffic class by entering the **class-map** command in global configuration mode. Only the **match-any** keyword is supported for MTR. The traffic class is associated with a policy by configuring the **policy-map type class-routing ipv4 unicast** command in global configuration mode. The policy is activated for the topology by configuring the **service-policy type class-routing** command in global address family configuration mode. When configured, the service policy is associated with all interfaces on the router.

Some of the same goals can be achieved through QoS configuration, to which MTR provides a more powerful and flexible alternative. MTR traffic classification and IP Differentiated Services or IP Precedence-based traffic classification can be configured in the same network. However, MTR requires exclusive use of some subset of the DSCP bits in the IP packet header for specific topology traffic. In a network where MTR and QoS traffic classification are configured, simultaneous configuration must be carefully coordinated.

Network Management Support for MTR

Standard network management utilities, such as ping and traceroute, have been enhanced to support MTR. You can configure a standard or extended ping using the topology name in place of a hostname or IP address. Traceroute has been similarly enhanced. Context-based Simple Network Management Protocol (SNMP) functionality has been integrated into Cisco IOS software and can be used to support MTR.

ISSU-MTR

All protocols and applications that support MTR and that also support In Service Software Upgrade (ISSU) have extended their ISSU support to include the MTR functionality. See the *Cisco IOS In Service Software Upgrade Process* module for information on ISSU-capable protocols and applications.

ISSU allows a high-availability (HA) system to run in Stateful Switchover (SSO) mode even when different versions of Cisco IOS software are running on the active and standby Route Processors (RPs). This feature allows the system to switch over to a secondary RP that is running upgraded (or downgraded) software and to continue forwarding packets without session loss and with minimal or no packet loss.

This feature is enabled by default.

MTR Deployment Models

The base topology is the superset of all topologies in the network. It is defined by NLRI for all reachable routers regardless of the deployment model that is used. MTR can be deployed using the service separation MTR model shown in Figure 6, or it can deployed using the overlapping MTR model shown in Figure 7. Each of these models represent a different approach to deploying MTR. However, these models are not mutually exclusive. Any level of variation of a combined model can be deployed.

Service Separation MTR Model

Figure 6 shows the service separation model where no colored topologies (except for the base) overlap with each other. In the service separation model, each class of traffic is constrained to its own exclusive topology. This model restricts the given class of traffic to a subset of the network. This model is less configuration intensive because no topology-specific metrics need to be configured.

Overlapping MTR Model

In the overlapping MTR model, all topologies are configured to run over all routers in the network. This model provides the highest level of redundancy. All classes of traffic may use all links. Per-topology metrics are then configured to bias different classes of traffic to use different parts of the network. The redundancy that this model provides, however, makes it more configuration intensive. Figure 7 shows the red and gray topologies. All topologies are configured to run over all network routers. In this model, per-topology metrics are configured to bias the preferred routes for each topology.

MTR Deployment Configuration

MTR supports both full and incremental deployment configurations. To support these options, MTR provides two different, configurable forwarding rules. For full deployment, MTR supports a (default) longest-match lookup in only the forwarding table of the corresponding class-specific topology. If no route is found, the packet is dropped. For incremental deployment, MTR supports a longest-match lookup first in the forwarding table for the corresponding class-specific topology, and subsequently, in the base topology if no class-specific entry is found. The former forwarding rule is known as "strict mode," the latter as "incremental mode."

I

Full Deployment

Strict forwarding mode is the default forwarding mode in MTR. In this mode, the router will look for a forwarding route only in the class-specific FIB. If no forwarding route is found, the packet is dropped. In this mode, the router performs a longest match look up for the topology FIB entry. This mode is designed for full deployment, where MTR is enabled on every router in the network or every router in the topology. Strict forwarding mode should be enabled after an incremental deployment transition has been completed or when all routers in the network or topology are MTR enabled. Strict forwarding mode can be enabled after incremental forwarding mode by entering the **no** form of the **forward-base** command.

Incremental Deployment

Incremental forwarding mode is designed to support transitional or incremental deployment of MTR, where there are routers in the network that are not MTR enabled. In this mode, the router will look for a forwarding entry first in the class-specific FIB. If an entry is not found, the router will then look for the longest match in the base topology FIB. If an entry is found in the base topology FIB, the packet will be forwarded on the base topology. If a forwarding entry is not found in the base topology FIB, the packet is dropped.

This mode is designed to preserve connectivity during an incremental deployment of MTR and is recommended to be used only during migration (the transition from a non-MTR to MTR enabled network). Class-specific traffic for a given destination is forwarded over contiguous segments of the class-specific topology containing that destination; otherwise it is forwarded over the base topology.

This forwarding mode can also be enabled to support mixed networks where some routers are not configured to run MTR. Incremental forwarding mode is enabled by entering the **forward-base** command in address family topology configuration mode.

Guidelines for Enabling and Disabling MTR

The section provides guidelines and procedures for enabling or disabling MTR in a production network. These guidelines assume that all participating networking devices are running a software image that supports MTR. They are designed to prevent major traffic interruptions due to misconfiguration and to minimize temporary transitional effects that can occur when introducing or removing a topology from a network. The procedures described below must be implemented in the order that they are described.

First, create a class-specific topology on all networking devices and enable incremental forwarding mode by entering the **forward-base** command in the address family topology configuration. Incremental forwarding should be configured whenever a topology is introduced or removed from the network. The topology is defined as a global container at this stage. No routing or forwarding can occur within the topology. Routing protocol support should not be configured.

Second, configure classification rules for the class-specific topology. Classification must be consistently applied on all routers in the topology; each router has identical classifier configuration. The topology is activated when a valid classification configuration is attached to the global topology configuration. Reachability can be verified, for interfaces and networking devices that are in the same topology and configured with identical classification, using ping and trace route.

Third, configure routing protocol support and/or static routing. The routers in the topology should be configured one at a time. This configuration includes interface, router process, and routing protocol-specific metrics and filters.

You should enable routing in the topology using a physical pattern in a contiguous manner relative to a single starting point. For example, you should configure all interfaces on a single router, and then all interfaces on each adjacent router. You should follow this pattern until the task is complete. The starting point can be on the edge or core of the network. This recommendation is designed to increase the likelihood that class-specific traffic is forwarded on the same paths in the incremental topology during as it is on the full topology when MTR is completely deployed.

Incremental forwarding should be disabled (if your network design requires strict forwarding mode) only after routing has been configured on all routers in a given topology. At this stage, MTR is fully operational. Class-specific traffic is forwarded only over devices within the topology. Traffic that is not classified or destined for the topology is dropped.

When disabling a topology, you should reenable incremental forwarding mode. You should remove custom route configuration, such as route summarization and default routes before disabling a topology, and you should reapply custom route configuration only after the topology is reenabled. This recommendation is designed to prevent traffic interruption, as some destinations may be obscured during the transition. Custom route configuration is most useful when all of the more specific routes are available in the routing table of the topology.

These recommendations apply only when a given classifier is enabled or disabled for a given topology. All other MTR configuration, including interface and routing protocol specific configuration (other than the topology ID) may be modified dynamically as necessary.

How to Configure Multi-Topology Routing

This section contains the following tasks:

- Configuring a Unicast Topology for MTR, page 14
- Configuring a Multicast Topology for MTR, page 16
- Configuring MTR Traffic Classification, page 19
- Activating an MTR Topology Using OSPF, page 22
- Activating an MTR Topology Using EIGRP, page 26
- Activating an MTR Topology Using IS-IS, page 27
- Activating an MTR Topology Using BGP, page 29
- Importing Routes from an MTR Topology Using BGP, page 34
- Configuring an MTR Topology in Interface Configuration Mode, page 37
- Activating an MTR Topology in Interface Configuration Mode Using OSPF, page 39
- Activating an MTR Topology in Interface Configuration Mode Using EIGRP, page 41
- Activating an MTR Topology in Interface Configuration Mode Using IS-IS, page 43
- Configuring SNMP Support for MTR, page 45
- Enabling and Monitoring MTR Topology Statistics Accounting, page 49
- Testing Network Connectivity for MTR, page 51

Configuring a Unicast Topology for MTR

Perform this task to configure a unicast topology. Only Steps 1 through 4 are required to complete this task. The remaining steps are optional.

MTR Scaling Characteristics

For each new topology that you configure on a router, you increase the total number of routes from the global routing table by the number of routes that are in each new topology [base+topology(n)]. If the router carries a large global routing table, and you plan to add a significant number of routes through MTR topology configuration, you can configure the **maximum routes** (MTR) command in address family topology configuration mode to limit the number of routes that the router will accept for a given topology and install into the corresponding RIB.

Prerequisites

• IP routing and CEF must be enabled.

Restrictions

• Only the IPv4 address family (multicast and unicast) is currently supported.

Support for other address families will be added in future development phases.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. global-address-family ipv4 [multicast | unicast]
- 4. topology { base | topology-name }
- 5. all-interfaces
- 6. forward-base
- 7. maximum routes number [threshold [reinstall threshold] | warning-only]
- 8. shutdown
- 9. end
- **10.** show topology [cache [topology-id] | ha | [[detail | interface | lock | router] [all | ipv4 | ipv6 | vrf vpn-instance]]]

DETAILED STEPS

Γ

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
Sten 2	configure terminal	Enters global configuration mode
	-	
	Example: Router# configure terminal	
Step 3	<pre>global-address-family ipv4 [multicast unicast]</pre>	Enters global address family topology configuration mode to configure the global topology.
	Example: Router(config)# global-address-family ipv4	• The address family for the class-specific topology is specified in this step. The subaddress family can be optionally specified. Unicast is the default if no subaddress family is entered.
Step 4	<pre>topology {base topology-name}</pre>	Configures the global topology instance and enters address family topology configuration mode.
	Example: Router(config-af)# topology VOICE	• The base keyword is used to configure the base topology or a multicast topology.
		• The <i>topology-name</i> argument is entered to label a class-specific topology. Topology names are case-sensitive. For example, VOICE and voice identify two different topologies.
		• MTR supports 32 unicast topologies including the base topology.
Step 5	all-interfaces	(Optional) Configures the topology instance to use all inter- faces on a router.
	Example:	• By default, no interfaces are used.
	Router(config-af-topology)# all-interfaces	Note The configuration of this command does not override the topology configuration applied in interface configuration mode.
Step 6	forward-base	(Optional) Configures the forwarding mode under a topology instance.
	Example: Router(config-af-topology)# forward-base	• Strict mode (default) configures the router to look for forwarding entries only in the topology-specific FIB.
		• The forward-base command is used in incremental deployment. Incremental mode (enable form) configures the router to look first in the class-specific topology FIB. If a forwarding route is not found, then the router will look in the base topology FIB.

	Command or Action	Purpose
Step 7	<pre>maximum routes number [threshold [reinstall threshold] warning-only]</pre>	(Optional) Configures the maximum number of routes that a topology instance will accept and install into the RIB.
	Example: Router(config-af-topology)# maximum routes 1000 warning-only	• Use the warning-only keyword to generate only a warning, to set an upper limit, and to set a lower limit (low water mark) for reinstalling routes after the maximum limit has been exceeded.
Step 8	shutdown	(Optional) Temporarily disables a topology instance without removing the topology configuration.
	Example: Router(config-af-topology)# shutdown	• This command is used to temporarily disable a topology, while other topology parameters are configured and other routers are configured with MTR.
Step 9	end	(Optional) Exits routing topology configuration mode and enters privileged EXEC mode.
	Example: Router(config-af-topology)# end	
Step 10	<pre>show topology [cache [topology-id] ha [[detail interface lock router] [all ipv4 ipv6 vrf vpn-instance]]]</pre>	(Optional) Displays information about class-specific and base topologies.
	Example:	
	Router# show topology	

What to Do Next

Repeat this task for each unicast topology instance that you need to create. Proceed to "Configuring a Multicast Topology for MTR" section on page 16 to configure a multicast topology.

Configuring a Multicast Topology for MTR

Cisco IOS software supports legacy (pre-MTR) multicast behavior by default. Perform this task to configure a multicast topology. Only Steps 1 through 6 are required to complete this task. The remaining steps are optional.

Prerequisites

• IP routing and Cisco Express Forwarding (CEF) must be enabled.

Restrictions

- Distance Vector Multicast Routing Protocol (DVMRP) CLI and functionality are not provided in Cisco IOS software images that provide MTR support.
- Only the IPv4 address family (multicast and unicast) is supported.
- Only a single multicast topology can be configured, and only the **base** keyword can be entered when the multicast topology is created in Step 6.

Support for multiple multicast topologies will be added in a future development phase.

SUMMARY STEPS

I

- 1. enable
- 2. configure terminal
- 3. ip multicast-routing [vrf name]
- 4. ip multicast rpf multitopology
- 5. global-address-family ipv4 [multicast | unicast]
- 6. topology { base | topology-name }
- 7. route-replicate from {multicast | unicast} [topology {base | *name* }] protocol [route-map name | vrp name]
- 8. use-topology unicast {base | topology-name}
- 9. shutdown
- 10. end
- **11.** show topology [cache [topology-id] | ha | [[detail | interface | lock | router] [all | ipv4 | ipv6 | vrf vpn-instance]]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip multicast-routing [vrf name]</pre>	Enables IP multicast routing.
	Example: Router(config)# ip multicast-routing	
Step 4	ip multicast rpf multitopology	Enables MTR support for IP multicast routing.
	Example: Router(config)# ip multicast rpf multitopology	
Step 5	global-address-family ipv4 [multicast unicast]	Enters global address family configuration mode to configure the global topology.
	Example: Router(config)# global-address-family ipv4 multicast	• The address family for the class-specific topology is specified in this step. The subaddress family can be specified. Unicast is the default if no subaddress family is entered.
Step 6	topology {base topology-name}	Configures the global topology instance and enters address family topology configuration mode.
	Example: Router(config-af)# topology base	• Only the base keyword can be accepted for a multicast topology.
Step 7	route-replicate from {multicast unicast}	(Optional) Replicates routes in the multicast topology RIB.
	[topology {base name}] protocol [route-map name vrf name]	• The <i>protocol</i> argument is configured to specify the protocol which is the source of the route.
	Example: Router(config-af-topology)# route-replicate from unicast topology VOICE ospf 100 route-map map1	• Replicated routes can be filtered through a route map before they are installed into the multicast RIB.
Step 8	<pre>use-topology unicast {base topology-name}</pre>	(Optional) Configures a multicast topology to perform RPF computations using a unicast topology RIB.
	Example: Router(config-af-topology)# use-topology uni- cast VIDEO	• The base or a class-specific unicast topology can be configured. When this command is configured, the multicast topology uses routes in the specified unicast topology table to build multicast distribution trees.
		Note This multicast RIB is not used when this command is enabled, even if the multicast RIB is populated and supported by a routing protocol.

	Command or Action	Purpose
Step 9	shutdown	(Optional) Temporarily disables a topology instance without removing the topology configuration.
	Example: Router(config-af-topology)# shutdown	• This command is used to temporarily disable a topology, while other topology parameters are configured and other routers are configured with MTR.
Step 10	end	(Optional) Exits address family topology configuration mode and enters privileged EXEC mode.
	Example: Router(config-af-topology)# end	
Step 11	<pre>show topology [cache [topology-ID] ha [[detail interface lock router] [all ipv4 ipv6 vrf vpn-instance]]</pre>	(Optional) Displays information about class-specific and base topologies.
	Example: Router# show topology detail	

What to Do Next

The topology is not activated until classification is configured. Proceed to the "Configuring MTR Traffic Classification" section on page 19 to configure classification for a class-specific topology.

Configuring MTR Traffic Classification

Perform this task to define MTR traffic classification. Traffic classification is used to associate different classes of traffic with different topologies when multiple topologies are configured on the same router. MTR traffic classification is similar to QoS traffic classification and is configured using the MQC.

The **service-policy type class-routing** command is used to attach a service policy to a policy map for topology traffic classification. The service policy is activated for the topology after the **service-policy type class-routing** command is entered, enabling traffic classification. Following the correct order of the commands in this task is very important. Ensure that all configuration that affects traffic classification is complete before entering the **service-policy type class-routing** command.

Traffic classification is defined globally for each topology, rather than at the interface level as in QoS.

It is also important that all routers throughout the network have the same definition of classifiers and the same sequencing of classifiers.

MTR and QoS Traffic Classification in the Same Network

MTR traffic classification and IP Differentiated Services or IP Precedence based traffic classification can be configured in the same network. However, MTR requires exclusive use of the DSCP bits in the IP packet header for specific topology traffic. In a network where MTR and QoS traffic classification is configured, simultaneous configuration must be carefully coordinated.

Before configuring MTR traffic classification, you should be familiar with all the concepts documented in the "MTR Traffic Classification" section on page 9.

I

Prerequisites

• A topology must be defined globally before traffic classification can be configured.

Restrictions

- MTR classification values must be unique for each topology. An error message will be generated if you attempt to configure overlapping values.
- A topology cannot be placed in the shutdown state if it is referenced by any active policy map.
- A subset of DSCP bits is used to encode classification values in the IP packet header. Certain DSCP values are reserved. These DSCP values are commonly used by routing software components for purposes unrelated to MTR (for example, OSPF, BFD, and/or SNMP). Using these values for MTR classification is likely to interfere with correct operation of the router and is strongly discouraged. These values include:
 - DSCP 48 (cs6)
 - DSCP 16 (cs2)

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. class-map match-any class-map-name
- **4.** match [ip] dscp *dscp-value* [*dscp-value dscp-value dscp-value dscp-value dscp-value dscp-value*]
- 5. exit
- 6. policy-map type class-routing ipv4 unicast policy-map-name
- 7. class { class-name | class-default }
- 8. select-topology topology-name
- 9. exit
- 10. global-address-family ipv4 [multicast | unicast]
- **11.** service-policy type class-routing *policy-map-name*
- 12. end
- 13. show topology detail
- 14. show policy-map type class-routing ipv4 unicast [interface [interface-type interface-number]]
- 15. show mtm table

DETAILED STEPS

Γ

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
•	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	class-map match-any class-map-name	Creates a class map to be used for matching packets to a specified class and enters class-map configuration mode.
	Example:	• The MTR traffic class is defined using this command.
	Router(config)# class-map match-any VOICE-CLASS	Note The match-any keyword must be entered when configuring classification for MTR.
Step 4	<pre>match [ip] dscp dscp-value [dscp-value</pre>	Identifies a DSCP value as a match criteria.
	dscp-value dscp-value dscp-value dscp-value dscp-value dscp-value]	• Use the <i>dcsp-value</i> argument to define a specific metric value.
	Example: Router(config-cmap)# match ip dscp 9	• Do not use the DSCP values 48 and 16. See "Restrictions" section on page 20 for more information.
Step 5	exit	Exits class-map configuration mode, and enters global con- figuration mode.
	Example: Router(config-cmap)# exit	
Step 6	policy-map type class-routing ipv4 unicast policy-map-name	Creates or modifies a policy map that can be attached to one or more interfaces to specify a service policy and enters pol- icy-map configuration mode.
	Example: Router(config)# policy-map type class-routing ipv4 unicast VOICE-CLASS-POLICY	• If you do not specify the type keyword option, the command defaults to the QoS policy.
Step 7	<pre>class {class-name class-default} Evample:</pre>	Specifies the name of the class whose policy you want to create or change or specifies the default class and enters policy-map class configuration mode.
	Example: Router(config-pmap)# class VOICE-CLASS	• The class map is referenced.
		• For a class map to be referenced in a class-routing policy map, it must first be defined by the class-map command as shown in Step 3.
Step 8	select-topology topology-name	Attaches the policy map to the topology.
	Example: Router(config-pmap-c)# select-topology VOICE	• The topology name configured by the topology command in global address family configuration mode is referenced. See Step 4 of the "Configuring a Unicast Topology for MTR" section on page 14 section.

	Command or Action	Purpose
Step 9	exit	Exits policy-map class configuration mode and enters policy-map configuration mode.
	Example: Router(config-pmap-c)# exit	• Repeat this step to enter global configuration mode.
Step 10	global-address-family ipv4 [multicast uni- cast]	Enters global address family configuration mode to configure MTR.
	Example: Router(config)# global-address-family ipv4	
Step 11	<pre>service-policy type class-routing policy-map-name</pre>	Attaches the service policy to the policy map for MTR traffic classification and activates MTR.
	Example:	• The <i>policy-map-name</i> argument must match that configured in step 6.
	Router(config-af)# service-policy type class-routing VOICE-CLASS-POLICY	Note After this command is entered, traffic classification is enabled. Ensure that all configuration that affects traffic classification is complete before entering this important command.
Step 12	end	Exits global address family configuration mode and enters privileged EXEC mode.
	Example: Router(config-af)# end	
Step 13	show topology detail	(Optional) Displays detailed information about class-specific and base topologies.
	Example: Router# show topology detail	
Step 14	<pre>show policy-map type class-routing ipv4 unicast [interface [interface-type interface-number]]</pre>	(Optional) Displays the class-routing policy map configuration.
	Example: Router# show policy-map type class-routing ipv4 unicast	• If you specify the interface keyword without the argument, statistics on all interfaces under the global space will be displayed.
Step 15	show mtm table	(Optional) Displays information about the DSCP values assigned to each topology.
	Example: Router# show mtm table	

What to Do Next

The next four tasks show how to enable MTR support under a routing protocol. Proceed to "Activating an MTR Topology Using OSPF" section on page 22 to enable routing protocol support.

Activating an MTR Topology Using OSPF

Perform this task to configure OSPF for an MTR topology. Only MTR commands are shown in this task.

Before using OSPF to support MTR, you should be familiar with the concepts documented in the "Routing Protocol Support for MTR" section on page 7.

Prerequisites

- A global topology configuration has been configured and activated.
- IP routing and CEF must be enabled.
- Check your OSPF router configuration and enter the topology-aware router configuration commands in router address family configuration mode.

Several OSPF router configuration commands need to be topology-aware. Before you configure OSPF MTR, you need to enter these commands in router address family configuration mode if they are used in your original OSPF router configuration.

- area area-id default-cost cost
- area area-id filter-list prefix {prefix-list-name in | out}
- area area-id nssa [default-information-originate [metric metric-number] [metric-type]] | [no-redistribution] | [no-summary] [metric] [metric-type]] [translate type7 suppress-fa]
- area area-id range ip-address mask [advertise | not-advertise] [cost cost]
- area area-id stub [no-summary]
- area transit-area-id virtual-link transit-router-id topology disable
- default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]
- default-metric metric-value
- discard-route [external | internal]
- distance ospf {external dist1 | inter-area dist2 | intra-area dist3 }
- distribute-list in (IP)
- distribute-list out (IP)
- max-metric router-lsa [on-startup {seconds | wait-for-bgp}]]
- **maximum-paths** maximum maximum-paths {[number-of-paths] [**import** number-of-paths] | [**import** number-of-paths]}
- **neighbor** *ip-address* [**cost** *number*]
- redistribute protocol [process-id] {level-1 | level-2 | [as-number] [metric {metric-value | transparent}] [metric-type type-value] [match {external | internal | nssa-external}] [tag tag-value] [route-map map-tag] [subnets]
- summary-address {ip-address mask | prefix mask} [not-advertise] [tag tag]
- timers throttle spf spf-start spf-hold spf-max-wait
- traffic-share min across-interfaces

Restrictions

Only the IPv4 address family (multicast and unicast) is supported.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **router ospf** *process-id* [**vrf** *vrf-name*]
- 4. address-family ipv4 [multicast | unicast]
- 5. topology {base | topology-name tid number}
- 6. end
- 7. show ip ospf [process-id] topology-info [multicast] [topology {topology-name | base}]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	<pre>router ospf process-id [vrf vrf-name]</pre>	Enables an OSPF routing process and enters router config- uration mode.
	Example: Router(config)# router ospf 1	
Step 4	address-family ipv4 [multicast unicast]	Enter router address family configuration mode to configure an OSPF address family session.
	Example: Router(config-router)# address-family ipv4	• Currently, only the base topology can be configured under the multicast subaddress family.
Step 5	topology {base topology-name tid number}	Configures OSPF support for the topology and assigns a TID number for each topology. Enters router address family topology configuration mode.
	Example: Router(config-router-af)# topology VOICE tid 10	• Use the tid keyword and <i>number</i> argument to configure a topology ID. The topology ID must be configured in the first configuration of the specified topology. It is optional for subsequent configuration.
		Note The base keyword is accepted only for IPv4 multicast. The tid keyword is accepted only for IPv4 or IPv6 unicast.
Step 6	end	Exits router address family topology configuration mode and enters privileged EXEC mode.
	Example: Router(config-router-af-topology)# end	
Step 7	<pre>show ip ospf [process-id] topology-info [multi- cast [topology {topology-name base}]</pre>	(Optional) Displays OSPF information about the specified topology.
	Example: Router# show ip ospf topology-info topology VOICE	

What to Do Next

Γ

If an EIGRP topology configuration is required, proceed to the next task. If an IS-IS topology configuration is required proceed to the "Activating an MTR Topology Using IS-IS" section on page 27.

Activating an MTR Topology Using EIGRP

Perform this task to configure EIGRP for an MTR topology. Only MTR commands are shown in this task.

Before using EIGRP to support MTR, you should be familiar with the concepts documented in the "Routing Protocol Support for MTR" section on page 7.

Prerequisites

- A global topology configuration has been configured and activated.
- IP routing and CEF must be enabled.

Restrictions

- Only the IPv4 address family is currently supported.
- Graceful restart in EIGRP will only work for base topologies. All other service topologies will reset with new adjacencies.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. router eigrp name
- 4. address-family ipv4 [unicast | multicast | vrf vrf-name] autonomous-system as-number
- 5. topology {base | topology-name tid number}
- 6. end
- 7. show ip protocols topology name [summary]
- 8. show ip eigrp topology name

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	router eigrp name	Configures an EIGRP process for MTR, and enters router configuration mode.
	Example: Router(config)# router eigrp MTR	• You can use the command without configuring MTR, but it defaults to the base topology.

	Command or Action	Purpose
Step 4	address-family ipv4 [unicast multicast vrf vrf-name] autonomous-system as-number	Enters router address family configuration mode to configure EIGRP for MTR.
	Example: Router(config-router)# address-family ipv4 autonomous-system 1	
Step 5	<pre>topology {base topology-name tid number} Example:</pre>	Configures an EIGRP process to route IP traffic under the specified topology instance and enters router address family topology configuration mode.
	Router(config-router-af)# topology VIDEO tid 100	• Each topology must be configured with a unique topology ID. The topology ID must be entered each time this command is entered.
Step 6	end	Exits router address family topology configuration mode and enters privileged EXEC mode.
	Example: Router(config-router-af-topology)# end	
Step 7	show ip protocols topology name [summary]	Displays the status of routing protocols configured in a topology.
	Example: Router# show ip protocols topology VIDEO	Tip This command can be entered to display the status, under a topology, of any configured routing protocol.
Step 8	show ip eigrp topology name	Displays the routing table of an EIGRP process configured under a topology.
	Example: Router# show ip eigrp topology VIDEO	

What to Do Next

I

If an IS-IS topology configuration is required, proceed to the next task. If a BGP topology configuration is required, proceed to "Activating an MTR Topology Using BGP" section on page 29.

Activating an MTR Topology Using IS-IS

Once a global MTR topology has been configured and activated, you can configure MTR support for IS-IS. To configure MTR for IS-IS, you must perform two tasks. You must activate an MTR topology on an IS-IS router. You must also configure the MTR topology to globally configure all interfaces using the **all-interfaces** address family topology configuration command, or you must configure the IS-IS topology in interface configuration mode to configure only IS-IS interfaces. The order in which you perform the two tasks does not matter. This section describes the task to enable an MTR topology on an IS-IS router and enable support for IPv4 unicast and multicast address families. Only MTR commands are shown in this task.

Before using IS-IS to support MTR, you should be familiar with the concepts documented in the "Routing Protocol Support for MTR" section on page 7.

Prerequisites

- A global topology configuration has been configured and activated.
- IP routing and CEF must be enabled.

Restrictions

• Only the IPv4 address family (multicast and unicast) and IPv6address family unicast are supported. For information about configuring Multitopology IS-IS for IPV6, see the *Implementing IS-IS for IPv6* section of the *Cisco IOS IPv6 Configuration Guide*.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. router isis [*tag*]
- 4. net
- 5. metric-style
- 6. address-family ipv4 [multicast | unicast]
- 7. topology topology-name tid number
- 8. end
- 9. show isis neighbors detail

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	<pre>router isis [area-tag]</pre>	Enables the IS-IS routing protocol and optionally specifies an IS-IS process. Enters router configuration mode.
	Example:	
	Router(config)# router isis	
Step 4	net network-entity-title	Configures an IS-IS network entity title (NET) for a Con- nectionless Network Service (CLNS) routing process.
	Example:	
	Router(config-router)# net 31.3131.3131.3131.00	

	Command or Action	Purpose
Step 5	metric-style wide [transition] [level-1	Globally changes the metric value for all IS-IS interfaces.
	level-2 level-1-2]	Note Wide style metrics are required for prefix tagging.
	Example: Router(config-router)# metric-style wide	
Step 6	address-family ipv4 [multicast unicast]	Enters router address family configuration mode under IS-IS router configuration mode.
	Example: Router(config-router)# address-family ipv4	
Step 7	topology topology-name tid number	Configures IS-IS support for the topology and assigns a TID number for each topology.
	Example: Router(config-router-af)# topology DATA tid 100	• IS-IS support for the DATA topology is configured.
Step 8	end	Exits router address family configuration mode and enters privileged EXEC mode.
	Example: Router(config-router-topology)# end	
Step 9	show isis neighbors detail	(Optional) Displays information about IS-IS neighbors.
	Example: Router# show isis neighbors detail	Note This command has been modified to display MTR information for the TID values for the router and its IS-IS neighbors.

What to Do Next

ſ

If a BGP topology configuration is required, proceed to "Activating an MTR Topology Using BGP" section on page 29.

Activating an MTR Topology Using BGP

Perform this task to activate an MTR topology inside an address family using BGP. This task is configured on Router B in Figure 8 and must also be configured on Router D and Router E. In this task, a scope hierarchy is configured to apply globally and a neighbor is configured under router scope configuration mode. Under the IPv4 unicast address family, an MTR topology that applies to video traffic is activated for the specified neighbor. There is no interface configuration mode for BGP topologies.

The BGP CLI has been modified to provide backwards compatibility for pre-MTR BGP configuration and to provide a hierarchical implementation of MTR. A new configuration hierarchy, named scope, has been introduced into the BGP protocol. To implement MTR for BGP, the scope hierarchy is required, but the scope hierarchy is not limited to MTR use. The scope hierarchy introduces some new configuration modes such as router scope configuration mode. Router scope configuration mode is entered by configuring the **scope** command in router configuration mode, and a collection of routing tables is created when this command is entered. The following shows the hierarchy levels that are used when configuring BGP for MTR implementation:

```
router bgp <autonomous-system-number>
! Global commands
scope {global | vrf <vrf-name>}
! Scoped commands
address-family {<afi>} [<safi>]
! Address family specific commands
topology {<topology-name> | base}
! Topology specific commands
```

Before using BGP to support MTR, you should be familiar with all the concepts documented in the "BGP Routing Protocol Support for MTR" section on page 8.

Prerequisites

- A global MTR topology configuration has been configured and activated.
- IP routing and CEF are enabled.

Restrictions

- Redistribution within a topology is permitted. Redistribution from one topology to another is not permitted. This restriction is designed to prevent routing loops. You can use topology translation or topology import functionality to move routes from one topology to another.
- Only the IPv4 address family (multicast and unicast) is supported.

• Only a single multicast topology can be configured, and only the base topology can be specified if a multicast topology is created.

SUMMARY STEPS

I

- 1. enable
- 2. configure terminal
- 3. router bgp autonomous-system-number
- 4. scope {global | vrf vrf-name}
- 5. neighbor {ip-address | peer-group-name} remote-as autonomous-system-number
- 6. neighbor {*ip-address* | *peer-group-name*} transport {connection-mode {active | passive} | path-mtu-discovery | multi-session | single-session}
- 7. address-family ipv4 [mdt | multicast | unicast]
- 8. topology {base | topology-name }
- 9. bgp tid number
- **10.** neighbor {*ip-address*} activate
- 11. neighbor {ip-address | peer-group-name} translate-topology number
- 12. end
- 13. clear ip bgp topology {* | topology-name} {as-number | dampening [network-address [network-mask]] | flap-statistics [network-address [network-mask]] | peer-group peer-group-name | table-map | update-group [number | ip-address] } [in [prefix-filter] | out | soft [in [prefix-filter] | out]]
- **14.** show ip bgp topology {* | topology-name} summary

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example: Router> enable	• Enter your password if prompted.
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	router bgp autonomous-system-number	Enters router configuration mode to create or configure a BGP routing process.
	Example: Router(config)# router bgp 45000	
Step 4	<pre>scope {global vrf vrf-name}</pre>	Defines the scope to the BGP routing process and enters router scope configuration mode.
	Example: Router(config-router)# scope global	• BGP general session commands that apply to a single network, or a specified VRF, are entered in this configuration mode.
		• Use the global keyword to specify that BGP uses the global routing table.
		• Use the vrf keyword and <i>vrf-name</i> argument to specify that BGP uses a specific VRF routing table. The VRF must already exist.
Step 5	<pre>neighbor {ip-address peer-group-name} remote-as autonomous-system-number</pre>	Adds the IP address of the neighbor in the specified autonomous system to the multiprotocol BGP neighbor table of the local router.
	Example: Router(config-router-scope)# neighbor 172.16.1.2 remote-as 45000	
Step 6	neighbor {ip-address peer-group-name}	Enables a TCP transport session option for a BGP session.
	path-mtu-discovery multi-session single-session}	• Use the connection-mode keyword to specify the type of connection, either active or passive.
	Example: Router(config-router-scope)# neighbor 172.16.1.2 transport multi-session	• Use the path-mtu-discovery keyword to enable TCP transport path maximum transmission unit (MTU) discovery.
		• Use the multi-session keyword to specify a separate TCP transport session for each address family.
		• Use the single-session keyword to specify that all address families use a single TCP transport session.

Γ

	Command or Action	Purpose				
Step 7	address-family ipv4 [mdt multicast unicast]	Specifies the IPv4 address family and enters router scope address family configuration mode.				
	Example: Router(config-router-scope)# address-family	• Use the mdt keyword to specify IPv4 MDT address prefixes.				
	1pv4	• Use the multicast keyword to specify IPv4 multicast address prefixes.				
		• Use the unicast keyword to specify the IPv4 unicast address family. By default, the router is placed in address family configuration mode for the IPv4 unicast address family if the unicast keyword is not specified with the address-family ipv4 command.				
		• Non-topology-specific configuration parameters are configured in this configuration mode.				
Step 8	<pre>topology {base topology-name}</pre>	Configures the topology instance in which BGP will route class-specific or base topology traffic, and enters router scope address family topology configuration mode.				
	Example: Router(config-router-scope-af)# topology VIDEO	scope address family topology configuration mode.				
Step 9	bgp tid number	Associates a BGP routing process with the specified topology ID.				
	Example: Router(config-router-scope-af-topo)# bgp tid 100	• Each topology must be configured with a unique topology ID.				
Step 10	neighbor ip-address activate	Enables the BGP neighbor to exchange prefixes for the NSAP address family with the local router.				
	Example: Router(config-router-scope-af-topo)# neighbor 172.16.1.2 activate	Note If you have configured a peer group as a BGP neighbor, you do not use this command because peer groups are automatically activated when any peer group parameter is configured.				
Step 11	<pre>neighbor {ip-address peer-group-name} translate-topology number</pre>	(Optional) Configures BGP to install routes from a topology on another router to a topology on the local router.				
	Example: Router(config-router-scope-af-topo)# neighbor 172.16.1.2 translate-topology 200	• The topology ID is entered for the <i>number</i> argument to identify the topology on the router.				
Step 12	end	(Optional) Exits router scope address family topology con- figuration mode and returns to privileged EXEC mode.				
	Example: Router(config-router-scope-af-topo)# end					

	Command or Action	Purpose					
Step 13	<pre>clear ip bgp topology {* topology-name} {as-number dampening [network-address [net- work-mask]] flap-statistics [network-address [network-mask]] peer-group peer-group-name table-map update-group [number ip-ad- dress]} [in [prefix-filter] out soft [in [prefix-filter] out]]</pre>		Resets BGP neighbor sessions under a specified topology or all topologies.				
	Example:						
	Router# clear ip bgp topology VIDEO 45000						
Step 14	<pre>show ip bgp topology {* topology} summary</pre>	(Optional)	Displays BGP information about a topology.				
	Example:	• Most standard BGP keywords and arguments can be entered following the topology keyword.					
	Router# show ip bgp topology VIDEO summary	Note Or mo	aly the syntax required for this task is shown. For ore details, see the <i>Cisco IOS IP Routing: BGP ommand Reference</i> .				

Examples

The following example shows summary output for the **show ip bgp topology** command and the VIDEO topology:

Router# show ip bgp topology VIDEO summary

BGP router identifier 192.168.3.1, local AS number 45000 BGP table version is 1, main routing table version 1

Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
172.16.1.2	4	45000	289	289	1	0	0	04:48:44	0
192.168.3.2	4	50000	3	3	1	0	0	00:00:27	0

What to Do Next

Repeat this task for every topology that you want to enable, and repeat this configuration on all neighbor routers that are to use the topologies. If you want to import routes from one MTR topology to another on the same router, proceed to the next task.

Importing Routes from an MTR Topology Using BGP

Perform this task to import routes from one MTR topology to another on the same router, when multiple topologies are configured on the same router. In this task, a prefix list is defined to permit prefixes from the 10.2.2.0 network, and this prefix list is used with a route map to filter routes moved from the imported topology. A global scope is configured, address family IPv4 is entered, the VIDEO topology is specified, the VOICE topology is imported, and the routes are filtered using the route map named 10NET.

Prerequisites

- A global topology configuration has been configured and activated.
- IP routing and CEF are enabled.

Restrictions

- Redistribution within a topology is permitted. Redistribution from one topology to another is not permitted. This restriction is designed to prevent routing loops from occurring. You can use topology translation or topology import functionality to move routes from one topology to another.
- Only the IPv4 address family (multicast and unicast) is supported.
- Only a single multicast topology can be configured, and only the base topology can be specified if a multicast topology is created.

SUMMARY STEPS

I

- 1. enable
- 2. configure terminal
- **3. ip prefix-list** *list-name* [**seq** *seq-value*] {**deny** *network/length* | **permit** *network/length*} [**ge** *ge-value*] [**le** *le-value*]
- 4. route-map map-name [permit | deny] [sequence-number]
- 5. match ip address {access-list-number [access-list-number... | access-list-name...] | access-list-name [access-list-number... | access-list-name] | prefix-list prefix-list-name [prefix-list-name...]}
- 6. exit
- 7. router bgp autonomous-system-number
- 8. scope {global | vrf vrf-name}
- 9. address-family ipv4 [mdt | multicast | unicast]
- **10. topology** {**base** | *topology-name*}
- **11. import topology** {**base** | *topology-name*} [**route-map** *map-name*]
- 12. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example: Router> enable	• Enter your password if prompted.
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip prefix-list list-name [seq seq-value] {deny network/length permit network/length} [ge ge-value] [le le-value] Example: Router(config)# ip prefix-list TEN permit 10.2.2.0/24</pre>	 Configures an IP prefix list. In this example, prefix list TEN permits advertising of the 10.2.2.0/24 prefix depending on a match set by the match ip address command.
Step 4	<pre>route-map map-name [permit deny] [sequence-number] Example: Router(config)# route-map 10NET</pre>	Creates a route map and enters route map configuration mode.In this example, the route map named 10NET is created.
Step 5	<pre>match ip address {access-list-number [access-list-number] access-list-name] access-list-name [access-list-number] access-list-name] prefix-list prefix-list-name [prefix-list-name]} Evample:</pre>	 Configures the route map to match a prefix that is permitted by a standard access list, an extended access list, or a prefix list. In this example, the route map is configured to match prefixes permitted by prefix list TEN.
	Example. Router(config-route-map)# match ip address prefix-list TEN	
Step 6	exit	Exits route map configuration mode and returns to global configuration mode.
	Example: Router(config-route-map)# exit	
Step 7	router bgp autonomous-system-number	Enters router configuration mode to create or configure a BGP routing process.
	Example: Router(config)# router bgp 50000	
	Command or Action	Purpose
---------	--	--
Step 8	<pre>scope {global vrf vrf-name}</pre>	Defines the scope to the BGP routing process and enters router scope configuration mode.
	Example: Router(config-router)# scope global	• BGP general session commands that apply to a single network, or a specified VRF, are entered in this configuration mode.
		• Use the global keyword to specify that BGP uses the global routing table.
		• Use the vrf keyword and <i>vrf-name</i> argument to specify that BGP uses a specific VRF routing table. The VRF must already exist.
Step 9	address-family ipv4 [mdt multicast unicast]	Enters router scope address family configuration mode to configure an address family session under BGP.
	Example: Router(config-router-scope)# address-family ipv4	• Non-topology-specific configuration parameters are configured in this configuration mode.
Step 10	<pre>topology {base topology-name}</pre>	Configures the topology instance in which BGP will route class-specific or base topology traffic, and enters router
	Example: Router(config-router-scope-af)# topology VIDEO	scope address family topology configuration mode.
Step 11	<pre>import topology {base topology-name} [route-map map-name]</pre>	(Optional) Configures BGP to move routes from one topology to another on the same router.
	Example: Router(config-router-scope-af-topo)# import topology VOICE route-map 10NET	• The route-map keyword can be used to filter routes that moved between topologies.
Step 12	end	(Optional) Exits router scope address family topology con- figuration mode, and returns to privileged EXEC mode.
	Example: Router(config-router-scope-af-topo)# end	

Configuring an MTR Topology in Interface Configuration Mode

Perform this task to configure an MTR topology in interface configuration mode. The configuration of an MTR topology in interface configuration mode allows you to enable or disable MTR on a per-interface basis. By default, a class-specific topology does not include any interfaces.

Individual interfaces can be included or excluded by configuring the **topology** (interface) command. The address family and topology (base or class-specific) are specified when entering this command. The subaddress family can be optionally specified. If no subaddress family is specified, the unicast subaddress family is used by default.

ſ

Interfaces cannot be excluded from the base topology by design. However, an Interior Gateway Protocol (IGP) can be excluded from an interface in a base topology configuration.

All interfaces on a router are included globally in a topology by entering the **all-interfaces** command in routing topology configuration mode. Per-interface topology configuration applied with the **topology** (interface) command overrides global interface configuration.

Per-Interface Routing

IGP routing and metric configurations can be applied in interface topology configuration mode. Per interface metrics and routing behaviors can be configured for each IGP. Interface configuration mode IGP commands are documented in the configuration section for each routing protocol.

Prerequisites

A topology must be defined globally before per-interface topology configuration can be configured.

Restrictions

Only the IPv4 address family is currently supported.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface** *type number*
- 4. topology ipv4 [multicast | unicast] {topology-name [disable] | base}
- 5. end

L

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	Specifies the interface type and number, and enters interface configuration mode.
	Example: Router(config)# interface Ethernet 0/0	
Step 4	<pre>topology ipv4 [multicast unicast] {topolo- gy-name [disable] base}</pre>	Enters interface topology configuration mode to configure an MTR topology instance on an interface.
	Example: Router(config-if)# topology ipv4 VOICE	• Use the disable keyword to disable the topology instance on the interface. This form is used to exclude a topology configuration from an interface.
		• If the no form of this command is used, the topology interface configuration is removed.
		• If the no form of this command is used with the disable keyword, the topology instance is enabled on the interface.
Step 5	end	Exits interface topology configuration mode, and enters privileged EXEC mode.
	Example: Router(config-if-topology)# end	

What to Do Next

I

The next three tasks show how to activate an MTR topology and various routing protocol features in interface configuration mode. Proceed to the next task for more information.

Activating an MTR Topology in Interface Configuration Mode Using OSPF

Perform this task to configure OSPF features used in MTR in interface configuration mode. Configuring a topology in interface configuration mode allows you to enable or disable MTR on per-interface basis. By default, a class-specific topology does not include any interfaces.

OSPF Interface Topology Configuration

Interface mode OSPF configurations for a class-specific topology are applied in interface topology configuration mode. In this mode, you can configure an interface cost or disable OSPF routing on the interface without removing the interface from the global topology configuration.

Prerequisites

A topology must be defined globally before per-interface topology configuration can be configured.

Restrictions

Only the IPv4 address family is currently supported.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3**. **interface** *type number*
- 4. topology ipv4 [multicast | unicast] {topology-name [disable] | base}
- 5. **ip ospf cost** *number*
- 6. ip ospf topology disable
- 7. end
- 8. show ip ospf [process-id] interface [interface-type interface-number] [brief] [multicast] [topology {topology-name | base}]

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	interface type number	Specifies the interface type and number, and enters interface configuration mode.
	Example: Router(config)# interface Ethernet 0/0	
Step 4	topology ipv4 [multicast unicast]{topology-name [disable] base}	Enters interface topology configuration mode to configure MTR.
	Example: Router(config-if)# topology ipv4 VOICE	Note Entering this command with the disable keyword disables the topology instance on the interface. This form is used to exclude a topology configuration from an interface.
Step 5	ip ospf cost number	Applies a cost to the interface in a topology instance.
		• The lowest cost number has the highest preference.
	Example: Router(config-if-topology)# ip ospf cost 100	

DETAILED STEPS

	Command or Action	Purpose
Step 6	<pre>ip ospf topology disable Example: Router(config-if-topology)# ip ospf topology disable</pre>	Prevents OSPF from advertising the interface as part of the topology without disabling the OSPF process or the topology on the interface.
Step 7	<pre>end Example: Router(config-if-topology)# end</pre>	Exits interface topology configuration mode, and enters privileged EXEC mode.
Step 8	<pre>show ip ospf [process-id] interface [interface-type interface-number][brief] [multicast] [topology {topology-name base}] Example: Router# show ip ospf 1 interface topology VOICE</pre>	 (Optional) Displays OSPF-related interface information. Displays OSPF and interface information about the specified topology when the topology keyword is entered.

Activating an MTR Topology in Interface Configuration Mode Using EIGRP

Perform this task to configure EIGRP features used in MTR in interface configuration mode. Configuring a topology in interface configuration mode allows you enable or disable MTR on per-interface basis. By default, a class-specific topology does not include any interfaces.

EIGRP Interface Topology Configuration

Interface mode EIGRP configurations for a class-specific topology are applied in interface topology configuration mode. In this mode, you can configure various EIGRP features.

Prerequisites

IP routing and CEF must be enabled.

Restrictions

Only the IPv4 address family is currently supported.

SUMMARY STEPS

I

- 1. enable
- 2. configure terminal
- 3. interface type number
- 4. topology ipv4 [multicast | unicast] {topology-name [disable] | base}
- 5. eigrp as-number delay value
- 6. eigrp as-number next-hop-self
- 7. eigrp *as-number* shutdown

- 8. eigrp *as-number* split-horizon
- **9. eigrp** *as-number* **summary-address** *ip-address wildcard-mask* [**distance**]
- 10. end
- **11**. **show ip eigrp topology** *name* **interfaces**

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type number	Specifies the interface type and number, and enters interface configuration mode.
	<pre>Example: Router(config)# interface Ethernet 0/0</pre>	
Step 4	<pre>topology ipv4 [multicast unicast] {topology-name [disable] base}</pre>	Configures an MTR topology instance on an interface and enters interface topology configuration mode.
	Example: Router(config-if)# topology ipv4 VOICE	Note Entering this command with the disable keyword disables the topology instance on the interface. This form is used to exclude a topology configuration from an interface.
Step 5	eigrp as-number delay value	Configures the delay value that EIGRP uses for interface metric calculation.
	Example: Router(config-if-topology)# eigrp 1 delay 100000	• The <i>value</i> argument is entered in microseconds. The example configures an interface delay metric of 100 milliseconds.
Step 6	eigrp as-number next-hop-self	Configures an EIGRP process to advertise itself as the next hop.
	Example: Router(config-if-topology)# eigrp 1 next-hop-self	• This command is enabled by default.
Step 7	eigrp as-number shutdown	Disables an EIGRP process on the interface without disabling the global topology configuration on the interface.
	Example: Router(config-if-topology)# eigrp 1 shutdown	
Step 8	eigrp as-number split-horizon	Configures an EIGRP process to use split horizon.
		• This command is enabled by default.
	Example: Router(config-if-topology)# eigrp 1 split-horizon	

	Command or Action	Purpose
Step 9	<pre>eigrp as-number summary-address ip-address wildcard-mask [distance] Example: Router(config-if-topology)# eigrp 1</pre>	 Configures an EIGRP summary address. An administrative distance of 5 is applied to EIGRP summary routes if the distance is not specified.
	summary-address 10.1.1.0 0.0.0.255	
Step 10	end	Exits interface topology configuration mode and enters privileged EXEC mode.
	Example:	
	Router(config-if-topology)# end	
Step 11	show ip eigrp topology name interfaces	Displays information about interfaces, on which EIGRP is configured, in a topology.
	Example: Router# show ip eigrp topology VOICE interfaces	

Activating an MTR Topology in Interface Configuration Mode Using IS-IS

Perform this task to configure IS-IS features used in MTR in interface configuration mode. Configuring a topology in interface configuration mode allows you to enable or disable MTR on per-interface basis. By default, a class-specific topology does not include any interfaces.

IS-IS Interface Topology Configuration

Interface mode IS-IS configurations for a class-specific topology are applied in interface topology configuration mode. By using the interface configuration mode, you can configure an interface cost or disable IS-IS routing on the interface without removing the interface from the global topology configuration.

Prerequisites

A topology must be defined globally before per-interface topology configuration can be configured.

SUMMARY STEPS

I

- 1. enable
- 2. configure terminal
- 3. interface
- 4. ip address ip-address mask [secondary]
- 5. ip router isis
- 6. topology ipv4 [multicast | unicast] {topology-name [disable | base]}
- 7. isis topology disable
- 8. topology ipv4 [multicast | unicast] {topology-name [disable | base]}
- 9. end

DETAILED STEPS

	Command or Action	Purpos	se
Step 1	enable	Enable	es privileged EXEC mode.
	Example: Router> enable	• E1	nter your password if prompted.
Step 2	configure terminal	Enters	global configuration mode.
	Example: Router# configure terminal		
Step 3	interface type number	Enters	interface configuration mode.
	Example: Router(config)# interface Ethernet 2/0		
Step 4	ip address <i>ip-address mask</i> [secondary]	Sets a	primary or secondary IP address for an interface.
	Example: Router(config-if)# ip address 192.168.7.17 255.255.255.0		
Step 5	ip router isis [tag]	Config and to	gures an IS-IS routing process for IP on an interface attaches an area designator to the routing process.
	Example: Router(config-if)# ip router isis	Note	If a tag is not specified, a null tag is assumed and the process is referenced with a null tag.
Step 6	<pre>topology ipv4 [multicast unicast] {topology-name [disable base]}</pre>	Config Enters	gures an MTR topology instance on an interface. interface topology configuration mode.
	Example: Router(config-if)# topology ipv4 DATA	Note	In this example, the topology instance DATA is configured for an MTR network that has a global topology named DATA.
Step 7	isis topology disable	(Optio interfa	nal) Prevents an IS-IS process from advertising the ace as part of the topology.
	Example: Router(config-if-topology)# isis topology disable	Note	In this example, the topology instance DATA will not advertise the interface as part of the topology.
Step 8	topology ipv4 [multicast unicast]	Config	gures an MTR topology instance on an interface.
	<pre>{topology-name [disable base]} Example: Router(config-if-topology)# topology ipv4 VOICE</pre>	Note	In this example, the topology instance VOICE is configured for an MTR network that has a global topology named "VOICE".
Step 9	end	Exits i privile	nterface topology configuration mode and enters ged EXEC mode.
	Example: Router(config-if-topology)# end		

Configuring SNMP Support for MTR

This section contains the following tasks:

- Associating an SNMP Context with a VRF for MTR, page 45
- Associating an SNMP Context with a Data Topology for MTR, page 46
- Associating an SNMP Context with a Routing Protocol for MTR, page 47

SNMP Context Mapping for MTR

Context-based Simple Network Management Protocol (SNMP) support has been integrated into Cisco IOS software. SNMP support for MTR leverages context-based SNMP to extend support for existing MIBs from representing the management information for just the base topology to representing the same information for multiple topologies.

The SNMP agent software component on the router can be configured to pass a context string to existing MIB access functions. Network management applications can provide these context strings in SNMP transactions to direct those transactions to a specific virtual private network (VPN) routing and forwarding (VRF) instance, a specific topology, and/or routing protocol instance. The SNMP infrastructure on the receiving router verifies that a context string is defined for the router, and that the accompanying internal identifier is defined for that context string, before passing on the context string and internal identifier to the MIB access function.

Associating an SNMP Context with a VRF for MTR

In the following task, the context name will be associated with the specified VRF.

Prerequisites

• SNMP must be enabled on the router.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ip vrf vrf-name
- 4. snmp context context-name
- 5. end
- 6. show snmp context mapping

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>ip vrf vrf-name</pre>	Defines a VRF instance and enters VRF configuration mode.
	Example:	
	Router(config) # ip vrf red	
Step 4	<pre>snmp context context-name</pre>	Creates an SNMP context for MTR for a specific VRF.
	Example:	
	Router(config-vrf)# snmp context comp-vrf	
Step 5	end	Exits VRF configuration mode and enters privileged EXEC mode.
	Example:	
	Router(config-af-topology)# exit	
Step 6	show snmp context mapping	(Optional) Displays information about SNMP contexts for MTR.
	Example:	
	Router# show snmp context mapping	

Associating an SNMP Context with a Data Topology for MTR

In the following task, the context name will be associated with the specified topology.

Prerequisites

• SNMP must be enabled.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. global-address-family ipv4 [multicast | unicast]
- 4. topology { base | topology-name }
- 5. snmp context context-name
- 6. end
- 7. show snmp context mapping

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
a . a	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	global-address-family ipv4 [multicast unicast]	Enters global address family base topology configuration mode to configure the global topology.
	Example: Router(config)# global-address-family ipv4	• The address family for the class-specific topology is specified in this step. The subaddress family can be optionally specified. Unicast is the default if no subaddress family is entered.
Step 4	<pre>topology {base topology-name}</pre>	Configures the global topology instance and enters routing topology configuration mode.
	Example: Router(config-af)# topology VOICE	
Step 5	<pre>snmp context context-name</pre>	Creates an SNMP context for MTR for a specific topology.
	Example:	
	Router(config-af-topology)# snmp context comp-topol	
Step 6	end	Exits routing topology configuration mode and enters privileged EXEC mode.
	Example:	
	Router(config-af-topology)# end	
Step 7	show snmp context mapping	(Optional) Displays information about SNMP contexts for MTR.
	Example:	
	Router# show snmp context mapping	

Associating an SNMP Context with a Routing Protocol for MTR

In the following task, the context name will be associated with the specified routing protocol instance.

Prerequisites

ſ

• SNMP must be enabled.

SUMMARY STEPS

- 1. enable
- 2. configure terminal

- **3**. **router ospf** *process-id* [**vrf** *vrf-name*]
- 4. snmp context context-name
- 5. address-family ipv4 [multicast | unicast]
- 6. topology { base | topology-name tid number }
- 7. snmp context *context-name*
- 8. end
- 9. show snmp context mapping

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	<pre>router ospf process-id [vrf vrf-name]</pre>	Enables an OSPF routing process and enters router config- uration mode.
	Example: Router(config)# router ospf 1	• You can configure support for multiple routing protocols.
Step 4	<pre>snmp context context-name</pre>	Creates an SNMP context for MTR for a specific topology under a routing protocol.
	Example: Router(config-router)# snmp context comp-prot	
Step 5	address-family ipv4 [multicast unicast]	Enters global address family configuration mode to configure an OSPF address family session.
	Example: Router(config-router)# address-family ipv4	
Step 6	<pre>topology {base topology-name tid number}</pre>	Enters router address family topology configuration mode.
	Example: Router(config-router-af)# topology VOICE tid 10	
Step 7	<pre>snmp context context-name</pre>	Creates an SNMP context for MTR for a specific topology under a routing protocol.
	Example: Router(config-router-af-topology)# snmp con- text comp-protocol	

L

	Command or Action	Purpose
Step 8	end	Exits router address family topology configuration mode and enters privileged EXEC mode.
	Example: Router(config-router-af-topology)# end	
Step 9	show snmp context mapping	(Optional) Displays information about SNMP contexts for MTR.
	Example:	
	Router# show snmp context mapping	

Enabling and Monitoring MTR Topology Statistics Accounting

This section contains the following tasks related to managing MTR statistics:

- Enabling Topology Statistics Accounting for MTR, page 49
- Monitoring Interface and Topology IP Traffic Statistics for MTR, page 50

Enabling Topology Statistics Accounting for MTR

This section describes how to enable topology statistics accounting on all of the interfaces in the global address family for all IPv4 unicast topologies in the default VRF instance and how to enable topology accounting for all IPv4 unicast topologies in the VRF instance associated with a particular interface.

Prerequisites

I

• CEF must be enabled.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. global-address-family ipv4 [multicast | unicast]
- 4. topology-accounting
- 5. exit
- 6. interface type number
- 7. ip topology-accounting
- 8. end

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example: Router# configure terminal	
Step 3	global-address-family ipv4 [multicast unicast]	Enters global address family configuration mode.
	Example: Router(config)# global-address-family ipv4	
Step 4	topology accounting	Enables topology accounting on all of the interfaces in the global address family for all IPv4 unicast topologies in the
	<pre>Example: Router(config-af)# topology accounting</pre>	default VRF instance.
Step 5	exit	Exits global address family configuration mode.
	Example: Router(config-af)# exit	
Step 6	interface type number	Enters interface configuration mode.
	<pre>Example: Router(config)# interface FastEthernet 1/10</pre>	
Step 7	ip topology-accounting	Enables topology accounting for all IPv4 unicast topologies in the VPN VRF associated with a particular interface.
	<pre>Example: Router(config-if)# ip topology-accounting</pre>	• This topology accounting is supported only for the default VRF.
Step 8	end	Exits interface configuration mode and enters privileged EXEC mode.
	Example: Router(config-if)# end	

Monitoring Interface and Topology IP Traffic Statistics for MTR

This section describes how to display and clear IP traffic statistics.

SUMMARY STEPS

- 1. enable
- 2. show ip interface [type number] [topology {name | all | base}] [stats]
- **3**. **show ip traffic** [topology {*name* | **all** | **base**}]

- 4. clear ip interface [type number] [topology {name | all | base}] [stats]
- 5. clear ip traffic [topology {name | all | base}]

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example: Router> enable	
Step 2	<pre>show ip interface [type number] [topology {instance all base}] [stats]</pre>	(Optional) Displays IP traffic statistics for all interfaces or statistics related to a particular interface.
	Example: Router# show ip interface FastEthernet 1/10 stats	• If you specify an interface type and number, you see information for that specific interface. If you specify no optional arguments, you see information for all the interfaces.
		• If the topology <i>name</i> keyword and argument are used, then statistics are limited to the IP traffic for that specific topology.
		• The base keyword is reserved for IPv4 unicast base topology.
Step 3	<pre>show ip traffic [topology {name all base}] Fxample:</pre>	(Optional) Displays global IP traffic statistics (an aggregation of all the topologies when MTR is enabled) or statistics related to a particular topology.
	Router# show ip traffic topology VOICE	• The base keyword is reserved for the IPv4 unicast base topology.
Step 4	clear ip interface [type number] [topology	(Optional) Resets interface-level IP traffic statistics.
	<pre>{instance all base}] [stats] Example:</pre>	• If the topology keyword and a related keyword are not used, only the interface-level aggregate statistics are reset.
	Router# clear ip interface FastEthernet 1/10 topology all	• If all topologies need to be reset, use the all keyword as the topology name.
Step 5	<pre>clear ip traffic [topology {name all base}]</pre>	(Optional) Resets IP traffic statistics.
	Example: Router# clear ip traffic topology all	• If no topology name is specified, global statistics are cleared.

Testing Network Connectivity for MTR

Ping and traceroute have been enhanced to support MTR in Cisco IOS Release 12.2(33)SRB. You can configure a standard or extended ping using the topology name in place of a hostname or IP address. Traceroute has been similarly enhanced.

SUMMARY STEPS

Γ

1. enable

- 2. ping [vrf vrf-name | topology topology-name] protocol [target-address] [source-address]
- **3. traceroute** [**vrf** *vrf*-*name* | **topology** *topology*-*name*] [*protocol*] *destination*

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	<pre>ping [vrf vrf-name topology topology-name] protocol [target-address] [source-address]</pre>	Configures the router to transmit ping messages to the target host in a topology.
	Example: Router# ping topology VOICE	• An extended ping is configured by entering this command with only the topology name.
Step 3	<pre>traceroute [vrf vrf-name topology topology-name] [protocol] destination</pre>	Configures the router to trace the specified host in a topology.
	Example:	• An extended trace is configured by entering this command with only the topology name.
	Router# traceroute VOICE	• If the vrf <i>vrf</i> - <i>name</i> keyword and argument are used, the topology option is not displayed because only the default VRF is supported. The topology <i>topology-name</i> keyword and argument and the DSCP option in the extended traceroute system dialog are displayed only if there is a topology configured on the router.

Configuration Examples for Multi-Topology Routing

This section provides the following example configurations for MTR:

- Unicast Topology for MTR: Examples, page 53
- Multicast Topology for MTR: Examples, page 54
- MTR Traffic Classification: Examples, page 56
- Activating an MTR Topology Using OSPF: Examples, page 57
- Activating an MTR Topology Using EIGRP: Examples, page 58
- Activating an MTR Topology Using IS-IS: Examples, page 59
- Activating an MTR Topology Using BGP: Examples, page 61
- Importing Routes from an MTR Topology Using BGP: Example, page 63
- MTR Topology in Interface Configuration Mode: Examples, page 63
- MTR OSPF Topology in Interface Configuration Mode: Examples, page 63
- MTR EIGRP Topology in Interface Configuration Mode: Examples, page 64
- MTR IS-IS Topology in Interface Configuration Mode: Examples, page 65
- SNMP Support for MTR: Examples, page 65

- Monitoring Interface and Topology IP Traffic Statistics: Examples, page 66
- Testing Network Connectivity for MTR: Examples, page 66

Unicast Topology for MTR: Examples

The section contains the following configuration examples:

- Global Interface Configuration Example, page 53
- Incremental Forwarding Configuration Example, page 53
- Unicast Topology Verification Example, page 53

Global Interface Configuration Example

The following example creates a topology instance named VOICE. This topology is configured to use all operational interfaces on the router. Per the default forwarding rule (strict), only packets destined for routes in the VOICE topology RIB are forwarded. Packets that do not have a topology-specific forwarding entry are dropped.

```
global-address-family ipv4
topology VOICE
all-interfaces
end
```

Incremental Forwarding Configuration Example

The following example creates a topology instance named VIDEO. This topology is configured to accept and install a maximum of 1000 routes in the VIDEO topology RIB. Incremental forwarding mode is configured so that the router forwards packets over the base topology if no forwarding entry is found in the class-specific RIB.

```
global-address-family ipv4
topology VIDEO
forward-base
maximum routes 1000 90
end
```

Unicast Topology Verification Example

The output of the **show topology detail** command displays information about class-specific and base topologies. This information includes the address family, associated interfaces, interface and topology status, topology name, and associated VRF.

Router# show topology detail

```
Topology: base
Address-family: ipv4
Associated VPN VRF is default
Topology state is UP
Associated interfaces:
Ethernet0/0, operation state: UP
Ethernet0/1, operation state: DOWN
Ethernet0/2, operation state: DOWN
Ethernet0/3, operation state: UP
```

```
Topology: VIDEO
 Address-family: ipv4
 Associated VPN VRF is default
  Topology state is UP
  Topology fallback is enabled
  Topology maximum route limit 1000, warning limit 90% (900)
 Associated interfaces:
Topology: VOICE
  Address-family: ipv4
  Associated VPN VRF is default
  Topology state is UP
  Topology is enabled on all interfaces
  Associated interfaces:
    Ethernet0/0, operation state: UP
   Ethernet0/1, operation state: DOWN
   Ethernet0/2, operation state: DOWN
   Ethernet0/3, operation state: DOWN
   Loopback0, operation state: UP
Topology: base
  Address-family: ipv4 multicast
  Associated VPN VRF is default
  Topology state is DOWN
  Route Replication Enabled:
   from unicast all
  Associated interfaces:
```

Multicast Topology for MTR: Examples

This section contains the following configuration examples:

- Route Replication Configuration Example, page 54
- Using a Unicast RIB for Multicast RPF Configuration Example, page 55
- Multicast Verification Example, page 55

Route Replication Configuration Example

The following example enables multicast support for MTR and configures a separate multicast topology:

```
ip multicast-routing
ip multicast rpf multitopology
!
global-address-family ipv4 multicast
topology base
end
```

The following example configures the multicast topology to replicate OSPF routes from the VOICE topology. The routes are filtered through the BLUE route map before they are installed in the multicast routing table.

```
ip multicast-routing
ip multicast rpf multitopology
!
access-list 1 permit 192.168.1.0 0.0.0.255
!
route-map BLUE
match ip address 1
```

```
exit
!
global-address-family ipv4 multicast
topology base
route-replicate from unicast topology VOICE ospf route-map BLUE
```

Using a Unicast RIB for Multicast RPF Configuration Example

Router# show topology detail

The following example configures the multicast topology to perform RPF calculations on routes in the VIDEO topology RIB to build multicast distribution trees:

```
ip multicast-routing
ip multicast rpf multitopology
!
global-address-family ipv4 multicast
topology base
use-topology unicast VIDEO
end
```

Multicast Verification Example

I

The following example shows that the multicast topology is configured to replicate routes from the RIB of the VOICE topology:

```
Topology: base
  Address-family: ipv4
  Associated VPN VRF is default
  Topology state is UP
  Associated interfaces:
    Ethernet0/0, operation state: UP
   Ethernet0/1, operation state: DOWN
   Ethernet0/2, operation state: DOWN
   Ethernet0/3, operation state: DOWN
   Loopback0, operation state: UP
Topology: VIDEO
  Address-family: ipv4
  Associated VPN VRF is default
  Topology state is UP
  Topology fallback is enabled
  Topology maximum route limit 1000, warning limit 90% (900)
  Associated interfaces:
Topology: VOICE
  Address-family: ipv4
  Associated VPN VRF is default
  Topology state is UP
  Topology is enabled on all interfaces
  Associated interfaces:
    Ethernet0/0, operation state: UP
   Ethernet0/1, operation state: DOWN
   Ethernet0/2, operation state: DOWN
   Ethernet0/3, operation state: DOWN
   Loopback0, operation state: UP
Topology: base
  Address-family: ipv4 multicast
  Associated VPN VRF is default
  Topology state is DOWN
```

```
Multicast multi-topology mode is enabled.
Route Replication Enabled:
from unicast topology VOICE all route-map BLUE
Associated interfaces:
```

MTR Traffic Classification: Examples

The following example configures classification and activates MTR for two topologies:

```
global-address-family ipv4
 topology VOICE
  all-interfaces
  exit
 topology VIDEO
  forward-base
 maximum routes 1000 90
 exit
 exit
class-map match-any VOICE-CLASS
match ip dscp 9
exit
class-map match-any VIDEO-CLASS
match ip dscp af11
 exit
policy-map type class-routing ipv4 unicast MTR
class VOICE-CLASS
 select-topology VOICE
 exit
 class VIDEO-CLASS
 select-topology VIDEO
 exit
 exit
global-address-family ipv4
 service-policy type class-routing MTR
end
```

The following example displays detailed information about the VOICE and VIDEO topologies:

```
Router# show topology detail
```

```
Topology: base
 Address-family: ipv4
 Associated VPN VRF is default
 Topology state is UP
 Associated interfaces:
   Ethernet0/0, operation state: UP
   Ethernet0/1, operation state: DOWN
   Ethernet0/2, operation state: DOWN
   Ethernet0/3, operation state: DOWN
   Loopback0, operation state: UP
Topology: VIDEO
  Address-family: ipv4
  Associated VPN VRF is default
  Topology state is UP
  Topology fallback is enabled
  Topology maximum route limit 1000, warning limit 90% (900)
  Associated interfaces:
Topology: VOICE
  Address-family: ipv4
  Associated VPN VRF is default
```

```
Topology state is UP
 Topology is enabled on all interfaces
 Associated interfaces:
   Ethernet0/0, operation state: UP
   Ethernet0/1, operation state: DOWN
   Ethernet0/2, operation state: DOWN
   Ethernet0/3, operation state: DOWN
   Loopback0, operation state: UP
Topology: base
 Address-family: ipv4 multicast
 Associated VPN VRF is default
 Topology state is DOWN
 Multicast multi-topology mode is enabled.
  Route Replication Enabled:
   from unicast topology VOICE all route-map BLUE
 Associated interfaces:
   Ethernet0/0, operation state: UP
   Ethernet0/1, operation state: DOWN
   Ethernet0/2, operation state: DOWN
   Ethernet0/3, operation state: DOWN
   Loopback0, operation state: UP
```

The following example displays the classification values for the VOICE and VIDEO topologies:

```
Router# show mtm table
```

MTM Table for VRF: defa	ault, ID:0		
Topology	Address Family	Associated VRF	Topo-ID
base	ipv4	default	0
VOICE Classifier: ClassID:3 DSCP: cs1 DSCP: 9	ipv4	default	2051
VIDEO Classifier: ClassID:4 DSCP: af11	ipv4	default	2054

Activating an MTR Topology Using OSPF: Examples

The following example configures the VOICE topology in an OSPF routing process and sets the priority of the VOICE topology to the highest priority:

```
router ospf 1
address-family ipv4
 topology VOICE tid 10
 priority 127
  end
```

I

In the following example, the **show ip ospf** command is used with the **topology-info** and **topology** keywords to display OSPF information about the topology named VOICE.

Router# show ip ospf 1 topology-info topology VOICE

```
OSPF Router with ID (1.0.0.1) (Process ID 1)
VOICE Topology (MTID 66)
```

```
Topology priority is 64
Redistributing External Routes from,
isis
Number of areas transit capable is 0
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPFs 10000 msecs
Area BACKBONE(0) (Inactive)
SPF algorithm last executed 16:45:18.984 ago
SPF algorithm executed 3 times
Area ranges are
Area 1
SPF algorithm last executed 00:00:21.584 ago
SPF algorithm executed 1 times
Area ranges are
```

Activating an MTR Topology Using EIGRP: Examples

The following example activates the VIDEO topology using EIGRP:

```
router eigrp MTR
address-family ipv4 autonomous-system 1
network 10.0.0.0 0.0.0.255
topology VIDEO tid 10
redistribute connected
end
```

The following example displays the status of routing protocols configured in the VIDEO topology. EIGRP information is shown in the output.

```
Router# show ip protocols topology VIDEO
*** IP Routing is NSF aware ***
Routing Protocol is "eigrp 1"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Default networks flagged in outgoing updates
  Default networks accepted from incoming updates
  EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
  EIGRP maximum hopcount 100
 EIGRP maximum metric variance 1
 Redistributing: eigrp 1
 EIGRP graceful-restart disabled
  EIGRP NSF-aware route hold timer is 240s
 Topologies : 100(VOICE) 0(base)
 Automatic network summarization is in effect
  Maximum path: 4
  Routing for Networks:
  Routing Information Sources:
                                 Last Update
   Gatewav
             Distance
  Distance: internal 90 external 170
```

The following example shows the EIGRP routing table configured under the VIDEO topology:

Router# show ip eigrp topology VIDEO

EIGRP-IPv4 Topology Table for AS(1)/ID(1.1.1.2) Routing Table: VOICE Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply, L

I

```
r - reply Status, s - sia Status
P 10.1.1.0/24, 1 successors, FD is 281600
via Connected, Ethernet0/0
```

Activating an MTR Topology Using IS-IS: Examples

The following example configures the MTR topologies DATA and VIDEO and configures IS-IS support for MTR. The DATA and VIDEO topologies are enabled on three IS-IS neighbors in a network.

Router1

```
global-address-family ipv4
 topology DATA
 topology VOICE
 end
interface Ethernet 0/0
ip address 192.168.128.2 255.255.255.0
ip router isis
 topology ipv4 DATA
 isis topology disable
 topology ipv4 VOICE
 end
router isis
net 33.3333.3333.3333.00
metric-style wide
 address-family ipv4
 topology DATA tid 100
  topology VOICE tid 200
  end
Router2
global-address-family ipv4
 topology DATA
 topology VOICE
 all-interfaces
  forward-base
 maximum routes 1000 warning-only
  shutdown
  end
interface Ethernet 0/0
 ip address 192.168.128.1 255.255.255.0
 ip router isis
 topology ipv4 DATA
 isis topology disable
  topology ipv4 VOICE
  end
interface Ethernet 1/0
 ip address 192.168.130.1 255.255.255.0
 ip router isis
 topology ipv4 DATA
  isis topology disable
  topology ipv4 VOICE
  end
router isis
net 32.3232.3232.3232.00
```

```
metric-style wide
address-family ipv4
topology DATA tid 100
topology VOICE tid 200
end
```

Router 3

```
global-address-family ipv4
topology DATA
 topology VOICE
  all-interfaces
  forward-base
  maximum routes 1000 warning-only
 shutdown
  end
interface Ethernet 1/0
ip address 192.168.131.1 255.255.255.0
 ip router isis
 topology ipv4 DATA
 isis topology disable
  topology ipv4 VOICE
  end
router isis
net 31.3131.3131.3131.00
metric-style wide
address-family ipv4
 topology DATA tid 100
  topology VOICE tid 200
  end
```

Entering the **show isis neighbors detail** command verifies topology translation with the IS-IS neighbor Router1:

Router# show isis neighbors detail

```
State Holdtime Circuit Id
              Type Interface IP Address
System Id
R1
              L2 Et0/0
                          192.168.128.2
                                           UP
                                                 28
                                                          R5.01
 Area Address(es): 33
 SNPA: aabb.cc00.1f00
 State Changed: 00:07:05
 LAN Priority: 64
 Format: Phase V
 Remote TID: 100, 200
 Local TID: 100, 200
```

Activating an MTR Topology Using BGP: Examples

This section contains the following configuration examples:

- BGP Topology Translation Configuration, page 61
- BGP Scope Global and VRF Configuration, page 61
- BGP Topology Verification, page 62

BGP Topology Translation Configuration

The following example configures BGP in the VIDEO topology and configures topology translation with the 192.168.2.2 neighbor:

```
router bgp 45000
scope global
neighbor 172.16.1.1 remote-as 50000
neighbor 192.168.2.2 remote-as 55000
neighbor 172.16.1.1 transport multi-session
neighbor 192.168.2.2 transport multi-session
address-family ipv4
topology VIDEO
bgp tid 100
neighbor 172.16.1.1 activate
neighbor 192.168.2.2 activate
neighbor 192.168.2.2 translate-topology 200
end
clear ip bgp topology VIDEO 50000
```

BGP Scope Global and VRF Configuration

I

The following example shows how to configure a global scope for a unicast topology and also for a multicast topology. After exiting the router scope configuration mode, a scope is configured for the VRF named DATA.

```
router bgp 45000
 scope global
 bgp default ipv4-unicast
 neighbor 172.16.1.2 remote-as 45000
 neighbor 192.168.3.2 remote-as 50000
  address-family ipv4 unicast
  topology VOICE
  bgp tid 100
  neighbor 172.16.1.2 activate
  exit
  address-family ipv4 multicast
   topology base
   neighbor 192.168.3.2 activate
    exit
   exit
 exit
 scope vrf DATA
  neighbor 192.168.1.2 remote-as 40000
  address-family ipv4
  neighbor 192.168.1.2 activate
   end
```

BGP Topology Verification

The following example shows summary output for the **show ip bgp topology** command. Information is displayed about BGP neighbors configured to use the MTR topology named VIDEO.

Router# show ip bgp topology VIDEO summary

BGP router identifier 192.168.3.1, local AS number 45000 BGP table version is 1, main routing table version 1

Neighbor	V	AS	MsgRcvd	MsgSent	TblVer	InQ	OutQ	Up/Down	State/PfxRcd
172.16.1.2	4	45000	289	289	1	0	0	04:48:44	0
192.168.3.2	4	50000	3	3	1	0	0	00:00:27	0

The following partial output displays BGP neighbor information under the VIDEO topology:

```
Router# show ip bgp topology VIDEO neighbors 172.16.1.2
BGP neighbor is 172.16.1.2, remote AS 45000, internal link
 BGP version 4, remote router ID 192.168.2.1
 BGP state = Established, up for 04:56:30
 Last read 00:00:23, last write 00:00:21, hold time is 180, keepalive interval is 60
seconds
 Neighbor sessions:
   1 active, is multisession capable
 Neighbor capabilities:
   Route refresh: advertised and received(new)
 Message statistics, state Established:
   InQ depth is 0
   OutQ depth is 0
                      Sent
                                Rcvd
                        1
                                  1
   Opens:
   Notifications:
                         0
                                   0
                         0
   Updates:
                                    0
   Keepalives:
   Keepalives:296Route Refresh:0Total:297
                                 296
                                    0
                        297
                                   297
   Total:
  Default minimum time between advertisement runs is 0 seconds
 For address family: IPv4 Unicast topology VIDEO
 Session: 172.16.1.2 session 1
 BGP table version 1, neighbor version 1/0
 Output queue size : 0
 Index 1, Offset 0, Mask 0x2
1 update-group member
 Topology identifier: 100
```

```
Address tracking is enabled, the RIB does have a route to 172.16.1.2
Address tracking requires at least a /24 route to the peer
Connections established 1; dropped 0
Last reset never
Transport(tcp) path-mtu-discovery is enabled
Connection state is ESTAB, I/O status: 1, unread input bytes: 0
Minimum incoming TTL 0, Outgoing TTL 255
Local host: 172.16.1.1, Local port: 11113
Foreign host: 172.16.1.2, Foreign port: 179
```

Importing Routes from an MTR Topology Using BGP: Example

The following example shows how to configure an access list to be used by a route map named BLUE to filter routes imported from the MTR topology named VOICE. Only routes with the prefix 192.168.1.0 are imported.

```
access-list 1 permit 192.168.1.0 0.0.0.255
route-map BLUE
match ip address 1
 exit
router bgp 50000
 scope global
 neighbor 10.1.1.2 remote-as 50000
 neighbor 172.16.1.1 remote-as 60000
   address-family ipv4
   topology VIDEO
    bgp tid 100
     neighbor 10.1.1.2 activate
     neighbor 172.16.1.1 activate
     import topology VOICE route-map BLUE
     end
clear ip bgp topology VIDEO 50000
```

MTR Topology in Interface Configuration Mode: Examples

The following example disables the VOICE topology on Ethernet interface 0/0.

```
interface Ethernet 0/0
topology ipv4 VOICE disable
```

MTR OSPF Topology in Interface Configuration Mode: Examples

The following example disables OSPF routing on interface Ethernet 0/0 without removing the interface from the global topology configuration:

```
interface Ethernet 0/0
topology ipv4 VOICE
ip ospf cost 100
ip ospf topology disable
end
```

In the following example, the **show ip ospf interface** command is used with the **topology** keyword to display information about the topologies configured for OSPF in interface configuration mode.

```
Router# show ip ospf 1 interface topology VOICE
```

```
VOICE Topology (MTID 66)
Serial3/0 is up, line protocol is up
  Internet Address 10.0.0.5/30, Area 1
  Process ID 1, Router ID 44.44.44, Network Type POINT_TO_POINT
  Topology-MTID Cost Disabled Shutdown Topology Name
        4
                   77
                           no
                                      no
                                                      grc
  Transmit Delay is 1 sec, State POINT_TO_POINT
  Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:05
  Supports Link-local Signaling (LLS)
  Cisco NSF helper support enabled
```

```
IETF NSF helper support enabled
Index 1/4, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 1
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 2.2.2.2
Suppress hello for 0 neighbor(s)
```

In the following example, the **show ip ospf interface** command is used with the **brief** and **topology** keywords to display information about the topologies configured for OSPF in interface configuration mode.

```
Router# show ip ospf 1 interface brief topology VOICE
VOICE Topology (MTID 66)
Interface PID Area IP Address/Mask Cost State Nbrs F/C
Se3/0 1 1 10.0.0.5/30 1 UP 0/0
Se2/0 1 1 10.0.0.1/30 1 UP 0/0
```

MTR EIGRP Topology in Interface Configuration Mode: Examples

The following example sets the EIGRP delay calculation on interface Ethernet 0/0 to 100 milliseconds:

```
interface Ethernet 0/0
topology ipv4 VOICE
eigrp 1 delay 100000
eigrp 1 next-hop-self
eigrp 1 shutdown
eigrp 1 split-horizon
eigrp 1 summary-address 10.1.1.0 0.0.0.255
end
```

The following example displays EIGRP information about interfaces in the VOICE topology:

Router# show ip eigrp topology VOICE interfaces

EIGRP-IPv4 interfaces for process 1

		Xmit Queue	Mean	Pacing Time	Multicast	Pending
Interface	Peers	Un/Reliable	SRTT	Un/Reliable	Flow Timer	Routes
Et0/0	1	0/0	20	0/2	0	0

The following example displays EIGRP information about links in the VOICE topology:

```
Router# show ip eigrp topology VOICE detail-links
```

EIGRP-IPv4 Topology Table for AS(1)/ID(1.1.1.1) Routing Table: VOICE
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
 r - reply Status, s - sia Status
P 10.1.1.0/24, 1 successors, FD is 25856000, serno 5
 via Connected, Ethernet0/0

MTR IS-IS Topology in Interface Configuration Mode: Examples

The following example prevents the IS-IS process from advertising interface Ethernet 1/0 as part of the DATA topology:

```
interface Ethernet 1/0
ip address 192.168.130.1 255.255.255.0
ip router isis
topology ipv4 DATA
isis topology disable
topology ipv4 VOICE
end
```

SNMP Support for MTR: Examples

In the following example, the context string "context-vrfA" is configured to be associated with vrfA and will be passed on to the MIB access function during SNMP transactions:

```
snmp-server community public
ip vrf vrfA
snmp context context-vrfA
exit
```

In the following example, the context string "context-voice" is configured to be associated with the data topology named voice and will be passed on to the MIB access function during SNMP transactions:

```
global-address-family ipv4
topology voice
snmp context context-voice
exit
```

In the following example, the context string "context-ospf" and "context-voice" are configured to be associated with the OSPF process and topology named voice and will be passed on to the MIB access function during SNMP transactions:

```
router ospf 3
snmp context context-ospf
address-family ipv4
topology voice tid 10
snmp context ospf-voice
end
```

The following example shows how the context strings are mapped to the specified VRF, address family, topology, or protocol instance:

```
Router# show snmp context mapping
```

```
Context: ospf-voice
VRF Name:
Address Family Name: ipv4
Topology Name: voice
Protocol Instance: OSPF-3 Router
Context: context-ospf
VRF Name:
Address Family Name:
Topology Name:
Protocol Instance: OSPF-3 Router
```

```
Context: context-vrfA
VRF Name: vrfA
Address Family Name:
Topology Name:
Protocol Instance:
Context: context-voice
VRF Name:
Address Family Name: ipv4
Topology Name: voice
Protocol Instance:
```

Monitoring Interface and Topology IP Traffic Statistics: Examples

In the following example, the **show ip interface** command is used with the *type number* arguments to display IP traffic statistics for the Fast Ethernet interface 1/10 :

```
Router# show ip interface FastEthernet 1/10 stats
FastEthernet1/10
5 minutes input rate 0 bits/sec, 0 packet/sec,
5 minutes output rate 0 bits/sec, 0 packet/sec,
201 packets input, 16038 bytes
```

588 packets output, 25976 bytes

In this example, the **show ip traffic** command is used with the **topology** *instance* keyword and argument to display statistics related to a particular topology:

```
Router# show ip traffic topology VOICE
```

```
Topology: VOICE
5 minute input rate 0 bits/sec, 0 packet/sec,
5 minute output rate 0 bits/sec, 0 packet/sec,
100 packets input, 6038 bytes,
88 packets output, 5976 bytes.
```

Testing Network Connectivity for MTR: Examples

The following example sends a ping to the 10.1.1.2 neighbor in the VOICE topology:

Router# ping topology VOICE 10.1.1.2

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 10.1.1.2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms

The following example traces the 10.1.1.4 host in the VOICE topology:

Router# traceroute VOICE ip 10.1.1.4

Type escape sequence to abort. Tracing the route to 10.1.1.4

1 10.1.1.2 4 msec * 0 msec 2 10.1.1.3 4 msec * 2 msec 3 10.1.1.4 4 msec * 4 msec

Additional References

The following sections provide references related to MTR.

Related Documents

Γ

Related Topic	Document Title
MTR commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples	Cisco IOS Multi-Topology Routing Command Reference
IP routing protocol commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples	Cisco IOS IP Routing: BGP Command Reference Cisco IOS IP Routing: EIGRP Command Reference Cisco IOS IP Routing: ISIS Command Reference Cisco IOS IP Routing: OSPF Command Reference
IP multicast commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples	Cisco IOS IP Multicast Command Reference
QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples	Cisco IOS IP Quality of Service Solutions Command Reference
IP routing protocols concepts and tasks	Cisco IOS IP Routing: BGP Configuration Guide
	Cisco IOS IP Routing: EIGRP Configuration Guide
	Cisco IOS IP Routing: ISIS Configuration Guide
	Cisco IOS IP Routing: OSPF Configuration Guide
IP multicast concepts and tasks	Cisco IOS IP Multicast Configuration Guide
QoS concepts and tasks	Cisco IOS Quality of Service Solutions Configuration Guide
Configuring Multitopology IS-IS for IPv6	"Implementing IS-IS for IPv6," Cisco IOS IPv6 Configuration Guide
Cisco IOS In Service Software Upgrade Process	Cisco IOS In Service Software Upgrade Process module

Standards

Standard	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIB	MIBs Link
No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for Multi-Topology Routing

Table 1 lists the features in this module and provides links to specific configuration information. Only features that were introduced or modified in 12.2(33)SRB or a later release appear in the table.

Not all commands may be available in your Cisco IOS software release. For release information about a specific command, see the command reference documentation.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS and Catalyst OS software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Q, Note

I

Table 1 lists only the Cisco IOS software release that introduced support for a given feature in a given Cisco IOS software release train. Unless noted otherwise, subsequent releases of that Cisco IOS software release train also support that feature.

Feature Name	Releases	Feature Information
Multi-Topology Routing	12.2(33)SRB	MTR introduces the capability to configure service differentiation through class-based forwarding. MTR provides multiple logical topologies over a single physical network. Service differentiation can be achieved by forwarding different traffic types over different logical topologies that could take different paths to the same destination. MTR can be used, for example, to define separate topologies for voice, video, and data traffic classes.
BGP Support for MTR	12.2(33)SRB	This feature provides BGP support for multiple logical topologies over a single physical network.
		The following sections provide information about this feature:
		• BGP Routing Protocol Support for MTR, page 8
		• Activating an MTR Topology Using BGP, page 29
		• Importing Routes from an MTR Topology Using BGP, page 34
		• Activating an MTR Topology Using BGP: Examples, page 61
		• Importing Routes from an MTR Topology Using BGP: Example, page 63

Table 1 Feature Information for Multi-Topology Routing

Table I reature information for Wulti-Topology Routing (continu	Table 1	Feature Informatio	n for Multi-Topology	Routing (continue
---	---------	--------------------	----------------------	-------------------

Feature Name	Releases	Feature Information
EIGRP Support for MTR	12.2(33)SRB	This feature provides EIGRP support for multiple logical topologies over a single physical network.
		The following sections provide information about this feature:
		• Routing Protocol Support for MTR, page 7
		• Activating an MTR Topology Using EIGRP, page 26
		• Activating an MTR Topology in Interface Configuration Mode Using EIGRP, page 41
		• Activating an MTR Topology Using EIGRP: Examples, page 58
		• MTR EIGRP Topology in Interface Configuration Mode: Examples, page 64
IS-IS Support for MTR	12.2(33)SRB	This feature provides IS-IS support for multiple logical topologies over a single physical network.
		The following sections provide information about this feature:
		• Routing Protocol Support for MTR, page 7
		• Activating an MTR Topology Using IS-IS, page 27
		• Activating an MTR Topology in Interface Configuration Mode Using IS-IS, page 43
		• Activating an MTR Topology Using IS-IS: Examples, page 59
		• MTR IS-IS Topology in Interface Configuration Mode: Examples, page 65
ISSU—MTR	12.2(33)SRB1	All protocols and applications that support MTR and also support ISSU have extended their ISSU support to include the MTR functionality.
		The following section provides information about this feature:
		• ISSU—MTR, page 10

Γ

Feature Name	Releases	Feature Information
OSPF Support for MTR	12.2(33)SRB	This feature provides OSPF support for multiple logical topologies over a single physical network.
		The following sections provide information about this feature:
		• Routing Protocol Support for MTR, page 7
		• Activating an MTR Topology Using OSPF, page 22
		• Activating an MTR Topology in Interface Configuration Mode Using OSPF, page 39
		• Activating an MTR Topology Using OSPF: Examples, page 57
		• MTR OSPF Topology in Interface Configuration Mode: Examples, page 63
QoS/MQC Support for MTR 12.2(12.2(33)SRB	This feature enables MTR traffic classification. Traffic classification is used to associate different classes of traffic with different topologies when multiple topologies are configured on the same router. A subset of DSCP bits is used to encode classification values in the IP packet header and mark the packet for classification. When MTR traffic classification is enabled, MTR is activated and ready for the routing protocols to start contributing to the topologies.
		The following sections provide information about this feature:
		• MTR Traffic Classification, page 9
		Configuring MTR Traffic Classification, page 19
		• MTR Traffic Classification: Examples, page 56
SNMP Support for MTR	12.2(33)SRB	Context-based Simple Network Management Protocol (SNMP) functionality has been integrated into Cisco IOS software and can be used to support MTR. SNMP support for MTR leverages context-based SNMP to extend support for existing MIBs from representing the management information for just the base topology to representing the same information for multiple topologies.
		The following sections provide information about this feature:
		• Network Management Support for MTR, page 10
		• Configuring SNMP Support for MTR, page 45
		• SNMP Support for MTR: Examples, page 65

Table 1 Feature Information for Multi-Topology Routing (continued)

Glossary

base topology—The entire network for which the usual set of routes are calculated. This topology is the same as the default global routing table that exists today without MTR being used.

class-specific topology—New topologies that are defined over and above the existing base topology; each class-specific topology is represented by its own RIB and FIB.

classification—Selection and matching of traffic that needs to be provided with a different treatment based on its mark. Classification is a read-only operation.

DSCP—DiffServ Code Point. Six bits in the ToS. (Two bits are now used for Explicit Congestion Notification.) These are the bits used to mark the packet.

incremental forwarding mode—Incremental forwarding mode is designed to support transitional or incremental deployment of MTR, where there are routers in the network that are not MTR enabled. In this mode, the router will look for a forwarding entry first in the class-specific FIB. If an entry is not found, the router will then look for the longest match in the base topology FIB. If an entry is found in the base topology FIB, the packet will be forwarded on the base topology. If a forwarding entry is not found in the base topology FIB, the packet is dropped.

marking—Setting a value in the packet or frame. Marking is a read and write operation.

multi-topology—Multi-topology means that each topology will route/forward a subset of the traffic as defined by the classification criteria.

NLRI—Network Layer Reachability Information.

strict forwarding mode—Strict forwarding mode is the default forwarding mode for MTR. Only routes in the topology specific routing table are considered. Among these, the longest match for the destination address is used. If no route containing the destination address can be found in the topology specific table, the packet is dropped.

TID—Topology Identifier. Each topology is configured with a unique topology ID. The topology ID is configured under the routing protocol and is used to identify and group NLRI for each topology in updates for a given protocol.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0711R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2007 Cisco Systems, Inc. All rights reserved.

CCVP, the Cisco logo, and Welcome to the Human Network are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark of Cisco Systems, Inc.; and Access Registrar, Aironet, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networkers, Networking Academy, Network Registrar, PIX, ProConnect, ScriptShare, SMARTnet, StackWise, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.