

Cisco IOS[®] MPLS Management Technology Overview

Enabling Innovative Services

February 2004

Cisco.com

Introduction

Problems, challenges, requirements

- Technology Overview
- Summary

Service Provider Problems

Cisco.com

Operational Efficiencies

Increase management automation and availability

<u>New Services Provisioning</u>

Enable competitive differentiation and customer retention through profitable bundled services

Disparate Networks

Manage and consolidate traditional and emerging networks

MPLS Service Provisioning Challenge

Cisco.com

Challenges in VPN Service Provisioning

Source: Infonetics, 2003

Reducing OpEx with Network Management

- CapEx typically follows the economy
- OpEx is consistent

- Typical ratio of a Tier 1 carrier CapEx vs OpEx spending
- OpEx efficiencies have higher profitability and a higher ARPU

Customer Requirements

Cisco.com

- Provide systemic management solutions for achieving dramatic productivity gains through automation, intelligence, and simplification
- Enable competitive differentiation and customer retention through high-margin, bundled services

Provide automated embedded tools

Configuration

Error detection & recovery

Performance and accounting

Perform data plane validation with respect to control plane

Data plane liveliness and troubleshooting

- Standards and open interfaces, APIs to management/OSS applications and third-party software vendors
- End-to-end circuit/service-level health/alarm correlation

- Introduction
- Technology Overview
- Summary

MPLS Management Life Cycle

MPLS Management Architecture

MPLS LSP Ping/Traceroute

Requirement	 Detect MPLS traffic black holes or misrouting Isolate MPLS faults Verify data plane against the control plane Detect MTU of MPLS LSP paths
Solution	 MPLS LSP Ping (ICMP) for connectivity checks MPLS LSP Traceroute for hop-by-hop fault localization MPLS LSP Traceroute for path tracing
Applications	 IPv4 LDP prefix TE tunnel MPLS PE, P connectivity for MPLS transport, MPLS VPN, MPLS TE applications
IETF Standards	Draft-ietf-mpls-lsp-ping-xx.txt

LSP Ping/Traceroute Example

MPLS AToM Virtual Circuit Connection Verification (VCCV)

Requirement	 Ability to provide end-to-end fault detection and diagnostics for an emulated pseudowire service One tunnel can serve many pseudowires. MPLS LSP ping is sufficient to monitor the PSN tunnel (PE-PE connectivity), but not VCs inside of tunnel
Solution	 AToM VCCV allows sending control packets in band of an AToM pseudowire. Two components: Signaled component to communicate VCCV capabilities as part of VC label Switching component to cause the AToM VC payload to be treated as a control packet Type 1: uses Protocol ID of AToM Control word Type 2: use MPLS router alert label
Applications	• Layer 2 transport over MPLS FRoMPLS, ATMoMPLS, EoMPLS
IETF Standards	Draft-ietf-pwe3-vccv-xx.txt

VCCV Example

MPLS Traffic Engineering: AutoTunnel – Primary, Backup, & Mesh Groups

Requirement	 Ability to protect links and nodes with no requirement of "traffic engineering" Need to ease configuration of "increased bandwidth inventory" MPLS TE designs such as full mesh
Solution	 Backup AutoTunnel—Enables a router to dynamically build backup tunnels
	 Primary one-hop AutoTunnel—Enables a router to dynamically create one-hop primary tunnels on all interfaces that have been enabled with MPLS TE tunnels
	 Mesh Group AutoTunnel – Enables automatic establishment of full- or partial-mesh of TE tunnels
Applications	 MPLS VPN with multiservice SLAs (voice, video, and data sites)
	 MPLS AToM-based Layer 2 services with "Bandwidth Assurances"
	 Enhanced SLA service offerings with low packet loss during failure condition – "Bandwidth Protection"
IETF Standards	 draft-ietf-mpls-rsvp-lsp-fastreroute-03.txt
	 draft-ietf-ospf-cap-01.txt
	 draft-vasseur-mpls-ospf-te-cap-xx.txt

MPLS Traffic Engineering AutoTunnel – Primary & Backup

Cisco.com

Router A establishes AutoTunnels to adjacent routers – "automates" configuration of Link & Node Protection

MPLS Traffic Engineering AutoTunnel – Mesh Groups

Cisco.com

Routers A, B, C, D, E – defined as members of "Mesh Group 1" Capable of building multiple meshes for DiffServ aware Traffic Engineering Automates configuration of full mesh of TE Tunnels resulting in operational efficiencies

MPLS-Aware SAA

Requirement	 IP SLA monitoring for MPLS VPNs Network performance monitoring per VPN Hop-by-hop statistics for troubleshooting Low-cost solution embedded in Cisco IOS® Software
Solution	 Active traffic generation within Cisco IOS using SAA Jitter, packet loss, latency, connectivity CPE to CPE, PE to CE, and PE to PE measurements SAA PE, multi-vrf CE or dedicated SAA router
Applications	• MPLS, MPLS-VPN, MPLS-TE
IETF Standards	RFC 1889 Jitter Compliant metrics

SAA VPN Measurements

Cisco.com

Per VPN Performance Monitoring Packet loss, Latency, Jitter, Connectivity • PE to PE, CE to CE, PE to CE, PE to remote CE

MPLS-Aware NetFlow

Requirement	 MPLS network capacity planning PE to PE traffic matrix Per-VPN MPLS accounting IP flow analysis
Solution	 Cisco IOS MPLS-Aware NetFlow NetFlow version 9 Label export with destination prefix Per Label accounting aggregation CNS NetFlow Collector 5.0 Support of EXP bits as a field to key flow reports on Using NFC 5.0 + add on PE-PE Traffic matrix module provides PE-PE traffic matrix aggregation
Applications	• MPLS, MPLS-VPN, MPLS-TE
IETF Standards	• IPFIX WG proposed standard

MPLS-Aware NetFlow

MPLS MIBs

Requirement	 Standards-based SNMP implementation Integration with existing OSS and third-party vendors/software
Solution	• MIBs: LDP, LSR-MIB, TE-MIB, PPVPN-MPLS-VPN-MIB, PWE3- MPLS-MIB, MPLS-FRR-MIB
Applications	• MPLS, MPLS-VPN, MPLS-TE
IETF Standards	MPLS-LSR-STD MIB, MPLS-TE-STD MIB, MPLS-FTN-STD MIB, MPLS- LDP-STD MIB, MPLS-TC-STD MIB

Cisco Info Center: VPN Policy Manager 3.1

- Cisco Info Center VPN
 Policy Manager (Cisco Info
 Center and IP Solution
 Center integration)
 correlates network events
 to affected services
 - CIC VPN Policy Manager available today
- Cisco Info Center VPN
 Policy Manager 3.1 offers:
 - New Cisco Info Center VPN Policy Manager DSA developed
 - New Cisco Info Center VPN Policy Manager policies developed
 - Device/Interface/Sub-interface MPLS VPN subscriber correlation
 - MPLS troubleshooting tools

- Introduction
- Technology Overview
- Summary

Summary

- Provide systemic, integrated, and innovative manageability solutions
- Standards-based open interfaces for easier and faster integration
- Complete end-to-end MPLS service and network management solutions

Cisco leads in the MPLS Market

Cisco IOS MPLS

Cisco.com

Smarter The foundation for more services and more revenues

Enabling

Innovative

Faster A flexible QoS framework to enable migration to a converged infrastructure

Services

Lasting Extensibility to different transports with standardsbased open architecture for investment protection

CISCO SYSTEMS