

Cisco IOS[®] MPLS Management Technical Deployment Overview

Enabling Innovative Services

February 2004

Agenda

- Introduction
- Technical Deployment Overview MPLS Ping/Traceroute VCCV
 MPLS TE AutoTunnel – Primary & Backup MPLS TE AutoTunnel – Mesh Groups Auto SAA for MPLS
 MPLS-Aware NetFlow
- Summary
 - **Putting It All Together**

Service Provider Problems

Cisco.com

Operational Efficiencies

Increase management automation and availability

New Services Provisioning

Enable competitive differentiation and customer retention through profitable bundled services

Disparate Networks

Manage and consolidate traditional and emerging networks

Key Network Management Attributes

Cisco.com

- Fault management
- <u>Configuration</u>
- Accounting
- Performance

• <u>Security</u>

MPLS Operations Administration & Management (OAM) are tools and techniques needed to address FCAPS in deploying and operating an MPLS network successfully

Cisco IOS MPLS Embedded Management and FCAPS

Fault Management	MPLS Ping/Traceroute, VCCV, Mib, Auto SAA
C onfiguration	MPLS TE Auto Tunnel, Auto Tunnel Mesh Groups, Auto SAA
Accounting	NetFlow, MIB
Performance	SAA, Auto SAA, NetFlow, Mib
Security	RSVP Message Authentication
	LDP Message Authentication
	MD5 Authentication for Routing Protocol: BGP, OSPF

Deployment Requirements: 3 Categories*

Cisco.com

VC/LSP Path Verification and Tracing

- Built-in Protocol Operations
- Standard Management APIs/NMS Applications

✓ MIBs, CLI, XML, etc...

These must be addressed before the majority of providers will deploy value added MPLS services

*1st Tier PWE/MPLS SPs

Consequences of Not Addressing OAM Requirements

Cisco.com

- Providers cannot guarantee SLAs to customers
- Providers cannot guarantee path liveliness/reachability
- Difficult to tell if VC interface is up/down
- Difficult to roll out new service

<u>Take away:</u> Difficult at best to deploy services without OAM

Fault Management Detection and Isolation

Cisco.com

Control Plane Verification

- Consistency check
- Authentication

Data Plane Verification

Ability to verify connectivity, trace and SLA
 Paths from PE to PE – Global routing table as well as VPNs
 Paths from CE to CE within a VPN
 TE tunnels
 Pseudowires

VC/LSP Connection Verification and Trace Requirements

Cisco.com

- Automated detection and diagnosis of broken transport LSPs and VCs:
 - Point-to-point
 - **Multipoint-to-point**
 - Equal Cost Multi-Path (ECMP)
 - Capability to run diagnostic tools from both headend and midpoints

Data plane OAM packets must follow same path they are testing

Built-In Protocol Requirements

Cisco.com

- Detect errors, recover from them, and alert the network operator *before* customer calls.
- Detection of DoS attacks via an OAM filtering mechanism for security mgmt.
- inherent to separate data and control planes

RSVP-TE

MPLS Fast Reroute

LDP

Standard Management API Requirements

Cisco.com

Ability to suppress unnecessary alarms

Example: LSP carrying pseudowire VCs

SNMP

SysLog

Protocol Flooding

 Integration of standard PWE3 and other related MIBs for fault and statistics management.

Performance Monitoring Requirements

Cisco.com

Some questions to ask are:

- How does the service provider decrease operational expense and the complexity of monitoring SLAs and verifying service?
- How does the SP verify connectivity, and rapidly find bad paths across the MPLS core with Cisco IOS[®] Software instrumentation?
- How can the SP perform troubleshooting diagnostic to automatically find trouble spots and quickly resolve MPLS network issues?
- How can the SP obtain network measurements of round trip time, packet loss and jitter between PE routers?

Agenda

- Introduction
- Technical Deployment Overview
 <u>MPLS Ping/Traceroute</u>
 VCCV
 MPLS TE AutoTunnel Primary & Backup
 MPLS TE AutoTunnel Mesh Groups
 Auto SAA for MPLS
 MPLS-Aware NetFlow
 - **Putting It All Together**

LSP Ping

Cisco.com

Similar to ICMP (IP) Ping

Sequence number

Timestamps

Sender identification

- Full identification of FEC based on the application
- Variable length for MTU discovery
- Support for tunnel/path tracing
- Multiple-reply modes
- Handles ECMP
- Cisco[®] implementation compliant with <u>draft-ietf-mpls-lsp-ping-03.txt</u>

MPLS Ping: Operation

Cisco.com

• Ping Mode: Connectivity check of an LSP

Test if a particular "FEC" ends at the right egress LSR

- Traceroute Mode: Hop by Hop fault localization
- Uses two messages

MPLS Echo Request

MPLS Echo Reply

Packet need to follow data path

MPLS Ping: Packet Flow

- Ping with label for FEC=192.169.10.0/24
- Label Switched at R2, R3
- R3 pops label off
- R5 processes packet

"Packet Flow Ping Mode: Egress Node

- Check packet integrity
- Check if FEC distribution protocol is associated with incoming interface
- Check if valid egress node for the FEC
- Send echo Reply according to value of Reply Mode

MPLS Traceroute: Packet Flow

- MPLS Ping Packets are sent with TTL=1,2,3...,n
- Label switched if TTL > 1
- Processed where TTL expires
- Reply contains downstream mapping TLV (i.e. the label, interface for reaching the downstream router)

Agenda

- Introduction
- Technical Deployment Overview
 MPLS Ping/Traceroute
 VCCV
 MPLS TE AutoTunnel Primary & Backup
 MPLS TE AutoTunnel Mesh Groups
 Auto SAA for MPLS
 MPLS-Aware NetFlow
 - **Putting It All Together**

Virtual Circuit Connection Verification (VCCV)

Motivation

•

One tunnel can serve many pseudo-wires.

MPLS LSP ping is sufficient to monitor the PSN tunnel (PE-PE connectivity), but not VCs inside of tunnel.

VCCV Overview

- Mechanism for connectivity verification of PseudoWire (PW)
- Really a control channel
- Features

Works over MPLS or IP networks

In-band Connectivity Verification (CV) via control word flag or out-of-band option by inserting router alert label between tunnel and PW labels

Works with ICMP Ping and/or LSP ping

Connectivity Trace Using VCCV

Example of Operation CV/Trace Using VCCV and LSP Ping

Agenda

Cisco.com

- Introduction
- <u>Technical Deployment Overview</u>
 - **MPLS Ping/Traceroute**

VCCV

MPLS TE AutoTunnel – Primary & Backup

MPLS TE AutoTunnel – Mesh Groups

Auto SAA for MPLS

MPLS-Aware NetFlow

Summary

Putting It All Together

MPLS TE AutoTunnel

Cisco.com

- AutoTunnel automatically creates TE tunnels for primary and backup use
- Primary AutoTunnel for primary TE tunnels has the following characteristics:

Sets up a TE tunnel to every adjacent neighbor or a "1-hop" tunnel

With FastReRoute, "1-hop" tunnel protects not only TE LSP traffic, but also IP Traffic. (Future versions will protect LDP LSP traffic as well)

Does not appear in configuration files – system generated

Backup – AutoTunnel for backup TE tunnels has the following characteristics:

Sets up a Next hop and Next Next Hop

N:1 concept applies here as well i.e. 1 Backup tunnel protects multiple Primary tunnels

A "manually" configured backup tunnel is preferred to a Backup AutoTunnel

MPLS TE AutoTunnel: Primary

Router A creates 2 AutoTunnels for each adjacent neighbor – Router B and Router C

All AutoTunnels are zero bandwidth tunnels

MPLS TE AutoTunnel: Primary and Auto Backup

Router A creates 2 Backup AutoTunnels for each connected link

All AutoTunnels are zero bandwidth tunnels

MPLS TE AutoTunnel: Primary and Manual Backup


```
!configure backup tunnel (Ra-Rc-Rb), (Ra-Rc-Rd-Rb)
```

On Router A define Manual Backup tunnels {RA, RC, RB} and/or {RA, RC, RD, RB}

Manual Tunnels take precedence over AutoTunnels – provides "tweaking" capability for customers

"Manual" TE vs AutoTunnel

Cisco.com

Configuration Tasks – Before AutoTunnel

Configure Link

ip rsvp bandwidth

mpls traffic-eng tunnel.....

Configure IGP

.....

router ospf

mpls traffic-eng area...

Configure TE Tunnels

int tun0

tunnel mode mpls

•••••

int tun1

tunnel mode mpls

Configuration Tasks – After AutoTunnel

Configure Link

ip rsvp bandwidth

mpls traffic-eng tunnel....

Configure IGP

.....

. . . .

router ospf

mpls traffic-eng area...

Configure TE AutoTunnel

mpls traffic-eng auto-tunnel primary onehop mpls traffic-eng auto-tunnel backup

Agenda

Cisco.com

- Introduction
- <u>Technical Deployment Overview</u>
 - **MPLS Ping/Traceroute**

VCCV

MPLS TE AutoTunnel – Primary & Backup

MPLS TE AutoTunnel – Mesh Groups

Auto SAA for MPLS

MPLS-Aware NetFlow

Summary

Putting It All Together

Full-Mesh TE Deployment

Cisco.com

Requirement: Solution:

Need to increase "bandwidth inventory" across the network Deploy MPLS TE with a full logical mesh over a partial physical mesh and use Offline Capacity Planning Tool

Operational Issues Raised by Full-Mesh TE

Cisco.com

Scenario 1: Transitioning a MPLS network to a TE Full Mesh

Typically zero bandwidth TE Tunnels are deployed to introduce minimal disruption to existing traffic flows.

An offline capacity planning tool then modifies the bandwidth constraints of the TE Tunnels and increases network utilization.

However, still is a lot of configuration = create a full mesh for 100 Routers means 10,000 TE Tunnels.

Scenario 2: Adding Routers to an existing TE Full Mesh

For 100 Routers in an existing Full Mesh, the 101st Router is added

TE Tunnels need to be built from the 101st router to every other 100 routers.

Since TE Tunnels are unidirectional, a TE Tunnel needs to be built from each of the 100 routers

AutoTunnel Mesh Groups

MPLS AutoTunnel: Configuration

Cisco.com

- Enable TE on all routers (member of the mesh group)
- Enable AutoTunnel Mesh Groups (global level)

router(config)# mpls traffic-eng auto-tunnel mesh

- Configure ACCESS-LIST (standard IP access list) which defines the set of possible tunnel destination
- Configure Auto-Template

router(config)#interface Auto-Template 1 router(config-if)#ip unnumbered Loopback0 router(config-if)#tunnel mode mpls traffic-eng router(config-if)#tunnel mpls traffic-eng autoroute announce router(config-if)#tunnel mpls traffic-eng priority 1 1 router(config-if)#tunnel mpls traffic-eng auto-bandwidth router(config-if)#tunnel mpls traffic-eng path-option 1 dynamic router(config-if)#tunnel destination access-list 1

• TE LSP will automatically be set up using the locally configured templates.

Agenda

Cisco.com

- Introduction
- <u>Technical Deployment Overview</u>

MPLS Ping/Traceroute

VCCV

MPLS TE AutoTunnel – Primary & Backup

MPLS TE AutoTunnel – Mesh Groups

Auto SAA for MPLS

MPLS-Aware NetFlow

• Summary

Putting It All Together

Service Assurance Agent (SAA) Measuring the Network

Cisco.com

- Active Traffic Generation within Cisco IOS Software using SAA Probes
 - "Probe" software configured within Cisco IOS that generates traffic
 - Monitor network performance and health
 - Test and troubleshoot network problems

Measurement of key end-to-end network metrics

- Network delay
- Packet loss
- Network delay variation (jitter)
- Connectivity
SAA L3 MPLS VPN Operations Today

Cisco.com

SAA for MPLS VPN Operation

- **VRF** Aware monitoring
- L3 MPLS VPN SLA measurement
- PE router, multi-vrf CE or dedicated SAA router
- Supported releases 12.2(11)T train and 12.0(26)S, 12.2(20)S

Auto SAA for MPLS L3 VPN Embedded Tool provides:

Automatic connectivity testing of label switch paths

Proactive monitoring of equal-cost traffic paths between the edges

Troubleshooting and MPLS forwarding problem isolation

Use of LSP ping for connectivity testing and network performance monitoring

Auto SAA MPLS L3 VPN

Auto SAA for MPLS Probe Generation

Cisco.com

- Scenario for Probe Generation
 - All PEs participating with VPNv4 are discovered
 - Probes are generated from source to all destination Pesusing /32 IBGP VPNv4 loopbacks
 - It is assumed if a probe exists between two PEs it will not be generated again.
 - if a new EXP value is specified a new set of probes is generated

SAA for MPLS Monitoring Thresholds

Cisco.com

- Autoconfiguration will allow thresholds for reaction trigger and trap events
- Reaction trigger sends traps on connection loss, timeout, latency thresholds
- LSP Ping embedded LSP connectivity testing
- Probe will activate at a higher frequency based on threshold violation

The higher activation rate is used to isolate network problems

SAA for MPLS Probe Scheduling

Cisco.com

Scheduling and Scalability

- Probes will be activated sequentially
- User specifies probe activation interval
 - Probes are spaced equally using the time interval
 - Example 60 probes are used to scan with an interval of 5 seconds. Probe activates 5s*60 total scan time of 300s.
 - Frequency is configurable to overlap activation of probes or create periods of no activation

Agenda

Cisco.com

- Introduction
- Technical Deployment Overview

MPLS Ping/Traceroute

VCCV

MPLS TE AutoTunnel – Primary & Backup

MPLS TE AutoTunnel – Mesh Groups

Auto SAA for MPLS

MPLS-Aware NetFlow

Summary

Putting It All Together

Why a New Version 9?

- Fixed export formats are not flexible and adaptable
- With each new version Cisco creates new export fields
- Partners need to reengineer for each new version

Solution: Build a flexible and extensible export format called version 9

NetFlow v9 and IETF

 Internet Protocol Flow Information eXport (IPFIX) is an IETF Working Group

http://ipfix.doit.wisc.edu/

- NetFlow version 9 is the basis for the standard in the IETF
- Informational RFC on NetFlow version 9

http://www.ietf.org/internet-drafts/draft-bclaise-netflow-9-00.txt

MPLS

Cisco.com

Egress MPLS NetFlow Accounting

- IP information only
- Ideal for billing
- Current availability: Cisco IOS[®] Software Releases 12.0(10)ST and 12.1(5)T

MPLS-Aware NetFlow (version 9)

- Exports up to three MPLS labels, and IP packet information
- Ideal for Traffic Engineering

MPLS-Aware NetFlow

- Top Label Export and Destination Prefix advertised by LDP on the MPLS P routers
- Export up to 3 incoming MPLS labels, from positions 1-to-6 in the MPLS label stack
- Experimental bits and end-of-stack bit
- Export label Position
- Type of top label: LDP, BGP, VPN, ATOM, TE Tunnel
- Sampled MPLS-Aware NetFlow
- P router only

Cisco.com

- Introduction
- Technical Deployment Overview
 - **MPLS Ping/Traceroute**
 - VCCV
 - **MPLS TE AutoTunnel Primary & Backup**
 - **MPLS TE AutoTunnel Mesh Groups**
 - Auto SAA for MPLS
 - **MPLS-Aware NetFlow**
- Summary
 - **Putting It All Together**

MPLS Embedded Management

Cisco.com

MPLS Embedded Management and Monitoring

Software and Hardware Details

Cisco.com

See reference slide for further details

- LSP Ping/Trace available as of 12.0(27)S with limited ECMP support Supported FEC: LDP IPv4, TE IPv4
- VCCV available as of 12.0(27)S

Support both Router Alert (RA) and Control world option

On GSR

Control Word option: E3 line card is the imposition card

Router Alert option: All other line cards and when Egress not E3

- MPLS TE AutoTunnel, AutoMesh as of 12.0(27)S
- Auto SAA for MPLS L3 VPN as of 12.2(RLS5)S
- Note: MPLS L3 VPN Aware SAA Probes Supported as of 12.2(11)T and 12.0(26)S)

World-Class Customer Support

Cisco.com

- <u>2,000</u> Technical Support Professionals
- <u>1,600+</u> Support Engineers* (400 CCIEs) on 24x7
- <u>630+</u> Depots and <u>10,000</u> Field Engineers in <u>120</u> countries*
- <u>85,000+</u> Assisted cases/ month
- <u>321,000</u> Customer issues resolved/month
- <u>75%</u> TAC Web resolved: of <u>25%</u> assisted, <u>64%</u> were web-initiated
- <u>98%</u> Material availability
- <u>92%</u> Orders submitted online, <u>55%</u>
 "no touch"
- <u>60%</u> Change orders submitted online
- * Internal & Outsource Partners

Customer Advocacy Mission

Accelerate customer success with Cisco through innovative services and world-class people, partners, process, and tools.

Cisco leads in the MPLS Market

Cisco IOS MPLS

Cisco.com

Smarter The foundation for more services and more revenues

Enabling

Innovative

Faster A flexible QoS framework to enable migration to a converged infrastructure

Services

Lasting Extensibility to different transports with standardsbased open architecture for investment protection

CISCO SYSTEMS