

IP Routing: Protocol-Independent Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)

First Published: January 15, 2013 Last Modified: January 15, 2013

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 © Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1

IP Routing Protocol-Independent Commands_ A through R 1

bfd all-interfaces 5 dampening 8 ip policy route-map 11 key 13 key chain 16
ip policy route-map 11 key 13 key chain 16
key 13 key chain 16
key chain 16
a
key-string (authentication) 19
match interface (IP) 22
match ip address 25
match ip next-hop 29
match ip route-source 32
match ipv6 address 35
match length 38
match metric (IP) 41
match route-type (IP) 44
match tag 47
maximum-paths 49
nsf 51
passive-interface 54
redistribute (IP) 56
route-map 66

CHAPTER 2

I

IP Routing Protocol-Independent Commands_ S through T 71

send-lifetime 72 set automatic-tag 75 set ip next-hop 78 set level (IP) 82 set local-preference 85 set metric (BGP-OSPF-RIP) 88 set metric-type 91 set next-hop 94 set tag (IP) 97 show bfd neighbors 99 show dampening interface 111 show interface dampening **113** show ip cache policy 115 show ip local policy 117 show ip policy 119 show ip protocols 122 show ip route 129 show ip route summary 141 show ip route supernets-only 143 show ipv6 route 145 show key chain 150 show route-map 152

1

IP Routing Protocol-Independent Commands_ A through R

- accept-lifetime, page 2
- bfd all-interfaces, page 5
- dampening, page 8
- ip policy route-map, page 11
- key, page 13
- key chain, page 16
- key-string (authentication), page 19
- match interface (IP), page 22
- match ip address, page 25
- match ip next-hop, page 29
- match ip route-source, page 32
- match ipv6 address, page 35
- match length, page 38
- match metric (IP), page 41
- match route-type (IP), page 44
- match tag, page 47
- maximum-paths, page 49
- nsf, page 51

- passive-interface, page 54
- redistribute (IP), page 56
- route-map, page 66

1

accept-lifetime

To set the time period during which the authentication key on a key chain is received as valid, use the **accept-lifetime**command inkey chain key configuration mode. To revert to the default value, use the **no** form of this command.

accept-lifetime commandaccept-lifetime *start-time* {infinite| *end-time*| duration *seconds*} no accept-lifetime [*start-time* {infinite| *end-time*| duration *seconds*}]

Syntax Description	start-time	Beginning time that the key specified by the key command is valid to be received. The syntax can be either of the following:
		hh : mm : ss Month date year
		hh : mm : ss date Month year
		• <i>hh</i> hours
		• <i>mm</i> minutes
		• ss s econds
		• <i>Month</i> first three letters of the month
		• <i>date</i> date (1-31)
		• <i>year</i> y ear (four digits)
		The default start time and the earliest acceptable date is January 1, 1993.
	infinite	Key is valid to be received from the <i>start-time</i> value on.
	end-time	Key is valid to be received from the <i>start-time</i> value until the <i>end-time</i> value. The syntax is the same as that for the <i>start-time</i> value. The <i>end-time</i> value must be after the <i>start-time</i> value. The default end time is an infinite time period.
	duration seconds	Length of time (in seconds) that the key is valid to be received. The range is from 1 to 2147483646.

Command Default The authentication key on a key chain is received as valid forever (the starting time is January 1, 1993, and the ending time is infinite).

Command Modes Key chain key configuration (config-keychain-key)

Release

Command History

ſ

· · · · · ·	nelease	Wouncation	
	11.1	This command was introduced.	
	12.4(6)T	Support for IPv6 was added.	
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.	
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.	
Usage Guidelines	Only DRP Agent, Enh (RIP) Version 2 use ka	anced Interior Gateway Routing Protocol (EIGRP), and Routing Information Protocol	
	. ,	lue and one of the following values: infinite , <i>end-time</i> , or duration <i>seconds</i> .	
	We recommend running Network Time Protocol (NTP) or some other time synchronization method if you assign a lifetime to a key.		
	If the last key expires, authentication will continue and an error message will be generated. To disable authentication, you must manually delete the last valid key.		
Examples	1:30 p.m. to 3:30 p.m. from 2:30 p.m. to 4:30	e configures a key chain named chain1. The key named key1 will be accepted from and will be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted p.m. and will be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of in the set time of the router. There is a 30-minute leeway on each side to handle time	
	<pre>Router(config)# interface ethernet 0 Router(config-if)# ip rip authentication key-chain chain1 Router(config-if)# ip rip authentication mode md5 ! Router(config)# router rip Router(config-router)# network 172.19.0.0 Router(config-router)# version 2</pre>		
	! Router(config)# key Router(config-keych Bouter(config-keych		

Modification

Router(config-keychain-key)# key-string key1 Router(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 1996 duration 7200 Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600 Router(config-keychain-key)# exit Router(config-keychain)# key 2 Router(config-keychain)# key-string key2 Router(config-keychain)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200 Router(config-keychain)# send-lifetime 15:00:00 Jan 25 1996 duration 3600

The following example configures a key chain named chain1 for EIGRP address-family. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for

migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config) # router
eigrp virtual-name
Router(config-router)# address-family ipv4 autonomous-system 4453
Router(config-router-af)# network 10.0.0.0
Router(config-router-af)# af-interface ethernet0/0
Router(config-router-af-interface) # authentication key-chain trees
Router(config-router-af-interface) # authentication mode md5
Router(config-router-af-interface) # exit
Router(config-router-af)# exit
Router(config-router) # exit
Router(config) # key chain chain1
Router(config-keychain) # key 1
Router(config-keychain-key) # key-string key1
Router (config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # exit
Router(config-keychain) # key 2
Router(config-keychain-key)# key-string key2
Router (config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 15:00:00 Jan 25 1996 duration 3600
```

Command	Description
key	Identifies an authentication key on a key chain.
key chain	Defines an authentication key-chain needed to enable authentication for routing protocols.
key-string (authentication)	Specifies the authentication string for a key.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
show key chain	Displays authentication key information.

bfd all-interfaces

To enable Bidirectional Forwarding Detection (BFD) for all interfaces participating in the routing process, use the **bfd all-interfaces** command in router configuration or address family interface configuration mode. To disable BFD for all neighbors on a single interface, use the **no** form of this command.

bfd all-interfaces no bfd all-interfaces

Syntax Description This command has no arguments or keywords.

Command Default BFD is disabled on the interfaces participating in the routing process.

 Command Modes
 Router configuration (config-router)

 Address family interface configuration (config-router-af)

l History	Release	Modification
	12.2(18)SXE	This command was introduced.
	12.0(31)S	This command was integrated into Cisco IOS Release 12.0(31)S.
	12.4(4)T	This command was integrated into Cisco IOS Release 12.4(4)T.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	Cisco IOS XE Release 2.1	This command was integrated into Cisco IOS Release XE 2.1 and implemented on the Cisco ASR 1000 Series Aggregation Services Routers.
	12.2(33)SRE	This command was modified. Support for IPv6 was added.
	15.0(1)M	This command was modified. The bfd all-interfaces command in named router configuration mode was replaced by the bfd command in address family interface mode.
	15.1(2)T	This command was modified. Support for IPv6 was added.
	Cisco IOS XE Release 3.3	This command was modified. Support for the Routing Information Protocol (RIP) was added.
	15.2(4)S	This command was modified. Support for IPv6 was added.
	Cisco IOS XE Release 3.7S	This command was modified. Support for IPv6 was added.

Usage Guidelines There are two methods to configure routing protocols to use BFD for failure detection. To enable BFD for all interfaces, enter the **bfd all-interfaces** command in router configuration mode. In Cisco IOS Release 12.4(24)T, Cisco IOS 12.2(33)SRA, and earlier releases, the **bfd all-interfaces** command works in router configuration mode and address family interface mode.

In Cisco IOS Release 15.0(1)M and later releases, the **bfd all-interfaces** command in named router configuration mode is replaced by the **bfd** command in address family interface configuration mode. Use the **bfd** command in address family interface configuration mode to achieve the same functionality as that of the **bfd all-interfaces** command in router configuration mode.

Examples

The following example shows how to enable BFD for all Enhanced Interior Gateway Routing Protocol (EIGRP) neighbors:

Router> enable Router# configure terminal Router(config)# router eigrp 123 Router(config-router)# bfd all-interfaces Router(config-router)# end The following example shows how to enable BFD for all Intermediate System-to-Intermediate System (IS-IS)

neighbors:

Router> enable Router# configure terminal Router(config)# router isis tag1 Router(config-router)# bfd all-interfaces Router(config-router)# end The following example shows how to enable BFD for all Open Shortest Path First (OSPF) neighbors:

Router> enable Router# configure terminal Router(config)# router ospf 123 Router(config-router)# bfd all-interfaces Router(config-router)# end The following example shows how to enable BFD for all EIGRP neighbors, using the bfd command in address family interface configuration mode:

```
Router> enable

Router# configure terminal

Router(config)# router eigrp my_eigrp

Router(config-router)# address family ipv4 autonomous-system 100

Router(config-router-af)# af-interface FastEthernet 0/0

Router(config-router-af)# bfd

The following example shows how to enable BFD for all Routing Information Protocol (RIP) neighbors:
```

```
Router> enable

Router# configure terminal

Router (config) # router rip

Router (config-router) # bfd all-interfaces

Router (config-router) # end

The following example shows how to enable IPv6 BFD for all IS-IS neighbors, in address family interface

configuration mode:
```

1

```
Router> enable
Router# configure terminal
Router(config)# router isis
Router(config-router)# address family ipv6
```

Router(config-router-af)# bfd all-interfaces
Router(config-router-af)# end

Related Commands

Γ

15	Command	Description	
	bfd	Sets the baseline BFD session parameters on an interface.	

dampening

To configure a device to automatically dampen a flapping session, use the **dampening** command in interface configuration mode. To disable automatic dampening, use the **no** form of this command.

dampening [half-life-period reuse-threshold suppress-threshold max-suppress-time] [restart-penalty]

no dampening

Syntax Description

half-life-period	(optional) Time (in seconds) after which a penalty is decreased. Once the route has been assigned a penalty, the penalty is decreased by half after the half-life period expires. The range of the half-life period is from 1 to 30 seconds. The default time is 5 seconds.
reuse-threshold	(optional) Reuse value based on the number of penalties. When the accumulated penalty decreases enough to fall below this value, the route is unsuppressed. The range of the reuse value is from 1 to 20000; the default is 1000.
suppress-threshold	(optional) Value of the accumulated penalty that triggers the router to dampen a flapping interface. A route is suppressed when its penalty exceeds this limit. The range is from 1 to 20000; the default is 2000.
max-suppress-time	(optional) Maximum time (in seconds) a route can be suppressed. The range is from 1 to 20000; the default is four times the <i>half-life-periodvalue</i> . If the <i>half-life</i> -period value is allowed to default, the maximum suppress time defaults to 20 seconds.
restart-penalty	(optional) Penalty to applied to the interface when it comes up for the first time after the router reloads. The configurable range is from 1 to 18000 penalties. The default is 2000 penalties. This argument is not required for any other configurations.

Command Default

This command is disabled by default. To manually configure the timer for the restart-penalty argument, the value for all arguments must be manually entered.

1

Command Modes Interface configuration (config-if)

Command History	Release	Modification
	12.0(22)S	This command was introduced.
	12.2(14)S	This command was integrated into Cisco IOS Release 12.2(14)S.
	12.2(13)T	This command was integrated into Cisco IOS Release 12.2(13)T.
	12.2(18)SXD	This command was integrated into Cisco IOS Release 12.2(18)SXD.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2(31)SB2	This command was integrated into Cisco IOS Release 12.2(31)SB2.

Usage Guidelines

The IP Event Dampening feature will function on a subinterface but cannot be configured on only the subinterface. Only the primary interface can be configured with this feature. Primary interface configuration is applied to all subinterfaces by default.

When an interface is dampened, the interface is dampened to both IP and Connectionless Network Services (CLNS) routing equally. The interface is dampened to both IP and CLNS because integrated routing protocols such as Intermediate System-to-Intermediate System (IS-IS), IP, and CLNS routing protocols are closely interconnected, so it is impossible to apply dampening separately.

Copying a dampening configuration from virtual templates to virtual access interfaces is not supported because dampening has limited usefulness to existing applications using virtual templates. Virtual access interfaces are released when an interface flaps, and new connections and virtual access interfaces are acquired when the interface comes up and is made available to the network. Because dampening states are attached to the interface, the dampening states would not survive an interface flap.

If the **dampening**command is applied to an interface that already has dampening configured, all dampening states are reset and the accumulated penalty will be set to 0. If the interface has been dampened, the accumulated penalty will fall into the reuse threshold range, and the dampened interface will be made available to the network. The flap counts, however, are retained.

Examples

The following example sets the half life to 30 seconds, the reuse threshold to 1500, the suppress threshold to 10000, and the maximum suppress time to 120 seconds:

```
interface Ethernet 0/0
dampening 30 1500 10000 120
```

The following example configures the router to apply a penalty of 500 on Ethernet interface 0/0 when the interface comes up for the first time after the router is reloaded:

```
interface Ethernet 0/0
dampening 5 500 1000 20 500
```

Command	Description
clear counters	Clears the interface counters.

I

٦

Command	Description
show dampening interface	Displays a summary of interface dampening.
show interface dampening	Displays a summary of the dampening parameters and status.

ip policy route-map

To identify a route map to use for policy routing on an interface, use the **ippolicyroute-map** command in interface configuration mode. Todisable policy routing on the interface, use the **no**form of this command.

ip policy route-map commandip policy route-map map-tag

no ip policy route-map

Syntax Description	1 0	Name of the route map to use for policy routing. The name must match a <i>map-tag</i> value specified by a route-map command.
--------------------	-----	--

Command Default No policy routing occurs on the interface.

Command Modes Interface configuration

Command History	Release	Modification
	11.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	Cisco IOS XE Release 2.2	This command was integrated into Cisco IOS Release 12.2(33)SRA.

Usage Guidelines

ines You might enable policy routing if you want your packets to take a route other than the obvious shortest path.

The **ippolicyroute-map** command identifies a route map to use for policy routing. Each**route-map**command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria-*-the conditions under which policy routing is allowed for the interface, based on the destination IP address of the packet. The **set** commands specify the *setactions-*-the particular policy routing actions to perform if the criteria enforced by the **match** commands are met. The **noippolicyroute-map** command deletes the pointer to the route map.

Policy routing can be performed on any match criteria that can be defined in an extended IP access list when using the**matchipaddressc**ommand and referencing an extended IP access list.

1

Examples

The following example sends packets with the destination IP address of 172.21.16.18 to a router at IP address 172.30.3.20:

```
interface serial 0
  ip policy route-map wethersfield
!
route-map wethersfield
  match ip address 172.21.16.18
  set ip next-hop 172.30.3.20
```

Command	Description
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match length	Bases policy routing on the Level 3 length of a packet.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of route map for policy routing.
set ip default next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination.
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing.

key

To identify an authentication key on a key chain, use the **key** command in key-chain configuration mode. To remove the key from the key chain, use the **no** form of this command.

key commandkey key-id

no key key-id

Syntax Description

escription	key-id	Identification number of an authentication key on a	
		key chain. The range of keys is from 0 to	
		2147483647. The key identification numbers need	
		not be consecutive.	

Command Default No key exists on the key chain.

Command Modes Key-chain configuration (config-keychain)

Command History	Release	Modification
	11.1	This command was introduced.
	12.4(6)T	Support for IPv6 was added.
	12.2(33)SRB	This command was integrated into Cisco IOS Release 12.2(33)SRB.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Usage Guidelines

Only DRP Agent, Enhanced Interior Gateway Routing Protocol (EIGRP), and Routing Information Protocol (RIP) Version 2 use key chains.

It is useful to have multiple keys on a key chain so that the software can sequence through the keys as they become invalid after time, based on the **accept-lifetime** and **send-lifetime** key chain key command settings.

Each key has its own key identifier, which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use. Only one authentication packet is sent, regardless of the number of valid keys. The software starts looking at the lowest key identifier number and uses the first valid key.

If the last key expires, authentication will continue and an error message will be generated. To disable authentication, you must manually delete the last valid key.

key

To remove all keys, remove the key chain by using the **no key chain** command.

Examples

The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config) # interface ethernet 0
Router(config-if) # ip rip authentication key-chain chain1
Router(config-if) # ip rip authentication mode md5
Router(config) # router rip
Router (config-router) # network 172.19.0.0
Router(config-router) # version 2
Router(config) # key chain chain1
Router(config-keychain) # key 1
Router(config-keychain-key) # key-string key1
Router (config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router (config-keychain-key) # exit
Router(config-keychain) # key 2
Router(config-keychain-key)# key-string key2
Router (config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 15:00:00 Jan 25 1996 duration 3600
The following named configuration example configures a key chain named chain1 for EIGRP address-family.
```

The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config) # router
eigrp virtual-name
Router(config-router) # address-family ipv4 autonomous-system 4453
Router(config-router-af) # network 10.0.0.0
Router(config-router-af) # af-interface ethernet0/0
Router(config-router-af-interface)# authentication key-chain trees
Router(config-router-af-interface) # authentication mode md5
Router(config-router-af-interface) # exit
Router(config-router-af)# exit
Router(config-router)# exit
Router(config) # key chain chain1
Router (config-keychain) # key 1
Router(config-keychain-key) # key-string key1
Router(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key)# exit
Router(config-keychain) # key 2
Router(config-keychain-key) # key-string key2
Router (config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 15:00:00 Jan 25 1996 duration 3600
```

The following named configuration example configures a key chain named chain1 for EIGRP service-family. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config)# eigrp virtual-name
Router(config-router)# service-family ipv4 autonomous-system 4453
Router(config-router-sf)# network 10.0.0.0
Router(config-router-sf)# sf-interface ethernet0/0
Router(config-router-sf-interface)# authentication key-chain trees
```

```
Router(config-router-sf-interface) # authentication mode md5
Router(config-router-sf-interface) # exit
Router(config-router-sf) # exit
Router(config-router) # exit
Router(config-router) # exit
Router(config-keychain) # key 1
Router(config-keychain-key) # key-string key1
Router(config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # exit
Router(config-keychain-key) # exit
Router(config-keychain-key) # exit
Router(config-keychain-key) # exit
Router(config-keychain-key) # accept-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 7200
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # accept-lifetime 15:00:00 Jan 25 1996 duration 3600
Router(con
```

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
ip authentication key-chain eigrp	Enables authentication of EIGRP packets.
key chain	Defines an authentication key chain needed to enable authentication for routing protocols.
key-string (authentication)	Specifies the authentication string for a key.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
show key chain	Displays authentication key information.

key chain

To define an authentication key chain needed to enable authentication for routing protocols and enter key-chain configuration mode, use the **key chain** command in global configuration mode. To remove the key chain, use the **no** form of this command.

key chain commandkey chain name-of-chain

no key chain name-of-chain

Syntax Description	name-of-chain	Name of a key chain. A key chain must have at least one key and can have up to 2147483647 keys.	

Command Default No key chain exists.

Command Modes Global configuration (config)

Command History	Release	Modification
· · · · · · · · · · · · · · · · · · ·	nelease	Mounication
	11.1	This command was introduced.
	12.4(6)T	Support for IPv6 was added.
	12.2(33)SRB	This command was integrated into Cisco IOS Release 12.2(33)SRB.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
Usage Guidelines	Only DRP Agent, Enh (RIP) Version 2 use ke	anced Interior Gateway Routing Protocol (EIGRP), and Routing Information Protocol by chains.
	You must configure a key chain with keys to enable authentication.	

Although you can identify multiple key chains, we recommend using one key chain per interface per routing protocol. Upon specifying the **key chain** command, you enter key chain configuration mode.

Examples The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from

2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config) # interface ethernet 0
Router(config-if) # ip rip authentication key-chain chain1
Router(config-if) # ip rip authentication mode md5
Router(config) # router rip
Router(config-router) # network 172.19.0.0
Router(config-router) # version 2
Router(config) # key chain chain1
Router(config-keychain) # key 1
Router (config-keychain-key) # key-string key1
Router (config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # exit
Router(config-keychain) # key 2
Router(config-keychain-key) # key-string key2
Router (config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600
The following named configuration example configures a key chain named chain1 for EIGRP address-family.
The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m.
The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m.
```

The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config) # router eigrp virtual-name
Router(config-router)# address-family ipv4 autonomous-system 4453
Router(config-router-af)# network 10.0.0.0
Router(config-router-af) # af-interface ethernet0/0
Router(config-router-af-interface) # authentication key-chain trees
Router(config-router-af-interface)# authentication mode md5
Router(config-router-af-interface) # exit
Router(config-router-af)# exit
Router(config-router) # exit
Router(config) # key chain chain1
Router(config-keychain) # key 1
Router (config-keychain-key) # key-string key1
Router(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # exit
Router(config-keychain) # key 2
Router(config-keychain-key) # key-string key2
Router (config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router (config-keychain-key) # send-lifetime 15:00:00 Jan 25 1996 duration 3600
```

The following named configuration example configures a key chain named trees for service-family. The key named chestnut will be accepted from 1:30 pm to 3:30 pm and be sent from 2:00 pm to 3:00 pm. The key birch will be accepted from 2:30 pm to 4:30 pm and be sent from 3:00 pm to 4:00 pm. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config)# router eigrp virtual-name
Router(config-router)# service-family ipv4 autonomous-system 4453
Router(config-router-sf)# sf-interface ethernet
Router(config-router-sf-interface)# authentication key chain trees
Router(config-router-sf-interface)# authentication mode md5
Router(config-router-sf-interface)# exit
Router(config-router-sf)# exit
Router(config-router)# exit
Router(config)# key chain chain1
Router(config-keychain)# key 1
Router(config-keychain-key)# key-string chestnut
Router(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
```

1

Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key)# exit
Router(config-keychain-key)# key-string birch
Router(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
ip rip authentication key-chain	Enables authentication for RIP Version 2 packets and specifies the set of keys that can be used on an interface.
ip authentication key-chain eigrp	Enables authentication of EIGRP packets.
key	Identifies an authentication key on a key chain.
key-string (authentication)	Specifies the authentication string for a key.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
show key chain	Displays authentication key information.

key-string (authentication)

To specify the authentication string for a key, use the **key-string**(authentication) command in key chain key configuration mode. To remove the authentication string, use the **no** form of this command.

key-string commandkey-string text

no key-string text

uppercase and lowercase alphanumeric characters.	Syntax Description		Authentication string that must be sent and received in the packets using the routing protocol being authenticated. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters.
--	--------------------	--	---

Command Default No auth	entication strin	g for a key	exists.
--------------------------------	------------------	-------------	---------

I

Command Modes Key chain key configuration (config-keychain-key)

Command History	Release	Modification
	11.1	This command was introduced.
	12.4(6)T	Support for IPv6 was added.
	12.2(33)SRB	This command was integrated into Cisco IOS Release 12.2(33)SRB.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
Usage Guidelines		anced Interior Gateway Routing Protocol (EIGRP), and Routing Information Protocol ey chains. Each key can have only one key string.

If password encryption is configured (with the **service password-encryption** command), the software saves the key string as encrypted text. When you write to the terminal with the **more system:running-config** command, the software displays key-string 7 encrypted text.

Examples The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from

2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.

```
Router(config) # interface ethernet 0
Router (config-if) # ip rip authentication key-chain chain1
Router(config-if) # ip rip authentication mode md5
Router(config) # router rip
Router(config-router) # network 172.19.0.0
Router(config-router) # version 2
Router(config) # key chain chain1
Router (config-keychain) # key 1
Router (config-keychain-key) # key-string key1
Router (config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key) # exit
Router (config-keychain) # key 2
Router(config-keychain-key)# key-string key2
Router (config-keychain-key) # accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600
The following example configures a key chain named chain1 for EIGRP address-family. The key named key1
will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2
will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for
migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to
```

```
handle time differences.
Router (config) # eigrp virtual-name
Router (config-router) # address-family ipv4 autonomous-system 4453
Router (config-router-af) # network 10.0.0.0
Router (config-router-af) # af-interface ethernet0/0
Router (config-router-af-interface) # authentication key-chain trees
Router (config-router-af-interface) # authentication mode md5
Router (config-router-af-interface) # exit
Router (config-router) # exit
Router (config-router) # exit
Router (config-keychain) # key 1
Router (config-keychain-key) # key-string key1
Router (config-keychain-key) # accept-lifetime 13:30:00 Jan 25 1996 duration 7200
```

```
Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key)# exit
Router(config-keychain-key)# key-string key2
Router(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600
```

Related Commands

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
ip authentication key-chain eigrp	Enables authentication of EIGRP packets.
key	Identifies an authentication key on a key chain.
key chain	Defines an authentication key-chain needed to enable authentication for routing protocols.

I

I

Command	Description
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.
service password-encryption	Encrypts passwords.
show key chain	Displays authentication key information.

match interface (IP)

To distribute any routes that have their next hop out one of the interfaces specified, use the **matchinterface** command in route-map configuration mode. To remove the **matchinterface** entry, use the **no** form of this command.

match interface interface-type interface-number [... interface-type interface-number]
no match interface interface-type interface-number [... interface-type interface-number]

Syntax Description

interface- type	Interface type.
interface- number	Interface number.

Command Default No match interfaces are defined.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	15.1(2)S	This command was integrated into Cisco IOS Release 15.1(2)S.

Usage Guidelines

An ellipsis (...) in the command syntax indicates that your command input can include multiple values for the *interface-typeinterface-number* arguments.

Use the **route-map** global configuration command, and the **match** and **set** route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current **route-map** command. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **match** route-map configuration command has multiple formats. The **match** commands may be given in any order, and all **match** commands must "pass" to cause the route to be redistributed according to the

setactions given with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

A route map can have several parts. Any route that does not match at least one **match** clause relating to a **route-map** command will be ignored; that is, the route will not be advertised for outbound route maps and will not be accepted for inbound route maps. If you want to modify only some data, you must configure a second route map section with an explicit match specified.

Examples

I

In the following example, routes that have their next hop out Ethernet interface 0 will be distributed:

```
route-map name
match interface ethernet 0
```

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set level (IP)	Indicates where to import routes.

٦

Command	Description
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

match ip address

To distribute any routes that have a destination network number address that is permitted by a standard access list, an extended access list, or a prefix list, or to perform policy routing on packets, use the **matchipaddress** command in route-map configuration mode. To remove the **matchipaddress** entry, use the **no** form of this command.

match ip address {*access-list-number* [*access-list-number* ...] *access-list-name* ...]| *access-list-name* [*access-list-name*]] **prefix-list** *prefix-list-name* [*prefix-list-name* ...]}

no match ip address {*access-list-number* [*access-list-number* ...| *access-list-name* ...]| *access-list-name* [*access-list-name*]] **prefix-list** *prefix-list-name* [*prefix-list-name* ...]}

Syntax Description

access-list-number	Number of a standard or extended access list. It can be an integer from 1 to 199. The ellipsis indicates that multiple values can be entered.
access-list-name	Name of a standard or extended access list. It can be an integer from 1 to 199. The ellipsis indicates that multiple values can be entered.
prefix-list	Distributes routes based on a prefix list.
prefix-list-name	Name of a specific prefix list. The ellipsis indicates that multiple values can be entered.

Command Default No access list numbers or prefix lists are specified.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	15.1(2)S	This command was integrated into Cisco IOS Release 15.1(2)S.

Usage Guidelines

An ellipsis (...) in the command syntax indicates that your command input can include multiple values for the *access-list-number,access-list-name,orprefix-list-name*arguments.

Like matches in the same route map subblock are filtered with "or" semantics. If any one match clause is matched in the entire route map subblock, this match is treated as a successful match. Dissimilar match clauses are filtered with "and" semantics. So dissimilar matches are filtered logically. If the first set of conditions is not met, the second match clause is filtered. This process continues until a match occurs or there are no more match clauses.

Use route maps to redistribute routes or to subject packets to policy routing. Both purposes are described in this section.

Redistribution

Use the **route-map** global configuration command, and the **match** and **set** route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current **route-map**command. The**set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **match** route-map configuration command has multiple formats. The **match** commands can be given in any order, and all **match** commands must "pass" to cause the route to be redistributed according to the *setactions* given with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

When you are passing routes through a route map, a route map can have several sections that contain specific **match** clauses. Any route that does not match at least one **match** clause relating to a **route-map** command will be ignored; that is, the route will not be advertised for outbound route maps and will not be accepted for inbound route maps. If you want to modify only some data, you must configure a second route map section with an explicit match specified.

Policy Routing

Another purpose of route maps is to enable policy routing. The match ip address command allows you to policy route packets based on criteria that can be matched with an extended access list; for example, a protocol, protocol service, and source or destination IP address. To define the conditions for policy routing packets, use the **ippolicyroute-map** interface configuration command, in addition to the **route-map** global configuration command, and the **match** and **set** route-map configuration commands. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria-*-the conditions to perform if the criteria enforced by the **match**commands are met. You might want to policy route packets based on their source, for example, using an access list.

Examples

In the following example, routes that have addresses specified by access list numbers 5 or 80 will be matched:

Router(config) # route-map name

Router(config-route-map)# match ip address 5 80

Route maps that use prefix lists can be used for route filtering, default origination, and redistribution in other routing protocols. In the following example, a default route 0.0.0.0/0 is conditionally originated when there exists a prefix 10.1.1.0/24 in the routing table:

I

Router(config) # ip prefix-list cond permit 10.1.1.0/24
!

```
Router (config) # route-map default-condition permit 10
Router (config-route-map) # match ip address prefix-list cond
!
Router (config) # router rip
Router (config-router) # default-information originate route-map default-condition
In the following policy routing example, packets that have addresses specified by access list numbers 6 or 25
will be routed to Ethernet interface 0:
```

```
Router(config)# interface serial 0
Router(config-if)# ip policy route-map chicago
!
Router(config)# route-map chicago
Router(config-route-map)# match ip address 6 25
Router(config-route-map)# set interface ethernet 0
```

Command	Description
ip local policy route-map	Identifies a route map to use for policy routing on an interface.
ip policy route-map	Identifies a route map to use for policy routing on an interface.
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes any routes that have their next hop out one of the interfaces specified.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match length	Bases policy routing on the Level 3 length of a packet.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.

I

٦

Command	Description
set community	Sets the BGP communities attribute.
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of a route map for policy routing.
set ip default next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination.
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

match ip next-hop

To redistribute any routes that have a next hop router address passed by one of the access lists specified, use the **matchipnext-hop** command in route-map configuration mode. To remove the next hop entry, use the **no** form of this command.

match ip next-hop {access-list-number | access-list-name } [... access-list-number | ... access-list-name] **no match ip next-hop** {access-list-number | access-list-name } [... access-list-number | ... access-list-name]

Syntax Descriptionaccess-list-numberaccess-list-nameNumber or name of a standard or extended accesslist. It can be an integer from 1 to 199.
--

Command Default Routes are distributed freely, without being required to match a next hop address.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	15.1(2)S	This command was integrated into Cisco IOS Release 15.1(2)S.

Usage Guidelines

An ellipsis (...) in the command syntax indicates that your command input can include multiple values for the *access-list-number*oraccess-list-name argument.

Use the route-map global configuration command, and the **match** and **set** route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current route-mapcommand. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **match** route-map configuration command has multiple formats. The **match** commands can be given in any order, and all **match** commands must "pass" to cause the route to be redistributed according to the *setactions* given with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

When you are passing routes through a route map, a route map can have several parts. Any route that does not match at least one **match** clause relating to a **route-map** command will be ignored; that is, the route will not be advertised for outbound route maps and will not be accepted for inbound route maps. If you want to modify only some data, you must configure a second route map section with an explicit match specified.

Examples

The following example distributes routes that have a next hop router address passed by access list 5 or 80 will be distributed:

Router(config)# route-map name
Router(config-route-map)# match ip next-hop 5 80

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes any routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set level (IP)	Indicates where to import routes.

I

Command	Description
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

ø

match ip route-source

To match routes that have been advertised by routers and access servers at the address specified by the access lists, use the **matchiproute-source** command in route-map configuration mode. To remove the route-source entry, use the **no** form of this command.

match ip route-source [access-list-number [... access-list-number]] [expanded-access-list [... expanded-access-list]] [access-list-name [... access-list-name]] [**prefix-list** name [...**prefix-list** name]] [**redistribution-source**]

no match ip route-source [access-list-number [... access-list-number]] [expanded-access-list [... expanded-access-list]] [access-list-name [... access-list-name]] [**prefix-list** name [...**prefix-list** name]] [**redistribution-source**]

Syntax Description

access-list-number	(Optional) Number of a standard access list. The range is from 1 to 199.
expanded-access-list	(Optional) Number of an expanded access list. The range is from 1300 to 1999.
access-list-name	(Optional) Name of a standard access list.
prefix-list name	(Optional) Configures the match entries of a specified prefix list.
redistribution-source	(Optional) Specifies the route redistribution source for Enhanced Interior Gateway Routing Protocol (EIGRP).

Command Default No filtering of the routes is applied on the route source.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.28X	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

I

	Release	Modification
	Cisco IOS XE Release 2.1	This command was integrated into Cisco IOS XE Release 2.1 and implemented on Cisco ASR 1000 Series Aggregation Services Routers.
Usage Guidelines		nd syntax indicates that your command input can include multiple values for the the scheexpanded-access-listargument, the access-list-name argument, and the argument pair.
	to define the conditions for re command has a list of match criteriathe conditions under commands specify the set act	figuration command, and the match and set route-map configuration commands edistributing routes from one routing protocol into another. Each route-map and set commands associated with it. The match commands specify the match which redistribution is allowed for the current route-map command. The set ionsthe particular redistribution actions to perform if the criteria enforced by t. The noroute-map command deletes the route map.
	any order, and all match com	uration command has multiple formats. The match commands can be given in mands must "pass" to cause the route to be redistributed according to the set mands. The no forms of the match commands remove the specified match
	route-map command will be	parts. Any route that does not match at least one match clause relating to a ignored; that is, the route will not be advertised for outbound route maps and ind route maps. If you want to modify only some data, you must configure the h an explicit match specified.
Examples		s how to match routes that are advertised by routers and access servers at the st 5 and expanded access list 1335:
	Router(config)# route-mag Router(config-route-map)#	p R1 # match ip route-source 5 1335
Related Commands	Command	Description
	match as-path	Matches a BGP autonomous system path access list.
	match community	Matches a BGP community.
	match interface (IP)	Distributes any routes that have their next hop from one of the interfaces specified.
	match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on pockets

match ip redistribution-source

packets.

Filters the external EIGRP routes that have been advertised by routers and access servers at the address

specified by the access lists.

I

٦

Command	Description
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value for the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

match ipv6 address

To distribute IPv6 routes that have a prefix permitted by a prefix list or to specify an IPv6 access list to be used to match packets for policy-based routing (PBR) for IPv6, use the **match ipv6 address** command in route-map configuration mode. To remove the **match ipv6 address** entry, use the **no** form of this command.

match ipv6 address {**prefix-list** *prefix-list-name*| *access-list-name*}

no match ipv6 address

Syntax I)escri	ption
----------	--------	-------

I

prefix-list prefix-list-name	Specifies the name of an IPv6 prefix list.
access-list-name	Name of the IPv6 access list. Names cannot contain a space or quotation mark or begin with a numeric.

Command Default No routes are distributed based on the destination network number or an access list.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	12.2(2)T	This command was introduced.
	12.0(21)ST	This command was integrated into Cisco IOS Release 12.0(21)ST.
	12.0(22)S	This command was integrated into Cisco IOS Release 12.0(22)S.
	12.3(7)T	This command was modified. The access-list-name argument was added.
	12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
	12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
	12.2(33)SXI4	This command was modified. The prefix-list <i>prefix-list-name</i> keyword-argument pair argument is not supported in Cisco IOS Release 12.2(33)SXI4.
	Cisco IOS XE Release 3.2S	This command was integrated into Cisco IOS XE Release 3.2S.
	15.1(1)SY	This command was integrated into Cisco IOS Release 15.1(1)SY.

Usage Guidelines Use the **route-map** command and the **match** and **set** commands to define the conditions for redistributing routes from one routing protocol to another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the match criteria--the conditions under which redistribution is allowed for the current **route-map** command. The **set** commands specify the set actions, which are the particular redistribution actions to be performed if the criteria enforced by the **match** commands are met.

The **match ipv6 address** command can be used to specify either an access list or a prefix list. When using PBR, you must use the *access-list-name* argument; the **prefix-list** *prefix-list-name* keyword-argument pair argument will not work.

Examples

In the following example, IPv6 routes that have addresses specified by the prefix list named marketing are matched:

Device (config) # route-map name Device (config-route-map) # match ipv6 address prefix-list marketing In the following example, IPv6 routes that have addresses specified by an access list named marketing are matched:

Device(config) # route-map
Device(config-route-map) # match ipv6 address marketing

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match ipv6 address	Specifies an IPv6 access list to be used to match packets for PBR for IPv6.
match ipv6 next-hop	Distributes IPv6 routes that have a next-hop prefix permitted by a prefix list.
match ipv6 route-source	Distributes IPv6 routes that have been advertised by routers at an address specified by a prefix list.
match length	Bases policy routing on the Level 3 length of a packet.
match metric	Redistributes routes with the specified metric.
match route-type	Redistributes routes of the specified type.
route-map	Defines conditions for redistributing routes from one routing protocol into another.
set as-path	Modifies an autonomous system path for BGP routes.
set community	Sets the BGP community attribute.

I

Command	Description
set default interface	Specifies the default interface to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Specifies the default interface to output packets that pass a match clause of a route map for policy routing.
set ipv6 default next-hop	Specifies an IPv6 default next hop to which matching packets will be forwarded.
set ipv6 next-hop (PBR)	Indicates where to output IPv6 packets that pass a match clause of a route map for policy routing.
set ipv6 precedence	Sets the precedence value in the IPv6 packet header.
set level	Indicates where to import routes.
set local preference	Specifies a preference value for the autonomous system path.
set metric	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set tag	Sets a tag value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

match length

To base policy routing on the Level 3 length of a packet, use the **match length** command in route-map configuration mode. To remove the entry, use the **no** form of this command.

match length minimum-length maximum-length

no match length minimum-length maximum-length

Syntax Description

minimum-length	Minimum Level 3 length of the packet allowed for a match. The range is from 0 to 0x7FFFFFFF.
maximum-length	Maximum Level 3 length of the packet allowed for a match. The range is from 0 to 0x7FFFFFFF.

Command Default No policy routing occurs on the length of a packet.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.3(7)T	This command was modified. This command was updated for use in configuring IPv6 policy-based routing (PBR).
	12.28X	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	Cisco IOS XE Release 3.2S	This command was integrated into Cisco IOS XE Release 3.2S.
	15.1(1)SY	This command was integrated into Cisco IOS Release 15.1(1)SY.

Usage Guidelines

In IPv4, use the **ip policy route-map** interface configuration command, the **route-map** global configuration command, and the **match** and **set** route-map configuration commands to define the conditions for policy routing packets. The **ip policy route-map** command identifies a route map by name. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the **match criteria**—the conditions under which policy routing occurs. The **set** commands specify the **set actions**—the particular routing actions to perform if the criteria enforced by the **match** commands are met.

In PBR for IPv6, use the **ipv6 policy route-map** or **ipv6 local policy route-map** command to define conditions for policy routing packets.

In IPv4, the **match** route-map configuration command has multiple formats. The **match** commands can be issued in any order, and all **match** commands must "pass" to cause the packet to be routed according to the **set actions** given with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

In IPv4, you might want to base your policy routing on the length of packets so that your interactive traffic and bulk traffic are directed to different routers.

Examples

In the following example, packets 3 to 200 bytes long, inclusive, will be routed to FDDI interface 0:

```
interface serial 0
  ip policy route-map interactive
!
route-map interactive
match length 3 200
  set interface fddi 0
```

In the following example for IPv6, packets 3 to 200 bytes long, inclusive, will be routed to FDDI interface 0:

```
interface Ethernet0/0
   ipv6 policy-route-map interactive
!
route-map interactive
match length 3 200
   set interface fddi 0
```

Command	Description
ip local policy route-map	Identifies a route map to be used for policy routing on an interface.
ipv6 local policy route-map	Configures IPv6 PBR for IPv6 originated packets.
ipv6 policy route-map	Configures IPv6 PBR on an interface.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ipv6 address	Specifies an IPv6 access list to be used to match packets for IPv6 PBR.
match length	Bases policy routing on the Level 3 length of a packet.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol to another, or enables policy routing.

Related Commands

I

٦

Command	Description
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of route map for policy routing.
set ip default next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco software has no explicit route to a destination.
set ipv6 default next-hop	Specifies an IPv6 default next hop to which matching packets will be forwarded.
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing.
set ipv6 next-hop (PBR)	Indicates where to output IPv6 packets that pass a match clause of a route map for policy routing.
set ipv6 precedence	Sets the precedence value in the IPv6 packet header.

match metric (IP)

To redistribute r outes with the specified metric, use the **matchmetric** command in route-map configuration mode. To remove the entry for the redistributed route from the routing table, use the **no** form of this command.

match metric {*metric-value*| **external** *metric-value*} [+-*deviation-number*]

no match metric {*metric-value*| **external** *metric-value*} [+-*deviation-number*]

Syntax Description

metric-value	Internal route metric, which can be an Enhanced Interior Gateway Routing Protocol (EIGRP) five-part metric. The range is from 1 to 4294967295.
external	External protocol associated with a route and interpreted by a source protocol.
+- deviation-number	 (Optional) A standard deviation number that will offset the number configured for the metric-value argument. The deviation-number argument can be any number. There is no default. Note When you specify a deviation of the metric with the + and - keywords, the router will match any metric that falls inclusively in that range.

Command Default No filtering is performed on a metric value.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	11.2	This command was introduced.
	12.3(8)T	The external and +- keywords and <i>deviation-number</i> argument were added.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.

Usage Guidelines Use the **route-map** global configuration command and the **match** and **set** route-map configuration commands to define the conditions for redistributing routes from one routing protocol into another. Each **route-map**

command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current **route-map**command. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **match** route-map configuration command has multiple formats. The **match** commands can be given in any order, and all **match** commands must "pass" to cause the route to be redistributed according to the set actionsgiven with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

A route map can have several parts. Any route that does not match at least one **match** clause relating to a **route-map**command will be ignored; that is, the route will not be advertised for outbound route maps and will not be accepted for inbound route maps. If you want to modify only some data, you must configure a second route map section with an explicit match specified.

Note

An external protocol route metric is not the same as the EIGRP assigned route metric which is a figure computed using EIGRP vectorized metric components (delay, bandwidth, reliability, load, and MTU).

Examples

In the following example, routes with the metric 5 will be redistributed:

```
Router(config)# route-map name
Router(config-route-map)# match metric 5
In the following example, any metric that falls inclusively in the range from 400 to 600 is matched:
```

```
Router(config) # route-map name
```

Router (config-route-map) # match metric 500 +- 100 The following example shows how to configure a route map to match an EIGRP external protocol metric route with an allowable deviation of 100, a source protocol of BGP, and an autonomous system 45000. When the two match clauses are true, the tag value of the destination routing protocol is set to 5. The route map is used to distribute incoming packets for an EIGRP process.

```
Router(config)# route-map metric_range
Router(config-route-map)# match metric external 500 +- 100
Router(config-route-map)# match source-protocol bgp 45000
Router(config-route-map)# set tag 5
!
Router(config)# router eigrp 45000
Router(config-router)# network 172.16.0.0
Router(config-router)# distribute-list route-map metric_range in
```

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes any routes that have their next hop out one of the interfaces specified.

ſ

Command	Description
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.

1

match route-type (IP)

To redistribute routes of the specified type, use the **matchroute-type** command in route-map configuration mode. To remove the route type entry, use the **no** form of this command.

match route-type {local internal external [type-1] type-2] level-1 level-2}

no match route-type {local| internal| external [type-1| type-2]| level-1| level-2}

Syntax Description

local	Locally generated Border Gateway Protocol (BGP) routes.
internal	Open Shortest Path First (OSPF) intra-area and interarea routes or Enhanced Interior Gateway Routing Protocol (EIGRP) internal routes.
external [type-1 type-2	OSPF external routes, or EIGRP external routes. For OSPF, the externaltype-1 keyword matches only Type 1 external routes and the externaltype-2 keyword matches only Type 2 external routes.
level-1	Intermediate System-to-Intermediate System (IS-IS) Level 1 routes.
level-2	IS-IS Level 2 routes.

Command Default This command is disabled by default.

Command Modes Route-map configuration

Command History

Release	Modification	
10.0	This command was introduced.	
11.2	The local and external [type-1 type-2] keywords were added.	
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.	
12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.	

Usage Guidelines

Use the **route-map** global configuration command, and the **match** and **set** route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current **route-map**command. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **match** route-map configuration command has multiple formats. The **match** commands can be given in any order, and all **match** commands must "pass" to cause the route to be redistributed according to the *setactions* given with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

A route map can have several parts. Any route that does not match at least one **match** clause relating to a **route-map** command will be ignored; that is, the route will not be advertised for outbound route maps and will not be accepted for inbound route maps. If you want to modify only some data, you must configure second route map section with an explicit match specified.

Examples The following

The following example redistributes internal routes:

route-map name match route-type internal

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes any routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match tag	Redistributes routes in the routing table that match the specified tags.

I

٦

Command	Description
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

match tag

To filter routes that match specific route tags, use the **match tag** command in route-map configuration mode. To remove the tag entry, use the **no** form of this command.

 match tag {tag-value| tag-value-dotted-decimal} [... tag-value | ... tag-value-dotted-decimal]

 no match tag {tag-value| tag-value-dotted-decimal} [... tag-value | ... tag-value-dotted-decimal]

Syntax Description

tag-value	Route tag value in plain decimals. The valid range is from 0 to 4294967295.
tag-value-dotted-decimal	Route tag value in dotted decimals. The valid range is from 0.0.0.0 to 255.255.255.255.

Command Default No match tag values are defined.

Command Modes Route-map configuration (config-route-map)

ification
command was introduced.
command was integrated into Cisco IOS Release 12.2(33)SRA.
command is supported in the Cisco IOS Release 12.2SX train. Support specific 12.2SX release of this train depends on your feature set, form, and platform hardware.
command was implemented on Cisco ASR 1000 Series Aggregation ices Routers.
command was integrated into Cisco IOS Release 15.1(2)S.
command was modified. The <i>tag-value-dotted-decimal</i> argument was d to support tag values in dotted-decimal format.
command was modified. The <i>tag-value-dotted-decimal</i> argument was d to support tag values in dotted-decimal format.

Usage Guidelines

I

Ellipses (...) in the command syntax indicate that your command input can include multiple values for the *tag-value* and the *tag-value-dotted-decimal* arguments.

Examples

The following example shows how to match a route with a tag value of 5:

Device (config) # route-map name Device (config-route-map) # match tag 5 The following example shows how to match a route with a tag value of 10.10.10.10:

```
Device (config) # route-map name
Device (config-route-map) # match tag 10.10.10.10
```

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path specified by an access list.
match community	Matches a BGP community.
match ip address	Distributes any route that has a destination address that performs policy routing on packets and is permitted by a standard or extended access list.
route-map (IP)	Defines conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for autonomous system paths that pass a route map.
set metric (BGP-OSPF-RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value for a route.

maximum-paths

maximum-paths

To control the maximum number of parallel routes that an IP routing protocol can support, use the **maximum-paths** command in router address family topology or router configuration mode. To restore the default number of parallel routes, use the **no** form of this command.

maximum-paths number-of-paths

no maximum-paths number-of-paths

Syntax Description	number-of-paths	Maximum number of parallel routes that an IP routing protocol installs in a routing table. Valid values vary by Cisco IOS release and platform. For more information on valid values, use the question mark (?) online help function.
Command Default	The default number of parallel	routes vary by Cisco IOS release and platform.
Command Modes	Router address family topology	configuration (config-router-af-topology)
	Router configuration (config-ro	puter)
Command History	Release	Modification
	12.2(8)T	This command was introduced.
	12.2(14)SX	This command was implemented on the Supervisor Engine 720.
	12.2(17d)SXB	Support for this command on the Supervisor Engine 2 was extended to Cisco IOS Release 12.2(17d)SXB.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2(33)SRB	This command was modified. This command was made available in router address family topology configuration mode.
	12.2(33)SXH	This command was modified. The maximum number of paths was changed from 8 to 16 for Cisco IOS Release 12.2(33)SXH.
	Cisco IOS XE Release 3.5S	In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router.

Usage Guidelines Release 12.2(33)SRB

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the **maximum-paths** command in router address family topology configuration mode for this Open Shortest Path First (OSPF) router configuration command to become aware of the topology.

Examples The following example shows how to allow a maximum of 16 paths to a destination in an OSPF routing process:

Router(config)# router ospf 3
Router(config-router)# maximum-paths 16

nsf

To enable and configure Cisco NSF, use the **nsf** command in router configuration mode. To disable NSF, uses the **no** form of this command.

nsf [enforce global]

nsf [{cisco| ietf}| interface wait seconds| interval minutes| t3 [adjacency| manual seconds]] no nsf

Syntax Description

enforce global	(Optional) Cancels OSPF NSF restart when non-NSF-aware neighbors are detected.
cisco	Specifies the Cisco proprietary IS-IS NSF method of checkpointing if the active RP fails over.
ietf	Specifies the IETF IS-IS NSF method of protocol modification if the active RP fails over.
interface wait seconds	(Optional) Specifies how long to wait for an interface to come up after failover before it proceeds with the Cisco NSF process; valid values are from 1 to 60 seconds.
interval minutes	(Optional) Specifies how long to wait after a route processor stabilizes before restarting; valid values are from 0 to 1440 minutes.
t3 adjacency	(Optional) Specifies that the time that IETF NSF waits for the LSP database to synchronize is determined by the adjacency holdtime advertised to the neighbors of the specified RP before switchover.
t3 manual seconds	(Optional) Specifies the time to wait after the NSF database synchronizes before informing other nodes to remove the restarting node from consideration as a transit; valid values are from 5 to 3600 seconds.

Command Default

The default settings are as follows:

- NSF is disabled.
- enforce global --Enabled.
- interval *minutes*--5 minutes.
- interface waitseconds--10 seconds.

nsf

• t3 manual *seconds*--30 seconds.

Command Modes Router configuration

Command History	Release	Modification
	12.2(18)SXD	Support for this command was introduced on the Supervisor Engine 720.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.

Usage Guidelines

The **nsf** command is not supported on Cisco 7600 series routers that are configured with a Supervisor Engine 2.

The **nsfinterfacewait**command can be used if Cisco proprietary IS-IS NSF is configured or if the Internet Engineering Task Force (IETF) IS-IS NSF is enabled using the **nsft3** manual command. You can use this command if an interface is slow to come up.

Note

Cisco NSF is required only if the Cisco 7600 series router is expected to perform Cisco NSF during a restart. If the Cisco 7600 series router is expected to cooperate with a neighbor that is doing a Cisco NSF restart only, the switch must be NSF capable by default (running a version of code that supports Cisco NSF), but Cisco NSF does not have to be configured on the switch.

The **nsf** commands are a subset of the **router** command and affects all the interfaces that are covered by the designated process. Cisco NSF supports the BGP, OSPF, IS-IS, and EIGRP protocols. The configuration commands that enable NSF processing are as follows:

- nsf under the routerospf command
- nsf ietf under the routerisis command
- bgp graceful-restart under the routerbgp command

These commands must be issued as part of the router's running configuration. During the restart, these commands are restored to activate the NSF processing.

The [{cisco | ieff } | interface waitseconds | interval *minutes* | t3 [adjacency | manual *seconds*] keywords and arguments apply to IS-IS only.

The {enforceglobal} keywords apply to OSPF only.

BGP NSF Guidelines

BGP support in NSF requires that neighbor networking devices be NSF-aware devices; that is, they must have the graceful restart capability and advertise that capability in the OPEN message during session establishment. If an NSF-capable router discovers that a particular BGP neighbor does not have the graceful restart capability enabled, it will not establish an NSF-capable session with that neighbor. All other neighbors that have a graceful restart capability will continue to have NSF-capable sessions with this NSF-capable networking device. Enter the **bgpgraceful-restart** router configuration command to enable the graceful restart capability.

I

EIRGP NSF Guidelines

A router may be an NSF-aware router but may not be participating in helping out the NSF restarting neighbor because it is coming up from a cold start.

IS-IS NSF Guidelines

If you configure IETF on the networking device, but neighbor routers are not IETF-compatible, NSF will abort after the switchover.

Use these two keywords when configuring IS-IS NSF:

- ietf --Internet Engineering Task Force IS-IS--After a supervisor engine switchover, the NSF-capable router sends the IS-IS NSF restart requests to the neighboring NSF-aware devices.
- cisco --Cisco IS-IS. Full adjacency and LSP information is saved (checkpointed) to the standby supervisor engine. After a switchover, the newly active supervisor engine maintains its adjacencies using the checkpointed data to quickly rebuild its routing tables.

OSPF NSF Guidelines

OSPF NSF requires that all neighbor networking devices be NSF-aware devices. If an NSF-capable router discovers that it has non-NSF aware neighbors on a particular network segment, it will disable the NSF capabilities for that segment. The other network segments that are composed entirely of NSF-capable or NSF-aware routers will continue to provide NSF capabilities.

OSPF NSF supports NSF/SSO for IPv4 traffic only. OSPFv3 is not supported with NSF/SSO. Only OSPFv2 is supported with NSF/SSO.

Examples This example shows how to enable NSF for all OSPF-process interfaces:

Router(config)# router ospf 109 Router(config-router)# nsf This example shows how to disable NSF for all OSPF-process interfaces:

Router(config)# router ospf 109
Router(config-router)# no nsf

Related Commands

Command	Description
router	Enables a routing process.

nsf

passive-interface

To disable sending routing updates on an interface, use the **passive-interface** command in router configuration mode. To re-enable the sending of routing updates, use the **no** form of this command.

passive-interface commandpassive-interface [default] i nterface-type interface-number

no passive-interface interface-type interface-number

Syntax Description

default	(Optional) Causes all interfaces to become passive.
interface-type	Interface type.
interface-number	Interface number.

Command Default Routing updates are sent on the interface.

Command Modes Router configuration (config-router)

Command History	Release	Modification
	10.0	This command was introduced.
	12.0	This command was modified. The default keyword was added.
	12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	Cisco IOS XE Release 2.1	This command was integrated into Cisco IOS XE Release 2.1.
	15.1(2)S	This command was integrated into Cisco IOS Release 15.1(2)S.

Usage Guidelines

If you disable the sending of routing updates on an interface, the particular subnet will continue to be advertised to other interfaces, and updates from other routers on that interface continue to be received and processed.

The **default** keyword sets all interfaces as passive by default. You can then configure individual interfaces where adjacencies are desired using the **nopassive-interface** command. The **default** keyword is useful in

Internet service provider (ISP) and large enterprise networks where many of the distribution routers have more than 200 interfaces.

For the Open Shortest Path First (OSPF) protocol, OSPF routing information is neither sent nor received through the specified router interface. The specified interface address appears as a stub network in the OSPF domain.

For the Intermediate System-to-Intermediate System (IS-IS) protocol, this command instructs IS-IS to advertise the IP addresses for the specified interface without actually running IS-IS on that interface. The **no** form of this command for IS-IS disables advertising IP addresses for the specified address.

Note

For IS-IS you must keep at least one active interface and configure the interface with the **iprouterisis** command.

The use of the **passive-interface** command in Enhanced Interior Gateway Routing Protocol (EIGRP) suppresses the exchange of hello packets on the interface and thus stops routing updates from being advertised, and it also suppresses incoming routing updates. For more information on passive interfaces, see http://www.cisco.com/en/US/tech/tk365/technologies tech note09186a0080093f0a.shtml.

Examples

The following example sends EIGRP updates to all interfaces on network 10.108.0.0 except Ethernet interface 1:

```
router eigrp 109
network 10.108.0.0
passive-interface ethernet 1
```

The following configuration enables IS-IS on Ethernet interface 1 and serial interface 0 and advertises the IP addresses of Ethernet interface 0 in its link-state protocol data units (PDUs):

```
router isis Finance
passive-interface Ethernet 0
interface Ethernet 1
ip router isis Finance
interface serial 0
ip router isis Finance
The following example sets all interfaces as passive and then activates Ethernet interface 0:
```

router ospf 100
passive-interface default
no passive-interface ethernet0
network 10.108.0.1 0.0.0.255 area 0

redistribute (IP)

To redistribute routes from one routing domain into another routing domain, use the **redistribute** command in the appropriate configuration mode. To disable all or some part of the redistribution (depending on the protocol), use the **no** form of this command. See the "Usage Guidelines" section for detailed, protocol-specific behaviors.

redistribute protocol [process-id] {level-1| level-2 | level-2 } [autonomous-system-number] [metric {metric-value | transparent }] [metric-type type-value] [match {internal | external 1 | external 2 }] [tag tag-value] [route-map map-tag] [subnets] [nssa-only]

no redistribute protocol [process-id] {level-1 | level-2 | level-2 } [autonomous-system-number] [metric {metric-value | transparent }] [metric-type type-value] [match {internal | external 1 | external 2 }] [tag tag-value] [route-map map-tag] [subnets] [nssa-only]

Syntax Description	protocol	Source protocol from which routes are being redistributed. It can be one of the following keywords: bgp , connected , eigrp , isis , mobile , ospf , rip , or static [ip].
		The static [ip] keyword is used to redistribute IP static routes. The optional ip keyword is used when redistributing into the Intermediate System-to-Intermediate System (IS-IS) protocol.
		The connected keyword refers to routes that are established automatically by virtue of having enabled IP on an interface. For routing protocols such as Open Shortest Path First (OSPF) and IS-IS, these routes will be redistributed as external to the autonomous system.
	process-id	(Optional) For the bgp or eigrp keyword, this is an autonomous system number, which is a 16-bit decimal number.
		For the isis keyword, this is an optional <i>tag</i> value that defines a meaningful name for a routing process. You can specify only one IS-IS process per router. Creating a name for a routing process means that you use names when configuring routing.
		For the ospf keyword, this is an appropriate OSPF process ID from which routes are to be redistributed. This identifies the routing process. This value takes the form of a nonzero decimal number.
		For the rip keyword, no <i>process-id</i> value is needed.
		By default, no process ID is defined.
	level-1	Specifies that, for IS-IS, Level 1 routes are redistributed into other IP routing protocols independently.

I

level-1-2	Specifies that, for IS-IS, both Level 1 and Level 2 routes are redistributed into other IP routing protocols.
level-2	Specifies that, for IS-IS, Level 2 routes are redistributed into other IP routing protocols independently.
autonomous-system-number	(Optional) Autonomous system number for the redistributed route. The range is from 1 to 65535.
	 In Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXI1, Cisco IOS XE Release 2.4, and later releases, 4-byte autonomous system numbers are supported in the range from 65536 to 4294967295 in asplain notation and in the range from 1.0 to 65535.65535 in asdot notation.
	• In Cisco IOS Release 12.0(32)S12, 12.4(24)T, and Cisco IOS XE Release 2.3, 4-byte autonomous system numbers are supported in the range from 1.0 to 65535.65535 in asdot notation only.
	For more details about autonomous system number formats, see the router bgp command.
metric metric-value	(Optional) When redistributing from one OSPF process to another OSPF process on the same router, the metric will be carried through from one process to the other if no metric value is specified. When redistributing other processes to an OSPF process, the default metric is 20 when no metric value is specified. The default value is 0.
metric transparent	(Optional) Causes Routing Information Protocol (RIP) to use the routing table metric for redistributed routes as the RIP metric.
metric-type type value	(Optional) For OSPF, specifies the external link type associated with the default route advertised into the OSPF routing domain. It can be one of two values:
	• 1—Type 1 external route
	• 2—Type 2 external route
	If a metric-type is not specified, the Cisco IOS software adopts a Type 2 external route.
	For IS-IS, it can be one of two values:
	• internal—IS-IS metric that is < 63.
	• external—IS-IS metric that is > 64 < 128.
	The default is internal .

1

match {internal external1 external2}	(Optional) Specifies the criteria by which OSPF routes are redistributed into other routing domains. It can be one of the following:
	• internal —Routes that are internal to a specific autonomous system.
	• external 1—Routes that are external to the autonomous system, but are imported into OSPF as Type 1 external routes.
	• external 2—Routes that are external to the autonomous system, but are imported into OSPF as Type 2 external routes.
	The default is internal .
tag tag-value	(Optional) Specifies the 32-bit decimal value attached to each external route. This is not used by OSPF itself. It may be used to communicate information between Autonomous System Boundary Routers (ASBRs). If none is specified, the remote autonomous system number is used for routes from Border Gateway Protocol (BGP) and Exterior Gateway Protocol (EGP); for other protocols, zero (0) is used.
route-map	(Optional) Specifies the route map that should be interrogated to filter the importation of routes from this source routing protocol to the current routing protocol. If not specified, all routes are redistributed. If this keyword is specified, but no route map tags are listed, no routes will be imported.
map-tag	(Optional) Identifier of a configured route map.
subnets	(Optional) For redistributing routes into OSPF, the scope of redistribution for the specified protocol. By default, no subnets are defined.
nssa-only	(Optional) Sets the nssa-only attribute for all routes redistributed into OSPF.

Command Default Route redistribution is disabled.

Command ModesRouter configuration (config-router)Address family configuration (config-af)Address family topology configuration (config-router-af-topology)

I

Command History	Release	Modification
	10.0	This command was introduced.
	12.0(5)T	This command was modified. Address family configuration mode was added.
	12.0(22)S	This command was modified. Address family support under EIGRP was added.
	12.2(15)T	This command was modified. Address family support under EIGRP was added.
	12.2(18)S	This command was modified. Address family support under EIGRP was added.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2(33)SRB	This command was modified. Address family topology support under EIGRP was added.
	12.2(14)SX	This command was integrated into Cisco IOS Release 12.2(14)SX.
	12.0(32)S12	This command was modified. Support for 4-byte autonomous system numbers in asdot notation only was added.
	12.0(32)SY8	This command was modified. Support for 4-byte autonomous system numbers in asplain and asdot notation was added.
	12.4(24)T	This command was modified. Support for 4-byte autonomous system numbers in asdot notation only was added.
	Cisco IOS XE Release 2.3	This command was modified. Support for 4-byte autonomous system numbers in asdot notation only was added.
	12.2(33)SXI1	This command was modified. Support for 4-byte autonomous system numbers in asplain and asdot notation was added.
	12.0(33)83	This command was modified. Support for asplain notation was added, and the default format for 4-byte autonomous system numbers is asplain.
	Cisco IOS XE Release 2.4	This command was modified. Support for asplain notation was added, and the default format for 4-byte autonomous system numbers is asplain.
	15.0(1)M	This command was modified. The nssa-only keyword was added.
	12.2(33)SRE	This command was modified. Support for 4-byte autonomous system numbers in asplain and asdot notation was added.

Release	Modification
15.1(1)SG	This command was modified. Support for 4-byte autonomous system numbers in asplain and asdot notation was added.
Cisco IOS XE Release 3.3SG	This command was modified. Support for 4-byte autonomous system numbers in asplain and asdot notation was added.
15.1(2)SNG	This command was implemented on the Cisco ASR 901 Series Aggregation Services Routers

Usage Guidelines

Using the no Form of the redistribute Command

Caution

Removing options that you have configured for the **redistribute** command requires careful use of the **no** form of the **redistribute** command to ensure that you obtain the result that you are expecting. Changing or disabling any keyword may or may not affect the state of other keywords, depending on the protocol.

It is important to understand that different protocols implement the **no** version of the **redistribute** command differently:

- In BGP, OSPF, and RIP configurations, the **no redistribute** command removes only the specified keywords from the **redistribute** commands in the running configuration. They use the *subtractive keyword* method when redistributing from other protocols. For example, in the case of BGP, if you configure **no redistribute static route-map interior**, *only the route map* is removed from the redistribution, leaving **redistribute static** in place with no filter.
- The **no redistribute isis** command removes the IS-IS redistribution from the running configuration. IS-IS removes the entire command, regardless of whether IS-IS is the redistributed or redistributing protocol.
- EIGRP used the subtractive keyword method prior to EIGRP component version rel5. Starting with EIGRP component version rel5, the **no redistribute** command removes the entire **redistribute** command when redistributing from any other protocol.

Additional Usage Guidelines for the redistribute Command

A router receiving a link-state protocol with an internal metric will consider the cost of the route from itself to the redistributing router plus the advertised cost to reach the destination. An external metric only considers the advertised metric to reach the destination.

Routes learned from IP routing protocols can be redistributed at Level 1 into an attached area or at Level 2. The **level-1-2** keyword allows both Level 1 and Level 2 routes in a single command.

Redistributed routing information must be filtered by the **distribute-list out** router configuration command. This guideline ensures that only those routes intended by the administrator are passed along to the receiving routing protocol.

Whenever you use the **redistribute** or the **default-information** router configuration commands to redistribute routes into an OSPF routing domain, the router automatically becomes an ASBR. However, an ASBR does not, by default, generate a default route into the OSPF routing domain. When routes are redistributed into OSPF from protocols other than OSPF or BGP, and no metric has been specified with the **metric-type** keyword and *type-value* argument, OSPF will use 20 as the default metric. When routes are redistributed into OSPF from BGP, OSPF will use 1 as the default metric. When routes are redistributed from one OSPF process to another OSPF process, autonomous system external and not-so-stubby-area (NSSA) routes will use 20 as the default metric. When intra-area and inter-area routes are redistributed between OSPF processes, the internal OSPF metric from the redistribution source process is advertised as the external metric in the redistribution destination process. (This is the only case in which the routing table metric will be preserved when routes are redistributed into OSPF.)

When routes are redistributed into OSPF, only routes that are not subnetted are redistributed if the **subnets** keyword is not specified.

On a router internal to an NSSA area, the **nssa-only** keyword causes the originated type-7 NSSA LSAs to have their propagate (P) bit set to zero, which prevents area border routers from translating these LSAs into type-5 external LSAs. On an area border router that is connected to an NSSA and normal areas, the **nssa-only** keyword causes the routes to be redistributed only into the NSSA areas.

Routes configured with the **connected** keyword affected by this **redistribute** command are the routes not specified by the **network** router configuration command.

You cannot use the **default-metric** command to affect the metric used to advertise connected routes.

Note

The **metric** value specified in the **redistribute** command supersedes the **metric** value specified using the **default-metric** command.

The default redistribution of interior gateway protocol (IGP) or Exterior Gateway Protocol (EGP) into BGP is not allowed unless the **default-information originate** router configuration command is specified.

Release 12.2(33)SRB

If you plan to configure the Multi-Topology Routing (MTR) feature, you need to enter the **redistribute** command in address family topology configuration mode in order for this OSPF configuration command to become topology-aware.

4-Byte Autonomous System Number Support

In Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)XNE, 12.2(33)SXI1, Cisco IOS XE Release 2.4, and later releases, the Cisco implementation of 4-byte autonomous system numbers uses asplain—65538 for example—as the default regular expression match and output display format for autonomous system numbers, but you can configure 4-byte autonomous system numbers in both the asplain format and the asdot format as described in RFC 5396. To change the default regular expression match and output display of 4-byte autonomous system numbers to asdot format, use the **bgp asnotation dot** command.

In Cisco IOS Release 12.0(32)S12, 12.4(24)T, and Cisco IOS XE Release 2.3, the Cisco implementation of 4-byte autonomous system numbers uses asdot—1.2, for example—as the only configuration format, regular expression match, and output display, with no asplain support.

Examples The following example shows how OSPF routes are redistributed into a BGP domain:

Router(config)# router bgp 109
Router(config-router)# redistribute ospf

The following example shows how to redistribute EIGRP routes into an OSPF domain:

```
Router(config)# router ospf 110
Router(config-router)# redistribute eigrp
```

The following example shows how to redistribute the specified EIGRP process routes into an OSPF domain. The EIGRP-derived metric will be remapped to 100 and RIP routes to 200.

```
Router(config)# router ospf 109
Router(config-router)# redistribute eigrp 108 metric 100 subnets
Router(config-router)# redistribute rip metric 200 subnets
```

The following example shows how to configure BGP routes to be redistributed into IS-IS. The link-state cost is specified as 5, and the metric type is set to external, indicating that it has lower priority than internal metrics.

```
Router(config)# router isis
Router(config-router)# redistribute bgp 120 metric 5 metric-type external
```

In the following example, network 172.16.0.0 will appear as an external LSA in OSPF 1 with a cost of 100 (the cost is preserved):

```
Router(config)# interface ethernet 0
Router(config-if)# ip address 172.16.0.1 255.0.0.0
Router(config-if)# exit
Router(config)# ip ospf cost 100
Router(config)# interface ethernet 1
Router(config)# ip address 10.0.0.1 255.0.0.0
!
Router(config)# router ospf 1
Router(config-router)# network 10.0.0.0 0.255.255.255 area 0
Router(config-router)# redistribute ospf 2 subnet
Router(config)# router ospf 2
Router(config-router)# network 172.16.0.0 0.255.255.255 area 0
```

The following example shows how BGP routes are redistributed into OSPF and assigned the local 4-byte autonomous system number in asplain format. This example requires Cisco IOS Release 12.0(32)SY8, 12.0(33)S3, 12.2(33)SRE, 12.2(33)SXI1, Cisco IOS XE Release 2.4, or a later release.

```
Router(config)# router ospf 2
Router(config-router)# redistribute bgp 65538
```

The following example shows how to remove the **connected metric 1000 subnets** options from the **redistribute connected metric 1000 subnets** command and leave the **redistribute connected** command in the configuration:

Router(config-router) # no redistribute connected metric 1000 subnets

The following example shows how to remove the **metric 1000** options from the **redistribute connected metric 1000 subnets** command and leave the **redistribute connected subnets** command in the configuration:

Router(config-router) # no redistribute connected metric 1000

The following example shows how to remove the **subnets** option from the **redistribute connected metric 1000 subnets** command and leave the **redistribute connected metric 1000** command in the configuration:

Router(config-router) # no redistribute connected subnets

The following example shows how to remove the **redistribute connected** command, and any of the options that were configured for the **redistribute connected** command, from the configuration:

```
Router(config-router) # no redistribute connected
```

The following example shows how EIGRP routes are redistributed into an EIGRP process in a named EIGRP configuration:

```
Router(config) # router eigrp virtual-name
Router(config-router) # address-family ipv4 autonomous-system 1
Router(config-router-af) # topology base
Router(config-router-af-topology) # redistribute eigrp 6473 metric 1 1 1 1 1
```

The following example shows how to set and disable the redistributions in EIGRP configuration. Note that, in the case of EIGRP, the **no** form of the commands removes the entire set of **redistribute** commands from the running configuration.

```
Router(config) # router eigrp 1
Router(config-router) # network 0.0.0.0
Router(config-router) # redistribute eigrp 2 route-map x
Router(config-router) # redistribute ospf 1 route-map x
Router(config-router) # redistribute bgp 1 route-map x
Router(config-router) # redistribute isis level-2 route-map x
Router(config-router) # redistribute rip route-map x
Router(config) # router eigrp 1
Router(config-router) # no redistribute eigrp 2 route-map x
Router(config-router) # no redistribute ospf 1 route-map x
Router(config-router) # no redistribute bgp 1 route-map x
Router(config-router) # no redistribute isis level-2 route-map x
Router(config-router) # no redistribute rip route-map x
Router(config-router)# end
Router# show running-config | section router eigrp 1
router eigrp 1
 network 0.0.0.0
```

The following example shows how to set and disable the redistributions in OSPF configuration. Note that the **no** form of the commands removes only the specified keywords from the **redistribute** command in the running configuration.

```
Router(config) # router ospf 1
Router(config-router) # network 0.0.0.0
Router(config-router) # redistribute eigrp 2 route-map x
Router(config-router) # redistribute ospf 1 route-map x
Router(config-router) # redistribute bgp 1 route-map x
Router(config-router) # redistribute isis level-2 route-map x
Router(config-router) # redistribute rip route-map x
Router(config) # router ospf 1
Router (config-router) # no redistribute eigrp 2 route-map x
Router(config-router) # no redistribute ospf 1 route-map x
Router(config-router) # no redistribute bgp 1 route-map x
Router(config-router) # no redistribute isis level-2 route-map x
Router(config-router) # no redistribute rip route-map x
Router(config-router)# end
Router# show running-config | section router ospf 1
router ospf 1
 redistribute eigrp 2
 redistribute ospf 1
 redistribute bgp 1
 redistribute rip
 network 0.0.0.0
```

The following example shows how to remove only the route map filter from the redistribution in BGP; redistribution itself remains in force without a filter:

Router(config)# router bgp 65000 Router(config-router)# no redistribute eigrp 2 route-map x

The following example shows how to remove the EIGRP redistribution to BGP:

Router(config)# router bgp 65000
Router(config-router)# no redistribute eigrp 2

Related Commands

Command	Description
address-family (EIGRP)	Enters address family configuration mode to configure an EIGRP routing instance.
address-family ipv4 (BGP)	Places the router in address family configuration mode for configuring routing sessions such as BGP, RIP, or static routing sessions that use standard IPv4 address prefixes.
address-family vpnv4	Places the router in address family configuration mode for configuring routing sessions such as BGP, RIP, or static routing sessions that use standard VPNv4 address prefixes.
bgp asnotation dot	Changes the default display and the regular expression match format of BGP 4-byte autonomous system numbers from asplain (decimal values) to dot notation.
default-information originate (BGP)	Allows the redistribution of network 0.0.0.0 into BGP.
default-information originate (IS-IS)	Generates a default route into an IS-IS routing domain.
default-information originate (OSPF)	Generates a default route into an OSPF routing domain.
distribute-list out (IP)	Suppresses networks from being advertised in updates.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
router bgp	Configures the BGP routing process.
router eigrp	Configures the EIGRP address-family process.
show route-map	Displays all route maps configured or only the one specified.

I

Command	Description
topology (EIGRP)	Configures an EIGRP process to route IP traffic under the specified topology instance and enters address family topology configuration mode.

route-map

To define conditions for redistributing routes from one routing protocol to another routing protocol, or to enable policy routing, use the **route-map** command in global configuration mode. To delete an entry, use the **no** form of this command.

route-map map-tag [permit| deny] [sequence-number]
no route-map map-tag [permit| deny] [sequence-number]

Syntax Description

map-tag	Name for the route map.
permit	(Optional) Permits only routes matching the route map to be forwarded or redistributed.
deny	(Optional) Blocks routes matching the route map from being forwarded or redistributed.
sequence-number	(Optional) Number that indicates the position a new route map will have in the list of route maps already configured with the same name.

Command Default Policy routing is not enabled and conditions for redistributing routes from one routing protocol to another routing protocol are not configured.

Command Modes Global configuration (config)

Command History

Modification
This command was introduced.
This command was updated for use in configuring IPv6 policy-based routing (PBR).
This command was integrated into Cisco IOS Release 12.2(25)SG.
This command was integrated into Cisco IOS Release 12.2(33)SRB.
This command was implemented on Cisco ASR 1000 Series Aggregation Services Routers.
This command was modified. It was integrated into Cisco IOS Release 12.2(33)SXI4.
-

Release	Modification
15.1(1)SY	This command was integrated into Cisco IOS Release 15.1(1)SY.

Usage Guidelines

Use the **route-map** command to enter route-map configuration mode.

Use route maps to redistribute routes or to subject packets to policy routing. Both purposes are described in this section.

Redistribution

Use the **route-map** global configuration command and the **match** and **set** route-map configuration commands to define the conditions for redistributing routes from one routing protocol to another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *match criteria*--the conditions under which redistribution is allowed for the current **route-map**command. The **set** commands specify the *set actions*--the particular redistribution actions to be performed if the criteria enforced by the **match** commands are met. The **no route-map** command deletes the route map.

The **match** route-map configuration command has multiple formats. The **match** commands can be given in any order, and all **match** commands must "pass" to cause the route to be redistributed according to the *set actions* given with the **set** commands. The **no** forms of the **match** commands remove the specified match criteria.

Use route maps when you want detailed control over how routes are redistributed between routing processes. The destination routing protocol is the one you specify with the **router** global configuration command. The source routing protocol is the one you specify with the **redistribute** router configuration command. See the "Examples" section for an illustration of how route maps are configured.

When you are passing routes through a route map, a route map can have several parts. Any route that does not match at least one **match** clause relating to a **route-map** command will be ignored; that is, the route will not be advertised for outbound route maps and will not be accepted for inbound route maps. If you want to modify only some data, you must configure a second route map section with an explicit match specified.

The **redistribute** router configuration command uses the name specified by the *map-tag* argument to reference a route map. Multiple route maps may share the same map tag name.

If the match criteria are met for this route map, and the **permit** keyword is specified, the route is redistributed as controlled by the set actions. In the case of policy routing, the packet is policy routed. If the match criteria are not met, and the **permit** keyword is specified, the next route map with the same map tag is tested. If a route passes none of the match criteria for the set of route maps sharing the same name, it is not redistributed by that set.

If the match criteria are met for the route map and the **deny** keyword is specified, the route is not redistributed. In the case of policy routing, the packet is not policy routed, and no further route maps sharing the same map tag name will be examined. If the packet is not policy routed, the normal forwarding algorithm is used.

Policy Routing

Another purpose of route maps is to enable policy routing. Use the **ip policy route-map** or **ipv6 policy route-map** command, in addition to the **route-map** command, and the **match** and **set** commands to define the conditions for policy routing packets. The **match** commands specify the conditions under which policy routing occurs. The **set** commands specify the routing actions to be performed if the criteria enforced by the **match** commands are met. You might want to policy route packets some way other than the obvious shortest path.

The sequence-number argument works as follows:

- 1 If no entry is defined with the supplied tag, an entry is created with the *sequence-number* argument set to 10.
- 2 If only one entry is defined with the supplied tag, that entry becomes the default entry for the following **route-map** command. The *sequence-number* argument of this entry is unchanged.
- **3** If more than one entry is defined with the supplied tag, an error message is printed to indicate that the *sequence-number* argument is required.

If the **no route-map** *map-tag* command is specified (with no *sequence-number* argument), the whole route map is deleted.

Examples The following example shows how to redistribute Routing Information Protocol (RIP) routes with a hop count equal to 1 to Open Shortest Path First (OSPF). These routes will be redistributed to OSPF as external link-state advertisements (LSAs) with a metric of 5, metric type of Type 1, and a tag equal to 1.

Device(config)# router ospf 109
Device(config-router)# redistribute rip route-map rip-to-ospf
Device(config-router)# exit
Device(config)# route-map rip-to-ospf permit
Device(config-route-map)# match metric 1
Device(config-route-map)# set metric 5
Device(config-route-map)# set metric-type type1
Device(config-route-map)# set tag 1

The following example for IPv6 shows how to redistribute RIP routes with a hop count equal to 1 to OSPF. These routes will be redistributed into OSPF as external LSAs with a tag equal to 42 and a metric type equal to type1.

```
Device (config) # ipv6 router ospf 1
Device (config-router) # redistribute rip one route-map rip-to-ospfv3
Device (config-router) # exit
Device (config) # route-map rip-to-ospfv3
Device (config-route-map) # match tag 42
Device (config-route-map) # set metric-type type1
The following named configuration example shows how to redistribute Enhanced Interior Gateway Routing
Protocol (EIGRP) addresses with a hop count equal to 1. These addresses are redistributed to EIGRP as
```

external with a metric of 5 and a tag equal to 1:

```
Device (config) # router eigrp virtual-name1
Device (config-router) # address-family ipv4 autonomous-system 4453
Device (config-router-af) # topology base
Device(config-router-af-topology) # redistribute eigrp 6473 route-map
virtual-name1-to-virtual-name2
Device (config-router-af-topology) # exit-address-topology
Device(config-router-af) # exit-address-family
Device(config-router) # router eigrp virtual-name2
Device (config-router) # address-family ipv4 autonomous-system 6473
Device(config-router-af) # topology base
Device (config-router-af-topology) # exit-af-topology
Device (config-router-af) # exit-address-family
Device (config) # route-map virtual-name1-to-virtual-name2
Device (config-route-map) # match tag 42
Device (config-route-map) # set metric 5
Device (config-route-map) # set tag 1
```

Related Commands

I

Command	Description
ip policy route-map	Identifies a route map to use for policy routing on an interface.
ipv6 policy route-map	Configures IPv6 PBR on an interface.
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes any routes that have their next hop on one of the specified interfaces.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ipv6 address	Distributes IPv6 routes that have a prefix permitted by a prefix list or specifies an IPv6 access list to use to match packets for PBR for IPv6.
match ip next-hop	Redistributes any routes that have a next-hop router address passed by one of the specified access lists.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match length	Bases policy routing on the Level 3 length of a packet.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
router eigrp	Configures the EIGRP address-family process.
set as-path	Modifies an autonomous system path for BGP routes.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.

Command	Description
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of a route map for policy routing.
set ipv6 default next-hop	Specifies an IPv6 default next hop to which matching packets will be forwarded.
set ip default next-hop verify-availability	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination.
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing.
set ipv6 next-hop (PBR)	Indicates where to output IPv6 packets that pass a match clause of a route map for PBR for IPv6.
set level (IP)	Indicates where to import routes.
set local preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.
show route-map	Displays all route maps configured or only the one specified.

IP Routing Protocol-Independent Commands_ S through T

- send-lifetime, page 72
- set automatic-tag, page 75
- set ip next-hop, page 78
- set level (IP), page 82
- set local-preference, page 85
- set metric (BGP-OSPF-RIP), page 88
- set metric-type, page 91
- set next-hop, page 94
- set tag (IP), page 97
- show bfd neighbors, page 99
- show dampening interface, page 111
- show interface dampening, page 113
- show ip cache policy, page 115
- show ip local policy, page 117
- show ip policy, page 119
- show ip protocols, page 122
- show ip route, page 129
- show ip route summary, page 141
- show ip route supernets-only, page 143
- show ipv6 route, page 145
- show key chain, page 150
- show route-map, page 152

send-lifetime

To set the time period during which an authentication key on a key chain is valid to be sent, use the **send-lifetime** command in key chain key configuration mode. To revert to the default value, use the **no** form of this command.

send-lifetime start-time {infinite| end-time| duration seconds}
no send-lifetime start-time {infinite| end-time| duration seconds}

Syntax Description	start-time	 Beginning time that the key specified by the key command is valid to be sent. The syntax can be either of the following: hh : mm : ss Month date year hh : mm : ss date Month year hhhours mmminutes ss seconds Month first three letters of the month date date (1-31) year year (four digits) The default start time and the earliest acceptable date is January 1, 1993.
	infinite	Key is valid to be sent from the <i>start-time</i> value on.
	end-time	Key is valid to be sent from the <i>start-time</i> value until the <i>end-time</i> value. The syntax is the same as that for the <i>start-time</i> value. The <i>end-time</i> value must be after the <i>start-time</i> value. The default end time is an infinite time period.
	duration seconds	Length of time (in seconds) that the key is valid to be sent.

Command Default Forever (the starting time is January 1, 1993, and the ending time is infinite)

Command Modes Key chain key configuration (config-keychain-key)

Γ

Command History	Release	Modification	
	11.1	This command was introduced.	
	12.4(6)T	Support for IPv6 was added.	
	12.2(33)SRB	This command was integrated into Cisco IOS Release 12.2(33)SRB.	
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.	
Usage Guidelines		alue and one of the following values: infinite , <i>end-time</i> , or duration <i>seconds</i> .	
	intend to set lifetimes		
	, 1 ,	authentication will continue and an error message will be generated. To disable ust manually delete the last valid key.	
Examples	The following example configures a key chain named chain1. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to handle time differences.		
	Router(config-if)# ! Router(config)# rou Router(config-route	ip rip authentication key-chain chain1 ip rip authentication mode md5 ater rip er)# network 172.19.0.0	
	Router(config-keych	y chain chain1	
	Router(config-keych Router(config-keych Router(config-keych Router(config-keych Router(config-keych	nain-key)# exit nain)# key 2 nain-key)# key-string key2 nain-key)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200 nain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 3600	
	The following example configures a key chain named chain1 for EIGRP address-family. The key named key1 will be accepted from 1:30 p.m. to 3:30 p.m. and be sent from 2:00 p.m. to 3:00 p.m. The key named key2 will be accepted from 2:30 p.m. to 4:30 p.m. and be sent from 3:00 p.m. to 4:00 p.m. The overlap allows for migration of keys or a discrepancy in the set time of the router. There is a 30-minute leeway on each side to		
	handle time difference		
	-	grp virtual-name er)# address-family ipv4 autonomous-system 4453 er-af)# network 10.0.0.0	

```
Router(config-router-af)# network 10.0.0.0
Router(config-router-af)# af-interface ethernet0/0
```

```
Router(config-router-af-interface)# authentication key-chain trees
Router(config-router-af-interface)# authentication mode md5
Router(config-router-af-interface)# exit
Router(config-router-af)# exit
Router(config-router)# exit
Router(config)# key chain chain1
Router(config-keychain)# key 1
Router(config-keychain-key)# key-string key1
Router(config-keychain-key)# accept-lifetime 13:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 14:00:00 Jan 25 1996 duration 3600
Router(config-keychain-key)# exit
Router(config-keychain-key)# exit
Router(config-keychain-key)# key-string key2
Router(config-keychain-key)# accept-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 14:30:00 Jan 25 1996 duration 7200
Router(config-keychain-key)# send-lifetime 15:00:00 Jan 25 1996 duration 7200
```

Related Commands

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
key	Identifies an authentication key on a key chain.
key chain	Defines an authentication key chain needed to enable authentication for routing protocols.
key-string (authentication)	Specifies the authentication string for a key.
show key chain	Displays authentication key information.

set automatic-tag

To automatically compute the tag value, use the **set automatic-tag** command in route-map configuration mode. To disable this function, use the **no** form of this command.

set automatic-tag

no set automatic-tag

- **Syntax Description** This command has no arguments or keywords.
- **Command Default** This command is disabled by default.
- **Command Modes** Route-map configuration

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Usage Guidelines

You must have a match clause (even if it points to a "permit everything" list) if you want to set tags.

Use the **route-map** global configuration command and the **match** and **set** route-map configuration commands to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the match criteria--the conditions under which redistribution is allowed for the current **route-map** command. The **set** commands specify the set actions--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **no route-map** command deletes the route map.

The **set** commands specify the actions to be performed when all of the match criteria of a route map are met. When all match criteria are met, all set actions are performed.

Examples The following example configures the Cisco software to automatically compute the tag value for the Border Gateway Protocol (BGP) learned routes:

route-map tag match as-path 10 set automatic-tag ! router bgp 100 table-map tag

I

1

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes any routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set as-path	Modifies an autonomous system path for BGP routes.
set community	Sets the BGP communities attribute.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set next-hop	Specifies the address of the next hop.
set tag (IP)	Sets a tag value of the destination routing protocol.

I

Command	Description
set weight	Specifies the BGP weight for the routing table.
show route-map	Displays all route maps configured or only the one specified.

set ip next-hop

To indicate where to output packets that pass a match clause of a route map for policy routing, use the **set ip next-hop** command in route-map configuration mode. To delete an entry indicating where to output the packets, use the **no** form of this command.

set ip next-hop {*ip-address* [...*ip-address*]| dynamic dhcp| encapsulate l3vpn *profile-name*| peer-address| recursive [global| vrf *vrf-name*] *ip-address*| verify-availability [*ip-address sequence* track *track-object-number*]}

no set ip next-hop {*ip-address* [...*ip-address*]| **dynamic dhcp**| **encapsulate l3vpn** *profile-name*| **peer-address**| **recursive** [**globa**|| **vrf** *vrf-name*] *ip-address*| **verify-availability** [*ip-address sequence* **track** *track-object-number*]}

ip-address	IP address of the next hop to which packets are output. It must be the address of an adjacent router.
dynamic dhep	Dynamically sets the DHCP next hop.
encapsulate l3vpn	Sets the encapsulation profile for the L3VPN next hop.
profile-name	L3VPN encapsulation profile name.
peer-address	Sets the next hop as the Border Gateway Protocol peering address.
recursive ip-address	Sets the IP address of the recursive next-hop router.
	Note The next-hop IP address must be assigned separately from the recursive next-hop IP address.
global	(Optional) Sets the global routing table.
vrf vrf-name	(Optional) Sets the Virtual Routing and Forwarding instance.
verify-availability	Verifies if the next hop is reachable.
sequence	(Optional) The sequence to be inserted into the next-hop list. The range is from 1 to 65535.
track	(Optional) Sets the next hop depending on the state of a tracked object.
track-object-number	(Optional) The tracked object number. The range is from 1 to 500.

Syntax Description

Г

Command Default Packets are forwarded to the next-hop router in the routing table.

Command Modes Route-map configuration (config-route-map)

Release	Modification
11.0	This command was introduced.
12.0(28)S	This command was modified. The recursive keyword was added.
12.3(14)T	This command was integrated into Cisco IOS Release 12.3(14)T.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.28X	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
Cisco IOS XE Release 2.2	In Cisco IOS XE Release 2.2, this command was integrated into the Cisco ASR 1000 Series Routers.
12.2(33)SRE	This command was modified. The encapsulate and l3vpn keywords were added.
	11.0 12.0(28)S 12.3(14)T 12.2(33)SRA 12.2SX Cisco IOS XE Release 2.2

Usage Guidelines

An ellipsis (...) in the command syntax indicates that your command input can include multiple values for the *ip-address* argument.

Use the **ip policy route-map** interface configuration command, the **route-map** global configuration command, and the **match** and **set** route-map configuration commands to define conditions for policy routing packets. The **ip policy route-map** command identifies a route map by name. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *match criteria*--the conditions under which policy routing occurs. The **set** commands specify the *set actions*--particular routing actions to be performed if the criteria enforced by the **match** commands are met.

If the interface associated with the first next hop, which is specified with the **set ip next-hop** command is down, the optionally specified IP addresses are tried in turn.

The set clauses can be used in conjunction with one another. They are evaluated in the following order:

- 1 set ip next-hop
- 2 set interface
- 3 set ip default next-hop
- 4 set default interface

Note

The **set ip next-hop** and the **set ip default next-hop** commands are similar but have a different order of operations. Configuring the **set ip next-hop** command causes the system to use policy-based routing first and then use the routing table. Configuring the **set ip default next-hop** command causes the system to use the system to use the routing table first and then the policy route to the specified next hop.

Note

The set ip next-hop command does not support Inherit-VRF routing on Cisco 7600 series routers because the set ip next-hop *ip-address* command is treated as equivalent to the set ip global next-hop *ip-address* command on Cisco 7600 series routers. (Inherit-VRF routing enables packets arriving on a VRF interface to be routed by the same outgoing interface.) Therefore, when using Cisco 7600 series routers, we recommend that you use the set ip vrf vrf next-hop command to explicitly indicate the VRF from which the next hop is to be chosen. We also recommend that in Cisco 7600 series routers, the set ip next-hop command be used only for route maps applied on non-VRF interfaces, where the software behavior and the hardware behavior would be similar.

Examples

The following example shows how packets with a Level 3 length of 3 to 50 bytes are output to the router at IP address 10.14.2.2:

interface serial 0
ip policy route-map thataway
!
route-map thataway
match length 3 50
set ip next-hop 10.14.2.2
The following example shows how IP address 10.3.3.3 is set as the recursive next-hop address:

```
route-map map_recurse
set ip next-hop recursive 10.3.3.3
```

Related Commands

Command	Description
ip policy route-map	Identifies a route map to use for policy routing on an interface.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match length	Bases policy routing on the Level 3 length of a packet.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.

I

Command	Description
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of a route map for policy routing.
set ip default next-hop verify-availability	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination.

set level (IP)

To indicate where to import routes, use the **setlevel** command in route-map configuration mode. To delete an entry, use the **no** form of this command.

set level {level-1| level-2| level-1-2| nssa-only| stub-area| backbone}

no set level {level-1| level-2| level-1-2| nssa-only| stub-area| backbone}

Syntax Description

level-1	Imports routes into a Level 1 area.
level-2	Imports routes into a Level 2 subdomain.
level-1-2	Imports routes into Level 1 and Level 2 areas.
nssa-only	Imports routes only into NSSA areas.
stub-area	Imports routes into an Open Shortest Path First (OSPF) NSSA area.
backbone	Imports routes into an OSPF backbone area.

Command Default This command is disabled by default. For Intermediate System-to-Intermediate System (IS-IS) destinations, the default value is **level-2**.

Command Modes Route-map configuration

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	15.0(1)M	This command was modified. The nssa-only keyword was added.

Usage Guidelines Use the route-map global configuration command, and the match and set route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each route-map command has a list of match and set commands associated with it. The match commands specify the

matchcriteria--the conditions under which redistribution is allowed for the current **route-map**command. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **set** route-map configuration commands specify the redistribution *setactions* to be performed when all the match criteria of a route map are met. When all match criteria are met, all set actions are performed.

The stub-areaandbackbonekeywordshavenoeffectonwhereroutesareimported.

Examples

In the following example, routes will be imported into the Level 1 area:

```
route-map name
set level level-l
```

Set rever rever

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.

Command	Description
set ip next-hop	Specifies the address of the next hop.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set origin (BGP)	Sets the BGP origin code.
set tag (IP)	Sets the value of the destination routing protocol.

set local-preference

I

To specify a preference value for the autonomous system paths that pass the route map, use the **set local-preference** command in route-map configuration mode. To delete the entry from the route map, use the **no** form of this command.

set local-preference number

no set local-preference

Syntax Description	number		Preference value. An integer from 0 to 4294967295.
Command Default	Preference value of 100		
Command Modes	Route-map configuration	n (config-route-map)	
Command History	Release	Modification	
	10.0	This command was in	troduced.
	12.2(33)SRA	This command was in	tegrated into Cisco IOS Release 12.2(33)SRA.
	12.28X		ported in the Cisco IOS Release 12.2SX train. Support clease of this train depends on your feature set, platform, e.
Usage Guidelines			es the relative preference of one route over another when er preference causes a route to be preferred over a route
	This attribute is exchanged between iBGP peers only. That is, the preference is sent to all routers in the lo autonomous system only. This attribute is used to determine local policy		
	You can change the defan	ult preference value with the	e bgp default local-preference command.
Examples	The following example s	ets the local preference to 2	00 for all routes that are included in access list 1:
	route-map map-prefere match as-path 1 set local-preference		

1

Related Commands

Command	Description
bgp default local-preference	Changes the default local preference value.
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set ip next-hop	Specifies the address of the next hop.
set level (IP)	Indicates where to import routes.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set origin (BGP)	Sets the BGP origin code.

I

Command	Description
set tag (IP)	Sets the value of the destination routing protocol.

set metric (BGP-OSPF-RIP)

To set the metric value for a routing protocol, use the **setmetric** command in route-map configuration mode. To return to the default metric value, use the **no** form of this command.

set metric metric-value

no set metric metric-value

Syntax Description metric-value Metric value; an integer from -294967295 to 294967295. This argument applies to all routing protocols except Enhanced Interior Gateway Routing Protocol (EIGRP).

Command Default The dynamically learned metric value.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Usage Guidelines

s We recommend that you consult your Cisco technical support representative before changing the default value.

Use the **route-map** global configuration command, and the **match** and **set** route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *match criteria* --the conditions under which redistribution is allowed for the current **route-map** command. The **set** commands specify the *set actions* --the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **set** route-map configuration commands specify the redistribution *setactions* to be performed when all the match criteria of a route map are met. When all match criteria are met, all set actions are performed.

Examples

I

The following example sets the metric value for the routing protocol to 100:

route-map set-metric set metric 100

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set ip next-hop	Specifies the address of the next hop.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.

I

Command	Description
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set origin (BGP)	Sets the BGP origin code.
set tag (IP)	Sets the value of the destination routing protocol.

set metric-type

To set the metric type for the destination routing protocol, use the **setmetric-type** command in route-map configuration mode. To return to the default, use the **no** form of this command.

set metric-type commandset metric-type {internal| external| type-1| type-2}

no set metric-type {internal| external| type-1| type-2}

Syntax Description

internal	Intermediate System-to-Intermediate System (IS-IS) internal metric, or IGP metric as the MED for BGP.
external	IS-IS external metric.
type-1	Open Shortest Path First (OSPF) external Type 1 metric.
type-2	OSPF external Type 2 metric.

Command Default This command is disabled by default.

Command Modes Route-map configuration

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Usage Guidelines

Use the **route-map** global configuration command with **match** and **set** route-map configuration commands to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of **match** and **set** commands associated with it. The **match** commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current **route-map**command. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The **noroute-map** command deletes the route map.

The **set** route-map configuration commands specify the redistribution *setactions* to be performed when all the match criteria of a route map are met. When all match criteria are met, all set actions are performed.

This command is not supported for redistributing routes into Border Gateway Protocol (BGP).

Examples

The following example sets the metric type of the destination protocol to OSPF external Type 1:

```
route-map map-type
set metric-type type-1
```

Related Commands

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set ip next-hop	Specifies the address of the next hop.
set level (IP)	Indicates where to import routes.

I

Command	Description
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set origin (BGP)	Sets the BGP origin code.
set tag (IP)	Sets the value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

set next-hop

To specify the address of the next hop, use the**setnext-hop** command in route-map configuration mode. To delete an entry, use the **no** form of this command.

set next-hop commandset next-hop next-hop

no set next-hop *next-hop*

Syntax Description	next-hop	IP address of the next hop router.
Command Default	Default next hop address.	

Command Modes Route-map configuration

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Usage Guidelines

You must have a match clause (even if it points to a "permit everything" list) if you want to set tags.

Use the **route-map** global configuration command, and the **match** and **set** route-map configuration commands, to define the conditions for redistributing routes from one routing protocol into another. Each **route-map** command has a list of match and set commands associated with it. The match commands specify the *matchcriteria*--the conditions under which redistribution is allowed for the current **route-map**command. The **set** commands specify the *setactions*--the particular redistribution actions to perform if the criteria enforced by the **match** commands are met. The**noroute-map** command deletes the route map.

The **set** route-map configuration commands specify the redistribution *setactions* to be performed when all the match criteria of the router are met. When all match criteria are met, all set actions are performed.

Examples

In the following example, routes that pass the access list have the next hop set to 172.160.70.24:

route-map map_hop match address 5 set next-hop 172.160.70.24

Related Commands

I

Command	Description
match as-path	Matches a BGP autonomous system path access list.
match community	Matches a BGP community.
match interface (IP)	Distributes routes that have their next hop out one of the interfaces specified.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match ip next-hop	Redistributes any routes that have a next hop router address passed by one of the access lists specified.
match ip route-source	Redistributes routes that have been advertised by routers and access servers at the address specified by the access lists.
match metric (IP)	Redistributes routes with the metric specified.
match route-type (IP)	Redistributes routes of the specified type.
match tag	Redistributes routes in the routing table that match the specified tags.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.
set community	Sets the BGP communities attribute.
set ip next-hop	Specifies the address of the next hop.
set level (IP)	Indicates where to import routes.
set local-preference	Specifies a preference value for the autonomous system path.
set metric (BGP, OSPF, RIP)	Sets the metric value for a routing protocol.
set metric-type	Sets the metric type for the destination routing protocol.
set origin (BGP)	Sets the BGP origin code.

Command	Description
set tag (IP)	Sets the value of the destination routing protocol.
set weight	Specifies the BGP weight for the routing table.

set tag (IP)

To set a tag value for a route in a route map, use the **set tag** command in route-map configuration mode. To delete the entry, use the **no** form of this command.

set tag {*tag-value*| *tag-value-dotted-decimal*}

no set tag {*tag-value*| *tag-value-dotted-decimal*}

Syntax Description

tag-value	Route tag value in plain decimals. The range is from 0 to 4294967295.
tag-value-dotted-decimal	Route tag value in dotted decimals. The range is from 0.0.0.0 to 255.255.255.255.

Command Default Routes are not tagged.

Command Modes Route-map configuration (config-route-map)

Command History	Release	Modification
	10.0	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.
	Cisco IOS XE Release 2.1	This command was implemented on Cisco ASR 1000 Series Aggregation Services Routers.
	15.2(2)S	This command was modified. This command was integrated into Cisco IOS Release 15.2(2)S and the <i>tag-value-dotted-decimal</i> argument was added to support tag values in dotted-decimal format.
	Cisco IOS XE Release 3.6S	This command was modified. The <i>tag-value-dotted-decimal</i> argument was added to support tag values in dotted-decimal format.

Usage Guidelines

ſ

Use the **set tag** command to set an administrative tag for a route within a route map. Route tags are 32-bit values attached to routes. You can set tag values as plain decimals or dotted decimals. Route tags are used by

route maps to filter routes. The tag value has no impact on routing decisions. It is used to mark or flag routes to prevent routing loops when routes are redistributed between routing protocols.

Examples

The following example shows how to set the tag value of the destination routing protocol to 5:

Device (config) # route-map tag Device (config-route-map) # set tag 5 The following example shows how to set the tag value in the dotted-decimal format:

Device(config) # route-map tag
Device(config-route-map) # set tag 10.10.10.10

Related Commands

Command	Description
match tag	Filters routes that match specific route tags.
route-map (IP)	Defines conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set automatic-tag	Automatically computes the tag value.

show bfd neighbors

To display a line-by-line listing of existing Bidirectional Forwarding Detection (BFD) adjacencies, use the **show bfd neighbors** command in user EXEC or privileged EXEC mode.

show bfd neighbors [client {bgp| eigrp| isis| ospf| rsvp| te-frr}| details| [interface-type interface-number]| internal| ipv4 ip-address| ipv6 ipv6-address| vrf vrf-name]

Syntax Description

client	(Optional) Displays neighbors of a specific client.
bgp	(Optional) Displays a Border Gateway Protocol (BGP) client.
eigrp	(Optional) Displays an Enhanced Interior Gateway Routing Protocol (EIGRP) client.
isis	(Optional) Specifies an Intermediate System-to-Intermediate System (IS-IS) client.
ospf	(Optional) Specifies an Open Shortest Path First (OSPF) client.
rsvp	(Optional) Specifies a Resource Reservation Protocol (RSVP) client.
te-frr	(Optional) Specifies a traffic engineering (TE) Fast Reroute (FRR) client.
details	(Optional) Displays all BFD protocol parameters and timers for each neighbor.
interface-type interface-number	(Optional) Neighbors at the specified interface.
internal	(Optional) Displays internal BFD information.
ipv4	(Optional) Specifies an IPv4 neighbor. If the ipv4 keyword is used without the <i>ip-address</i> argument, all IPv4 sessions are displayed.
ip-address	(Optional) IP address of a neighbor in A.B.C.D format.
ipv6	(Optional) Specifies an IPv6 neighbor. If the ipv6 keyword is used without the <i>ipv6-address</i> argument, all IPv6 sessions are displayed.
ipv6-address	(Optional) IPv6 address of a neighbor in X:X:X:X:X format.

I

vrf vrf-name	(Optional) Displays entries for the specified VPN routing and forwarding (VRF) instance.

Command Modes User EXEC (>)

Privileged EXEC (#)

Command History Modification **S** Release 12.0(31)S This command was introduced. 12.2(18)SXE This command was integrated into Cisco IOS Release 12.2(18)SXE. 12.2(33)SRA This command was integrated into Cisco IOS Release 12.2(33)SRA. 12.2(33)SRC This command was modified. The vrf-name keyword and argument, the client keyword, and the *ip-address* argument were added. 12.2(33)SB This command was integrated into Cisco IOS Release 12.2(33)SB. 12.2(33)SXI This command was modified. The output was modified to display the "OurAddr" field only with the details keyword. 12.2(33)SRE This command was modified. Support for IPv6 was added. 15.1(2)SThis command was modified. • The show bfd neighbors details command output was changed for hardware-offloaded BFD sessions. • The show bfd neighbors command output was changed to display the header type to identify the session type. 15.1(3)S This command was modified to display information about multihop sessions. 15.2(4)S This command was modified. The output of the command was enhanced to include Template and Authentication fields for single-hop sessions. 15.1(1)SY This command was integrated into Cisco IOS Release 15.1(1)SY. **T** Release **Modification** 12.4(4)T This command was integrated into Cisco IOS Release 12.4(4)T. 12.4(9)T This command was modified. Support for BFD Version 1 and BFD echo mode was added. 15.1(2)T This command was modified. Support for IPv6 was added.

Γ

	S Release	Modification	
	15.1(1)SG	This command was integrated into Cisco IOS Release 15.1(1)SG.	
	XE Release	Modification	
	Cisco IOS XE Release 2.1	This command was integrated into Cisco IOS XE 2.1.	
age Guidelines	The show bfd neighbors com	mand can be used to help troubleshoot the BED feature	
	The show bfd neighbors command can be used to help troubleshoot the BFD feature. The full output for the details keyword is not supported on the Route Processor (RP) for the Cisco 12000 Series Internet Router. If you want to enter the show bfd neighbors command with the details keyword on the Cisco 12000 Series Internet Router, you must enter the command on the line card. Use the attach <i>slot</i> command to establish a CLI session with a line card.		
	on both BFD peers must be co	and later releases that support BFD hardware offload, the Tx and Rx intervals nfigured in multiples of 50 milliseconds. If they are not, output from the show nd will show the configured intervals, not the changed ones.	
	Cisco 7600 Series Ethernet Ser	nous Ethernet on the Cisco 7600 Router with ES+ Line Card" section of the vices Plus $(ES+)$ and Ethernet Services Plus $T(ES+T)$ Line Card Configuration bout prerequisites and restrictions for hardware offload.	
amples	The following is sample outpu neighbor:	t from the show bfd neighbors that shows the status of the adjacency or	
	Device# show bfd neighbor:	s	
		LD/RD RH Holdown (mult) State Int 1/6 1 260 (3) Up Fa0/1 It from the show bfd neighbors command when it is entered with the details ocol parameters and timers for each neighbor:	
	Device# show bfd neighbor:	s details	
	NeighAddr 10.1.1.2 Session state is UP and no OurAddr: 10.1.1.1		
	3 Holddown (hits): 150(0 min/max/avg: 8/68/49 last	<pre>e: 0, Poil bit: 0 50000, Multiplier: 3 Received MinRxInt: 50000, Received Multiplier:), Hello (hits): 50(2223) Rx Count: 2212, Rx Interval (ms) : 0 ms ago Tx Count: 2222, Tx Interval (ms) min/max/avg: 40/60/49 time watermarks: 0 0 (last: 0) Registered protocols: CEF Stub</pre>	
	Last packet: Version: 0 I Hear You b Poll bit: 0 Multiplier: 1 My Discr.: 1	- Final bit: 0 3 - Length: 24 - Your Discr.: 1 val: 50000 - Min rx interval: 50000	
	The following is sample outpu	t from the show bfd neighbors command when it is entered on a Cisco 12000 Processor (RP) that shows the status of the adjacency or neighbor:	
	Device# show bfd neighbor:	s	
	Cleanup timer hits: 0		
	OurAddr NeighAddr	LD/RD RH Holdown(mult) State Int	

172.16.10.2 172.16.10.1 2/0 0 0 (0) Up Fa6/0 Total Adjs Found: 1

The following is sample output from the **show bfd neighbors** command when it is entered in a Cisco 12000 Series Internet Router RP that shows the status of the adjacency or neighbor with the **details** keyword:

Device# show bfd neighbors details

```
Cleanup timer hits: 0
OurAddr
              NeighAddr
                            LD/RD RH Holdown(mult)
                                                     State
                                                                Int
172.16.10.2
              172.16.10.1
                             2/0 0
                                      0
                                           (0)
                                                     Up
                                                                Fa6/0
Registered protocols: OSPF
Uptime: never
%% BFD Neighbor statistics are not available on RP. Please execute this command on Line
Card.
```

The following is sample output from the **show bfd neighbors** command when it is entered on a Cisco 12000 Series Internet Router line card that shows the status of the adjacency or neighbor:

Device# attach 6

```
Entering Console for 8 Port Fast Ethernet in Slot: 6
Type "exit" to end this session
Press RETURN to get started!
```

Device> show bfd neighbors

Cleanup timer hits: 0 OurAddr NeighAddr LD/RD RH Holdown(mult) State Int 172.16.10.2 172.16.10.1 2/1 1 848 (5) Up Fa6/0 Total Adjs Found: 1

The following is sample output from the **show bfd neighbors** command when it is entered on a Cisco 12000 Series Internet Router line card that shows the status of the adjacency or neighbor with the **details** keyword:

Device# attach 6

```
Entering Console for 8 Port Fast Ethernet in Slot: 6
Type "exit" to end this session
Press RETURN to get started!
Device> show bfd neighbors details
Cleanup timer hits: 0
             NeighAddr
                              LD/RD RH Holdown(mult)
OurAddr
                                                         State
                                                                    Int
172.16.10.2
              172.16.10.1
                               2/1
                                    1
                                         892 (5)
                                                         Up
                                                                    Fa6/0
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(193745)
Rx Count: 327406, Rx Interval (ms) min/max/avg: 152/248/196 last: 108 ms ago
Tx Count: 193748, Tx Interval (ms) min/max/avg: 204/440/331 last: 408 ms ago
Last packet: Version: 0
                                      - Diagnostic: 0
                                     - Demand bit: 0
              I Hear You bit: 1
              Poll bit: 0
                                     - Final bit: 0
             Multiplier: 5
                                     - Length: 24
                                      - Your Discr.: 2
             Mv Discr.: 1
              Min tx interval: 200000
                                           - Min rx interval: 200000
              Min Echo interval: 0
Uptime: 17:54:07
SSO Cleanup Timer called: 0
SSO Cleanup Action Taken: 0
Pseudo pre-emptive process count: 7728507 min/max/avg: 8/16/8 last: 12 ms ago
 IPC Tx Failure Count: 0
 IPC Rx Failure Count: 0
 Total Adjs Found: 1
Device>
```

Examples

The following is sample output from the **show bfd neighbors details** command that shows that the BFD neighbor device is running BFD Version 1 and that the BFD session is up and running in echo mode:

1

Device# show bfd neighbors details

OurAddr NeighAddr LD/RD RH/RS Holdown(mult) State Int 172.16.1.2 172.16.1.1 1/6 Up 0 (3) Up Fa0/1 Session state is UP and using echo function with 50 ms interval. Local Diag: 0, Demand mode: 0, Poll bit: 0 MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3 Received MinRxInt: 1000000, Received Multiplier: 3 Holdown (hits): 3000(0), Hello (hits): 1000(337) Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago Registered protocols: EIGRP Uptime: 00:05:00 Last packet: Version: 1 - Diagnostic: 0 State bit: Up - Demand bit: 0 Poll bit: 0 - Final bit: 0 Multiplier: 3 - Length: 24 - Your Discr.: 1 My Discr.: 6 Min tx interval: 1000000 - Min rx interval: 1000000 Min Echo interval: 50000

Examples

The following is sample output from the **show bfd neighbors** command that displays all IPv6 sessions:

Device# show bfd neighbors ipv6 2001::1

OurAddr	NeighAddr	LD/RD	RH/RS	Holddowr	n(mult)	State
Int 2001:DB8:0:ABCD::1 Et0/0	2001:DB8:0:ABCD::2	2/2	Up	0	(3)	Up
2001:DB8:0:1:FFFF:1234::5 Et1/0	2001:DB8:0:1:FFFF:1234::6	4/4	Up	0	(3)	Up

Examples

The following is sample output from the **show bfd neighbors** command:

Device# show bfd neighbors

NeighAddr	LD/RD	RH/RS	State	Int
192.0.2.1	4/0	Down	Down	Et0/0
192.0.2.2	5/0	Down	Down	Et0/0
192.0.2.3	6/0	Down	Down	Et0/0
192.0.2.4	7/0	Down	Down	Et0/0
192.0.2.5	8/0	Down	Down	Et0/0
192.0.2.6	11/0	0(RH)	Fail	Et0/0
2001:DB8::1	9/0	Down	Down	Et0/0
2001:DB8:0:ABCD::1	10/0	Down	Down	Et0/0
2001:DB8::2	1/0	0(RH)	Fail	Et0/0
2001:DB8:0:1::1	2/0	Down	Down	Et0/0
2001:DB8:0:1:FFFF:1234::5	3/0	Down	Down	Et0/0
		e1 • 11	1 / 1	1

The following is sample output from the **show bfd neighbors details** command:

Device# show bfd neighbors details

```
LD/RD
                                           RH/RS
NeighAddr
                                                      State
                                                                Int
192.0.2.5
                                                                Et0/0
                                   4/0
                                                      Down
                                           Down
OurAddr: 192.0.2.8
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 0, Received Multiplier: 0
Holddown (hits): 0(0), Hello (hits): 1000(120)
Rx Count: 0, Rx Interval (ms) min/max/avg: 0/0/0 last: 118672 ms ago
Tx Count: 120, Tx Interval (ms) min/max/avg: 760/1000/885 last: 904 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: Stub
Last packet: Version: 1
                                    - Diagnostic: 0
                                  - Demand bit: 0
             State bit: AdminDown
             Poll bit: 0
                                   - Final bit: 0
             Multiplier: 0
                                   - Length: 0
             My Discr.: 0
                                   - Your Discr.: 0
             Min tx interval: 0
                                   - Min rx interval: 0
             Min Echo interval: 0
```

```
NeighAddr
                                  LD/RD
                                           RH/RS
                                                     State
                                                                Int
2001:DB8::1
                                  9/0
                                                               Et0/0
                                          Down
                                                     Down
OurAddr: 2001:DB8::2
Local Diag: 0, Demand mode: 0, Poll bit: 0 \,
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 0, Received Multiplier: 0
Holddown (hits): 0(0), Hello (hits): 1000(208)
Rx Count: 0, Rx Interval (ms) min/max/avg: 0/0/0 last: 194760 ms ago
Tx Count: 208, Tx Interval (ms) min/max/avg: 760/1000/878 last: 424 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: Stub
Last packet: Version: 1
                                   - Diagnostic: 0
             State bit: AdminDown
                                   - Demand bit: 0
                                   - Final bit: 0
             Poll bit: 0
             Multiplier: 0
                                   - Length: 0
             My Discr.: 0
                                   - Your Discr.: 0
             Min tx interval: 0
                                   - Min rx interval: 0
             Min Echo interval: 0
```

The table below describes the significant fields shown in the displays.

Field	Description			
OurAddr	IP address of the interface for which the show bfd neighbors details command was entered.			
NeighAddr	IPv4 or IPv6 address of the BFD adjacency or neighbor.			
LD/RD	Local discriminator (LD) and remote discriminator (RD) being used for the session.			
RH	Remote Heard (RH) Indicates that the remote BFD neighbor has been heard.			
Holdown (mult)	Detect timer multiplier that is used for this session.			
State	State of the interface—Up or Down.			
Int	Interface type and slot/port.			
Session state is UP and using echo function with 50 ms interval.	BFD is up and running in echo mode. The 50-millisecond interval has been adopted from the bfd command.			
	Note BFD Version 1 and echo mode are supported only in Cisco IOS Release 12.4(9)T and later releases.			
Rx Count	Number of BFD control packets that are received from the BFD neighbor.			
Tx Count	Number of BFD control packets that are sent by the BFD neighbor.			

Table 1: show bfd neighbors Field Descriptions

I

Field	Description		
Tx Interval	The interval, in milliseconds, between sent BFD packets.		
Registered protocols	Routing protocols that are registered with BFD.		
Last packet: Version:	BFD version detected and run between the BFD neighbors. The system automatically performs BFD version detection, and BFD sessions between neighbors will run in the highest common BFD version. For example, if one BFD neighbor is running BFD Version 0 and the other BFD neighbor is running Version 1, the session will run BFD Version 0.		
	Note BFD Version 1 and echo mode are supported only in Cisco IOS Release 12.4(9)T and later releases.		
Diagnostic	A diagnostic code specifying the local system's reason for the last transition of the session from Up to some other state.		
	State values are as follows:		
	• 0 — No Diagnostic		
	• 1 — Control Detection Time Expired		
	• 2 — Echo Function Failed		
	• 3 — Neighbor Signaled Session Down		
	• 4 — Forwarding Plane Reset		
	• 5 — Path Down		
	• 6 — Concentrated Path Down		
	• 7 — Administratively Down		
I Hear You bit	The I Hear You bit is set to 0 if the transmitting system is either not receiving BFD packets from the remote system or is tearing down the BFD session for some reason. During normal operation, the I Hear You bit is set to 1 to signify that the remote system is receiving the BFD packets from the transmitting system.		
Demand bit	Demand mode bit. BFD has two modes: asynchronous and demand. If the demand mode is set, the transmitting system prefers to operate in demand mode. The Cisco implementation of BFD supports only asynchronous mode.		

٦

Field	Description
Poll bit	Indicates that the transmitting system is requesting verification of connectivity or verification of a parameter change.
Final bit	Indicates that the transmitting system is responding to a received BFD control packet that had a Poll (P) bit set.
Multiplier	Detect time multiplier. The negotiated transmit interval multiplied by the detect time multiplier determines the detection time for the transmitting system in BFD asynchronous mode.
	The detect time multiplier is similar to the hello multiplier in Intermediate System-to-Intermediate System (IS-IS), which is used to determine the hold timer: (hello interval) * (hello multiplier) = hold timer. If a hello packet is not received within the hold-timer interval, it indicates that a failure has occurred.
	Similarly, for BFD: (transmit interval) * (detect multiplier) = detect timer. If a BFD control packet is not received from the remote system within the detect-timer interval, it indicates that a failure has occurred.
Length	Length of the BFD control packet, in bytes.
My Discr.	My Discriminator is a unique, nonzero discriminator value generated by the transmitting system used to demultiplex multiple BFD sessions between the same pair of systems.
Your Discr.	Your Discriminator is a discriminator that is received from the corresponding remote system. This field reflects the received value of My Discriminator or is zero if that value is unknown.
Min tx interval	Minimum transmission interval, in microseconds, that the local system wants to use when sending BFD control packets.
Min rx interval	Minimum receipt interval, in microseconds, between received BFD control packets that the system can support.

Field	Description
Min Echo interval	Minimum interval, in microseconds, between received BFD control packets that the system can support. If the value is zero, the transmitting system does not support the receipt of BFD echo packets. The Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE and 12.0(31)S does not support the use of echo packets.

Examples

The following is sample output from the **show bfd neighbors details** command for BFD sessions offloaded to hardware. The Rx and Tx counts show the number of packets received and transmitted by the BFD session in hardware.

Device# show bfd neighbors details

NeighAddr		LD/RD	RH/RS	State	Int
192.0.2.1		298/298	Up	Up	Te7/1.2
Session state	e is UP and not using echo	function.			
Session Host	: Hardware - session negot Holddown - negotiated: 5			sted timer	values.
OurAddr: 192	.0.2.2				
2), Demand mode: 0, Poll bi				
)000, MinRxInt: 170000, Mu	-			
Received Min	RxInt: 160000, Received Mu	ltiplier: 3	3		
Holddown (hi	ts): 0(0), Hello (hits): 1	70(0)			
Rx Count: 12	56983				
Tx Count: 24	990				
Elapsed time	watermarks: 0 0 (last: 0)				
Registered p	rotocols: OSPF CEF				
Uptime: 18:13	1:31				
Last packet:	Version: 1	- Diagno	ostic: 0		
	State bit: Up	- Demano	d bit: 0		
	Poll bit: 0	- Final	bit: 0		
	Multiplier: 3	- Lengtl	h: 24		
	My Discr.: 298	- Yoi	ur Discr.: 298	3	
	Min tx interval: 160000	- Min r	x interval: 16	50000	
	Min Echo interval: 0				

Examples

I

The following is sample output from the **show bfd neighbors** command showing a header type identifying the type of session:

Device# show bfd neighbors

MPLS-TP Session	S				
Interface	LSP type		LD/RD	RH/RS	State
Tunnel-tp1	Working		1/0	Down	Down
Tunnel-tp2	Working		3/0	Down	Down
Tunnel-tp1	Protect		2/0	Down	Down
IPv4 Sessions					
NeighAddr		LD/RD	RH/RS	State	Int
192.0.2.1		2/0	Down	Down	Et2/0

The following is sample output from the **show bfd neighbors** command for Virtual Circuit Connection Verification (VCCV) sessions:

Device# show bfd neighbors

VCCV Sessions				
Peer Addr	:VCID	LD/RD	RH/RS	State
198.51.100.1	:100	1/1	Up	Up

The following is sample output from the show bfd neighbors command for IPv4 and IPv6 sessions:

Device# show bfd neighbors

IPv4 Sessions				
NeighAddr	LD/RD	RH/RS	State	Int
192.0.2.1	6/0	Down	Down	Et1/0
203.0.113.1	7/6	Up	Up	Et3/0
198.51.100.2	8/7	Up	Up	Et0/0
IPv6 Sessions				
NeighAddr	LD/RD	RH/RS	State	Int
2001:DB8::1	1/1	Up	Up	Et0/0
2001:DB8:0:ABCD::1	2/2	Up	Up	Et0/0
2001:DB8::2	3/3	Up	Up	Et0/0
2001:DB8:0:1:FFFF:1234::5	4/4	Up	Up	Et0/0
2001:DB8:0:1::1	5/5	Up	Up	Et0/0

The table below describes the significant fields shown in the displays.

Table 2: show bfd neighbors Field Descriptions

Field	Description
Interface	Name of the Multiprotocol Label Switching (MPLS) tunnel Transport Profile (TP) interface.
LSP type	Type of label-switched path for this session (Working or Protect).

Examples

The following is sample output from the **show bfd neighbors** command for a single-hop session:

Device# show bfd neighbors

```
IPv4 Sessions
NeighAddr
                                           LD/RD
                                                          RH/RS
                                                                     State
                                                                                Tnt.
                                                                                  Et0/0
                                             1/12
192.0.0.2
                                                           Up
                                                                      Up
Session state is UP and using echo function with 300 ms interval.
Session Host: Software
OurAddr: 192.0.0.1
Handle: 12
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 1000(62244)
Rx Count: 62284, Rx Interval (ms) min/max/avg: 1/2436/878 last: 239 ms ago
Tx Count: 62247, Tx Interval (ms) min/max/avg: 1/1545/880 last: 246 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: Stub CEF
Template: my-template
Authentication(Type/Keychain): sha-1/my-chain
Uptime: 00:22:06
Last packet: Version: 1
                                             - Diagnostic: 0
              State bit: Up
                                             - Demand bit: 0
              Poll bit: 0
                                             - Final bit: 0
                                             - Length: 24
              Multiplier: 3
              My Discr.: 12
                                             - Your Discr.: 1
                                             - Min rx interval: 1000000
              Min tx interval: 1000000
              Min Echo interval: 300000
```

The table below describes the significant fields shown in the display.

Table 3: show bfd neighbors Field Descriptions for Single-Hop BFD Sessions

Field	Description
Template	BFD multihop template name.
Authentication	Authentication type and key chain.

Examples

The following is sample output from the **show bfd neighbors** command for an IPv4 multihop session. The section headed "Map information:" has information specific to the multihop session.

```
Device# show bfd neighbors
```

```
IPv4 Multihop Sessions
NeighAddr[vrf]
                                               LD/RD
                                                             RH/RS
                                                                       State
                                                  2/13
192.1.1.2
                                                               Uр
                                                                         Uр
Session state is UP and not using echo function.
Session Host: Software
OurAddr: 192.1.1.1
Handle: 13
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 750000, MinRxInt: 750000, Multiplier: 3
Received MinRxInt: 750000, Received Multiplier: 15
Holddown (hits): 10772(0), Hello (hits): 750(82985)
Rx Count: 82973, Rx Interval (ms) min/max/avg: 24/1334/659 last: 478 ms ago
Tx Count: 82935, Tx Interval (ms) min/max/avg: 1/1141/660 last: 78 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: Xconnect
Map information:
 Destination[vrf]: 192.1.1.0/24
 Source[vrf]: 192.1.1.1/24
 Template: mh
 Authentication(Type/Keychain): md5/qq
 last tx auth seq: 5 last rx auth seq 4
Uptime: 15:12:26
Last packet: Version: 1
                                         - Diagnostic: 0
             State bit: Up
                                         - Demand bit: 0
             Poll bit: 0
                                         - Final bit: 0
             Multiplier: 15
                                         - Length: 48
                                         - Your Discr.: 2
             My Discr.: 13
             Min tx interval: 750000
                                         - Min rx interval: 750000
             Min Echo interval: 0
```

The table below describes the significant fields shown in the display.

Table 4: show bfd neighbors Field Descriptions for Multihop BFD Sessions

Field	Description
Destination	BFD map destination address.
Source	BFD map source address.
Template	BFD multihop template name.
Authentication	Authentication type and key chain.
last_tx_auth_seq	Last authenticated sequence sent by the peer.

1

Field	Description
last_rx_auth_seq	Last authenticated sequence received by the peer.

Related Commands

Command	Description
attach	Connects to a specific line card to execute monitoring and maintenance commands on that line card.
show bfd drops	Displays the number of dropped packets in BFD.
show bfd summary	Displays summary information for BFD.

show dampening interface

To display a summary of dampened interfaces, use the **showdampinginterface**command in user EXEC or privileged EXEC mode.

show dampening interface commandshow dampening interface

- **Syntax Description** This command has no arguments or keywords.
- Command Modes User EXEC Privileged EXEC

Command History	Release	Modification
, ,	nelease	WoullCation
	12.0(22)S	This command was introduced.
	12.2(14)S	This command was integrated into Cisco IOS Release 12.2(14)S.
	12.2(13)T	This command was integrated into Cisco IOS Release 12.2(13)T.
	12.2(18)SXD	This command was integrated into Cisco IOS Release 12.2(18)SXD.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.

Examples

I

The following is sample output from the **showdampinginterface**command in privileged EXEC mode:

```
Router# show dampening interface
3 interfaces are configured with dampening.
No interface is being suppressed.
Features that are using interface dampening:
IP Routing
CLNS Routing
The table below describes the significant fields shown
```

The table below describes the significant fields shown in the sample output of the show dampening interface command.

Table 5: show dampening interface Field Descriptions

Field	Description
interfaces are configured with dampening.	Displays the number of interfaces that are configured for event dampening.
No interface is being suppressed.	Displays the suppression status of the interfaces that are configured for event dampening.
Features that are using interface dampening:	Displays the routing protocols that are configured to perceived interface dampening.

1

Related Commands

Command	Description
clear counters	Clears the interface counters.
dampening	Enables IP event dampening at the interface level.
show interface dampening	Displays a summary of the dampening parameters and status.

show interface dampening

To display dampened interfaces on the local router, use the **showinterface** dampening command in privileged EXEC mode.

show interface dampening commandshow interface dampening

- **Syntax Description** This command has no keywords or arguments.
- **Command Modes** Privileged EXEC

Command History

Release	Modification
12.0(22)8	This command was introduced.
12.2(14)8	This command was integrated into Cisco IOS Release 12.2(14)S.
12.2(13)T	This command was integrated into Cisco IOS Release 12.2(13)T.
12.2(18)SXD	This command was integrated into Cisco IOS Release 12.2(18)SXD.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2(31)SB2	This command was integrated into Cisco IOS Release 12.2(31)SB2.

Examples

The following is sample output from the **showinterfacedampening** command:

```
Router# show interface dampeningFlaps PenaltySupp ReuseTmHalfLReuseVSuppVMaxSTmMaxP Restart00FALSE051000200020160000The table below describes the significant fields shown in the display.
```

Table 6: show interface dampening Field Descriptions

Field	Description
Flaps	Displays the number of times that an interface has flapped.
Penalty	Displays the accumulated penalty.
Supp	Indicates if the interface is dampened.
ReuseTm	Displays the reuse timer.

1

Field	Description
HalfL	Displays the half-life counter.
ReuseV	Displays the reuse threshold timer.
SuppV	Displays the suppress threshold.
MaxSTm	Displays the maximum suppress.
MaxP	Displays the maximum penalty.
Restart	Displays the restart timer.

Related Commands

Command	Description
clear counters	Clears the interface counters.
dampening	Enables IP event dampening at the interface level.
show dampening interface	Displays a summary of interface dampening.

show ip cache policy

To display the cache entries in the policy route cache, use the showipcachepolicycommand in EXEC mode.

show ip cache policy commandshow ip cache policy

Syntax Description This command has no arguments or keywords.

Command Modes EXEC

Command History	Release	Modification
	11.3	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Examples

The following is sample output from the showipcachepolicycommand:

Router# show ip cache policy Total adds 10, total deletes 10			
Type Routemap/sequence	Age	Interface	Next Hop
NH george/10	00:04:31	Ethernet0	192.168.1.2
Int george/30	00:01:23	Serial4	192.168.5.129
The table below describes the significant fields shown in the display.			

Table 7: show ip cache policy Field Descriptions

Field	Description
Total adds	Number of times a cache entry was created.
total deletes	Number of times a cache entry or the entire cache was deleted.
Туре	"NH" indicates the setipnext-hop command. "Int" indicates the setinterface command.
Routemap	Name of the route map that created the entry; in this example, george.
sequence	Route map sequence number.

I

1

Field	Description
Age	Age of the cache entry.
Interface	Output interface type and number.
Next Hop	IP address of the next hop.

Related Commands

Command	Description
ip route-cache	Configures the router to export the flow cache entry to a workstation when a flow expires.

show ip local policy

To display the route map used for local policy routing, if any, use the **showiplocalpolicy** command in EXEC mode.

show ip local policy commandshow ip local policy

Syntax Description This command has no arguments or keywords.

Command Modes EXEC

Command History	Release	Modification
	11.1	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Examples

The following is sample output from the **showiplocalpolicy** command:

```
Router# show ip local policy
Local policy routing is enabled, using route map equal
route-map equal, permit, sequence 10
Match clauses:
    length 150 200
Set clauses:
    ip next-hop 10.10.11.254
Policy routing matches: 0 packets, 0 bytes
route-map equal, permit, sequence 20
Match clauses:
    ip address (access-lists): 101
Set clauses:
    ip next-hop 10.10.11.14
Policy routing matches: 2 packets, 172 bytes
The table below describes the significant fields shown in the display.
```

Table 8: show ip local policy Field Descriptions

Field	Description
route-map equal	The name of the route map is equal.
permit	The route map contains permit statements.

1

Field	Description
sequence	The sequence number of the route map, which determines in what order it is processed among other route maps.
Match clauses:	Clauses in the route map that must be matched to satisfy the permit or deny action.
Set clauses:	Set clauses that will be put into place if the match clauses are met.
Policy routing matches: packets	Number of packets that meet the match clauses.
bytes	Number of bytes in the packets that meet the match clauses.

Related Commands

Command	Description
ip policy route-map	Identifies a route map to use for local policy routing.
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match length	Bases policy routing on the Level 3 length of a packet.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of route map for policy routing.
set ip default next-hop verify-availability	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination.
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing.

IP Routing: Protocol-Independent Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)

show ip policy

To display the route map used for policy routing, use the **showippolicy** command in user EXEC or privileged EXEC mode.

show ip policy

Syntax Description This command has no arguments or keywords.

Command Modes User EXEC Privileged EXEC

Command History	Release	Modification
	11.1	This command was introduced.
	12.3(7)T	The display output was modified to include a label for dynamic route maps.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Examples

I

The following is sample output from the **showippolicy** command:

Router# show ip policy Interface Route map local equal Ethernet0/2 equal Ethernet0/3 AAA-02/06/04-14:01:26.619-1-AppSpec (Dynamic) The following is sample output from the showroute-map command, which relates to the preceding sample display:

```
Router# show route-map
route-map equal, permit, sequence 10
Match clauses:
length 150 200
Set clauses:
ip next-hop 10.10.11.254
Policy routing matches: 0 packets, 0 bytes
route-map equal, permit, sequence 20
Match clauses:
ip address (access-lists): 101
Set clauses:
ip next-hop 10.10.11.14
Policy routing matches: 144 packets, 15190 bytes
The table below describes the significant fields shown in the display.
```

I

1

Field	Description
route-map equal	The name of the route map is equal.
permit	The route map contains permit statements.
sequence	Sequence number of the route map, which determines in what order it is processed among other route maps.
Match clauses	Clauses in the route map that must be matched to satisfy the permit or deny action.
Set clauses	Set clauses that will be put into place if the match clauses are met.
Policy routing matches packets	Number of packets that meet the match clauses.
bytes	Number of bytes in the packets that meet the match clauses.

Related Commands

Command	Description
match ip address	Distributes any routes that have a destination network number address that is permitted by a standard or extended access list, and performs policy routing on packets.
match length	Bases policy routing on the Level 3 length of a packet.
route-map (IP)	Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination.
set interface	Indicates where to output packets that pass a match clause of route map for policy routing.
set ip default next-hop verify-availability	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination.

I

Command	Description
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing.

show ip protocols

To display the parameters and the current state of the active routing protocol process, use the **showipprotocols** command in privileged EXEC mode.

show ip protocols commandshow ip protocols

- **Syntax Description** This command has no arguments or keywords.
- **Command Modes** Privileged EXEC (#)

Command History			
oonninanu mistory	Release	Modification	
	10.0	This command was introduced.	
	12.2(15)T	This command was modified. Support for the route-hold timer was integrated into the output.	
	12.2(28)SB	This command was integrated into Cisco IOS 12.2(28)SB.	
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.	
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.	
	15.1(2)8	This command was modified. The output of the command was modified to display that Routing Information Protocol (RIP) default routes are sent on passive interfaces.	
Usage Guidelines	Information in the Routin	d by the showipprotocols command is useful in debugging routing operations. g Information Sources field of the showipprotocols output can help you identify a	
	router suspected of delive	ring bad routing information.	
	Once you configure the default-informationoriginateon-passive command, the output of the showipprotocols command displays that RIP default routes are sent on passive interfaces.		
Examples	The following sample output from the showipprotocols command shows Enhanced Interior Gateway Routing Protocol (EIGRP) process 3:		
	Router# show ip protocols *** IP Routing is NSF aware *** Routing Protocol is "eigrp 3" Outgoing update filter list for all interfaces is not set Incoming update filter list for all interfaces is not set Default networks flagged in outgoing updates		

I

Default networks accepted from incoming updates Redistributing: eigrp 3 EIGRP-IPv4 VR(test) Address-Family Protocol for AS(3) Metric weight K1=1, K2=0, K3=1, K4=0, K5=0 NSF-aware route hold timer is 240 Router-ID: 10.1.1.1 Topology : 0 (base) Active Timer: 3 min Distance: internal 90 external 170 Maximum path: 4 Maximum hopcount 100 Maximum metric variance 1 Total Prefix Count: 3 Total Redist Count: 0 Automatic Summarization: disabled Maximum path: 4 Routing for Networks: 10.0.0.0 Routing Information Sources: Gateway Distance Last Update 10.1.1.2 90 00:05:10 Distance: internal 90 external 170 The table below describes the significant fields shown in the display.

Table 10: show ip protocols Field Descriptions

Field	Description
Routing Protocol is	Name and autonomous system number of the currently running routing protocol.
Outgoing update filter list for all interfaces	Indicates whether a filter for outgoing routing updates has been specified with the distribute-listout command.
Incoming update filter list for all interfaces	Indicates whether a filter for incoming routing updates has been specified with the distribute-listin command.
Redistributing:	Indicates whether route redistribution has been enabled with the redistribute command.
EIGRP-IPv4 Protocol for AS(10)	EIGRP instance and autonomous system number.
Metric weight	EIGRP metric calculations.
NSF-aware route hold timer	Route-hold timer value for a nonstop forwarding (NSF)-aware router.
Router-ID: 10.1.1.1	Router ID.
Topology	Number of entries in the EIGRP topology table.
Active Timer	EIGRP routing active time limit (in minutes).

Field	Description
Distance	Internal and external administrative distance. Internal distance is the degree of preference given to EIGRP internal routes. External distance is the degree of preference given to EIGRP external routes.
Maximum path	Maximum number of parallel routes that the EIGRP can support.
Maximum hopcount	Maximum hop count (in decimal).
Maximum metric variance	Metric variance used to find feasible paths for a route.
Automatic Summarization	Indicates whether route summarization has been enabled with the auto-summary command.
Routing for Networks:	Networks for which the routing process is currently injecting routes.
Routing Information Sources:	Lists all the routing sources that the Cisco IOS software is using to build its routing table. The following is displayed for each source:
	• IP address
	Administrative distance
	• Time the last update was received from this source

Examples

The following sample output from the **showipprotocols** command shows an Intermediate System-to-Intermediate System (IS-IS) process:

```
Router# show ip protocols
Routing Protocol is "isis"
Sending updates every 0 seconds
Invalid after 0 seconds, hold down 0, flushed after 0
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Redistributing: isis
Address Summarization:
None
Routing for Networks:
Serial0
Routing Information Sources:
Distance: (default is 115)
The table below describes the significant fields shown in the display.
```

Field	Description
Routing Protocol is "isis"	Specifies the routing protocol used.
Sending updates every 0 seconds	Specifies the time (in seconds) between sending updates.
Invalid after 0 seconds	Specifies the value of the invalid parameter.
hold down 0	Specifies the current value of the hold-down parameter.
flushed after 0	Specifies the time (in seconds) after which the individual routing information will be thrown out (flushed).
Outgoing update	Specifies whether the outgoing filtering list has been set.
Incoming update	Specifies whether the incoming filtering list has been set.
Redistributing	Lists the protocol that is being redistributed.
Routing	Specifies the networks for which the routing process is currently injecting routes.
Routing Information Sources	Lists all the routing sources the Cisco IOS software is using to build its routing table. For each source, you will see the following displayed:
	• IP address
	Administrative distance
	• Time the last update was received from this source

Table 11: show ip protocols Field Descriptions for an IS-IS Process

Examples

I

The following sample output from the showipprotocols command displays RIP processes:

Router# show ip protocols Routing Protocol is "rip" Outgoing update filter list for all interfaces is not set Incoming update filter list for all interfaces is not set Sending updates every 30 seconds, next due in 6 seconds Invalid after 180 seconds, hold down 180, flushed after 240 Sending Default route on Passive interfaces Redistributing: rip Default version control: send version 2, receive version 2 Automatic network summarization is not in effect

```
Maximum path: 4
Routing for Networks:
  172.19.0.0
  10.2.0.0
 10.3.0.0
Passive Interface(s):
  Ethernet0/0
  Ethernet0/1
 Ethernet0/2
 Ethernet0/3
 Ethernet1/0
 Ethernet1/1
 Ethernet1/2
 Ethernet1/3
Passive Interface(s):
  Serial2/0
  Serial2/1
  Serial2/2
  Serial2/3
  Serial3/0
  Serial3/1
  Serial3/2
  Serial3/3
Routing Information Sources:
                                Last Update
  Gateway
                  Distance
Distance: (default is 120)
```

The table below describes the significant fields shown in the display.

Table 12: show ip protocols Field Descriptions for a RIP Process

Field	Description
Routing Protocol is "rip"	Specifies the routing protocol used.
Outgoing update	Specifies whether the outgoing filtering list has been set.
Incoming update	Specifies whether the incoming filtering list has been set.
Sending updates every 30 seconds	Specifies the time (in seconds) between sending updates.
next due in 6 seconds	Specifies when the next update is due to be sent.
Invalid after 180 seconds	Specifies the value of the invalid parameter.
hold down 180	Specifies the current value of the hold-down parameter.
flushed after 240	Specifies the time (in seconds) after which the individual routing information will be thrown (flushed) out.
Sending Default route on Passive interfaces	Specifies that RIP update packets are sent only with a default route on passive interfaces.
Redistributing	Lists the protocol that is being redistributed.

Description
Specifies the version of RIP packets that are sent and received.
Specifies the networks for which the routing process is currently injecting routes.
Lists all the routing sources the Cisco IOS software is using to build its routing table. For each source, you will see the following displayed:
• IP address
Administrative distance
• Time the last update was received from this source

Examples

The following is sample output from the **showipprotocols** command. The output shows that the router is running EIGRP, is NSF-aware, and that the route-hold timer is set to 240 seconds, which is the default value for the route-hold timer.

```
Router# show ip protocols
Routing Protocol is "eigrp 101"
  Outgoing update filter list for all interfaces is not set
  Incoming update filter list for all interfaces is not set
  Default networks flagged in outgoing updates
  Default networks accepted from incoming updates
  EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
  EIGRP maximum hopcount 100
 EIGRP maximum metric variance 1
  Redistributing: eigrp 101
 EIGRP NSF-aware route hold timer is 240s
 Automatic network summarization is in effect
  Maximum path: 4
 Routing for Networks:
   10.4.9.0/24
  Routing Information Sources:
    Gateway
                    Distance
                                  Last Update
  Distance: internal 90 external 170
```

The table below describes the significant fields shown in the display.

Table 13: show ip protocols Field Descriptions for an EIGRP NSF-Aware Process

Field	Description
Routing Protocol is "eigrp 101"	Specifies the routing protocol used.
Outgoing update	Specifies whether the outgoing filtering list has been set.
Incoming update	Specifies whether the incoming filtering list has been set.

I

1

Field	Description
Default networks	Specifies how these networks will be handled in both incoming and outgoing updates.
EIGRP	Specifies the value of the K0-K5 metrics, and the maximum hop count.
Redistributing	Lists the protocol that is being redistributed.
EIGRP NSF-Aware	Displays the route-hold timer value.
Automatic network summarization	Specifies that automatic summarization is enabled.
Routing	Specifies the networks for which the routing process is currently injecting routes.
Routing Information Sources	Lists all the routing sources the Cisco IOS software is using to build its routing table. For each source, you will see the following displayed: • IP address
	Administrative distance
	• Time the last update was received from this source

Related Commands

Command	Description
auto-summary (EIGRP)	Allows automatic summarization of subnet routes into network-level routes.
default-information originate (RIP)	Generates a default route into RIP.
distribute-list in (IP)	Filters networks received in updates.
distribute-list out (IP)	Suppresses networks from being advertised in updates.
redistribute (IP)	Redistributes routes from one routing domain into another routing domain.

show ip route

To display contents of the routing table, use the **show ip route** command in user EXEC or privileged EXEC mode.

show ip route [*ip-address* [**repair-paths**| **next-hop-override** [**dhcp**]| *mask* [**longer-prefixes**]]| *protocol* [*process-id*]| **list** [*access-list-number* | *access-list-name*]| **static download**| **update-queue**]

Syntax Description

I

ip-address	(Optional) IP address for which routing information should be displayed.
repair-paths	(Optional) Displays the repair paths.
next-hop-override	(Optional) Displays the Next Hop Resolution Protocol (NHRP) next-hop overrides that are associated with a particular route and the corresponding default next hops.
dhcp	(Optional) Displays routes added by the Dynamic Host Configuration Protocol (DHCP) server.
mask	(Optional) Subnet mask.
longer-prefixes	(Optional) Displays output for longer prefix entries.
protocol	(Optional) The name of a routing protocol or the keyword connected , mobile , static , or summary . If you specify a routing protocol, use one of the following keywords: bgp , eigrp , hello , isis , odr , ospf , nhrp , or rip .
process-id	(Optional) Number used to identify a process of the specified protocol.
list	(Optional) Filters output by an access list name or number.
access-list-number	(Optional) Access list number.
access-list-name	(Optional) Access list name.
static	(Optional) Displays static routes.
download	(Optional) Displays routes installed using the authentication, authorization, and accounting (AAA) route download function. This keyword is used only when AAA is configured.

1

update-queue	(Optional) Displays Routing Information Base (RIB) queue updates.
--------------	---

Command Modes User EXEC (>)

Privileged EXEC (#)

Command History

Release	Modification
9.2	This command was introduced.
10.0	This command was modified. The "D—EIGRP, EX—EIGRP, N1—SPF NSSA external type 1 route" and "N2—OSPF NSSA external type 2 route" codes were included in the command output.
10.3	This command was modified. The <i>process-id</i> argument was added.
11.0	This command was modified. The longer-prefixes keyword was added.
11.1	This command was modified. The "U—per-user static route" code was included in the command output.
11.2	This command was modified. The "o—on-demand routing" code was included in the command output.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA, and the update-queue keyword was added.
11.3	This command was modified. The command output was enhanced to display the origin of an IP route in Intermediate System-to-Intermediate System (IS-IS) networks.
12.0(1)T	This command was modified. The "M—mobile" code was included in the command output.
12.0(3)T	This command was modified. The "P—periodic downloaded static route" code was included in the command output.
12.0(4)T	This command was modified. The "ia—IS-IS" code was included in the command output.
12.2(2)T	This command was modified. The command output was enhanced to display information on multipaths to the specified network.

Release	Modification
12.2(13)T	This command was modified. The <i>egp</i> and <i>igrp</i> arguments were removed because the Exterior Gateway Protocol (EGP) and the Interior Gateway Routing Protocol (IGRP) were no longer available in Cisco software.
12.2(14)S	This command was integrated into Cisco IOS Release 12.2(14)S.
12.2(14)SX	This command was integrated into Cisco IOS Release 12.2(14)SX.
12.3(2)T	This command was modified. The command output was enhanced to display route tag information.
12.3(8)T	This command was modified. The command output was enhanced to display static routes using DHCP.
12.2(27)SBC	This command was integrated into Cisco IOS Release 12.2(27)SBC.
12.2(33)SRE	This command was modified. The dhcp and repair-paths keywords were added.
12.2(33)XNE	This command was integrated into Cisco IOS Release 12.2(33)XNE.
Cisco IOS XE Release 2.5	This command was integrated into Cisco IOS XE Release 2.5. The next-hop-override and nhrp keywords were added.
15.2(2)8	This command was modified. The command output was enhanced to display route tag values in dotted decimal format.
Cisco IOS XE Release 3.6S	This command was modified. The command output was enhanced to display route tag values in dotted decimal format.
15.2(4)S	This command was implemented on the Cisco 7200 series router.
15.1(1)SY	This command was integrated into Cisco IOS Release 15.1(1)SY.

Examples

I

Examples	The following is sample output from the show ip route command when an IP address is not specified:
----------	---

Device# show ip route

R - RIP derived, O - OSPF derived,
C - connected, S - static, B - BGP derived,
* - candidate default route, IA - OSPF inter area route,
i - IS-IS derived, ia - IS-IS, U - per-user static route,
o - on-demand routing, M - mobile, P - periodic downloaded static route,
D - EIGRP, EX - EIGRP external, E1 - OSPF external type 1 route,

E2 - OSPF external type 2 route, N1 - OSPF NSSA external type 1 route, N2 - OSPF NSSA external type 2 route Gateway of last resort is 10.119.254.240 to network 10.140.0.0 O E2 10.110.0.0 [160/5] via 10.119.254.6, 0:01:00, Ethernet2 10.67.10.0 [200/128] via 10.119.254.244, 0:02:22, Ethernet2 E O E2 10.68.132.0 [160/5] via 10.119.254.6, 0:00:59, Ethernet2 O E2 10.130.0.0 [160/5] via 10.119.254.6, 0:00:59, Ethernet2 E 10.128.0.0 [200/128] via 10.119.254.244, 0:02:22, Ethernet2 10.129.0.0 [200/129] via 10.119.254.240, 0:02:22, Ethernet2 Ε 10.65.129.0 [200/128] via 10.119.254.244, 0:02:22, Ethernet2 E E 10.10.0.0 [200/128] via 10.119.254.244, 0:02:22, Ethernet2 Е 10.75.139.0 [200/129] via 10.119.254.240, 0:02:23, Ethernet2 E 10.16.208.0 [200/128] via 10.119.254.244, 0:02:22, Ethernet2 10.84.148.0 [200/129] via 10.119.254.240, 0:02:23, Ethernet2 E 10.31.223.0 [200/128] via 10.119.254.244, 0:02:22, Ethernet2 E E 10.44.236.0 [200/129] via 10.119.254.240, 0:02:23, Ethernet2 E 10.141.0.0 [200/129] via 10.119.254.240, 0:02:22, Ethernet2 10.140.0.0 [200/129] via 10.119.254.240, 0:02:23, Ethernet2 E

The following sample output from the **show ip route** command includes routes learned from IS-IS Level 2:

Device# show ip route

```
Codes: R - RIP derived, O - OSPF derived,
       C - connected, S - static, B - BGP derived,
       * - candidate default route, IA - OSPF inter area route,
       i - IS-IS derived, ia - IS-IS, U - per-user static route,
       o - on-demand routing, M - mobile, P - periodic downloaded static route,
       D - EIGRP, EX - EIGRP external, E1 - OSPF external type 1 route,
       E2 - OSPF external type 2 route, N1 - OSPF NSSA external type 1 route,
       N2 - OSPF NSSA external type 2 route
Gateway of last resort is not set
     10.89.0.0 is subnetted (mask is 255.255.255.0), 3 subnets
С
         10.89.64.0 255.255.255.0 is possibly down,
           routing via 10.0.0.0, Ethernet0
        10.89.67.0 [115/20] via 10.89.64.240, 0:00:12, Ethernet0
10.89.66.0 [115/20] via 10.89.64.240, 0:00:12, Ethernet0
i L2
i T.2
```

The following is sample output from the **show ip route** *ip-address mask* **longer-prefixes** command. When this keyword is included, the address-mask pair becomes the prefix, and any address that matches that prefix is displayed. Therefore, multiple addresses are displayed. The logical AND operation is performed on the source address 10.0.0.0 and the mask 10.0.0.0, resulting in 10.0.0.0. Each destination in the routing table is also logically ANDed with the mask and compared with 10.0.0.0. Any destinations that fall into that range are displayed in the output.

Device# show ip route 10.0.0.0 10.0.0.0 longer-prefixes

```
Codes: R - RIP derived, O - OSPF derived,
       C - connected, S - static, B - BGP derived,
       * - candidate default route, IA - OSPF inter area route,
       i - IS-IS derived, ia - IS-IS, U - per-user static route,
       o - on-demand routing, M - mobile, P - periodic downloaded static route,
       D - EIGRP, EX - EIGRP external, E1 - OSPF external type 1 route,
       E2 - OSPF external type 2 route, N1 - OSPF NSSA external type 1 route,
       N2 - OSPF NSSA external type 2 route
Gateway of last resort is not set
S
     10.134.0.0 is directly connected, Ethernet0
S
     10.10.0.0 is directly connected, Ethernet0
     10.129.0.0 is directly connected, Ethernet0
S
S
     10.128.0.0 is directly connected, Ethernet0
S
     10.49.246.0 is directly connected, Ethernet0
S
     10.160.97.0 is directly connected, Ethernet0
     10.153.88.0 is directly connected, Ethernet0
10.76.141.0 is directly connected, Ethernet0
S
S
S
     10.75.138.0 is directly connected, Ethernet0
S
     10.44.237.0 is directly connected, Ethernet0
```

10.145.0.0 is directly connected, Ethernet0

S 10.141.0.0 is directly connected, Ethernet0
S 10.138.0.0 is directly connected, Ethernet0
S 10.128.0.0 is directly connected, Ethernet0
10.19.0.0 255.255.255.0 is subnetted, 1 subnets
C 10.19.64.0 is directly connected, Ethernet0
10.69.0.0 is variably subnetted, 2 subnets, 2 masks
C 10.69.232.2255.255.255.240 is directly connected, Ethernet0
S 10.69.0.0 255.255.0.0 is directly connected, Ethernet0

The following sample outputs from the **show ip route** command display all downloaded static routes. A "p" indicates that these routes were installed using the AAA route download function.

Device# show ip route

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default
       U - per-user static route, o - ODR, P - periodic downloaded static route T - traffic engineered route
Gateway of last resort is 172.16.17.1 to network 10.0.0.0
        172.31.0.0/32 is subnetted, 1 subnets
        172.31.229.41 is directly connected, Dialer1 10.0.0.0/8 is subnetted, 3 subnets
Ρ
Ρ
        10.1.1.0 [200/0] via 172.31.229.41, Dialer1
        10.1.3.0 [200/0] via 172.31.229.41, Dialer1
Ρ
        10.1.2.0 [200/0] via 172.31.229.41, Dialer1
Ρ
Device# show ip route static
     172.16.4.0/8 is variably subnetted, 2 subnets, 2 masks
        172.16.1.1/32 is directly connected, BRIO
Ρ
        172.16.4.0/8 [1/0] via 10.1.1.1, BRIO
Ρ
S
     172.31.0.0/16 [1/0] via 172.16.114.65, Ethernet0
     10.0.0.0/8 is directly connected, BRIO
S
Ρ
     10.0.0/8 is directly connected, BRIO
     172.16.0.0/16 is variably subnetted, 5 subnets, 2 masks
S
        172.16.114.201/32 is directly connected, BRI0
S
        172.16.114.205/32 is directly connected, BRI0
        172.16.114.174/32 is directly connected, BRI0
S
S
        172.16.114.12/32 is directly connected, BRI0
     10.0.0.0/8 is directly connected, BRIO
Ρ
Ρ
     10.1.0.0/16 is directly connected, BRIO
Ρ
     10.2.2.0/24 is directly connected, BRIO
S*
     0.0.0.0/0 [1/0] via 172.16.114.65, Ethernet0
S
     172.16.0.0/16 [1/0] via 172.16.114.65, Ethernet0
```

The following sample output from the **show ip route static download** command displays all active and inactive routes installed using the AAA route download function:

Device# show ip route static download

Connectivity: A - Active, I - Inactive Α 10.10.0.0 255.0.0.0 BRIO 10.11.0.0 255.0.0.0 BRIO Α 10.12.0.0 255.0.0.0 BRIO Α 10.13.0.0 255.0.0.0 BRIO Α 10.20.0.0 255.0.0.0 172.21.1.1 Т Т 10.22.0.0 255.0.0.0 Serial0 10.30.0.0 255.0.0.0 Serial0 Ι 10.31.0.0 255.0.0.0 Serial1 Т Ι 10.32.0.0 255.0.0.0 Serial1 Α 10.34.0.0 255.0.0.0 192.168.1.1 Α 10.36.1.1 255.255.255.255 BRI0 200 name remote1 10.38.1.9 255.255.255.0 192.168.69.1 Т

The following sample outputs from the **show ip route nhrp** command display shortcut switching on the tunnel interface:

Device# show ip route

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP
Gateway of last resort is not set
10.0.0.0/16 is variably subnetted, 3 subnets, 2 masks
        10.1.1.0/24 is directly connected, Tunnel0
C
С
        172.16.22.0 is directly connected, Ethernet1/0
Η
        172.16.99.0 [250/1] via 10.1.1.99, 00:11:43, Tunnel0
     10.11.0.0/24 is subnetted, 1 subnets
С
        10.11.11.0 is directly connected, Ethernet0/0
```

Device# show ip route nhrp

H 172.16.99.0 [250/1] via 10.1.1.99, 00:11:43, Tunnel0 The following are sample outputs from the **show ip route** command when the **next-hop-override** keyword is used. When this keyword is included, the NHRP next-hop overrides that are associated with a particular route and the corresponding default next hops are displayed.

```
_____
1) Initial configuration
   _____
Device# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP
       + - replicated route
Gateway of last resort is not set
      10.2.0.0/16 is variably subnetted, 2 subnets, 2 masks
С
         10.2.1.0/24 is directly connected, Loopback1
T.
         10.2.1.1/32 is directly connected, Loopback1
      10.0.0/24 is subnetted, 1 subnets
         10.10.10.0 is directly connected, Tunnel0
S
      10.11.0.0/24 is subnetted, 1 subnets
S
         10.11.11.0 is directly connected, Ethernet0/0
Device# show ip route next-hop-override
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP
       + - replicated route
Gateway of last resort is not set
      10.2.0.0/16 is variably subnetted, 2 subnets, 2 masks
С
         10.2.1.0/24 is directly connected, Loopback1
         10.2.1.1/32 is directly connected, Loopback1
Τ.
      10.0.0/24 is subnetted, 1 subnets
S
         10.10.10.0 is directly connected, Tunnel0
      10.11.0.0/24 is subnetted, 1 subnets
```

ſ

s 10.11.11.0	is directly connected	, Ethernet0/0			
Device# show ip cef					
Prefix	Next Hop	Interface			
•					
	receive attached	Loopback1 Tunnel0 <<<<<<			
	attached drop	Ethernet0/0			
•					
<pre>2) Add a next-hop override address = 10.10.10.0 mask = 255.255.255.0 gateway = 10.1.1.1 interface = Tunnel0</pre>					
Device# show ip rout	e				
<pre>Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP + - replicated route</pre>					
Gateway of last reso					
<pre>10.2.0.0/16 is variably subnetted, 2 subnets, 2 masks C 10.2.1.0/24 is directly connected, Loopback1 L 10.2.1.1/32 is directly connected, Loopback1 10.0.0.0/24 is subnetted, 1 subnets</pre>					
<pre>S 10.10.10.0 is directly connected, Tunnel0 10.11.0.0/24 is subnetted, 1 subnets S 10.11.11.0 is directly connected, Ethernet0/0</pre>					
Device# show ip rout	e next-hop-override				
<pre>Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP + - replicated route</pre>					
<pre>Gateway of last resort is not set</pre>					
[NHO][1/0] via 10.1.1.1, Tunnel0 10.11.0.0/24 is subnetted, 1 subnets S 10.11.11.0 is directly connected, Ethernet0/0					
Device# show ip cef					
Prefix	Next Hop	Interface			
•					
10.2.1.255/32	receive	Loopback110.10.10.0/24			

```
10.10.10.0/24
                   10.1.1.1
                                            TunnelO
10.11.11.0/24
                     attached
                                        Ethernet0/0
10.12.0.0/16 drop
_____
3) Delete a next-hop override
   address = 10.10.10.0
   mask = 255.255.255.0
   gateway = 10.11.1.1
   interface = Tunnel0
_____
Device# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route, H - NHRP
       + - replicated route
Gateway of last resort is not set
      10.2.0.0/16 is variably subnetted, 2 subnets, 2 masks
С
         10.2.1.0/24 is directly connected, Loopback1
L
         10.2.1.1/32 is directly connected, Loopback1
      10.0.0.0/24 is subnetted, 1 subnets
S
         10.10.10.0 is directly connected, Tunnel0
      10.11.0.0/24 is subnetted, 1 subnets
S
         10.11.11.0 is directly connected, Ethernet0/0
Device# show ip route next-hop-override
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP
       + - replicated route
Gateway of last resort is not set
      10.2.0.0/16 is variably subnetted, 2 subnets, 2 masks
         10.2.1.0/24 is directly connected, Loopback1
С
         10.2.1.1/32 is directly connected, Loopback1
T.
      10.0.0/24 is subnetted, 1 subnets
S
         10.10.10.0 is directly connected, Tunnel0
      10.11.0.0/24 is subnetted, 1 subnets
10.11.11.0 is directly connected, Ethernet0/0
S
Device# show ip cef
                     Next Hop
Prefix
                                           Interface
10.2.1.255/32
                                            Loopback110.10.10.0/24
                      receive
10.10.10.0/24
                      attached
                                            Tunnel0
10.11.11.0/24
                      attached
                                            Ethernet0/0
10.120.0.0/16 drop
```

The table below describes the significant fields shown in the displays:

ſ

Description
Indicates the protocol that derived the route. It can be one of the following values:
• B—BGP derived
• C—Connected
• D—Enhanced Interior Gateway Routing Protocol (EIGRP)
• EX—EIGRP external
• H—NHRP
• i—IS-IS derived
• ia—IS-IS
• L—Local
• M—Mobile
• o—On-demand routing
• O—Open Shortest Path First (OSPF) derived
• P—Periodic downloaded static route
• R—Routing Information Protocol (RIP) derived
• S—Static
• U—Per-user static route
• +—Replicated route
Type of route. It can be one of the following values:
• *—Indicates the last path used when a packet was forwarded. This information is specific to nonfast-switched packets.
• E1—OSPF external type 1 route
• E2—OSPF external type 2 route
• IA—OSPF interarea route
• L1—IS-IS Level 1 route
• L2—IS-IS Level 2 route
• N1—OSPF not-so-stubby area (NSSA) external type 1 route
• N2—OSPF NSSA external type 2 route

Table 14: show ip route Field Descriptions

Field	Description
10.110.0.0	Indicates the address of the remote network.
[160/5]	The first number in brackets is the administrative distance of the information source; the second number is the metric for the route.
via 10.119.254.6	Specifies the address of the next device to the remote network.
0:01:00	Specifies the last time the route was updated (in hours:minutes:seconds).
Ethernet2	Specifies the interface through which the specified network can be reached.

Examples

The following is sample output from the **show ip route** command when an IP address is specified:

```
Device# show ip route 10.0.0.1
```

```
Routing entry for 10.0.0.1/32
Known via "isis", distance 115, metric 20, type level-1
Redistributing via isis
Last update from 10.191.255.251 on Fddi1/0, 00:00:13 ago
Routing Descriptor Blocks:
 * 10.22.22.2, from 10.191.255.247, via Serial2/3
Route metric is 20, traffic share count is 1
10.191.255.251, from 10.191.255.247, via Fddi1/0
Route metric is 20, traffic share count is 1
```

When an IS-IS router advertises its link-state information, the router includes one of its IP addresses to be used as the originator IP address. When other routers calculate IP routes, they store the originator IP address with each route in the routing table.

The preceding example shows the output from the **show ip route** command for an IP route generated by IS-IS. Each path that is shown under the Routing Descriptor Blocks report displays two IP addresses. The first address (10.22.22.2) is the next-hop address. The second is the originator IP address from the advertising IS-IS router. This address helps you determine the origin of a particular IP route in your network. In the preceding example, the route to 10.0.0.1/32 was originated by a device with IP address 10.191.255.247.

The table below describes the significant fields shown in the display.

Table 15: show ip route with IP Address Field Descriptions

Field	Description
Routing entry for 10.0.0.1/32	Network number and mask.
Known via	Indicates how the route was derived.
Redistributing via	Indicates the redistribution protocol.

I

Field	Description
Last update from 10.191.255.251	Indicates the IP address of the router that is the next hop to the remote network and the interface on which the last update arrived.
Routing Descriptor Blocks	Displays the next-hop IP address followed by the information source.
Route metric	This value is the best metric for this Routing Descriptor Block.
traffic share count	Indicates the number of packets transmitted over various routes.

The following sample output from the **show ip route** command displays the tag applied to the route 10.22.0.0/16. You must specify an IP prefix to see the tag value. The fields in the display are self-explanatory.

```
Routing entry for 10.22.0.0/16
Known via ``isis", distance 115, metric 12
Tag 120, type level-1
Redistributing via isis
Last update from 172.19.170.12 on Ethernet2, 01:29:13 ago
Routing Descriptor Blocks:
    * 172.19.170.12, from 10.3.3.3, via Ethernet2
    Route metric is 12, traffic share count is 1
    Route tag 120
```

Device# show ip route 10.22.0.0

Device# show ip route

Examples

The following example shows that IP route 10.8.8.0 is directly connected to the Internet and is the next-hop (option 3) default gateway. Routes 10.1.1.1 [1/0], 10.3.2.1 [24/0], and 172.16.2.2 [1/0] are static, and route 10.0.0.0/0 is a default route candidate. The fields in the display are self-explanatory.

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 10.0.19.14 to network 0.0.0.0
10.0.0/24 is subnetted, 1 subnets
C 10.8.8.0 is directly connected, Ethernet1
  10.0.0/32 is subnetted, 1 subnets
 10.1.1.1 [1/0] via 10.8.8.1
S
  10.0.0/32 is subnetted, 1 subnets
S 10.3.2.1 [24/0] via 10.8.8.1
  172.16.0.0/32 is subnetted, 1 subnets
S 172.16.2.2 [1/0] via 10.8.8.1
  10.0.0/28 is subnetted, 1 subnets
С
 10.0.19.0 is directly connected, Ethernet0
  10.0.0/24 is subnetted, 1 subnets
C 10.15.15.0 is directly connected, Loopback0
S* 10.0.0.0/0 [1/0] via 10.0.19.14
```

The following sample output from the **show ip route repair-paths** command shows repair paths marked with the tag [RPR]. The fields in the display are self-explanatory:

Device# show ip route repair-paths Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route, H - NHRP + - replicated route, % - next hop override Gateway of last resort is not set 10.0.0/32 is subnetted, 3 subnets С 10.1.1.1 is directly connected, Loopback0 В 10.2.2.2 [200/0] via 172.16.1.2, 00:31:07 [RPR] [200/0] via 192.168.1.2, 00:31:07 10.9.9.9 [20/0] via 192.168.1.2, 00:29:45 B [RPR][20/0] via 192.168.3.2, 00:29:45 172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks С 172.16.1.0/24 is directly connected, Ethernet0/0 172.16.1.1/32 is directly connected, Ethernet0/0 T. 192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks С 192.168.1.0/24 is directly connected, Serial2/0 192.168.1.1/32 is directly connected, Serial2/0 L В 192.168.3.0/24 [200/0] via 172.16.1.2, 00:31:07 [RPR][200/0] via 192.168.1.2, 00:31:07 В 192.168.9.0/24 [20/0] via 192.168.1.2, 00:29:45 [RPR][20/0] via 192.168.3.2, 00:29:45 В 192.168.13.0/24 [20/0] via 192.168.1.2, 00:29:45 [RPR][20/0] via 192.168.3.2, 00:29:45 Device# show ip route repair-paths 10.9.9.9 >Routing entry for 10.9.9/32
> Known via "bgp 100", distance 20, metric 0 > Tag 10, type external Last update from 192.168.1.2 00:44:52 ago > Routing Descriptor Blocks: 192.168.1.2, from 192.168.1.2, 00:44:52 ago, recursive-via-conn > > Route metric is 0, traffic share count is 1 > AS Hops 2 > Route tag 10 > MPLS label: none [RPR]192.168.3.2, from 172.16.1.2, 00:44:52 ago > > Route metric is 0, traffic share count is 1 > AS Hops 2 > Route tag 10 MPLS label: none >

Related Commands

Command	Description
show interfaces tunnel	Displays tunnel interface information.
show ip route summary	Displays the current state of the routing table in summary format.

1

show ip route summary

To display the current state of the routing table, use the **showiproutesummary** command in privileged EXEC mode.

shshow ip route summary commandow ip route summary

- **Syntax Description** This command has no arguments or keywords.
- **Command Modes** Privileged EXEC

Command History

Release	Modification
10.0	This command was introduced.
12.3(2)T	The number of multipaths supported by the routing table was added to the output.
12.2(27)SBC	This command was integrated into Cisco IOS Release 12.2(27)SBC.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Examples

The following is sample output from the**showiproutesummary** command:

```
Router# show ip route summary
IP routing table name is Default-IP-Routing-Table(0)
IP routing table maximum-paths is 16
Route Source
                Networks
                             Subnets
                                          Overhead
                                                       Memory (bytes)
connected
                 0
                             3
                                          126
                                                       360
static
                              2
                                          126
                                                       360
                 1
                 747
                             12
                                          31878
                                                       91080
eigrp 109
                 3
                                                       360
internal
                 751
                             17
                                          32130
                                                       92160
Total
```

show ip route summary describes the significant fields shown in the display.

Table 16: show ip route summary Field Descriptions

Field	Description
IP routing table name is	Displays routing table type and table ID.
IP routing table maximum-paths is	Number of parallel routes supported by this routing table.

Field	Description
Route Source	Routing protocol name, or the connected,static, or internal keyword. "Internal" indicates those routes that are in the routing table that are not owned by any routing protocol.
Networks	Number of prefixes that are present in the routing table for each route source.
Subnets	Number of subnets that are present in the routing table for each route source, including host routes.
Overhead	Any additional memory involved in allocating the routes for the particular route source other than the memory specified in the Memory field.
Memory	Number of bytes allocated to maintain all the routes for the particular route source.

show ip route supernets-only

To display information about supernets, use the **showiproutesupernets-only** command in privileged EXEC mode.

show ip route supernets-only commandshow ip route supernets-only

- **Syntax Description** This command has no arguments or keywords.
- **Command Modes** Privileged EXEC

 Release
 Modification

 10.0
 This command was introduced.

 12.2(33)SRA
 This command was integrated into Cisco IOS Release 12.2(33)SRA.

 12.2SX
 This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Examples

The following is sample output from the **showiproutesupernets-only** command. This display shows supernets only; it does not show subnets.

```
Router# show ip route supernets-only
Codes: R - RIP derived, 0 - OSPF derived
C - connected, S - static, B - BGP derived
i - IS-IS derived, D - EIGRP derived
* - candidate default route, IA - OSPF inter area route
E1 - OSPF external type 1 route, E2 - OSPF external type 2 route
L1 - IS-IS level-1 route, L2 - IS-IS level-2 route
EX - EIGRP external route
Gateway of last resort is not set
B 172.16.0.0 (mask is 255.255.0.0) [20/0] via 172.16.72.30, 0:00:50
B 192.0.0.0 (mask is 255.0.0.0) [20/0] via 172.16.72.24, 0:02:50
The table below describes the significant fields shown in the display.
```

Table 17: show ip route supernets-only Field Descriptions

Field	Description
В	Border Gateway Protocol (BGP) derived, as shown in list of codes.
172.16.0.0 (mask is 255.255.0.0)	Supernet IP address.
[20/0]	Administrative distance (external/internal).

Field	Description
via 172.16.72.30	Next hop IP address.
0:00:50	Age of the route (how long ago the update was received).

show ipv6 route

To display contents of the IPv6 routing table, use the **show ipv6 route** command in user EXEC or privileged EXEC mode.

show ipv6 route [*ipv6-address*| *ipv6-prefix*|*prefix-length* [**longer-prefixes**]| [*protocol*] | [**repair**] | [**updated** [**boot-up**] [*day month*] [*time*]]| **interface** *type number*| **nd**| **nsf**| **table** *table-id* | **watch**]

Syntax Description

ipv6-address	(Optional) Displays routing information for a specific IPv6 address.
ipv6-prefix	(Optional) Displays routing information for a specific IPv6 network.
lprefix-length	(Optional) The length of the IPv6 prefix. A decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.
longer-prefixes	(Optional) Displays output for longer prefix entries.
protocol	(Optional) The name of a routing protocol or the keyword connected , local , mobile , or static . If you specify a routing protocol, use one of the following keywords: bgp , isis , eigrp , ospf , or rip .
repair	(Optional) Displays routes with repair paths.
updated	(Optional) Displays routes with time stamps.
boot-up	(Optional) Displays routing information since boot up.
day month	(Optional) Displays routes since the specified day and month.
time	(Optional) Displays routes since the specified time, in <i>hh:mm</i> format.
interface	(Optional) Displays information about the interface.
type	(Optional) Interface type.
number	(Optional) Interface number.

1

nd	(Optional) Displays only routes from the IPv6 Routing Information Base (RIB) that are owned by Neighbor Discovery (ND).
nsf	(Optional) Displays routes in the nonstop forwarding (NSF) state.
repair	(Optional)
table table-id	(Optional) Displays IPv6 RIB table information for the specified table ID. The table ID must be in hexadecimal format. The range is from 0 to 0-0xFFFFFFF.
watch	(Optional) Displays information about route watchers.

Command Default All IPv6 routing information for all active routing tables is displayed.

Command ModesUser EXEC (>)Privileged EXEC (#)

Command	History
---------	---------

Release	Modification
12.2(2)T	This command was introduced.
12.2(8)T	This command was modified. The isis keyword was added, and the I1 - ISIS L1, I2 - ISIS L2, and IA - ISIS interarea fields were included in the command output.
12.0(21)ST	This command was integrated into Cisco IOS Release 12.0(21)ST.
12.0(22)S	This command was integrated into Cisco IOS Release 12.0(22)S. The timer information was removed, and an indicator was added to display IPv6 Multiprotocol Label Switching (MPLS) interfaces.
12.2(13)T	This command was modified. The timer information was removed, and an indicator was added to display IPv6 MPLS virtual interfaces.
12.2(14)S	This command was modified. The longer-prefixes keyword was added.
12.2(28)SB	This command was integrated into Cisco IOS Release 12.2(28)SB.
12.2(25)SG	This command was integrated into Cisco IOS Release 12.2(25)SG.
12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.

Release	Modification
12.2(33)SXH	This command was integrated into Cisco IOS Release 12.2(33)SXH.
Cisco IOS XE Release 2.1	This command was introduced on Cisco ASR 1000 series Aggregation Services Routers.
12.4(24)T	This command was modified in a release earlier than Cisco IOS Release 12.4(24)T. The table , nsf , watch , and updated keywords and <i>day</i> , <i>month</i> , <i>table-id</i> , and <i>time</i> arguments were added.
15.2(2)S	This command was modified. The command output was enhanced to include route tag values in dotted-decimal format.
Cisco IOS XE Release 3.6S	This command was modified. The command output was enhanced to include route tag values in dotted-decimal format.
15.1(1)SY	The nd keyword was added.

Usage Guidelines The **show ipv6 route** command provides output similar to the **show ip route** command, except that the information is IPv6-specific.

When the *ipv6-address* or *ipv6-prefix/prefix-length* argument is specified, the longest match lookup is performed from the routing table, and only route information for that address or network is displayed. When a routing protocol is specified, only routes for that protocol are displayed. When the **connected**, **local**, **mobile**, or **static** keyword is specified, only the specified type of route is displayed. When the **interface** keyword and *type* and *number* arguments are specified, only the specified interface-specific routes are displayed.

Examples The following is sample output from the **show ipv6 route** command when no keywords or arguments are specified:

Device# show ipv6 route

IPv6 Routing Table - 9 entries			
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP			
I1 - ISIS L1, I2 - ISIS L2, IA - IIS interarea			
B 2001:DB8:4::2/48 [20/0]			
via FE80::A8BB:CCFF:FE02:8B00, Serial6/0			
L 2001:DB8:4::3/48 [0/0]			
via ::, Ethernet1/0			
C 2001:DB8:4::4/48 [0/0]			
via ::, Ethernet1/0			
LC 2001:DB8:4::5/48 [0/0]			
via ::, LoopbackO			
L 2001:DB8:4::6/48 [0/0]			
via ::, Serial6/0			
C 2001:DB8:4::7/48 [0/0]			
via ::, Serial6/0			
S 2001:DB8:4::8/48 [1/0]			
via 2001:DB8:1::1, Null			
L FE80::/10 [0/0]			
via ::, NullO			
L FF00::/8 [0/0]			
via ::, NullO			
The table below describes the significant fields shown in the display			

The table below describes the significant fields shown in the display.

Field	Description
Codes:	Indicates the protocol that derived the route. Values are as follows:
	• B—BGP derived
	• C—Connected
	• I1—ISIS L1—Integrated IS-IS Level 1 derived
	• I2—ISIS L2—Integrated IS-IS Level 2 derived
	• IA—ISIS interarea—Integrated IS-IS interarea derived
	• L—Local
	• R—RIP derived
	• S—Static
2001:DB8:4::2/48	Indicates the IPv6 prefix of the remote network.
[20/0]	The first number in brackets is the administrative distance of the information source; the second number is the metric for the route.
via FE80::A8BB:CCFF:FE02:8B00	Specifies the address of the next device to the remote network.

Table 18: show ipv6 route Field Descriptions

When the *ipv6-address* or *ipv6-prefix/prefix-length* argument is specified, only route information for that address or network is displayed. The following is sample output from the **show ipv6 route** command when IPv6 prefix 2001:DB8::/35 is specified. The fields in the display are self-explanatory.

```
Device# show ipv6 route 2001:DB8::/35
```

```
IPv6 Routing Table - 261 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
B 2001:DB8::/35 [20/3]
via FE80::60:5C59:9E00:16, Tunnel1
```

When you specify a protocol, only routes for that particular routing protocol are shown. The following is sample output from the **show ipv6 route bgp** command. The fields in the display are self-explanatory.

```
Device# show ipv6 route bgp
```

```
IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
B 2001:DB8:4::4/64 [20/0]
via FE80::A8BB:CCFF:FE02:8B00, Serial6/0
```

The following is sample output from the **show ipv6 route local** command. The fields in the display are self-explanatory.

```
Device# show ipv6 route local
IPv6 Routing Table - 9 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea
    2001:DB8:4::2/128 [0/0]
L
      via ::, Ethernet1/0
LC 2001:DB8:4::1/128 [0/0]
      via ::, Loopback0
L
    2001:DB8:4::3/128 [0/0]
      via ::, Serial6/0
    FE80::/10 [0/0]
L
    via ::, NullO
FF00::/8 [0/0]
L
      via ::, NullO
```

The following is sample output from the **show ipv6 route** command when the 6PE multipath feature is enabled. The fields in the display are self-explanatory.

Device# show ipv6 route

```
IPv6 Routing Table - default - 19 entries
Codes:C - Connected, L - Local, S - Static, R - RIP, B - BGP
U - Per-user Static route
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
.
.
.
B 2001:DB8::/64 [200/0]
via ::FFFF:172.11.11.1
via ::FFFF:172.30.30.1
```

Related Commands

Command	Description
ipv6 route	Establishes a static IPv6 route.
show ipv6 interface	Displays IPv6 interface information.
show ipv6 route summary	Displays current contents of the IPv6 routing table in summary format.
show ipv6 tunnel	Displays IPv6 tunnel information.

show key chain

To display authentication key information, use the showkeychain command in EXEC mode.

show key chain commandshow key chain [name-of-chain]

Syntax Description	name-of-chain	(Optional) Name of the key chain to display, as nam in the keychain command.
Syntax Description	name-of-chain	

Command Default	Information	about all	key	chains	is	displayed.
-----------------	-------------	-----------	-----	--------	----	------------

Command Modes EXEC

Command History	Release	Modification
	11.1	This command was introduced.
	12.2(33)SRA	This command was integrated into Cisco IOS Release 12.2(33)SRA.
	12.2SX	This command is supported in the Cisco IOS Release 12.2SX train. Support in a specific 12.2SX release of this train depends on your feature set, platform, and platform hardware.

Examples

The following is sample output from the **showkeychain** command:

Router#	show key chain
Key-cha:	in trees:
key	1 text "chestnut"
	accept lifetime (always valid) - (always valid) [valid now]
	send lifetime (always valid) - (always valid) [valid now]
key	2 text "birch"
-	accept lifetime (00:00:00 Dec 5 1995) - (23:59:59 Dec 5 1995)
	send lifetime (06:00:00 Dec 5 1995) - (18:00:00 Dec 5 1995)

Related Commands

Command	Description
accept-lifetime	Sets the time period during which the authentication key on a key chain is received as valid.
key	Identifies an authentication key on a key chain.
key chain	Enables authentication for routing protocols.

Command	Description
key-string (authentication)	Specifies the authentication string for a key.
send-lifetime	Sets the time period during which an authentication key on a key chain is valid to be sent.

show route-map

To display static and dynamic route maps configured on the router, use the **show route-map** command in user EXEC or privileged EXEC mode.

show route-map [map-name| dynamic [dynamic-map-name| application [application-name]]| all] [detailed]

Syntax Description

map-name	(Optional) Name of a specific route map.
dynamic	(Optional) Displays dynamic route map information.
dynamic-map-name	(Optional) Name of a specific, dynamic route map.
application	(Optional) Displays dynamic route maps based on applications.
application-name	(Optional) Name of a specific application.
all	(Optional) Displays all static and dynamic route maps.
detailed	(Optional) Displays details of access control lists (ACLs) that have been used in match clauses for dynamic route maps.

Command Modes

User EXEC (>) Privileged EXEC (#)

Command History

Modification
This command was introduced.
This command was integrated into Cisco IOS Release 12.0(22)S, and support for Continue clauses was included in the command output.
This command was modified. The output was enhanced to display dynamically assigned route maps in VPN routing and forwarding (VRF) tables.
This command was modified. An additional counter-collect policy routing statistic was added to the command output.
This command was modified. Support for Continue clauses was included in the command output.
This command was integrated into Cisco IOS Release 12.2(17b)SXA.

Modification
This command was modified. The dynamic , application , and all keywords were added.
This command was modified. Support for the recursive next-hop clause was added to the command output.
This command was modified. Support for the recursive next-hop clause, map display extension functionality, and the detailed keyword was added.
This command was integrated into Cisco IOS Release 12.2(33)SRA.
This command was integrated into Cisco IOS XE Release 2.2.
This command was modified. The detailed keyword was removed.
This command was modified. The command output was enhanced to display route tag values in dotted-decimal format.
This command was modified. The command output was enhanced to display route tag values in dotted-decimal format.
This command was integrated into Cisco IOS Release 15.1(1)SY.

Usage Guidelines The **show route-map** command displays information about route maps configured on the router. The output will vary depending on the keywords included with the command and the Cisco software image running on your router.

Examples

I

Examples

The following is sample output from the **show route-map** command when no keywords or arguments are used:

Device# show route-map

```
route-map ROUTE-MAP-NAME, permit, sequence 10
 Match clauses:
   ip address (access-lists): 1
   metric 10
 Continue: sequence 40
 Set clauses:
   as-path prepend 10
  Policy routing matches: 0 packets, 0 bytes
route-map ROUTE-MAP-NAME, permit, sequence 20
 Match clauses:
    ip address (access-lists): 2
   metric 20
  Set clauses:
   as-path prepend 10 10
 Policy routing matches: 0 packets, 0 bytes
route-map ROUTE-MAP-NAME, permit, sequence 30
 Match clauses:
 Continue: to next entry 40
```

```
Set clauses:

as-path prepend 10 10 10

Policy routing matches: 0 packets, 0 bytes

route-map ROUTE-MAP-NAME, deny, sequence 40

Match clauses:

community (community-list filter): 20:2

Set clauses:

local-preference 100

Policy routing matches: 0 packets, 0 bytes

route-map LOCAL-POLICY-MAP, permit, sequence 10

Match clauses:

Set clauses:

community 655370

Policy routing matches: 0 packets, 0 bytes
```

The following sample output from the **show route-map** command displays information about route tags:

```
Device# show route-map
```

```
route-map STATIC, permit, sequence 10
Match clauses:
    ip address (access-lists): 1
Set clauses:
    metric 56 100 255 1 1500
    tag 1.1.1.1
Policy routing matches: 0 packets, 0 bytes
route-map STATIC, permit, sequence 20
Match clauses:
    ip address (access-lists): 2
Set clauses:
    metric 56 100 255 1 1500
    tag 1.1.1.2
Policy routing matches: 0 packets, 0 bytes
```

The following sample output from the **show route-map** command shows Multiprotocol Label Switching (MPLS)-related route map information:

Device# show route-map

```
route-map OUT, permit, sequence 10
Match clauses:
    ip address (access-lists): 1
Set clauses:
    mpls label
Policy routing matches: 0 packets, 0 bytes
route-map IN, permit, sequence 10
Match clauses:
    ip address (access-lists): 2
    mpls label
Set clauses:
Policy routing matches: 0 packets, 0 bytes
The following is sample output from the show route-map dynamic command:
```

Device# show route-map dynamic

```
route-map AAA-02/06/04-14:01:26.619-1-AppSpec, permit, sequence 0, identifier 1137954548
Match clauses:
    ip address (access-lists): PBR#1 PBR#2
Set clauses:
    Policy routing matches: 0 packets, 0 bytes
route-map AAA-02/06/04-14:01:26.619-1-AppSpec, permit, sequence 1, identifier 1137956424
Match clauses:
    ip address (access-lists): PBR#3 PBR#4
Set clauses:
    Policy routing matches: 0 packets, 0 bytes
route-map AAA-02/06/04-14:01:26.619-1-AppSpec, permit, sequence 2, identifier 1124436704
Match clauses:
    ip address (access-lists): PBR#5 PBR#6
    length 10 100
```

```
Set clauses:
    ip next-hop 172.16.1.1
    ip gateway 172.16.1.1
    Policy routing matches: 0 packets, 0 bytes
Current active dynamic routemaps = 1
The following is sample output from the show route-map dynamic application command:
```

Device# show route-map dynamic application

```
Application - AAA
Number of active routemaps = 1
```

When you specify an application name, dynamic routes for that application are displayed. The following is sample output from the **show route-map dynamic application** command when you specify the name of the application:

```
Device# show route-map dynamic application AAA
```

AAA

```
Number of active rmaps = 2
AAA-02/06/04-14:01:26.619-1-AppSpec
AAA-02/06/04-14:34:09.735-2-AppSpec
```

Device# show route-map dynamic AAA-02/06/04-14:34:09.735-2-AppSpec

```
route-map AAA-02/06/04-14:34:09.735-2-AppSpec, permit, sequence 0, identifier 1128046100
 Match clauses:
    ip address (access-lists): PBR#7 PBR#8
  Set clauses:
 Policy routing matches: 0 packets, 0 bytes
route-map AAA-02/06/04-14:34:09.735-2-AppSpec, permit, sequence 1, identifier 1141277624
 Match clauses:
    ip address (access-lists): PBR#9 PBR#10
  Set clauses:
 Policy routing matches: 0 packets, 0 bytes
route-map AAA-02/06/04-14:34:09.735-2-AppSpec, permit, sequence 2, identifier 1141279420
 Match clauses:
    ip address (access-lists): PBR#11 PBR#12
    length 10 100
  Set clauses:
    ip next-hop 172.16.1.12
    ip gateway 172.16.1.12
  Policy routing matches: 0 packets, 0 bytes
Current active dynamic routemaps = 2
```

The following is sample output from the **show route-map dynamic detailed** command:

Device# show route-map dynamic detailed

```
route-map AAA-01/20/04-22:03:10.799-1-AppSpec, permit, sequence 1, identifier 29675368
Match clauses:
ip address (access-lists):
Extended IP access list PBR#3
1 permit icmp 0.0.16.12 1.204.167.240 10.1.1.0 0.0.0.255 syn dscp af12 log-input fragments
Extended IP access list PBR#4
1 permit icmp 0.0.16.12 1.204.167.240 10.1.1.0 0.0.0.255 syn dscp af12 log-input fragments
Set clauses:
ip next-hop 172.16.1.14
ip gateway 172.16.1.14
Policy routing matches: 0 packets, 0 bytes
The following is sample output from the show route-map dynamic command when a VRF is configured for
VRF autoclassification:
```

Device# show route-map dynamic

```
route-map None-06/01/04-21:14:21.407-1-IP VRF, permit, sequence 0 identifier 1675771000
```

1

```
Match clauses:
Set clauses: vrf vrf1
Policy routing matches: 0 packets, 0 bytes
Current active dynamic routemaps = 1
The table below describes the significant fields shown in the displays.
```

Table 19: show route-map Field Descriptions

Field	Description
Route-map ROUTE-MAP-NAME	Name of the route map.
Permit	Indicates that the route is redistributed based on set actions.
Sequence	Number that indicates the position of the new route map in the list of configured route maps.
Match clauses	Match criteria or conditions based on which the route map is redistributed.
Continue	Displays the configuration of a continue clause and the next route-map entry to which the clause is sent.
Set clauses	Specific redistribution actions to be performed if the match command criteria are met.
Tag	Tag for routes to the remote network.
Policy routing matches	Number of packets and bytes that have been filtered by policy routing.

Related Commands

Command	Description
redistribute (IP)	Redistributes routes from one routing domain into another routing domain.
route-map (IP)	Defines conditions for redistributing routes from one routing protocol into another, or enables policy routing.
match interface (IP)	Distributes any route that has the next hop out of one of the specified interfaces.
match ip next-hop	Redistributes any route that has a next-hop router address that is passed by one of the specified access lists.
match tag	Filters routes that match specific route tags.